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Abstract 
Data Obfuscation Method (DOM) is a new approach to data protection that resists 
harvest now, decrypt later (HNDL) attacks. Instead of encrypting data into a single 
ciphertext that can be stockpiled and attacked later, DOM separates information into two 
inert artifacts: 
 

●​ A Noise file (N) that is indistinguishable from randomness. 
 

●​ A Key file (K) that contains only mapping instructions. 
 

Neither artifact reveals anything on its own. Only when the correct pair is combined 
does the original message reappear. When the noise length n ≥ message length m and 
noise is never reused, DOM achieves information-theoretic secrecy in the Shannon 
sense[1]. This paper establishes the basic cryptographic definitions, encoding and 
reconstruction procedures, and proofs of correctness and secrecy. iDOM, the software 
implementation of DOM, operationalizes these concepts with TRNG-backed entropy, 
hybrid mixing, and optional secret sharing. 

Background 
Encryption encodes data into ciphertext that depends on a secret key. While strong 
today, such ciphertext remains vulnerable to future breakthroughs in mathematics or 
computing. This creates the HNDL problem: adversaries can harvest encrypted data 
now and decrypt it later. 
 
DOM addresses this by removing the concept of a vulnerable ciphertext altogether. 
Instead, the data is reconstructed through randomness, with only an index (the “key” 
file) showing how to reconstruct it. Without both artifacts, an attacker learns nothing. 
This shift from “encrypted file” to “two inert halves” creates an additional line of defense 
that is independent of algorithmic strength or computational assumptions. 

Terminology 

For clarity, throughout this paper, the naming convention used in iDOM software is 
present: 
 

●​ “Noise file” (.noise)​
 

●​ “Key file” (.key) 
 

However, in cryptographic terms, the noise file functions as the secret key, and the key 
file (or index) functions as the ciphertext. Thus, the file names are inverted relative to 
conventional cryptographic roles. 
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To avoid misleading practitioners, implementation terms from iDOM are used, but 
please note that they map inversely to canonical cryptographic roles. 
 

iDOM Term Cryptographic Role 

Noise file (.noise) Secret Key (uniform randomness) 

Key file (.key) Ciphertext (encoding dependent on key) 

Plaintext (M) Message 

Reconstruction Decryption 
 
BLAKE2b: cryptographic hash function used in iDOM’s entropy pool to mix and 
compress inputs (TRNG samples, CSPRNG, and domain IDs) into uniform, 
unpredictable output[2] 
 
CSPRNG (Cryptographically Secure Pseudo-Random Number Generator): used as part 
of the entropy pool generation 
 
HNDL (Harvest Now, Decrypt Later): adversary model in which encrypted payloads are 
harvested today and stored for later decryption once cryptanalytic or computational 
advances become available 
 
Perfect Secrecy: Condition where ciphertext leaks zero information about the plaintext 
 
SSS (Shamir’s Secret Sharing): cryptographic method that divides a secret into multiple 
parts, called shares, and distributes them among a number of participants[3] 
 
TRNG (True Random Number Generator): non-deterministic entropy source; iDOM 
implements a TRNG-backed entropy pool during noise and key creation 

 

Adversary Model: Harvest Now, Decrypt Later 

The central threat DOM addresses is harvest now, decrypt later (HNDL) attacks. 
Encryption encodes the plaintext M in a way that is reversible once the key is recovered 
or the algorithm is broken. Even if strong today, such ciphertext can be decrypted later, 
even without having the accompanying key. 
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DOM produces two separate files: 
 

●​ Noise file (N): pure random bytes generated from TRNG 
 

●​ Key file (K): mapping instructions that, when applied to N, yield M 
 
Harvesting one component is useless: 
 

●​ Harvesting N: indistinguishable from uniform randomness 
 

●​ Harvesting K: meaningless offsets without N 
 

●​ Only (N, K) together reconstruct M 
 
Unlike encryption, where stealing the ciphertext is always valuable, in DOM, stealing a 
single artifact is useless. Noise looks like random garbage, and keys look like 
meaningless offsets; only both together reconstruct the hidden plaintext. 

Formalizing Encoding 

Let plaintext be M of length m bytes. Let noise be N ∈ {0,1}n (n = n_rows * row_bytes 
bytes) with n ≥ m (for perfect secrecy). Let index file be K, a set of instructions mapping 
positions in N to recover M. 
 

Encoding: 
1.​ Generate N ∼ U({0,1}n) using TRNG 
2.​ Construct K such that applying K to N yields M 

 

Decoding: 
1.​ Apply K to N to reconstruct M 

 
 
 
 
 
 
(intentionally left blank formatting purposes; please continue to next page) 
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Encoding Pseudocode: 
def build_key(input, noise, params): 

backend = choose_backend(...) 
backend.build(noise, row_bytes=params.row_bytes, k=max(params.chain)) 
backend.open() 

 
writer = KeyWriter(out_path, params, noise_sha256=sha256(noise)) 
i = 0 
while i < len(input): 

for k in (3,2,1): 
chunk = input[i:i+k] 
spot = backend.random_one(chunk) 
if spot: 

row, pos = spot 
writer.write_entry(row, pos, k) 
i += k 
break 

writer.finalize() 

Proof of Correctness 

Goal: Show that for any input file M and generated noise file N, the encoding procedure 
produces a key file K such that the reconstruction procedure combine(N, K) outputs 
exactly M, assuming the integrity checks pass and the placement-entropy guardrail 
holds. 

Preconditions and Notation 

●​ M: input byte string of length m 
●​ N: noise matrix of size n = n_rows * row_bytes bytes generated from the 

TRNG-backed entropy pool 
●​ chain = (3,2,1): chunk sizes, including fallbacks, used by the encoder 
●​ backend: BucketScan or PackedIndex, which indexes N and supports 

random_one(chunk) that returns a uniformly sampled coordinate (row, pos) 
among all matches of chunk within N, or None if no match exists this sampling 
prevents deterministic reuse of positions, ensuring that duplicate plaintext chunks 
may map to different positions in N. 

●​ Placement-entropy guardrail: except with negligible probability and in cases of 
small noise files, every 1-byte value appears in N at least once, and the expected 
density of 2- and 3-byte matches supports progress 
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Encoding Invariants 

1.​ Progress Invariant: In the main loop 

while i < m: 
for k in (3,2,1): 

chunk = M[i:i+k] 
spot = backend.random_one(chunk) 
if spot: 

writer.write_entry(row, pos, k) 
i += k 
break 

 
whenever spot is found, the index i advances by k >= 1. Because 1 is in chain, if 
there exists at least one match at k=1, the loop advances on every iteration until  
i = m. 
 

2.​ Coverage Invariant: The sequence of written entries (row, pos, k) forms a disjoint 
tiling of [0, m) by contiguous chunks M[i:i+k] in left-to-right order; i.e., no gaps 
and no overlaps are possible by construction because i only moves forward and 
each step copies exactly the next k bytes of M. 
 

3.​ Match Correctness Invariant: For each written entry (r, p, k), the backend 
guarantees that N[r, p : p+k] == M[i : i+k] at the time of writing. This holds by the 
definition of a match returned by random_one. 

Key Serialization and Binding 

Each entry is serialized as bit-packed triples (row_id, pos, k). The key header includes 
noise_sha256 and geometry (n_rows, row_bytes). 

Reconstruction Procedure 
Pseudocode: 
gen = (noise.read_bytes(r,p,k) for (r,p,k) in key.entries()) 
rebuild_output_file_from_iter(gen, out) 

●​ Geometry/Hash Binding. Before reconstruction, verify(noise, key.noise_sha256) 
and geometry checks ensure the provided N is exactly the noise instance used 
during encoding. If the noise differs, reconstruction aborts. 

●​ Chunk Reproduction. For each serialized entry (r,p,k), the NoiseReader yields 
exactly the slice N[r, p : p+k]. By the Match Correctness Invariant, this equals the 
original chunk M[i : i+k] recorded at encode time. 
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●​ Concatenation. By the Coverage Invariant, concatenating all yielded slices in 
order reproduces a copy of M. The decoder streams these slices, producing the 
final output M_hat. 

Proof Sketch (Correctness) 
Under the guardrail precondition and successful integrity checks, the combine 
procedure outputs M_hat = M. 
 
Proof Sketch: By Progress, the encoder terminates after emitting a finite sequence of 
entries that tile [0,m) (Coverage). Each entry’s slice in N equals the corresponding 
chunk of M (Match Correctness). The decoder reads those exact slices from the same 
N (enforced by geometry and noise_sha256) and concatenates them in order, yielding 
M byte-for-byte. Therefore M_hat = M. 
 
A full formal proof is left for future work; a proof sketch is provided sufficient to establish 
invariants. 

Termination and Failure Modes 

●​ Termination: Because 1 is in chain, the encoder advances by at least one byte 
per iteration; it terminates in at most m iterations. 

●​ Guardrail Violation: If the backend reports no match at all levels k in (3,2,1) for 
some position, the run aborts. Correctness is preserved by refusing to produce a 
partial key. 
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Proof of Secrecy 

Case 1: Noise alone 

●​ N is uniformly random 
●​ I(M;N) = 0. No information about M can be inferred 

Case 2: Key alone 

●​ K is pointers/offsets without reference 
●​ For any two plaintexts M1, M2, distributions of K are indistinguishable without N 
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●​ I(M;K) = 0 
●​ Equivalently: given only K, the distribution over possible plaintexts remains 

uniform, conditioned on the absence of N 

Case 3: Noise + insufficient key shares 

●​ With SSS, fewer than threshold shares leak no information 
●​ Noise without sufficient shares cannot reconstruct M 

Case 4: Sufficient key shares alone 

●​ Sufficient shares without the noise file cannot reconstruct M 

Perfect Secrecy Condition 

DOM satisfies Shannon-style perfect secrecy when n ≥ m and N is never reused. When 
n < m, DOM retains resistance to HNDL by rendering harvested artifacts individually 
information-free. Strength against HNDL: 

●​ Resistant: if n < m 
●​ Immune: if n ≥ m (and N never reused) 

Bridge to iDOM 

The theoretical proofs above are directly implemented in iDOM: 

●​ TRNG-backed entropy pool: ensures N is fresh and unique 
●​ Hybrid entropy mixing: TRNG + CSPRNG with BLAKE2b domain separation 
●​ Noise creation: created during encoding; enforce n ≥ m when required 
●​ Super Shamir’s Secret Sharing: splits K into shares while treating N as a 

super-share 

Entropy Pseudocode: 
def random_bytes(n): 

if TRNG_enabled: 
return pool.read_or_topoff_with_os_urandom(n) 

else: 
return os.urandom(n) 
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Security Properties Summary 

●​ Noise-only: indistinguishable from randomness; leaks nothing 
●​ Key-only: coordinate mappings; inert without noise 
●​ Both required: legitimate reconstruction of M 
●​ Condition for immunity: n ≥ m, unique N, no reuse 

DOM therefore provides information-theoretic secrecy under specified conditions and 
resistance otherwise, addressing the HNDL adversary model in a way fundamentally 
different from encryption. 

Conclusion 

This whitepaper has established that DOM and its implementation in iDOM: 

1.​ Correctly reconstruct the plaintext when both artifacts are available 
2.​ Provide provable secrecy when artifacts are harvested individually 
3.​ Achieve immunity to HNDL attacks under the perfect secrecy condition (n ≥ m, 

fresh noise) 

iDOM operationalizes these principles with TRNG-backed entropy, integrity checks, and 
optional governance control. By separating payload into two inert artifacts, DOM 
provides a provable defense against HNDL threats, offering a new level of data security. 
Future white papers will explore performance, comparison to known systems, 
compliance, and enterprise integration considerations, but this initial paper establishes 
the cryptographic foundation. 
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