Introduction to Data Obfuscation Method (DOM)
Cryptography Basics of DOM

By: Eric Dumouchelle
September 2025
Data Alchemy Security

Abstract

Data Obfuscation Method (DOM) is a new approach to data protection that resists
harvest now, decrypt later (HNDL) attacks. Instead of encrypting data into a single
ciphertext that can be stockpiled and attacked later, DOM separates information into two
inert artifacts:

e A Noise file (N) that is indistinguishable from randomness.
e A Key file (K) that contains only mapping instructions.

Neither artifact reveals anything on its own. Only when the correct pair is combined
does the original message reappear. When the noise length n 2 message length m and
noise is never reused, DOM achieves information-theoretic secrecy in the Shannon
sense[1]. This paper establishes the basic cryptographic definitions, encoding and
reconstruction procedures, and proofs of correctness and secrecy. iDOM, the software
implementation of DOM, operationalizes these concepts with TRNG-backed entropy,
hybrid mixing, and optional secret sharing.

Background

Encryption encodes data into ciphertext that depends on a secret key. While strong
today, such ciphertext remains vulnerable to future breakthroughs in mathematics or
computing. This creates the HNDL problem: adversaries can harvest encrypted data
now and decrypt it later.

DOM addresses this by removing the concept of a vulnerable ciphertext altogether.
Instead, the data is reconstructed through randomness, with only an index (the “key”
file) showing how to reconstruct it. Without both artifacts, an attacker learns nothing.
This shift from “encrypted file” to “two inert halves” creates an additional line of defense
that is independent of algorithmic strength or computational assumptions.

Terminology

For clarity, throughout this paper, the naming convention used in iDOM software is
present:

e “Noise file” (.noise)
o “Key file” (.key)

However, in cryptographic terms, the noise file functions as the secret key, and the key
file (or index) functions as the ciphertext. Thus, the file names are inverted relative to
conventional cryptographic roles.

©2025 Data Alchemy Security

To avoid misleading practitioners, implementation terms from iDOM are used, but
please note that they map inversely to canonical cryptographic roles.

iDOM Term Cryptographic Role

Noise file (.noise) Secret Key (uniform randomness)

Key file (.key) Ciphertext (encoding dependent on key)
Plaintext (M) Message

Reconstruction Decryption

BLAKEZ2b: cryptographic hash function used in iDOM’s entropy pool to mix and
compress inputs (TRNG samples, CSPRNG, and domain IDs) into uniform,
unpredictable output[2]

CSPRNG (Cryptographically Secure Pseudo-Random Number Generator): used as part
of the entropy pool generation

HNDL (Harvest Now, Decrypt Later): adversary model in which encrypted payloads are
harvested today and stored for later decryption once cryptanalytic or computational
advances become available

Perfect Secrecy: Condition where ciphertext leaks zero information about the plaintext

SSS (Shamir’s Secret Sharing): cryptographic method that divides a secret into multiple
parts, called shares, and distributes them among a number of participants[3]

TRNG (True Random Number Generator): non-deterministic entropy source; iDOM
implements a TRNG-backed entropy pool during noise and key creation

Adversary Model: Harvest Now, Decrypt Later

The central threat DOM addresses is harvest now, decrypt later (HNDL) attacks.
Encryption encodes the plaintext M in a way that is reversible once the key is recovered
or the algorithm is broken. Even if strong today, such ciphertext can be decrypted later,
even without having the accompanying key.

©2025 Data Alchemy Security

DOM produces two separate files:
e Noise file (N): pure random bytes generated from TRNG

o Key file (K): mapping instructions that, when applied to N, yield M

Harvesting one component is useless:
e Harvesting N: indistinguishable from uniform randomness
e Harvesting K: meaningless offsets without N

e Only (N, K) together reconstruct M

Unlike encryption, where stealing the ciphertext is always valuable, in DOM, stealing a
single artifact is useless. Noise looks like random garbage, and keys look like
meaningless offsets; only both together reconstruct the hidden plaintext.

Formalizing Encoding

Let plaintext be M of length m bytes. Let noise be N € {0,1}" (n = n_rows * row_bytes
bytes) with n = m (for perfect secrecy). Let index file be K, a set of instructions mapping
positions in N to recover M.

Encoding:
1. Generate N ~ U({0,1}") using TRNG
2. Construct K such that applying K to N yields M

Decoding:
1. Apply K to N to reconstruct M

(intentionally left blank formatting purposes; please continue to next page)

©2025 Data Alchemy Security

Encoding Pseudocode:
def build_key(input, noise, params):

backend = choose_backend(...)
backend.build(noise, row_bytes=params.row_bytes, k=max(params.chain))
backend.open()

writer = KeyWriter(out_path, params, noise_sha256=sha256(noise))
i=0
while i < len(input):
forkin (3,2,1):
chunk = input[i:i+k]
spot = backend.random_one(chunk)
if spot:
row, pos = spot
writer.write_entry(row, pos, k)
i+=k
break
writer.finalize()

Proof of Correctness

Goal: Show that for any input file M and generated noise file N, the encoding procedure
produces a key file K such that the reconstruction procedure combine(N, K) outputs
exactly M, assuming the integrity checks pass and the placement-entropy guardrail

holds.

Preconditions and Notation

M: input byte string of length m

N: noise matrix of size n = n_rows * row_bytes bytes generated from the
TRNG-backed entropy pool

chain = (3,2,1): chunk sizes, including fallbacks, used by the encoder

backend: BucketScan or PackedIndex, which indexes N and supports
random_one(chunk) that returns a uniformly sampled coordinate (row, pos)
among all matches of chunk within N, or None if no match exists this sampling
prevents deterministic reuse of positions, ensuring that duplicate plaintext chunks
may map to different positions in N.

Placement-entropy guardrail: except with negligible probability and in cases of
small noise files, every 1-byte value appears in N at least once, and the expected
density of 2- and 3-byte matches supports progress

©2025 Data Alchemy Security

Encoding Invariants
1. Progress Invariant: In the main loop

while i < m:
forkin (3,2,1):

chunk = M[i:i+K]

spot = backend.random_one(chunk)

if spot:
writer.write_entry(row, pos, k)
i+=k
break

whenever spot is found, the index i advances by k >= 1. Because 1 is in chain, if
there exists at least one match at k=1, the loop advances on every iteration until
i=m.

2. Coverage Invariant: The sequence of written entries (row, pos, k) forms a disjoint
tiling of [0, m) by contiguous chunks M[i:i+k] in left-to-right order; i.e., no gaps
and no overlaps are possible by construction because i only moves forward and
each step copies exactly the next k bytes of M.

3. Match Correctness Invariant: For each written entry (r, p, k), the backend
guarantees that N[r, p : p+k] == M[i : i+k] at the time of writing. This holds by the
definition of a match returned by random_one.

Key Serialization and Binding

Each entry is serialized as bit-packed triples (row_id, pos, k). The key header includes
noise_sha256 and geometry (n_rows, row_bytes).

Reconstruction Procedure

Pseudocode:

gen = (noise.read_bytes(r,p,k) for (r,p,k) in key.entries())
rebuild_output_file_from_iter(gen, out)

e Geometry/Hash Binding. Before reconstruction, verify(noise, key.noise_sha256)
and geometry checks ensure the provided N is exactly the noise instance used
during encoding. If the noise differs, reconstruction aborts.

e Chunk Reproduction. For each serialized entry (r,p,k), the NoiseReader yields
exactly the slice N[r, p : p+k]. By the Match Correctness Invariant, this equals the
original chunk M[i : i+k] recorded at encode time.

©2025 Data Alchemy Security

e Concatenation. By the Coverage Invariant, concatenating all yielded slices in
order reproduces a copy of M. The decoder streams these slices, producing the
final output M_hat.

Proof Sketch (Correctness)
Under the guardrail precondition and successful integrity checks, the combine
procedure outputs M_hat = M.

Proof Sketch: By Progress, the encoder terminates after emitting a finite sequence of
entries that tile [0,m) (Coverage). Each entry’s slice in N equals the corresponding
chunk of M (Match Correctness). The decoder reads those exact slices from the same
N (enforced by geometry and noise_sha256) and concatenates them in order, yielding
M byte-for-byte. Therefore M_hat = M.

A full formal proof is left for future work; a proof sketch is provided sufficient to establish
invariants.

Termination and Failure Modes

e Termination: Because 1 is in chain, the encoder advances by at least one byte
per iteration; it terminates in at most m iterations.

e Guardrail Violation: If the backend reports no match at all levels k in (3,2,1) for
some position, the run aborts. Correctness is preserved by refusing to produce a
partial key.

Figure 1. Entropy in Encoding: Index and Key Writer

TRMNG-backed entropy feeds the index, sampler, and ultimately the key writer (coordinates, not content).

Moise (.noise) index over noise

¥
n_rows x row_bytes Backend Index/

Uniform Selector

| Find candidates &
ick 1 uniformi

¥

Entropy Pool

KeyWriter (_key)
Bit-packed index,
masked extension,
noise.geom_sha2sg

row_id, pos. k—®

Input (mmapped)
(3,2.1) byte chunks

©2025 Data Alchemy Security

Figure 2. Combine Inputs & Integrity Checks

Inputs are normalized to MoiseReader/KeyReader. Integrity checks must pass before reconstruction proceeds.

MoiseReader
mmapped; serves
slices on demand

Moise input I
noise
Integrity Checks
neoise geometry:
n_rows x row_bytes
_noise sha2sh6

Key input > KeyReader
ey read(row_id,pos,k)

FY

Shamir Shares
keysg*® tofn
{combine if t met)

Figure 3. Reconstruction Pipeline

Eniries are streamed; extension is restored.

MoiseReader
read(row_id,pos,k)

lterator | Rebuild Output

for (r,p.K) in key: > .
noise.read(r.p k) extension recovery

KeyReader
bit unpack entries

Proof of Secrecy

Case 1: Noise alone

e N is uniformly random
e [(M;N) = 0. No information about M can be inferred

Case 2: Key alone

e Kis pointers/offsets without reference
e For any two plaintexts M,, M,, distributions of K are indistinguishable without N

©2025 Data Alchemy Security

o |(M;K)=0
e Equivalently: given only K, the distribution over possible plaintexts remains
uniform, conditioned on the absence of N

Case 3: Noise + insufficient key shares

e \With SSS, fewer than threshold shares leak no information
e Noise without sufficient shares cannot reconstruct M

Case 4: Sufficient key shares alone

e Sufficient shares without the noise file cannot reconstruct M

Perfect Secrecy Condition

DOM satisfies Shannon-style perfect secrecy when n =2 m and N is never reused. When
n < m, DOM retains resistance to HNDL by rendering harvested artifacts individually
information-free. Strength against HNDL.:

e Resistant:ifn<m
e Immune: if n 2 m (and N never reused)

Bridge to iDOM

The theoretical proofs above are directly implemented in iDOM:

TRNG-backed entropy pool: ensures N is fresh and unique

Hybrid entropy mixing: TRNG + CSPRNG with BLAKE2b domain separation
Noise creation: created during encoding; enforce n =2 m when required
Super Shamir’s Secret Sharing: splits K into shares while treating N as a
super-share

Entropy Pseudocode:
def random_bytes(n):
if TRNG_enabled:
return pool.read_or_topoff with_os_urandom(n)
else:
return os.urandom(n)

©2025 Data Alchemy Security

Figure 4. Entropy Pool (TRNG-backed, hybrid hardened)

TRMNG samples are domain separated and BLAKEZb-compressed with OS CSPENG. Pool supports top off for liveness:;
TREMNG remains part of every enabled run.

.. Domain o
Jiterentropy » Separation - Hybrid Mix | Entropy Pool
(TRNG) "| sEssion_ID | TRNG & CSPRNG 1% 2o dimop of
Self-test passed = BLAKEZ2b compress p
RUN 1D
¥
Liveness (Top off)
CSPRMNG used only
when needed: TRNG | Poo seli-heals
confinues

Security Properties Summary

e Noise-only: indistinguishable from randomness; leaks nothing

e Key-only: coordinate mappings; inert without noise

e Both required: legitimate reconstruction of M

e Condition for immunity: n = m, unique N, no reuse

DOM therefore provides information-theoretic secrecy under specified conditions and
resistance otherwise, addressing the HNDL adversary model in a way fundamentally
different from encryption.

Conclusion
This whitepaper has established that DOM and its implementation in iDOM:

1. Correctly reconstruct the plaintext when both artifacts are available

2. Provide provable secrecy when artifacts are harvested individually

3. Achieve immunity to HNDL attacks under the perfect secrecy condition (n 2 m,
fresh noise)

iDOM operationalizes these principles with TRNG-backed entropy, integrity checks, and
optional governance control. By separating payload into two inert artifacts, DOM
provides a provable defense against HNDL threats, offering a new level of data security.
Future white papers will explore performance, comparison to known systems,
compliance, and enterprise integration considerations, but this initial paper establishes
the cryptographic foundation.

©2025 Data Alchemy Security

References

1. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28
(4), 656-715.

2. Aumasson, J.-P.; Neves, S.; Wilcox-O’'Hearn, Z.; Winnerlein, C. The BLAKE2
Cryptographic Hash and Message Authentication Code (MAC). RFC 7693 2015, 1-43.

3. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22 (11), 612-613.

©2025 Data Alchemy Security

	
	
	
	
	
	
	Introduction to Data Obfuscation Method (DOM)
	
	
	
	
	Abstract
	Background
	Terminology
	
	Adversary Model: Harvest Now, Decrypt Later
	Formalizing Encoding
	Proof of Correctness
	Perfect Secrecy Condition
	Bridge to iDOM
	Security Properties Summary
	Conclusion
	References

