

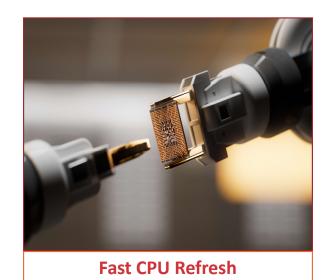
From Mezzanine to Miniature HPC

How COM-HPC and
Next-Gen COM Express
Redefined Embedded
Performance

Agenda

- Evolution of COM Platforms
- Technical Advances: COM-HPC & Next-Gen COM Express
- I/O Bandwidth Breakthroughs
- Compute Density & Al Integration
- High-Speed Networking & TSN
- Scalability & Serviceability
- Thermal & Power Design
- Key Takeaways

The Evolution of COM


COM Express (2005) \rightarrow Compact-PCI \rightarrow COM-HPC (2020+)

- Early COMs: "Processor mezzanines" designed for flexibility.
- 2010s: Widespread adoption of COM Express Type 6 and 7.
- 2020+: COM-HPC introduces server-class I/O and bandwidth

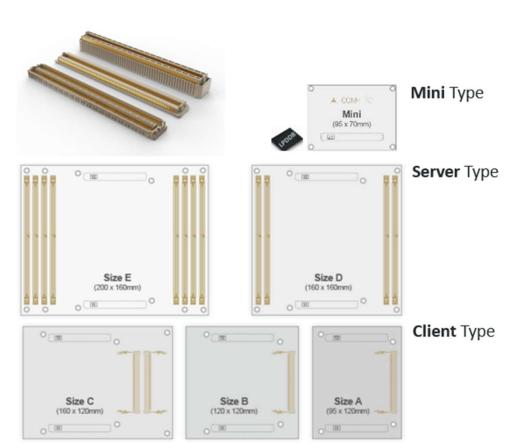
Why COMs Matter Today

Built for Speed, Designed for Growth

Modular upgrade paths

Edge Scalability

Need for scalable compute near data source

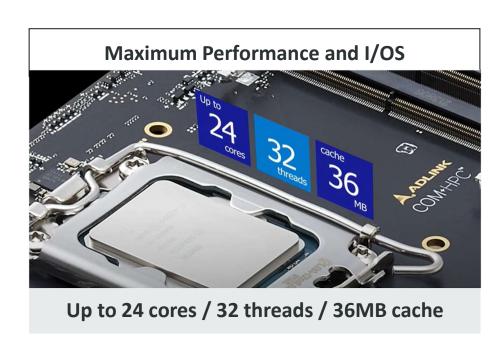


Regulatory Environments

Easier recertification

Introducing COM-HPC

- Designed for high-performance edge and industrial servers.
- Supports PCIe Gen 5 and 100 GbE I/O.
- Five module sizes: Client A–E, Server A–E.
- 400-pin high-speed connectors rated for 32 GT/s.


I/O Bandwidth: The New Frontier

- PCIe Gen 5 = 32 GT/s; ready for Gen 6/7 in same footprint.
- Up to 64 PCIe lanes available on COM-HPC Server modules.
- Integrated 25/100 GbE KR and multiple USB 4.0/TBT4 ports.

Compute Density

- Up to 24 cores (Intel® hybrid architecture).
- Built-in Al acceleration (VNNI, Intel® Arc GPU options).
- Up to 128 GB DDR5 on-module.
- ECC and LPDDR5x variants for rugged use.

AI & Edge Intelligence

- On-module AI engines simplify real-time inference.
- Support for OpenVINO[™], TensorRT, ONNX.
- Hardware-level security (TPM 2.0, TME, SGX).

TPM 2.0

TME

SGX

High-Speed Networking

- Native 10/25/100 GbE KR ports.
- Time-Sensitive Networking (TSN) for deterministic control.
- Ideal for robotics, autonomous machines, and industrial automation.

Precise Measurements

Humanoid Robots

Industrial Automation

Scalability & Serviceability

- Module-carrier separation: refresh CPU, keep system.
- Simplifies maintenance, extends product life.
- Retain EMC, safety, FDA certifications on carrier.

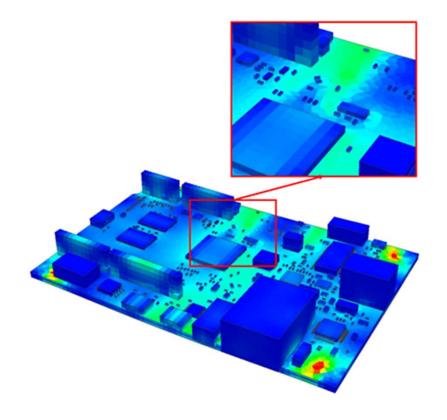
Minimum 10 Years Life Cycle			
Active Promotion	Continued Availability	Last Time Buy	Last Shipment
Spec in period	Not recommended for new projects		
Active revision for functional improvements	BOM maintenance for part EOL Revision only considered for EOL critical reasons		
3 Years	5 Years	1 Year	½ Year

ADLINK | Leading Edge Computing

Thermal Design Challenge

- 45 W → 65 W+ processors are now common.
- Fanless cooling requires creative mechanical design.
- Heatsink, vapor chamber, and spreader comparison.

Cooling Solutions in Practice


- Direct-touch heat spreaders for even dissipation.
- Vapor chambers for vertical orientation.
- Thermal simulation using SIM tools to optimize enclosure airflow

Direct-touch heat spreaders

Heat Pipes and Vapor chambers

Real-World Lessons

- Validate thermal models early with real data.
- Balance module power budget vs. carrier capability.
- Collaboration between electrical, mechanical, and thermal teams.

ADLINK | Leading Edge Computing

Key Takeaway

- COMs have evolved into edge-class HPC nodes.
- COM-HPC unlocks PCIe Gen 5/6, 100 GbE, and AI acceleration.
- Scalability and reusability lower total cost of ownership.
- Smart thermal design makes 65 W+ feasible.

Q&A

Bonus: Share Your Feedback

Get a \$20 Amazon Gift Card

