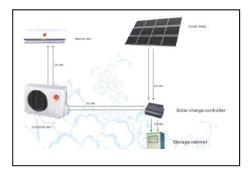


Intelligent Cooling

Ultra Efficient Split A/C Systems 9000 / 12,000 / 18,000 / 24,000 BTUs

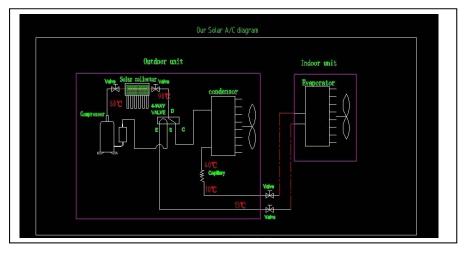
• Application:


.

- o Residential & Small Commercial
- o Apartments & Condos
- o Homes, Villas and Townhouses
- o Small Stores/Offices in Plazas
- o Smaller Classrooms
- A/C System Combinations:
 - Indoor Unit (Wall Mount, Floor Standing, Cassette)
 - Outdoor Unit
 - With Solar PV
 - With Solar Thermal (cooling process efficiency)
 - Grid Tied (AC) or Off-Grid (DC)
 - Cooling only or Cooling/Heating
- Sizes/Capacity:
 - o Grid Tied with Solar PV 9000/12,000/18,000/24,000 BTUs
 - o Grid Tied with Solar Thermal 9000/11,500/12,000/18,000/20,000/24,000 BTUs
 - o Off-Grid with Solar PV & Batteries 9000/12,000/15,000/18,000/24,000 BTUs
- How Does it Work:
 - o Ultra efficient DC Compressor
 - Solar PV improves electrical input efficiency
 - o Solar Thermal improves cooling efficiency
- Energy Savings:
 - Typical Energy Savings of 35% or more
 - Through efficient compressor operation time and efficient cooling process
 - Larger volumes of cooling refrigerant
 - Compressors consume 75%-90% of energy so less equates to more savings
- Warranty:

0

- o 5 year Compressor Warranty / Extended Warranty Options
- o Financing Available
- Energy Efficiency Ratio (EER):
 - o >14.0 (BTU/h/Watt)
 - o >5.0 (Watt/Watt)



Tech Talk: Intelligent Cooling based on solar-thermal optimization and efficient DC compressor.

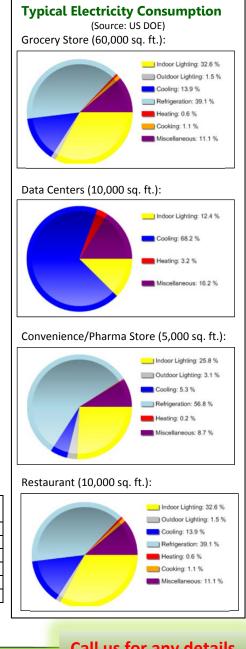
- Solar-PV units get additional PV power thus improving its energy efficiency
- Solar-thermal units utilize an additional solar heat source, to drive the cooling process. This reduces the electrical power needed to run the compressor. The system is similar to a regular A/C in that the refrigeration takes place by evaporating liquid with a very low boiling point. *The difference is how the gas is changed back into a liquid.* A regular A/C uses a compressor to pressurize the gas, forcing it to become a liquid through the use of the condenser coil. The change of state starts to take place *approximately 2/3rd's of the way down the condenser.* The Solar A/C uses the solar heat to superheat the refrigerant from roughly 75 °C to 85°C which enables the refrigerant to begin changing state *at the top 2/3rd's of the condenser coil. By this, it reduces the compression power required as well as utilizes more of the condenser cooling face.* The Solar A/C allows more of the refrigerant to change state back into a liquid (faster as well) thus allowing more liquid into the capillary device (evaporator). The superheated refrigerant largely improves the cooling effect when cooling exothermically into a liquid in the condenser.

And Savings Too:

Compressors consume 75%-90% of A/C power. The savings lie in:

- A DC operated compressor motor (lower demand & energy)
- Efficient solar-thermal optimization process (lower energy)
- A high EER (>14 (BTU/h/W)/ 5.0 (W/W)) with >35% energy savings

Best Value Applications:


- (1) high-ambient temperature/sunshine, (2) cooling gradient,
- (3) Hours of operation per day, (4) electricity tariff rate, and
- (5) Demand charges (if levied)

Parameters	Platinum Savings	Gold Savings	Silver Savings	Bronze Savings
Ambient Temp. (Deg. C/ F)	30+/ 86+	25-30/77-86	20-25/68-77	15-20/59-77
Cooling Gradient (Deg. C / F)	20-30+/68-86	10-20/50-77	10-20/50-77	10-20/50-77
Hours of operation per day	15+	10-15	6-8	6-8
Electricity Tariff (US\$/kWh)	0.15+	0.17+	0.17+	0.20+
Demand Charges (US\$/kW)	varies	varies	varies	varies
Typical Pay back (simple ROI)	1-2 year	2-3 Years	3 5 Years	4 Years

Do the math for number of units in each facility – the savings are huge.

Biosirus Inc.

21 Amber Street, Unit 3, Markham, Ontario, Canada L3R 4Z3; Tel./Fax: 416-410-4782 email: <u>info@biosirus.com</u> www.biosirus.com

Call us for any details or a trial project

Biosirus Brochure AC-1: Nov 2014