

PCB THERMAL MANAGEMENT

Agenda

- > Main causes of heat
- Importance of thermal management
- > Solutions to dissipate heat
- **>** Conclusions

Main Causes of Heat

- > Active Components
- > High Power
- > High Frequency
- > Operating Environment

The Importance of Thermal Management

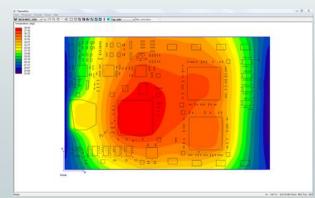
Common causes of failure in electronic components

- Component defects
- Packaging failures
- Environmental conditions
- Excessive Temperature
- Excessive current
- Mechanical shock

Solutions to Dissipate Heat

Some suggested options include

- PCB Lay Out
- Thermal Simulations
- Materials Choices
- Copper Thickness
- > Thermal Via-Farms
- Insulated Metal Substrates
- Coin Technology
- Copper Pedestal Technology



Layout

- > Spread out heat generating components do not group them together.
- Allow for wider tracks to conduct heat away and use heavier copper foils on the inner layers.
- Consider heat sinks early in the process easier to design them out, compared to having to design them in later.

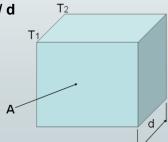
Thermal simulations

* Knowing this information may help to optimize the design. This is a critical step, yet often overlooked at the start.

Material - How much heat can be transferred away?

It depends of these factors:

 Λ = Thermal conductivity of the material (W/mK). This is a key characteristic of the material.


d = The thickness of the substrate

 ΔT = Difference in temperature between sides.

A = The area that will transfer the heat

Heat transfer = $W = \lambda * A * \Delta T / d$

Not valid with IMS PCBs due to contact resistance

Examples below show the different levels of heat transfer when using different materials with different thermal conductivity properties, using the formula

 $W = \Lambda * A * \Delta T / d$. where:

 $A = 1 \text{cm}^2$

ΔT = 20 °C

d = 1.6 mm

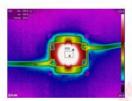
1 = Standard FR4 0.25 W/mK

A2 = Thermally conductive laminate 2.2 W/m/K

Using standard FR4

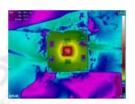
W1 = 3.1 watts

Using thermally conductive laminate


W2 = 27.5 watts

Material

Infrared thermal imaging test of LED modules for each grade of thermal PCB

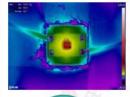

Level 0 general FR4

239.8°C

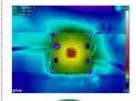
- Structure: general FR4 2 layer board
- Thermal conductivity: 2W/m.k
- Copper foil thk.: 2OZ
- Dielectric thk.: 1.5mm
- Metal base: N/A
- Total thk.: 1.6mm
- Module power: 25W


Level 1 Heat dissipation substrate

- Structure: single-sided 2 layer aluminum substrate
- Thermal conductivity:2.0W/m.k
- Copper foil thk.: 20Z
- Dielectric thk.: 0.2mm core
- Metal base: 5052 Al 1.2mm
- Total thk.: 1.6mm
- Module power: 25W


Level 2 Heat dissipation substrate

- Structure: single-sided aluminum substrate
- Thermal conductivity: 2.0W/m.k
- . Copper foil thk .: 20Z
- Dielectric thk.: 100um
- Metal base: 5052 Al 1.5mm
- Total thk.: 1.6mm
- Module power: 25W


Level 3 Heat dissipation substrate

- Structure: embedded copper
- Thermal conductivity: 170W/m.k
- Copper foil thickness: 20Z
- Dielectric thickness: aluminum
 nitride 1.5mm
- Metal base: N/A
- Total thickness: 1.6mm
- Module power: 25w

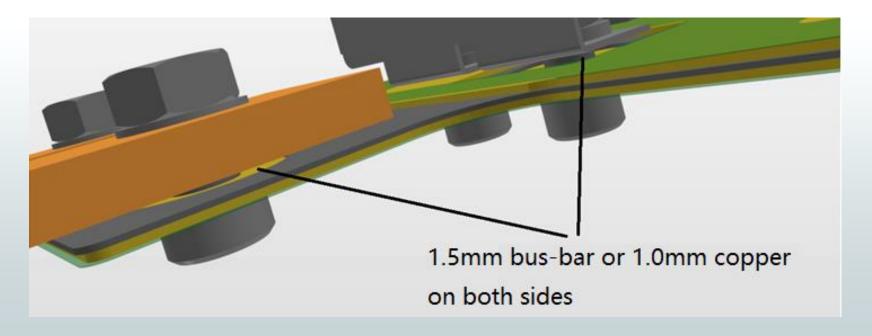
Level 4 Heat dissipation substrate

- Structure: KW pedestal
- Thermal conductivity: 398W/m.k
- Copper foil thk.: 20Z
- Dielectric thk.: 100um
- Metal base: C110 red copper
 1.5mm
- Total thk.: 1.6mm
- Module power: 25W

Material

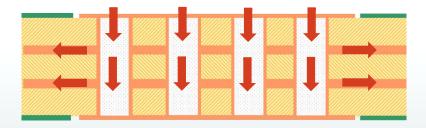
Thermally conductive laminates (used for lamination)

Material	W/mK	Comment	Thermal conductivity	Availability	Price
Standard FR4	0.2-0.6	Benchmark - Epoxy resin woven glass system	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Shengyi ST110G	1.0	Epoxy resin woven glass system – Suitable for multilayer, thick copper, high voltage applications. Not common.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Shengyi ST115G	1.6	High CTI, Tg170°C, suitable for power, automobile and LED product, can be used for HDI and high layer count. Recommended .	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Rogers 92ML	2.0 (average)	Epoxy resin woven glass system – Suitable for Power and Industrial control applications. Multilayer use. It is out of market since March 8, 2023.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Ventec VT-5A2	2.2	Ceramic filled epoxy resin woven glass – Suitable for Power and Industrial control applications. Multilayer use.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Rogers TC350 series	0.72 – 1.24	Ceramic filled PTFE-based woven glass reinforced - RF application, Antenna, Power amplifier, Passive device.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Rogers TC600	1.1	Ceramic filled PTFE-based woven glass reinforced - RF application, Antenna, Power amplifier, Passive device.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH
Rogers Curamik	24 / 90 / 170	Aluminium Oxide / Silicon Nitride / Aluminium Nitride ceramic substrates. Very high current (wind/power/rail). 1-2L. Rogers currently supply to selected customers only.	LOW MEDIUM HIGH	LOW MEDIUM HIGH	LOW MEDIUM HIGH



Copper Thickness (Track /Gap capability)

	Base Copper	Prefer Capability(mm)	Best Capability(mm)
	102.9µm (3OZ)	0.2032/0.2032	0.1778/0.1778
Inner Lover Track / Con	137.2µm (4OZ)	0.254/0.254	0.2032/0.2032
Inner Layer Track / Gap	171.5µm (5OZ)	0.3048/0.3048	0.254/0.254
	205.7μm (6OZ)	0.3556/0.3556	0.3048/0.3048
	102.9µm (3OZ)	0.254/0.2794	0.2032/0.2032
Outer Lever Treek / Con	137.2µm (4OZ)	0.3048/0.3302	0.254/0.254
Outer Layer Track / Gap	171.5µm (5OZ)	0.3556/0.381	0.3048/0.3048
	205.7μm (6OZ)	0.4064/0.4318	0.3556/0.3556

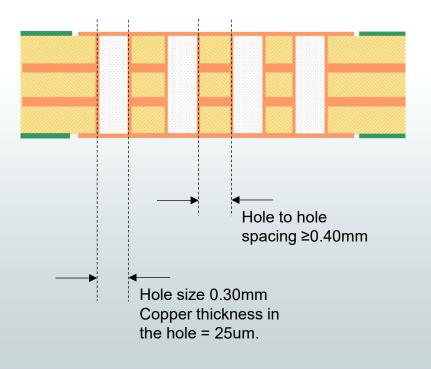

Copper Thickness (Bus-Bar)

Thermal vias / Via Farms

- Located under the component to direct heat away.
- > IPC-4761, Type VII, via fill

Thermal conductivity of Air 0.024 W/mK

Thermal conductivity of epoxy resin
0.20 – 0.25 W/mK

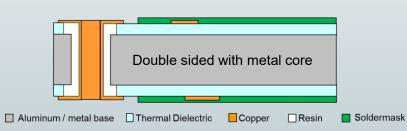

Thermal vias / Via Farms

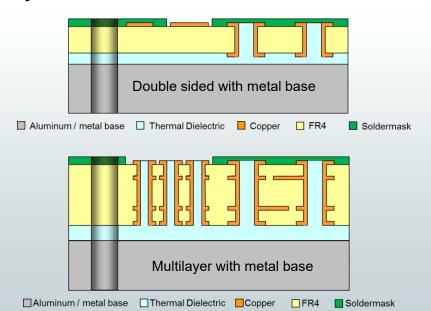
> Recommended:

- hole size ≥ 0.30mm
- > spacing ≥0.40mm
- Thermally conductive via fill can be used to improve heat dissipation – noting CTE values.
- Thermal simulations to verify.

Thermal conductivity of conductive via fill 3.5 – 7.8 W/mK

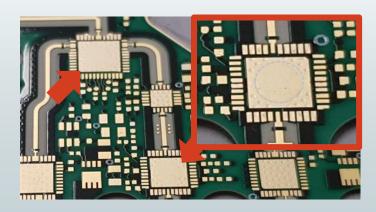
Thermal conductivity of epoxy resin
0.20 – 0.25 W/mK

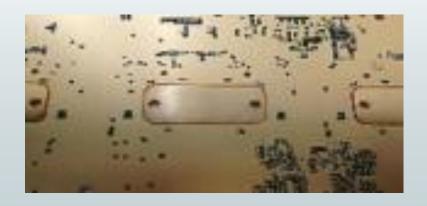




Material

Insulated metal substrates – example builds

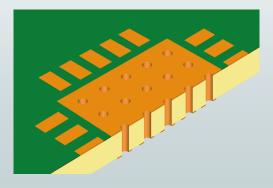


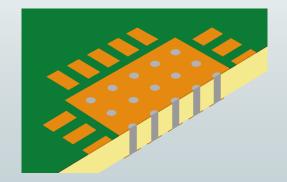


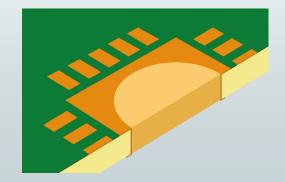
Coin Technology

The use a solid piece of copper which has been inserted or embedded into the PCB

- Draws heat away from component
- > Dissipates to bottom, and sometimes internal layers.

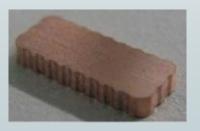





Coin Technology – Benefit of copper coins in

Thermal conductivity comparison 5mm x 5mm via farm.

- Copper plating gives about 3w/m*k
- > Conductive via fill up to 7.8w/m*k
- A Φ4mm copper coin gives about 195w/m*k.

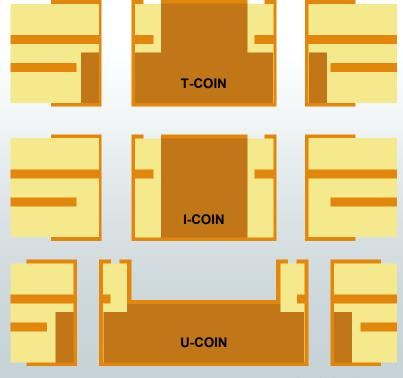

Coin Technology – Types of the coins

I- COIN

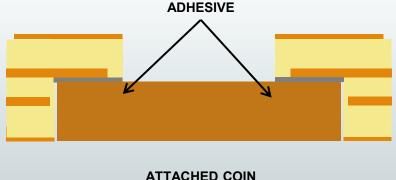
T-COIN

PRESS-FIT

Coin Technology – Fabrication of the coins

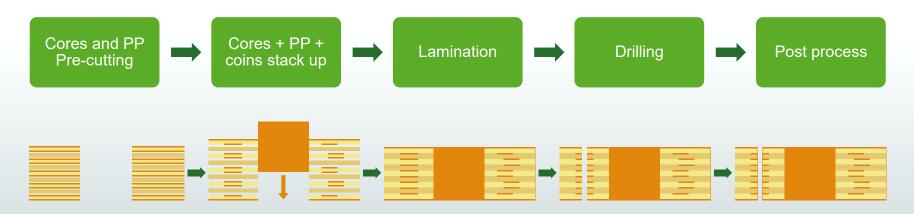


Coin Technology – Embedded Coin


- > Insterted during lamination
- No-flow pre-preg
- May use grounding vias
- Same surface finish as PCB

Coin Technology – Attached Coin

- Attached coins are added into a depth milled cavity.
- Added post PCB production
- Secured in place using a conductive adhesive
- Easiest to manufacture


Coin Technology – Press fit Coin

- Inserted into a pre-defined space
- It is held in place due to the compression forces.
- Insertion can take place post PCB manufacturing.

Coin Technology – Manufacturing of copper coins in

Special control

- Brown oxidization of copper coins.
- Resin flowing removed.

Coin Technology – Manufacturing of copper coins in

ORIGINAL COINS

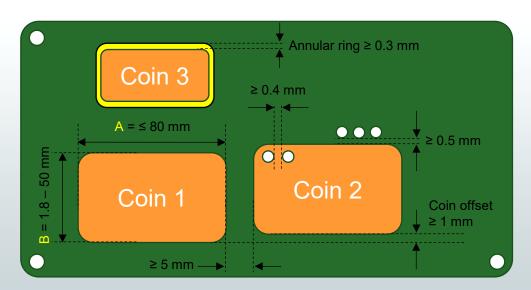
IN-LAY

AFTER LAMINATION

MILLING RESIN

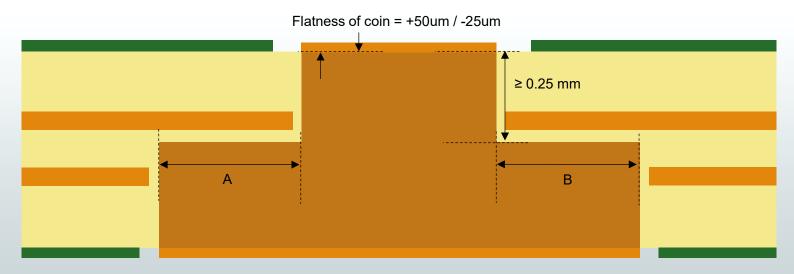
AFTER RESIN REMOVAL

AFTER RESIN REMOVAL


BROWN OXIDE

AFTER LAMINATION

Coin Technology – Design considerations


Minimum difference between dimension A and B = 0.30mm

MATERIALS FOR COPPER COIN BUILDS 370HR, EM827, IT180A, MCL-E-679, R1755V, S-1000-2M, TU768

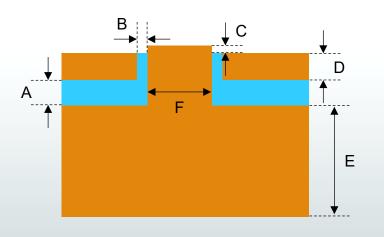
It is recommended to have the same hole size for all holes in the coin.

Coin Technology – Design considerations

Dimensions A and B must be the same – the shape should be symmetrical

Coin Technology – Design Tips

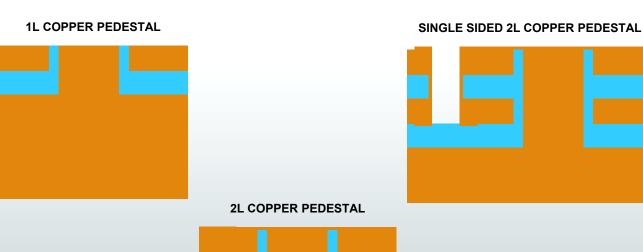
- Copper coin can be used in conjunction with these technologies:
 - High layer counts
 - > IPC 4761 type VII plugging
 - > HDI Constructions
 - > Rigid-Flex constructions
- Different types of coins can be in one unit, but we recommend less than 3 different types or sizes.
- > The Aspect ratio limitation of blind via in a coin is <1:1, but for optimal production the preferred is 0.8:1.
- Any construction with coins must have a symmetric build.
- Consider copper coin design guidelines early in the process.


Coin Technology – Design Tips

- > It is recommended to have the same hole size for all holes in the coin.
- > When different size coins are used on the same unit, the size difference should be ≥1mm. If <1mm, suggest to use same size.</p>
- Minimum difference of long size and short size of the coin preferred to be >= 1.0mm. <0.3mm will be taken as same size.</p>
- > To avoid material cracking, offset placement of coins by >1mm.
- Coin counts in one board ≤32 (same size).

PCB design guidelines (printed circuit boards) | NCAB Group

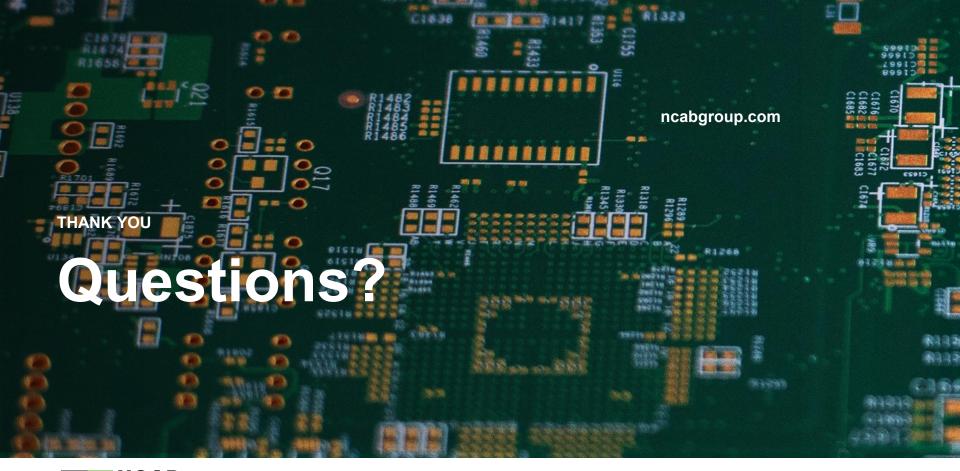
Material- Pedestal design rules


No.	Items	Prefer
А	Dielectric thickness	0.1+/0.02mm
В	Pedestal to circuit pad	>=0.25mm
С	Bump of pedestal	<=0.03mm
D	Copper thickness	<=30Z
E	Copper base (mm)	0.8/1.0/1.2/1.5/2.0
F	Minium size of the pedestal	0.6mm * 0.6mm

Tips:

- > Copper pedestal is recommended. It is also possible for Alumnium base without plating.
- > The dielectric is done by coating, not adhesive film normally, so, KW-ALS dielectric will be suggested normally.

Material- types of pedestal



Conclusions

- Carry out thermal simulations as early as you can in the process.
- Try not to group heat generating components together.
- Determine how much heat you need to dissipate.
- You may need more than one solution.
- Consider material thermal performance.

