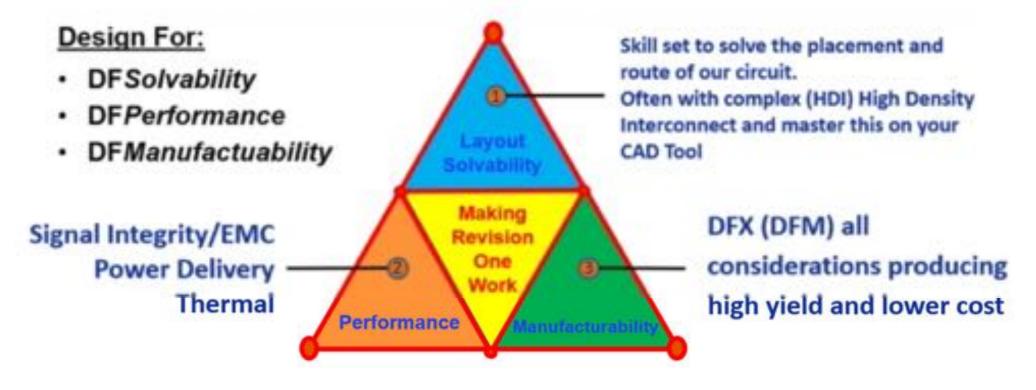
Making Intelligent Material Decisions

Wednesday Nov 9th, 2022

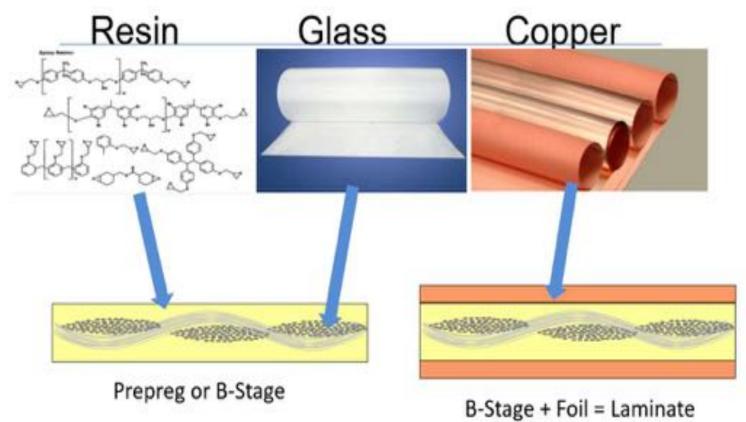
Mike Creeden CID+ Background

mcreeden@Insulectro.com


1

- □ Insulectro Technical Director Design Education
- □ PCEA Printed Circuit Engineering Association Vice Chair
- **D** PCE-EDU, Inc. Certified Curriculum Author & Instructor
- □ IPC-CID+ Curriculum Primary Contributor & Instructor
- □ Chairman IPC-2221/2222 Standards Committee
- □ Founder of San Diego PCB, Design, LLC
- □ PCB Designer 45 Years "*I Love PCB Design*"

Today's Circuit Engineer Must Meet 3 Competing Perspectives for Success

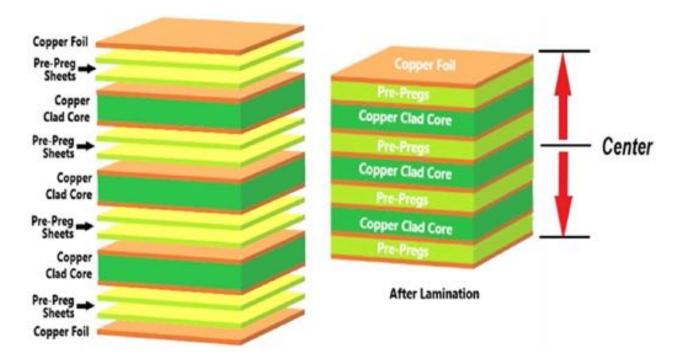


THE RESULT

Maximum placement and routing density, optimum electrical performance and efficient, defect-free manufacturing

PCB Rigid Laminates - Composites

- Resin Bonding
- Glass Rigidity
- Copper Conductivity

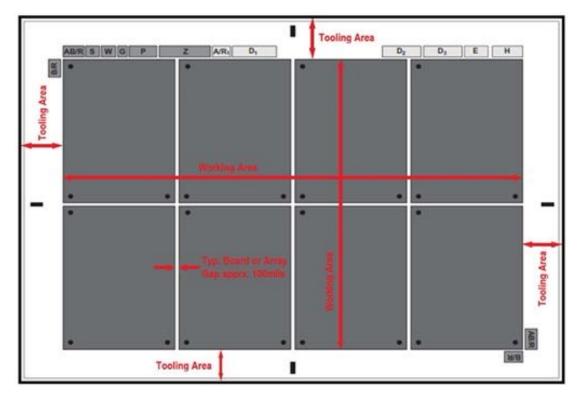

Each component plays a role in providing the right properties for the design.

Epoxy Materials Construction

Copper Clad Core "C-Stage"

Bare Board 8-Layer Alternating Construction -Center Outward, Balanced on Both Sides

Material Standard Panel Sheet



Both the Prepreg and Core are sold in standard sheet sizes and cut into working panel sizes, 18" x 24" is called the full panel size

Half panel is 12" x 18" which helps for smaller volume runs, less waste

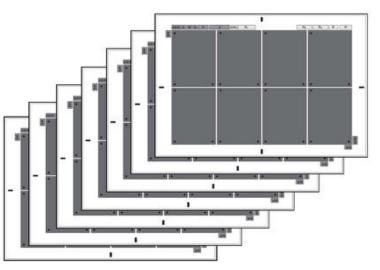
Prepreg and Core come in many varieties and thicknesses

Tooling area around outer edges, working area for boards or array of boards separated by a gap between

18" x 24" Fabrication Panel Sheet, Working Area and Tooling Area

Lamination Press

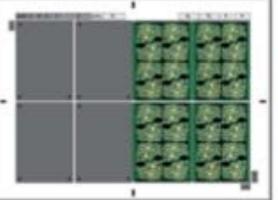
Sheets layered and stacked together, one layer at a time, with a pin-align system to aid in the layer-to-layer registration.


Special handling is utilized for the process. The lamination press heats and compresses the stack of materials together with a measured time cycle to cure the material and thus bond them together.

Lamination Press

Lamination Base Plate with Pin Alignment

Sheets layered and stacked


Bare Board Construction Basics

Sheets layered and stacked together, one layer at a time, with a pin-align system to aid in the layer-to-layer registration.

Tooling area around the edges for coupons and other manufacturing aids, leaving a remaining working area. This is where panel utilization is achieved. Multiple images, either single boards or many boards on an assemble array, are located with separation of about 100mils.

Single Board

18"x24"

Assembly Actual Single Multi-board Board as Built as Designed Fabrication Panel Array

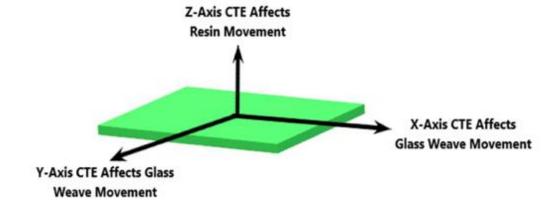
IPC-4101/126 Specification Sheet

Physical Parameters –

- (Tg) Glass Transition Where resin turns from a semi-solid state to a rubbery viscous state, important factor with high layer count boards, observed at lower end of the thermal lamination cycle
- (Td) Decomposition Temperature Where material breaks down from excess heat, important factor multiple laminations & thermal excursions, observed at higher end of all thermal excursions such as lamination, solder, product environment and usage

1. Peel Strength, minimum Peerlow of the copper tot and very low profile copper tot Peerlow of the copper tot and very low profile copper tot Peerlow of the copper tot and very low profile copper tot Peerlow of the cop	SPECIFICATION SHEET SPECIFICATION SHEET REMOTOREMENT REMOTOREMENT FLAME (FFS): 10 REFERENCE: GLASS TRANSITION (T ₂): UL MAL OPURENCE THEFT;	IPC-4101/126 E-Woven E-gass Primary: Epory Beondary F-Mutturctions RoHS Compare thomine Containe increases DUANSE: FIN-4126 1731-05 minimum 1321-05	i epoey	2: NA Secondiny 2: Mod Minimum 01,94 Re		Non-Epony (max. w 0	E. 5%)
Laminate Requirement (0.50 mm (0.0197 in) (0.0197 in) Units Test Method Peel 1. Peel Strength, minimum A. Low profile copper foll and very low profile copper tol - all copper holes at 71 µm (2009 mt). 0.70 (4.00) 0.70 (4.00) N/mm 2.4.8 3 8. Standard profile copper foll 0.70 (4.00) 0.70 (4.00) 0.70 (4.00) N/mm 2.4.8.2 3 2. All process orbitions 0.77 (4.00) 0.70 (4.00) 0.70 (4.00) N/mm 2.4.8.2 3 2. All process orbitions 0.77 (4.00) 0.70 (4.00) N/mm 2.4.8.2 3 3. After process orbitions 0.77 (4.00) 0.70 (4.00) N/mm 2.4.8.2 3 4. Adduts Adduts Adduts Adduts Adduts 2.4.8.2 3 5. After montaine resistance 10* 10* Mid>-cm 2.5.17.1 3 6. After mostaine resistance 10* 10* Mid 2.5.17.1 3 6. Distance for existence 10* 10* 10* 2.5.5.7 3 7. At elevated		LAMIN	ATE REQUIR	REMENTS			
A. Low profile copper foil and very low profile copper foil - all copper foil and very low profile copper foil - all copper foil copper foil 1. After thermal stress 2. At 125 °C [257 °F] 0.70 [4.00] 0.70 [4.00] Nimen [Brin] 2.4.8.3 3. 3. After thermal stress 2. At 125 °C [257 °F] 0.70 [4.00] 0.70 [4.00] 0.70 [4.00] Nimen [Brin] 2.4.8.3 3. 2. At 125 °C [257 °F] 0.70 [4.00] 0.50 [3.1.4] AABUS AABUS AABUS 3. 2. Volume Residuity, minimum A. C-96(35/90 10° 10° - 4. 0.50 [3.1.4] 3. 3. Surface Residuity, minimum A. C-96(35/90 10° - Milu 2.5.17.1 3. 4. Moisture Absorption, maximum (Laminate & laminated prepreng)" 10° - - Milu 2.5.17.1 3. 5. Dielectric Breakdown, minimum (Laminate & laminated prepreng)" 10° - 400 kV 2.5.6 3. 7. Loss Targent at Frequency, maximum (Laminate & laminated prepreng)" 5.4 5.4 5.4 2.5.5.9 3. 2.5.5.5 3. 3. 9. Feasual Strength minimum A. Length direction - 415 [80,190] Nimm ² [Brin7] 2.4.4.1 3.	Laminate Rec	puirement	<0.50 mm	>0.50 mm	Units	Test Method	Ref. Para
A. C-06/35/00 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ MD-cm 2.5.17.1 3 B. After moishure resistance 10 ⁶ 10 ⁹ 3 Surface Resistivity, minimum 3 2.5.17.1 3 3 A. C-06/35/00 B. After moishure resistance 10 ⁹ 10 ⁹ 10 ⁹ Multicity 3 2.5.17.1 3 A. Moissiture Absorption, maximum - 0.5 5 2.6.2.1 3 5. Dielectric Breakdown, minimum - 0.05 5 2.6.2.1 3 6. Permittivity at Frequency, maximum (Laminate & laminated prepregit) 5.4 5.4 5.4 5.4 5.4 2.5.5 3 3 1 GHz 5.2 5.2 5.2 - 2.5.5.9 2.5.5 3 1 GHz 10 GHz 0.005 0.005 0.005 - 2.5.5.9 3 3 1 GHz 0.005 0.005 0.005 - 2.5.5.9 <	 A. Low profile copper toil a foil – all copper weights B. Standard profile copper 1. After thermal stress 2. At 125 °C [257 °F] 3. After process solution 	>17 µm (0.669 mil). foil	0.80 [4.57] 0.70 [4.00] 0.55 [3.14]	1.05 [6.00] 0.70 [4.00] 0.80 [4.57]		2.4.8.2	3.9.1.1 3.9.1.1 3.9.1.1 3.9.1.13 3.9.1.13
A. C-Q8GS/90 B. After moisture resistance 10° - 10° 10° - 10° Mu 2.6.17.1 3 4. Moisture Absorption, maximum - 0.5 % 2.6.2.1 3 5. Delectric Breakdown, minimum - 0.0 kV 2.5.6 3 6. Permithivity at Frequency, maximum [Laminate & laminated prepreg]' 5.4 5.4 5.4 2.5.2/ 2.5.5/ 3 1 GHz 5.2 5.2 - 2.5.5/ 3 3 7. Loss Tangent at Frequency, maximum (Laminate & laminated prepreg)' 5.4 5.4 5.4 2.5.5/ 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3 2.5.5.5 3 3	A. C-96/35/90 B. After moisture resistance	-		MG-cm	2.5.17.1	3.11.1.3	
5. Dielectric Breakdown, minimum - 40 kV 2.5.6 3 6. Permittivity at Frequency, maximum (Laminate & laminated prepregi)* 5.4 5.5 3 3 5.5 3 5.5 3 5.5 3 5.5 5.5 3 2.5.5.5 3 2.5.5.5 3 3	A. C-96/35/90 B. After moisture resistance		-		MQ	2.5.17.1	3.11.1.4
6. Permittivity at Frequency, maximum (Laminate & laminated prepreg)* 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.5 3 3 1 GHz 10 GHz 5.4 5.2 5.2 5.2 5.4 - 2.5.5.2 2.5.5.3 3 7. Loss Tangent at Frequency, maximum (Laminate & laminated prepreg)* 5.4 5.4 - 2.5.5.2 2.5.5.3 3 7. Loss Tangent at Frequency, maximum (Laminate & laminated prepreg)* 0.005 0.005 - 2.5.5.9 3 3 1 GHz 1 GHz 0.006 0.005 - 2.5.5.9 3 3 1 GHz 10 GHz 0.006 0.005 - 2.5.5.9 3 3 8. Flexural Strength, minimum A. Length direction, minimum - 415 (80,190) Nimm* 2.4.4 3 9. Flexural Strength at Elevated Temperature, length direction, minimum - - Nimm* 2.4.4.1 3 10. Arc Resitance, minimum A. Unotched <td< td=""><td>4. Moisture Absorption, maxin</td><td>num</td><td>-</td><td>0.5</td><td>%</td><td>2.6.2.1</td><td>3.12.1.1</td></td<>	4. Moisture Absorption, maxin	num	-	0.5	%	2.6.2.1	3.12.1.1
Iterminate & laminated prepregit 5.4 5.4 5.4 5.4 5.4 5.4 5.5 3 1 GHz 5.2 5.2 5.2 5.2 5.2 5.5 3 3 7. Loss Tangent at Frequency, maximum (Laminate & laminated prepregit) 5.4 5.4 5.4 - 25.5.2/ 25.5.5 3 3 7. Loss Tangent at Frequency, maximum (Laminate & laminated prepregit) 0.036 0.035 - 25.5.2/ 25.5.3 3 3 1 GHz 0.036 0.035 - 25.5.2/ 25.5.3 3 <t< td=""><td>5. Dielectric Breakdown, minir</td><td>mum</td><td>-</td><td>40</td><td>kV</td><td>2.5.6</td><td>3.11.1.6</td></t<>	5. Dielectric Breakdown, minir	mum	-	40	kV	2.5.6	3.11.1.6
(Laminate & laminated prepreg)* 0.005 0.005 - 2.5.5.2 3 1 Oliz 0.005 0.005 - 2.5.5.3 3 3 2.5.5.5 3 10 Oliz 0.005 - 415 (80,190) Nimm* 2.4.4 3 9. Flexural Strength at Elevated Temperature. length direction - 415 (80,190) Nimm* 2.4.4 3 10. Acc Resistance, minimum - - - Nimm* 2.4.1 3 10. Acc Resistance, minimum 600 60 s 2.5.1 3 11. Thermal Stress 10 s at 288 °C [550.4 °F], minimum Pass Visual Pass Visual rating 2.4.13 3 12. Electric Strength, minimum 30 - KVimm 2.5.6.2 3 13. Electric Strength, minimum 30 - KVimm 2.5.6.2 3 14. Glass Transition Temperature - 170 minimum rating 24.24.24 3 14. Glass Transition Temperature - 170 minimum °C 2.4.24	(Laminate & laminated pres 1 MHz 1 GHz		5.2	5.2		2.5.5.9	3.11.1.1 3.11.2.1
A. Length direction 415 (80,190) Nimm" 2.4.4 3 B. Cross direction 345 [50,000] [Bvin"] 2.4.4 3 9. Flexural Strength at Elevated Temperature, length direction, minimum Nimm" 2.4.4.1 3 10. Acc Resistance, minimum 60 60 s 2.5.1 3 11. Thermat Strength at 288 "C [550.4 "F], minimum A. Unetched Pass Visual Pass Visual B. Esched Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual 14. Electric Strength, minimum (Laminate & Laminated prepreg) 30 - KVimm 2.5.6.2 3 3 13. Flammability (Laminate & Laminated prepreg) V-0 minimum V-0 minimum rating V-0 minimum UL94 3 3 14. Glass Transition Temperature - 170 minimum 'C 2.4.24 2.4.25 3	(Laminate & laminated prey 1 MHz 1 GHz 10 GHz	xed),	0.035	0.035	-	2.5.5.3 2.5.5.9	3.11.1.2 3.11.2.2
length direction, minimum - - [bin*] 2.4.4.1 3 10. Arc Resistance, minimum 60 60 8 2.5.1 3 11. Thermal Stress 10 s at 288 °C [550.4 °F], minimum Pass Visual Pass Visual rating 2.4.13.1 3 12. Electric Strength, minimum (Laminate & laminated prepreg) 30 - KVImm 2.5.6.2 3 13. Flammability (Laminate & laminated prepreg) V-0 minimum V-0 minimum rating UL94 3 14. Glass Transition Temperature - 170 minimum °C 2.4.24 3	A. Length direction			415 [60,190] 345 [50,040]		2.4.4	3.9.1.3
11. Thermal Stress 10 s at 288 °C [550.4 °F], minimum Pass Visual Pass Visual rating 2.4.13.1 3 12. Electric Strength, minimum (Laminate & laminated prepreg) 30 - kV/mm 2.5.6.2 3 13. Flammability (Laminate & laminated prepreg) V-0 minimum V-0 minimum rating UL94 3 14. Glass Transition Temperature - 170 minimum rating 2.4.24 3		ed Temperature,		-			3.9.1.4
A. Unetched Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual Pass Visual rating 2.4, 13, 1 3 12. Electric Strength, minimum (Laminate & laminated prepreg) 30 - kV/imm 2.5,6.2 3 13. Flammability (Laminate & Laminated prepreg) V-0 minimum v4.0 minimum rating UL94 3 14. Glass Transition Temperature - 170 minimum v2.2,4.24 3	and the second se		60	60	8	2.5.1	3.11.1.5
(Laminate & laminated prepreg) 30 40 2.5.0.2 3 13. Flammability (Laminate & laminated prepreg) V-0 minimum rating UL94 3 14. Glass Transition Temperature - 170 minimum rdC 2.4.24 2.4.25 3	A. Unetched			rating	2.4.13.1	3.10.1.2	
(Laminate & laminated prepreg) V-0 minimum V-0 minimum rating 0U34 3 14. Glass Transition Temperature - 170 minimum °C 2.4.24 3 15. Decomposition Temperature - 170 minimum °C 2.4.25 3	12. Electric Strength, minimum (Laminate & laminated prep	xeg)	30	-	kWimm	2.5.6.2	3.11.1.7 3.11.2.3
- 1/0 mmmm 10 24.25 3	(Laminate & laminated pres	V-0 minimum	V-0 minimum	rating		3.10.2.1	
15. Decomposition Temperature 24.24.6 a			1.0	170 minimum	°C	2.4.25	3.10.1.6
- 340 menimum °C (5% wt loss) 3	15. Decomposition Temperature	•	-	340 minimum	°C		3.10.1.8

Epoxy Laminates - Physical Parameters, CTE



Physical Parameters – (continued)

CTE percentage of movement material may experience, measured as a partsper-million ratio, over temperature (PPM/°C)

Boards are thin in the Z-Axis as compared to the X/Y-Axis therefore, Z-Axis can be of greater concern, especially true of small metalized plated via holes

- X/Y-Axis = Glass weave movement
 Concern for warpage threatening solder joints & damage to traces
- Z-Axis = Resin movement
 Greater concern, as it threatens the reliability of plated holes

(CTE) Coefficient of Thermal Expansion in X/Y & Z Axis

IPC4101/126 Specification Sheet

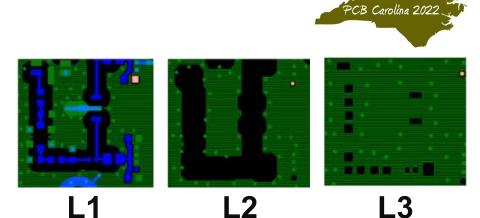
Electrical Parameters –

- Dielectric Constant (Er or Dk) aka. permittivity or relative permittivity (Er), ratio of capacitance of electrodes in a specific material, critical for impedance calculations Noted that approximate Dk of resin is 3.0 & glass weave about 5.0, resultant equaling a Dk4.0
- Dielectric Losses (Df) is the absorption of electromagnetic energy by the board material in a varying electric field, critical for minimizing db loss calculations, high value to RF circuits

Several other significant factors considered for RF circuits discussed next slide

FLAM FLLAM	ECIFICATION SHEET section Beet a: n Strittik er Retandakt Mechanitik: torde (JPA): terenexce: is Transition (T.): Max, Orenexic Turb:	IPC-4101/126 1: Wovan E-gass Primary: Epcin Secondary 1: Multiunctions RoHS Compliant Bromine Contains incorpoint Riles ULANSE FR-6126 120 °C millionum 120 °C	(epoxy	2: NA Secondary 2: Not Minimum UL94 Re		Non-Epony (max. wf C	5%)		
		LAMIN	ATE REQUIR	EMENTS					
	Laminate Re	quirement	<0.50 mm (0.0197 in)	Specification 20.50 mm [0.0197 in]	Units	Test Method	Ref. Para		
		copper foil and very low profile copper pper weights >17 µm (0.669 mil). 0.70 (4.0 orolle copper foil ermal attess 0.80 (4.5 C (327 °F) 0.70 (4.0 Decess folkons 0.55 (3.1		0.70 [4.00] 1.05 [6.00] 0.70 [4.00] 0.80 [4.57] AABUS	Nimm [b/n]	248 2482 2483	3.9.1.1 3.9.1.1.1 3.9.1.1.2 3.9.1.1.3		
	Volume Resistivity, minimu A. C-06/35/90 B. After moisture resistanc C. At elevated temperature	10 ⁴ - 10 ⁴ N		MG-om	2.5.17.1	3.11.1.3			
	Surface Resistivity, minimu A. C-06/35/90 B. After moisture resistanc C. At elevated temperature		104 103	104 109	MQ	2.5.17.1	3.11,1,4		
4.	Moisture Absorption, maxin	TIUTT	-	0.5	%	2.6.2.1	3.12.1.1		
5.	Dielectric Breakdown, mini	mum	-	40	kV	2.5.6	3.11.1.6		
	Permittivity at Frequency, r (Larrinate & larrinated pre 1 MHz 1 GHz 10 GHz		5.4 5.2 AABUS	5.4 5.2 AABUS	-	2.5.5.2/ 2.5.5.3 2.5.5.9 2.5.55	3.11.1.1 3.11.2.1		
	Loss Tangent at Frequency (Laminate & laminated pre 1 MHz 1 GHz 10 GHz		0.035	0.035	-	2.5.5.2/ 2.5.5.3 2.5.5.9 2.5.5.5	3.11.1.2 3.11.2.2		
	Flexural Strength, minimum A. Length direction B. Cross direction	•	5	415 [60,190] 345 [50,040]	Nimm ^e [Ib/in ²]	2.4.4	3.9.1.3		
	Flexural Strength at Elevat length direction, minimum	rural Strength at Elevated Temperature, ph direction, minimum		-	Nimm ² [b/m ²]	2.4.4.1	3.9.1.4		
-	Arc Resistance, minimum		60	60	8	2.5.1	3.11.1.5		
11. Thermal Stress 10 s at 288 "C [550.4 "F], minimum A. Unetched B. Etched		Unetched		Unetched		Pass Visual Pass Visual	rating	2.4.13.1	3.10.1.2
 Electric Strength, minimum (Laminate & laminated prepreg) 				-	kWmm	2.5.6.2	3.11.1.7 3.11.2.3		
 Flammability (Laminate & laminated prepreg) 			V-0 minimum	V-0 minimum	rating	UL94	3.10.2.1 3.10.1.1		
14.	Glass Transition Temperate	29	-	170 minimum	°C	2.4.24 2.4.25	3.10.1.6		
15.	Decomposition Temperatur		~	340 minimum	°C	2.4.24.6 (5% wt loss)	3.10.1.8		

Routing – RF Circuits


Design Practices to Reducing Loss

RF Keep-outs & Ground-wells on:

<u>3 Factors Contribute to Insertion Loss (Df):</u>

- **1. Wide Traces** = with matching dielectric thickness
- 2. Copper Profile = Rz .7um 18um (.1-.2 dB loss/cm),
- 3. Material Dissipation Factor = Df .0009 to .020

At 10Ghz - 80% of all loss, dominated by trace width and copper roughness, measured (dB/cm)

ACT TO LAYER -1 LAYER -1 LAYER -2 GROUND PLANE LAYER -3 CROUND PLANE LAYER -4 CROUND PLANE LAYER -4 CROUND PLANE LAYER -4 CROUND PLANE

Laminate Material Data Sheets

https://insulectro.com/

Typical Values Table

Property	Typical Value	Units Metric (English)	Test Mothod IPC-TM-650 (or as noted)	
Sass Transition Temperature (Tg) by 050	200	40	2.4250	
Decomposition Temperature (Td) by TGA (\$ 5%	weight loss	360	*0	2.4.24.6
Time to Delaminate by TMA (Copper removed)	A 7260 B 7288	×60	Minutes	2.4.24.1
Z-Axis CTE	A Pre-Tg B. Post-Tg	50 - 70 250 - 350	ppm/°C	2.4.240
K/Y-Axis CTE	Pre-Tg	12	ppmv*0	2.4.240
Thermal Conductivity		0.45	W/m-K	ASTM E1952
Thermal Stress 10 sec (\$ 288°C (\$50.4°F)	A Unetched B. Etched	Pass	Pass Visual	2.4.13.1
Dk, Permittivity	A (0.2 GHz B, (0.10 GHz	3.00	-	2.8.8.5
Of, Loss Tangent	A (0 2 GH2 B (0 10 GHz	0.0017	-	Bereskin Stripline
Volume Resistivity	0-96/35/90	1.33 × 10 ⁷	M0-cm	2.5.17.1
Surface Resistivity	0.96/35/90	1.33 x 10 ⁵	MD	2.5.17.1
Dielectric Breakdown		45.4	kV	2.5.68
frc Resistance		139	Seconds	2.5.18
Electric Strength (Laminate & laminated prepres	2	45 (1133)	ki//mm (V/mil)	2.5.6.2A
Comparative Tracking Index (CTI)		3 (175-249)	Class (Volts)	UL 746A ASTM 03638
Peol Strength	1 oz. EDC fel	1.0 (5.7)	N/mm (b/inch)	2483
Rexural Strength	A Length direction B. Cross direction	49:0 39:0	kai	2.4.48
fensile Strength	A Length direction B. Cross direction	31.0 24.0	kai	ASTM 03039
Poisson's Ratio	A Length direction B. Cross direction	0.180 0.182	5	A3TM 03039
Moisture Absorption	0.1	5	2621A	
Flammability (Laminate & laminated prepreg)		V-0	Rating	UL 94
Relative Thermal Index (RTI)		130	10	UL 796

Physical, Electrical, & Environmental Parameters Enabling Defect Free Mfg. & Performance Requirements

isola

Astra® MT77

Ultra Low Loss, RF/MW Laminate and Prepreg Tg 200°C Td 360°C Dk 3.00 Df 0.0017

IPC-4103 /17 UL - File Number E41625

Astra® MT77 materials are a breakthrough, very low-loss dielectric constant (Dk) product for millimeter wave frequencies and beyond.

RODUCT FEATURES Industry Facografion * UK, Tin Number: E41625 * UKH Gorupian Nurformance Attributes * Lead-bee assembly compatible Protecting Advantages * First process compatible * Start Internation cycle * Start Internation cycle	stable over a broad frequency of today's commercial RFImit constant (DA) that is stable be addition, Astra MT77 offers a cost-effective alternative to P Key applications include ising	is exhibit exceptional electrical and temperature range. Astra i crowave printed circuit designa- tween -40°0 and +140°0 at up n ultra-low dissipation factor (D TFE and other commercial micr antennas and radar application -crash, blind spot detection, lan	NT77 is suitable for many it features a diefectric to W-band frequencies. In f) of 0.0017, making it a owave laminate materials. a for automobiles, such	
No plasma demose registed Good flow and fil Dimensional stability Multiple lamination cycles Any layer technology compatible HOt technology compatible VOPPO demonstrative		S International Administra		
RODUCT AVAILABLITY andref Manadia Offering Leminate 5.8.6.75, 5.9.75, 52, 52, 50, 50, 60 eV 6.655(6, 627, 6.150, 60 eV) 6.655(6, 627, 6.150, 60 eV) 6.97, 50, 50 eV) 6.97, 50, 50 eV) 9.97, 50, 50 eV) 9.97, 50 eV) 9.97, 50 eV) 9.90 eV) 9.	TYPICAL MARKET APP			
CREWS INFORMATION: It your load takes representative or contact while program for further information.	8008 Groop 6055 Weat Frye Isea0Chandler, 42 85225 Filome 480-993-6527 Fex: 480-993-1409	Note Ante Pacific (Hong Kang) List 12/F, Kin Sang Commercial Centre, 49 King Vis Street, Kewn Tong, Reelton, Hong Kang/Hone 682-2418-1318 Fax: 82-2418-1533	India Geniaff Invia Drusse 2 0-52348 0Gran, GermanyPhone 49-3421-0080 Fax: 49-3421-408154	

Let someone pick your component values? NO! Why let someone pick values of your materials?

Pick materials to suit your needs. Making a Technically Appropriate Material Choice!

12

Technically Appropriate Material Choice

All these are /126

https://insulectro.com/

Circuit Design Types:

Electrical Properties

Isola's Product Ladder Rigid Laminates:

DF-Solvability:

HDI, uTraces, µVias

<u>DF-P</u>erformance:

SI, EMI, PDN, Thermal

DF-Manufacturability:

CTE, Plating, CU surface, Process, Reliability

Product	Tg by TMA	Tđ	Dk	Df	LP Foil	Find Sensitive application		ended Bit Rate sency range		Nun Lamin cyc	er of ion			le with Build		R		es Th ducts	
185HR	180	340	4.01	0.02	NA	N	Low cost Lead compatible FR		Hz	38	04		MT40 Astra	Tachy MT77	ion	Panas 1655V		-1755	V and R
370HR	180	340	4.04	0.021	N/A	N	Legacy High re- compatible FR		ax.	31	0.4	l-10ra 1000		Tachy MT77	on	Panas 1655V		-1755	V and R
FRADEHR	190	360	3.68	0.0092	Available	N	Multifunctions up to 12 GHz	al low los resin		3 *	o.4	1-Tera 100G,		, Tachy MT77	on	Nelco	N400	0-13 a	nd 13EP
I-Speed*	180	360	3.64	0.006		RDING T	IPC-4101/98/9 O	99/101/125				185HR	, 370	R, 408					
I-Tera* MT40	200	360	3.45	0.0031	IPC-	4101			/40	/41	/97	/98	66/	4	/102	/126	/129	/134	/140
	-	_	3.307	-			IS400				•	•	•	•	N				
I-Tera® MT40 [RE/MW]	200	360	3.45/ 3.60/ 3.75	0.0028		RMAL	185HR					٠	•	•		•			
TerraGreen*	200	390	3.44	0.0039	REL	IABLE	370HR					•	٠	•		٠			
TerraGreen®							IS550H												•
(RE/MW)	200	390	3.45	0.0032	2	5	IS415							•					
15300MD	190	390	3.06	0.0033			FR408HR					•	•	•		٠	1		
			2.80-	0.0025-			I-SPEED®					•	•	•					
15680	200	360	3.45	0.0035		SPEED	TERRAGRE	EN®											
15680 AG	200	360		0.0020	Die		I-TERA®MT	40							•				
			3.48	0.0023			TACHYON®	100G											
Tachyon®	200	360	3.02	0.0021			TERRAGRE	EEN#400G										•	
		_		-	SPEC		P95/P25		٠	٠									
Astra®.MEZZ	200	360	3	0,0017	PRO	DUCTS	P96/P26		•	•									

Conductive Metals - Copper

Copper is readily available and comes with several properties:

Thickness measured in ounces based on amount of copper hammered out flat, to cover one square foot, measurement origin from roofing industry

- One ounce of copper foil (1 OZ CU) common established thickness approximately 36 microns (.0014)
- Copper foil & copper clad material is available in several common thicknesses ranging in thickness of 1/2, 1/4 and 1/8 OZ Cu
- Commonly available with thick usage sizes, i.e., 4, 3, and 2 OZ Cu

Copper Produced on Drums, Sheets of Clad Cores and Foils

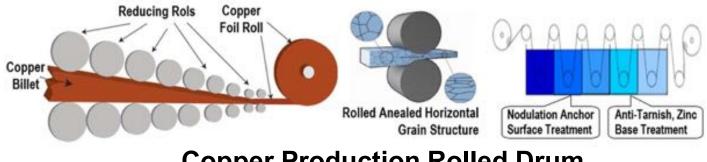
Copper Foil Weights and Thickness

IPC-4562 also provides guidance and classification per Table 1-1 in section 1.2.6 for most standard copper thicknesses as shown in this similar table

Micron	IPC	Oz	Mil	Inch	oz/ft ²
1µm			0.039	0.000039	
1.5µm	С		-	0.000059	
2µm	В		0.078	0.000078	
3µm	А	1/12oz	0.118	0.00011	0.085 oz
4µm			0.157	0.00015	
5µm	E	1/8oz	0.196	0.00019	0.148 oz
бμт			0.236	0.00023	
7μm			0.275	0.00027	
8µm			0.314	0.00031	
9µm	Q	1/4oz	0.354	0.00035	0.249 oz
10µm			0.393	0.00039	
12µm	T	3/8oz	0.472	0.00047	0.375 oz
18µm	н	1/2oz	0.708	0.00066	0.5 oz
27µm	M	3/4oz	1.06	0.001	0.75 oz
35µm	1	1oz	1.377	0.00133	1 oz
53µm		1.5oz	2.08	0.002	
70µm	2	2oz	2.755	0.0027	2 oz
105µm	3	3oz	4.133	0.0041	3 oz
140µm	4	4oz	5.511	0.0055	4 oz

Copper Foil Weights and Thickness

Copper Production Types



Copper produced on rolled drum , further sold in sheets

Copper is affixed to dielectric material, referred to as copper clad, also comes as an unattached copper sheets, called foil copper

Because copper foil sheets are so thin, often they are supported with aluminum handling plates that are temporarily attached

While in construction, copper is being **pressed onto a drum creating a grain structure**, along with **varied surface roughness** on **each side**, and lastly it also is produced with **several surface finishes for manufacturing purposes**

Copper Production Rolled Drum, Pressed, and Surface Treatments

Copper Production Types (1 of 2)

Manufactured in two basic types: **Electro Deposited (ED) or Rolled Annealed (RA)** Four major properties that define the construction and usage capabilities

- 1. Definition and Manufacturing Method:
 - Electro-Deposited (ED) which is made from CuSO4 solution, by using electrolysis method, made Cu2+ (An ionic identifier of copper) dip into spinning cathode rolls and stripping, producing ED Copper Foil
 - Rolled Annealed (RA) which is made from high purity copper (>99.98%), using a high-pressure process, creating a flattened grain structure (A.k.a. Wrought)
- 2. Form:
 - ED Copper has a vertical grain structure, for rigid constructions
 - RA Copper has a horizontal grain structure, for flex constructions

Grain Structures: ED=Vertical, RA=Horizontal

ED Cu Vertical Grain

RA Cu Horizontal Grain

Copper Surface Profile and Finish

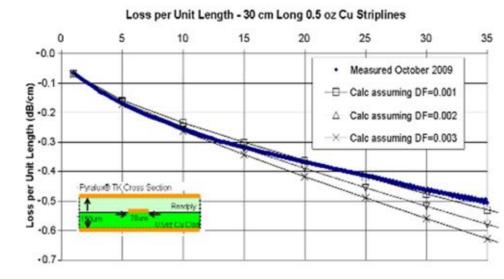
- A sheet of copper has two surface sides, different finishes & surface profiles
- Copper clad has two sheets of copper pre-attached to a laminate base
- Copper foil is one stand-alone sheet
- One side typically has a smooth profile, and other side is a rough profile as shown below

Rough profile serves the purpose of adhering the metal to the resin system within the dielectric insulating material used between layers

Various Copper Profiles - Smooth Side and Rough Side

Copper – Skin Effect

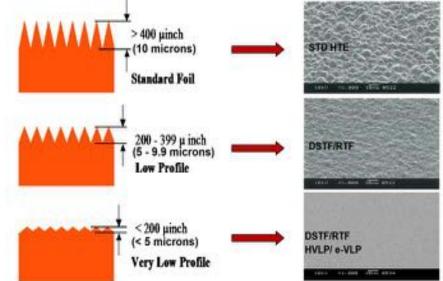

High Frequency Effects


- As frequency increases, current concentrates toward copper outer edges
- When roughness of copper surface becomes close to wavelength of signal, loss increases
- This begins to be a big factor at frequencies of 10 GHz and higher

Rules of Thumb

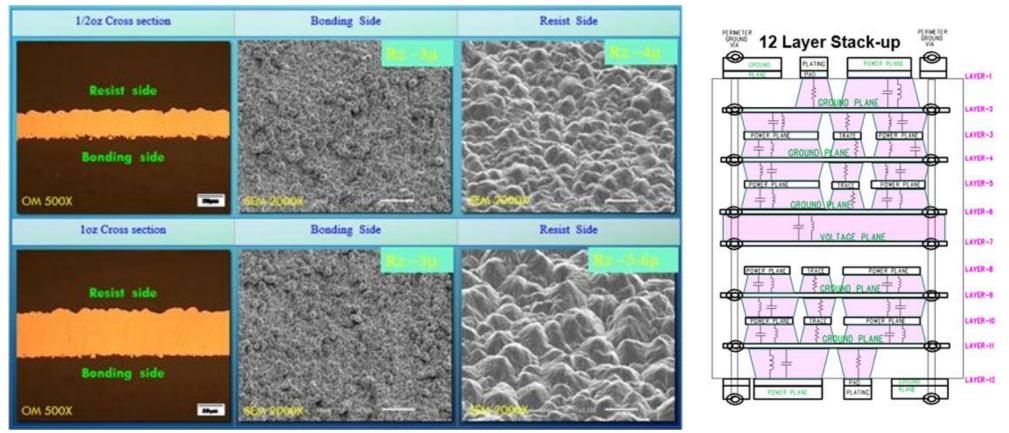
- Thicker copper has slightly lower loss and wider lines have lower loss
- Effects of oxide treatments are hard to accurately predict, generally effect at higher frequencies
- Skin effect has a bigger impact on stripline than microstrip since field is concentrated on top and bottom of line instead of mostly the bottom

Copper Surface Roughness


PCB Carolina 2022

Measurement for roughness referred to as, **Copper Roughness (Rz)**, measuring overall maximum macro surface roughness on rough side

Copper Roughness (Rz), a.k.a, *Ten Point Height*, average absolute value, five highest peaks and five lowest valleys, in microns.

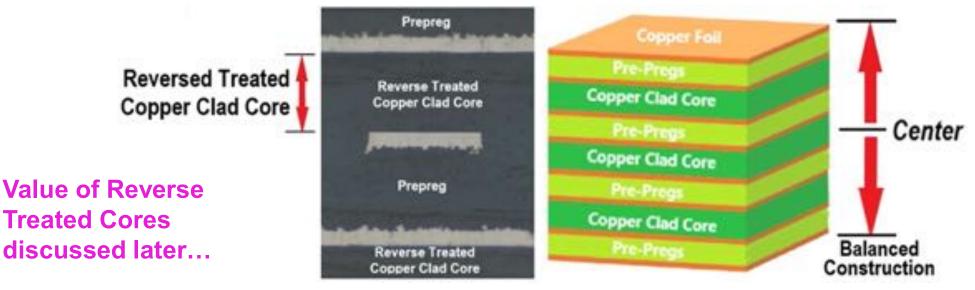

A.k.a. Roughness Surface Area Ratio (RSAR)

- **Standard foil**, similar roughness on inner layer side & RSAR of 0.3 to 0.4
- RA of 0.3 to 0.4 microns & Rz of 3-4 microns, smooth foil on resist side
- Very Low Profile (VLP) with Rz 3-4 microns and Hyper Very Low Profile (HVLP) copper foils, 2-3 microns Rz both sides is common

Electrodeposited Copper Foil Side Treatments

PCB Carolina 2022

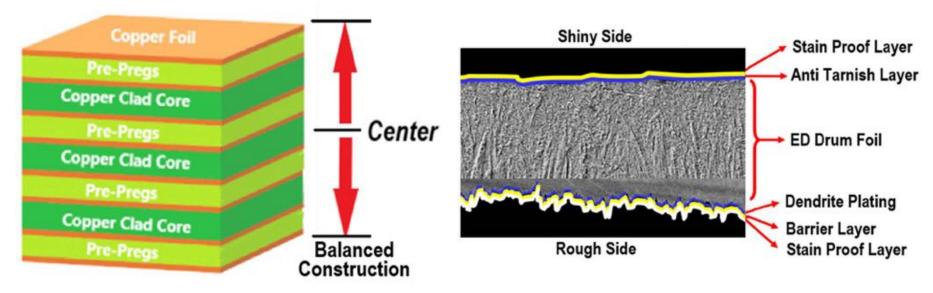
21


Reverse Treated Copper Clad Core

Most copper clad cores have reverse treat copper on both sides

This helps with adhesion to adjacent prepreg layers on both sides using an alternating core-prepreg-core-prepreg method for a balanced constructions

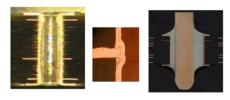
Prepregs are the glue between copper clad cores and foils are used on the outer layer with a foil construction

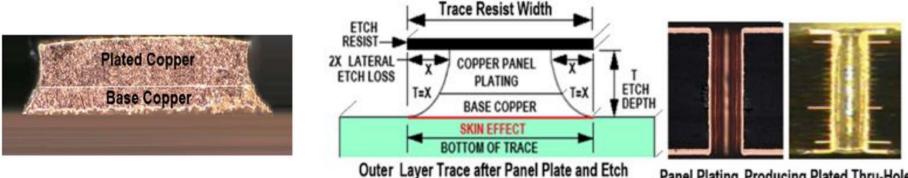


Chemical Treated Foils

Chemical treated foils involve treatment of electro deposited copper surfaces, treatment layers are thin coatings, improve base foil adhesion to dielectrics and add corrosion resistance which makes shiny side rougher than it was before, can be used in high-speed applications

• **Reverse Treat or Double Treat** foil typically has RSAR of 1.0 to 1.2, RA of 0.7 to 0.8 microns and Rz of 8-10 microns on one or both sides of the foil


Electro-Plated Copper Holes


Used to plate drilled holes to bring connectivity from one layer to another

or many, two basic uses for plated holes:

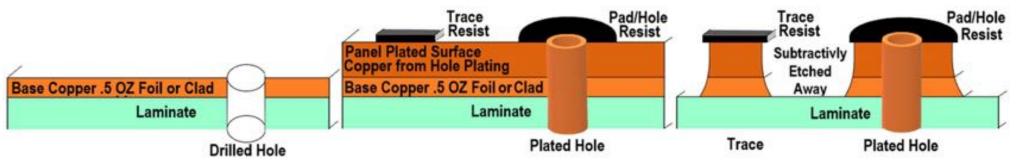
- Vias part of the Z-Axis connectivity and
- **Plated component Thru-Hole (TH) pins** •

Plating step will inadvertently add an accumulated metal thickness to the layers at that step, whenever applied, will occur for every plated drill process and must be accounted for when used across the entire panel, called panel plate, or selectively, called button plate, where only holes are plated

Panel Plating, Producing Plated Thru-Holes

Cross Section of Panel Plating, from Producing Plated Thru-Hole

Subtractive Process - Base and Plated Copper



Historically common & cost-effective process used to establish metal patterns on PCBs

Subtractive process - full sheet of base copper is on a laminate layer, holes drilled then plated, results in a thick deposition of panel plated copper on top of the base copper

Then etch process strips away unwanted metal, leaving resultant copper trace, which is often trapezoidal in shape, can cause problems for producibility and performance

Fabricators Make Spaces not Traces...

Subtractive Process – Resultant Trapezoidal Shaped Trace

How Thick are the Copper Hole Walls???

Hole wall thickness stipulated IPC Class 1, 2, or 3, many process steps to produce a thru-hole, robust & reliable plated metalized hole wall, drill hole will often be over-sized, allow for, process steps for plating wall thickness

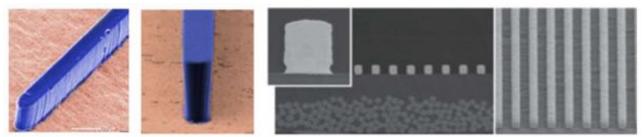
Ref. IPC 2221, IPC-A-600, & IPC-6012 Requirements may be waived in a condition known as, *As Agreed Between User and Supplier (AABUS)*

Ductility - characteristic when copper is deposited into drilled holes during plating process, allows some Z-Axis movement during thermal stresses

Difference between electro-plated copper & electro-deposited sheet copper

 Surface & Hole Copper Plating Minimum Requirements - Buried Vias > 2 Layers, Through-Holes, and Blind Vias

Minimum Cu Plating Wall Thickness	IPC Class 1	IPC Class 2	IPC Class 3
Average - cont. or wrap onto outer	20µm (.00078)	20µm (.00078)	25µm (.00098)
Thinnest Area	18µm (.00071)	18µm (.00071)	20µm (.00078)
Wrap Cu plating for filled PTHs	AABUS	5µm (.00020)	12µm (.00047)
Surface & Hole Copper Plating Mir	nimum Requirem	ents - Microvias	(Blind and Burie
Minimum Cu Plating Wall Thickness	IPC Class 1	IPC Class 2	IPC Class 3
Average - cont. or wrap onto outer	12µm (.00047)	12µm (.00047)	12µm (.00047)
Thinnest Area	10µm (.00040)	10µm (.00040)	10µm (.00040)
Wrap Cu plating for filled PTHs	AABUS	5µm (.00020)	6µm (.00024)
Surface & Hole Copper Plating Min	nimum Requirem	ents for Buried v	ia cores (2 laye
Minimum Cu Plating Wall Thickness	IPC Class 1	IPC Class 2	IPC Class 3
Average - cont. or wrap onto outer	13µm (.00051)	15µm (.00060)	15µm (.00060)
Thinnest Area	11µm (.00043)	13µm (.00051)	13µm (.00051)
Wrap Cu plating for filled PTHs	AABUS	5µm (.00020)	7µm (.00028)

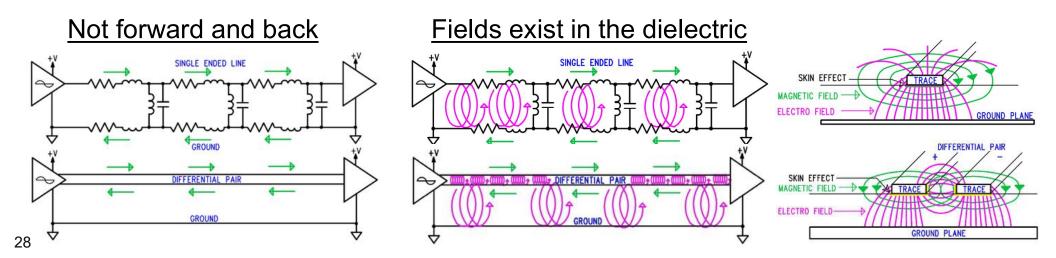

Minimum Plating Wall Requirements

Additive Process (Discuss problematic Issue)

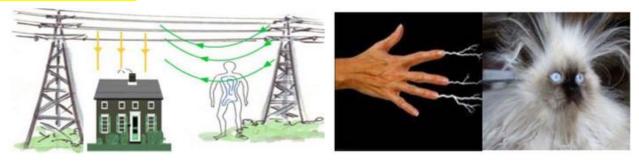
Copper is used to **build up metal on surface** of dielectric, couple variations to this type of fabrication process, used in package design and cell phone industry

- Semi Additive Process (SAP) Metalized processes begin with a thin seed layer of electroless copper, <1.5 um, chemical process, then buildup additive copper until metal thickness is achieved, results in an orthogonal trace geometry
- Modified Semi Additive Process (mSAP) Photo-imageable circuit pattern on Ultra Thin Foil (UTF) >1.5um, pattern defined by resist layer, flash etched, then additive ED process build up on UTF, subtractive process removes copper foil with no circuitry, build up process additive copper until metal thickness achieved, reliable µtraces widths <3.0mils vertical trace

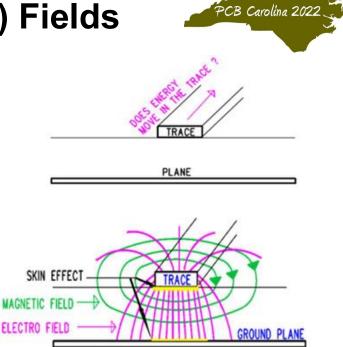
Modified Semi-Additive Process (mSAP) – Consistent Vertical Width



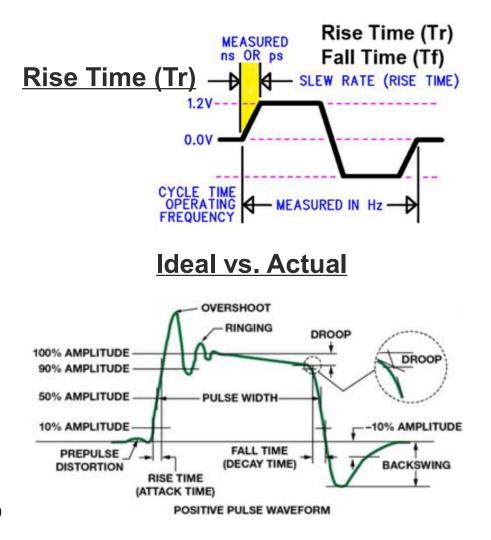
Signal Energy in the Dielectric

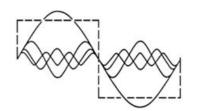

Signal Propagation and Return (energy moving forward & back) However, it is not forward and back, rather, the energy field is <u>immediate between trace and plane in the dielectric material</u>

"Materials are part of the circuit"


Understanding Electro & Magnetic (EM) Fields

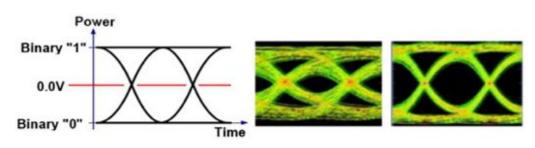
Where does the energy exist, is it in the trace? NOOOOO! \rightarrow


• Why this is important – you're not just connecting a route, rather you are managing an EM field

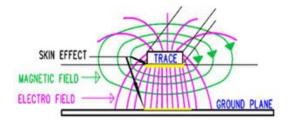


Opposites Attract

GND Best Return Path - GND net not the only metal that can serve as a return path but is always the best metal layer, PWR nets will serve as a return path but not a good one, don't confuse impedance reference & best return path Similar but Different


Signal Integrity Issues

Trace length equal to ¼ of the Rise Time (Tr) signal integrity issues such as reflections start to occur with any impedance discontinuities



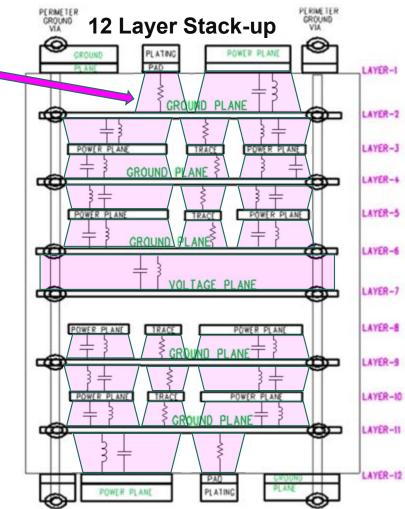
Eye Diagram

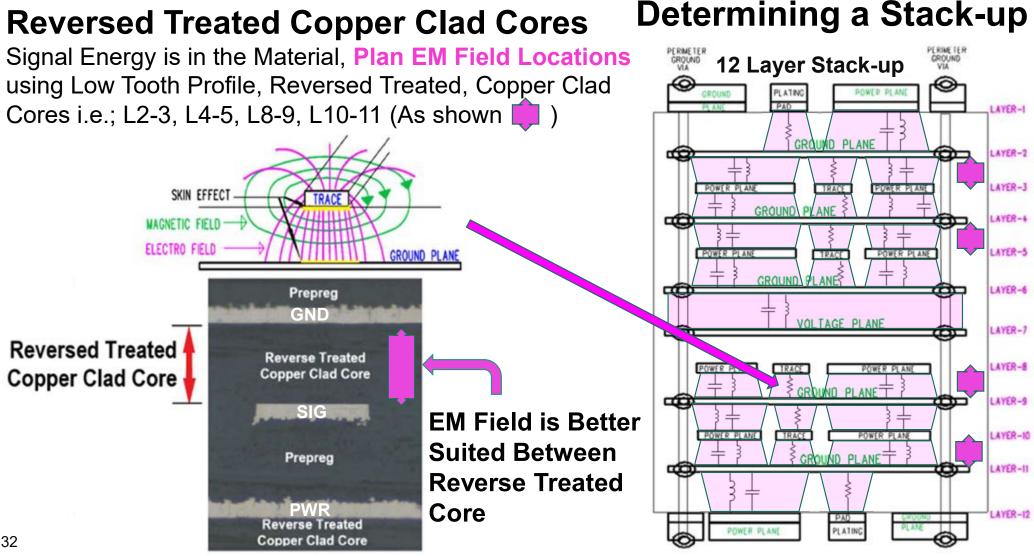
- One pulse left image
- Billions of pulses per sec. right image

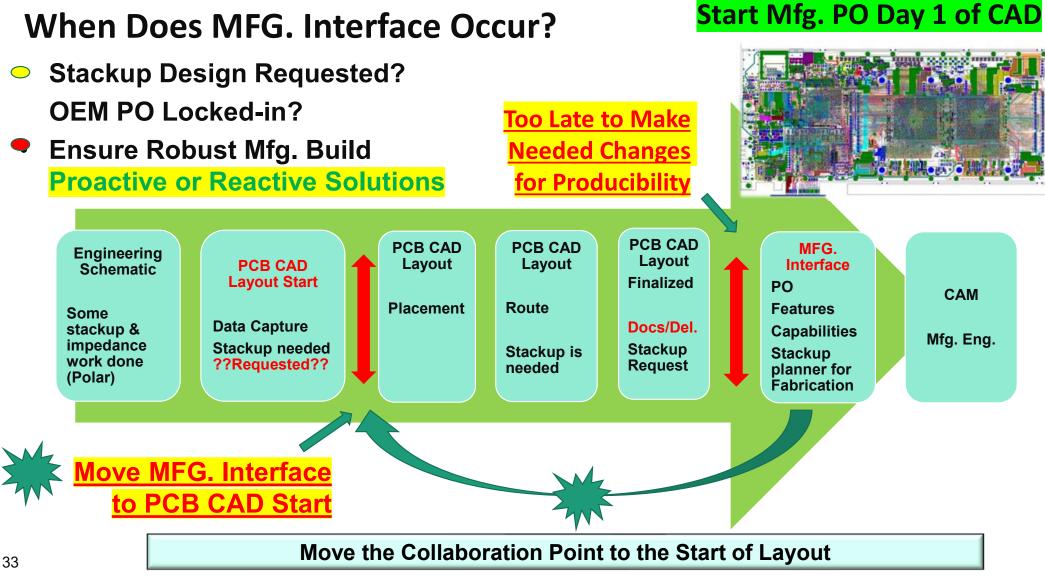
GND (0.0V) Most Important Net

- Copper Sheets have Two Sides (Skin deep)
- Signal Energy is in the material

DEST TRACE

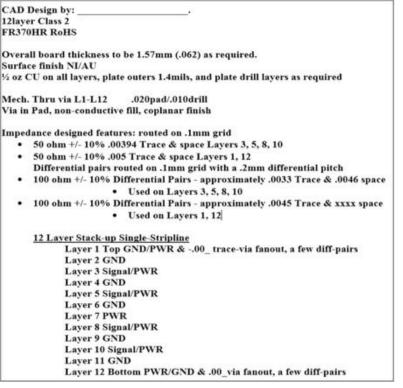

No BLACK MAGIC Secret for Stack-ups


- GND (0.0V) reference every signal
- GND (0.0V) reference every PWR

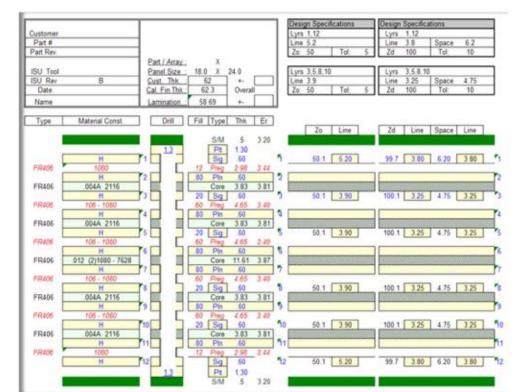

When defining a Stack-up:

- Sketch a resistor symbol from your signal layer to an adjacent uninterrupted GND plane
- Sketch a capacitor symbol from your voltage layer to an adjacent uninterrupted GND plane

Determining a Stack-up

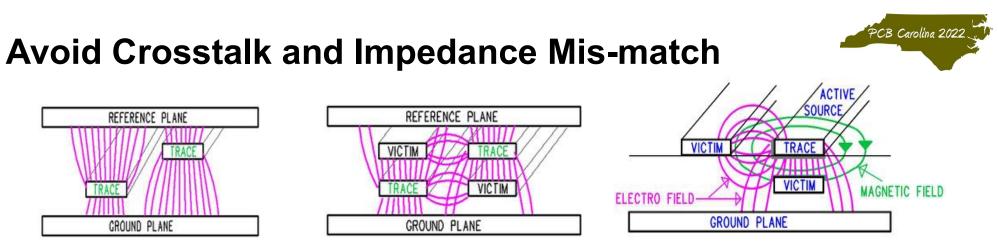


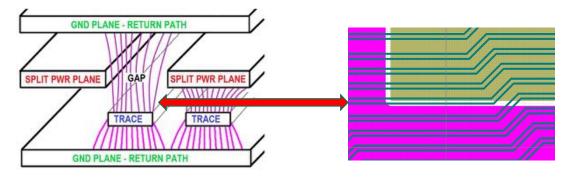
Printed Circuit Engineering – Start Data


Stackup Design

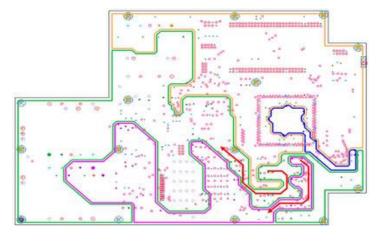
Design-Request vs. Fabricator Stack-up with Manufacturing Tolerance Allowances

Sample Stack-up Request to be Submitted to


Production Fabricator

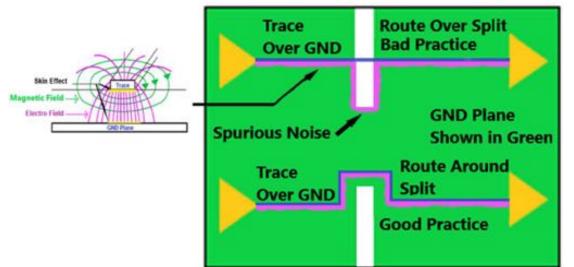

PCB Carolina 2022

Sample Stack-up provided by Production Fabricator


34

Planned vs. Actual, instead of two traces routed, 4 traces are routed. The actual routing did not equal the modeled topology,

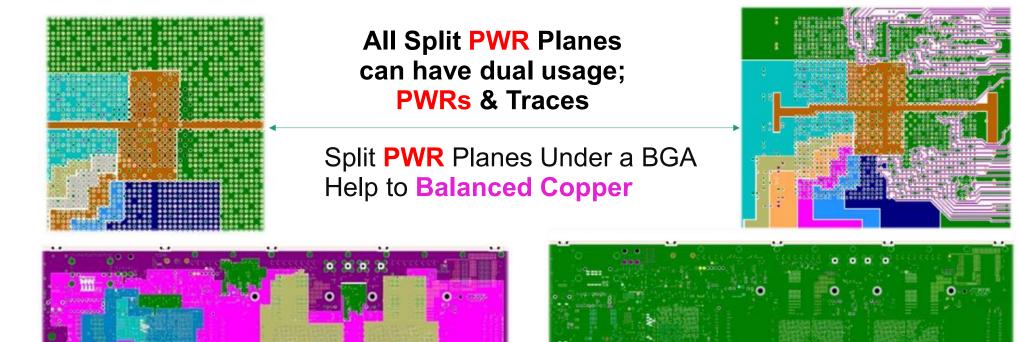
Routing Over *Split Gap* in PWR Planes will cause **Impedance Mis-match**



Stackup – Routing over Split in Planes

Return layer always a continuous layer, if signal routing crosses a split in the return plane, field energy cannot flow with signals, will find another path Separation between signal and its return, creates interference/EMI problems

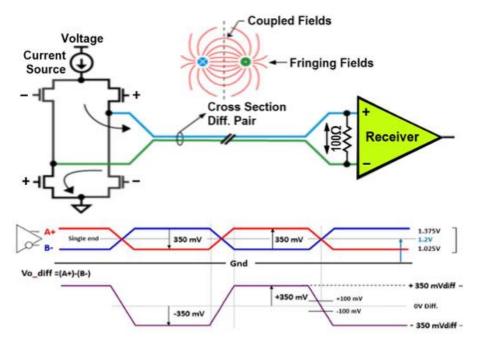
Avoid signals routing over two different GNDS



Return Energy Field Pink - Follows Blue Trace Around the Split Plane, Not Follow Over

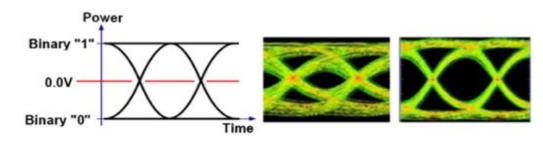
Signals Should Never Cross Over Two GND Return Paths

Split PWR Planes & Uninterrupted GND Return Planes


Split PWR Plane

0

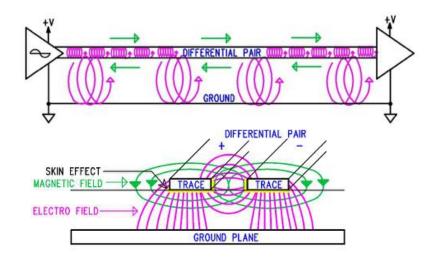
0


Uninterrupted GND Return Plane

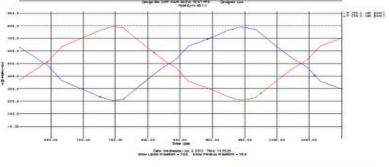
Differential Pair Routing – Signal Integrity Issues

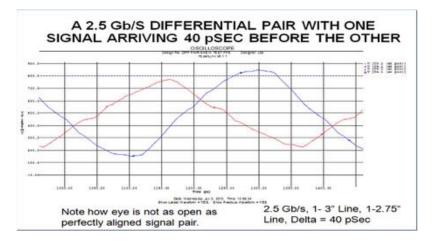
Pair of wires (Twisted pair) or two traces on a PWB, circuit **responds to electrical difference between two signals**, rather than difference between a single wire and GND, aka. single ended mode Any Impedance discontinuity caused by routing in a transmission line on one signal in the pair, can cause an SI issue and system failure

PCB Carolina 2022



Eye Diagram

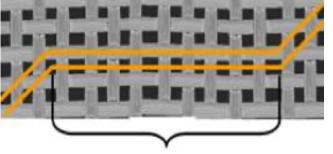

- One pulse, left images
- Billions of pulses per sec., right image


Differential Pairs and Skew

A PERFECTLY ALIGNED 2.5 Gb/S DIFFERENTIAL PAIR SIGNAL. (TWO DATA BITS SHOWN)

2.5 Gb/S, 2 each 3" Lines

High-Speed Differential Pair Eye Diagrams 4" Stripline FR4



Using a lower loss material will open the "eye" at higher speeds.

Glass Reinforced Laminate Weave Patterns - Standard & Spread

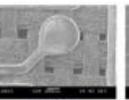
Differential Pair Routing – Fiber-weave Effect

Fiber-weave Routing is an

Inconsistent Solution

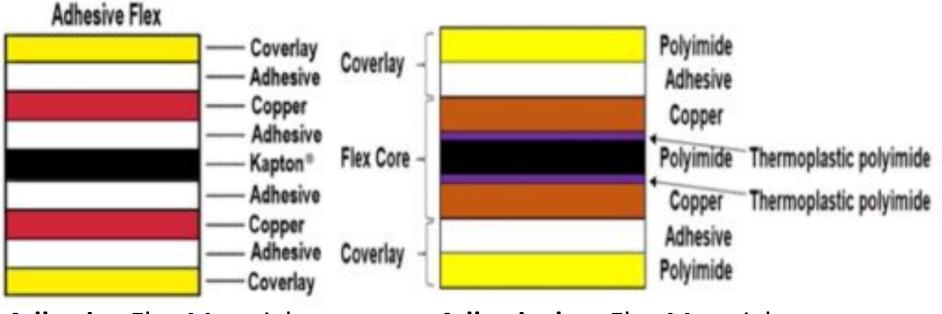
Fiber-weave Effect

Fiberweave Routing vs. Spread Weave Material


- Std FR4 (i.e.1080): Fabric Weave and Resin have different Dk's, one trace routed over glass and the other trace over resin, results in a mismatched impedance
- Spread Weave: Provides a consistent Dk and will ensure a matched characteristic impedance for both signals in the diff-pair

Isola's spread weave product families: 370HR® I-Tera®MT40 I-Speed® Astra®MT77 Tachyon®100G

StandardSpreadWeaveWeave1080 Loose1086 Spread

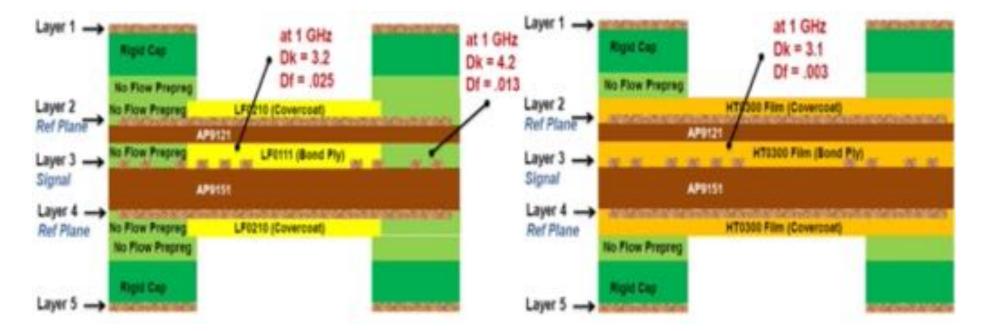


Over 2.4Ghz Consider Spread-weave Glass

PCB Carolina 2022

Flex Materials and Construction Adhesive or Adhesiveless

DuPont's Unique Polyimide Technology provides very low loss and very high peel strength



Adhesive Flex Materials and Construction

Adhesiveless Flex Materials and Construction

Adhesive or Adhesiveless Flex Materials and Construction

Adhesive Rigid-Flex-Rigid Materials and Construction

Adhesiveless Rigid-Flex-Rigid Materials and Construction

Electrical & Physical Properties of DuPont Flex Dielectric Films

Property	Unit	Method	Kapton [®] HN	Pyralux [®] AP	Pyralux [®] AG	Pyralux [®] HT Bondfilm	Pyralux [®] TK
Thicknesses	mil	-	1 - 5	1 - 6	1 - 2	1-4	2 – 4
Dk @ 10 GHz	_	Method 2.5.5.5	3.4	3.2	3.2	3.0	2.5
Df @ 10 GHz	_	Method 2.5.5.5	0.010	0.002 - 0.003	0.007	0.003	0.002
% Moisture uptake	%	Method 2.6.2	2.8	0.8	0.8	0.8	0.6
CTE (x-y axis)	ppm/°C	50 to 250 °C	20	25	17-20	25	27
CTE (z axis)	ppm/°C	50 to 250 °C	115	90	90	90	102
Peel strength	N/mm	IPC- TM650	N/A	2.0 (ED) 1.6 (RA)	2.0 (ED) 1.6 (RA)	N/A	1.2 (RA)
Тg	°C	DMA	360 - 410	220	230	220	270
Tm	°C	DSC	-	-	-	_	300
Flammability	_	UL94	V-0	V-0	V-0	V-0	V-0

Material – Summary

Technically Appropriate Materials

• Don't Let someone select your component values, don't let them select your Material Values

Solvability:

- Layer Count Reduction
- Thin Overall Boards, Flex-Rigid
- Micro Feature designs, including HDI

Performance:

• High-Speed, RF and Antenna - Signal Integrity, Thermal, EMI/EMC, & Power Delivery

Manufacturability:

- High Yield = Low Cost
- High Process Producibility
- High Quality and Reliability

PCE-Edu, Inc. Introduces: PCE Professional Curriculum

info@pce-edu.com

www.pce-edu.com

- After registration, student kit mailed (textbook), read chapters 1-6 approximately 2-4 weeks prior to scheduled 40-hour interactive class.
- In 2023 enrollment cost will be \$2,995. Significantly more cost effective than the few similar certifications currently on the market.
- Following the class, you may take the exam for certification.
- Online, open book, timed exam.

47

- Lifetime Certification ponsored/recognized by PCEA trade association.
- Classes taught live in-person or offered using the Zoom platform, whereby students are required to have appropriate AV equipment: Headphones, microphone, camera on a dedicated computer.

Review Comments by Lee Ritchey:

"I've had time to review the textbook. It is the best book of its kind that I have ever seen. Very nice work!"

"I'll be showing it at my classes from now on...

Mike Creeden CID+ | Technical Director Design Education Insulectro | www.insulectro.com mcreeden@insulectro.com San Diego, CA 92131

Thank You!

