

Industry Inflection Point: Organic Substrates Outperform Ceramic in Power Modules

Prof. Doug Hopkins Sourish Sinha, Tzu-Hsuan Chang NC State University 1791 Varsity Drive, Suite 100 Raleigh, NC 27606 (919) 513-5929

OUTLINE

ABSTRACT – An advanced epoxy-based insulated metal substrate (eIMS) uses a new high temperature, highly thermally conductive organic dielectric (ERCD) having characteristics of 40kV/mm breakdown, 10W/mK and operates at Tg≥300°C with a low modulus. And is used to create a two-sided GaN ½-bridge 450V/50A power module.

Think PCB

- 1. A bit of review about ceramic-based power modules
- 2. Review characteristics of Epoxy Resin Composite Dielectric (ERCD)
- 3. Compare Ceramic to Organic ERCD
- 4. Introduce a double-side cooled GaN ½-bridge power module using an Epoxy Insulated Metal Substrate (*eIMS*), include a supply chain map
- 5. Impress audience with high-speed double-pulse-test results to show electrical module performance

PREES provides Open-Source Documentation of many of its designs. The IPM designs reported here are available on our open-source design site:

https://go.ncsu.edu/prees_open_source

Provided are SolidWorks easm files and a pptx presentation of process steps.

PCB Carolina 2022

Slide 2

Open-Source Documents...

PCB Carolina 2022

Slide 3

dchopkins@ncsu.edu ©2022 douglas c hopkins

PACKAGING RESEARCH IN ELECTRONIC ENERGY SYSTEMS

Slide 4

1. A bit of review about ceramic-based power modules

Slide 5

Plated Copper (Best for $\leq 125 \mu m$ Cu thickness)

Chip

Attributes

- * 50µm conductor separation Solder * ϵ_r = 9.4 or 13 pF/cm² * $\rho = 1.72\mu\Omega$ -cm Copper 25µm - 127µm thickness $690\mu\Omega/sq - 135\mu\Omega/swq$. * $R_{\theta} = 2^{\circ}C/W/cm^{2}$ (*) * Chip & Wire or SMT * Some thermal interaction * Ceramic based - mixed technology photo-patterned and plated; thick or thick-film
- * Accommodates highly complex circuits

Cu

With permission from CirQon Technologies Corp.

Magnetics & ignition module

dchopkins@ncsu.edu ©2022 douglas c hopkins

Thick-film

Resistor

Plated Cu - Typical requirements

- •Ceramic typically 96% Alumina
- •Typical copper plating thickness:
- Minimum .001" +/- .0003" , Maximum .003" +/- .001"
- Perforations needed in copper patterns > .250" square.
- Preferred panel and substrate sizes:
- 7" x 5" @ 25mils
- 4.5" x 4.5" @ 15mils
- 2" x 2" @ 10mils

Surface finish preparations typically

- Wire bondable ENIG (Electroless Nickel Immersion Gold).
- Immersion Au (3-5 microinches) with Ni diffusion barrier.
- Entek OSP over bare copper to promote solderability.
- Immersion Ag (3-5 microinches) to promote solderability
- For copper thickness of 1mil to 2 mil
 - minimum trace width .003" +/- .0005"
 - minimum space width .003"
 - •For copper thickness of >2mil the
 - minimum trace width .004" +/- .0015"
 - minimum space width .004"

Slide 8

Direct Bond Copper Process

Authors thank

Curamik[®] Electronics

A member of

for providing information and photos

CIRCA 2003

Slide 9

DCB Process

- Oxygen reduces the melting point of Cu from 1083°C to 1065°C (Eutectic melting temperature).
- Oxidation of copper foils or injection of oxygen during high temperature annealing (1065°C and 1080°C) forms thin layer of eutectic melt.
- Melt reacts with the Alumina by forming a very thin Copper-Aluminum-Spinel layer.
- Copper to copper is fused the same way.
- Copper-Aluminum-Nitride (AIN) DBC is possible. The AIN-Surface must be transformed to Alumina by high temperature oxidation.

Courtesy of Curamik Electronics, circa 2003

Slide 10

DBC Process

Courtesy of Curamik Electronics, circa 2003

Slide 11

Flow Chart of DBC Circuit Processing

Courtesy of Curamik Electronics, circa 2003

PCB Carolina 2022

Slide 12

Masking

- High precision screen printers for high volume
- Semiautomatic and fully automatic with pattern recognition
- Redundant equipment
- Photomasking for high density circuits
- Air conditioned clean rooms

Courtesy of Curamik Electronics, circa 2003

Slide 13

Etching

- Specially designed precision etchers for thick copper layers
- Automatic chemistry control
- Mask stripping integrated
- 3 separate high volume lines in operation
- Controlled by SPC

dchopkins@ncsu.edu ©2022 douglas c hopkins

Courtesy of Curamik Electronics, circa 2003

Plating / Final Cleaning

- Fully automatic high volume plating line for electroless Ni + Au
- Controlled by SPC
- Final cleaning for Cu integrated
- Parallel backup lines
- Solderability and wire bond testing

Courtesy of Curamik Electronics, circa 2003

Slide 15

Laser Machining

- Fully automatic high precision CO2 lasers with pattern recognition
- Designed for high volume throughput
- Scribing and drilling
- Multiple equipment
- Controlled by SPC

Courtesy of Curamik Electronics, circa 2003

Slide 16

Single Switch Module

4 Substrates, 4 IGBT's and 4 Diodes

Slide 17

DBC Layout & Substrate Specifications

Slide 18

Dimple Design

Courtesy of Curamik Electronics, circa 2003

Slide 19

Via Technology

Both sides flat surface. Ceramic hole diameter min. 1.0mm R<100μΩ

One side flat surface. Ceramic hole diameter min. 1.0mm R<100μΩ

Slide 20

One side flat surface low cost. Ceramic hole diameter 2.5mm $(0.3 \text{mm copper layer}) \text{ R} < 100 \mu\Omega$

Courtesy of Curamik Electronics, circa 2003

•100 A / 100 µOhm

• Both hermetic

Integral Terminals

- Terminals made of same copper sheet as circuit
- High electrical conductivity due to solid metal w/o interface resistance
- Very high reliability

- For very high-density circuits
- Extremely reliable due to integral connectors
- Base for power
- Sidewalls for non-power components
- Assembled flat and bend up

Courtesy of Curamik Electronics, circa 2003

Slide 21

True-3D Module (Phase leg)

"3-D Prismatic Packaging Methodologies for Wide Band Gap Power Electronics Modules," Dissertation, Dr. Haotao Ke, North Carolina State University, Sept. 2017

Slide 22

Fluid Cooled DBC

- Lowest thermal resistance of all available solutions for COB (Chip On Board)
- R_{th} from 0.08 to 0.02 °C/W using Al_2O_3 or AlN
- Power dissipation up to 3 kW on 2" x 2"
 - 3kW/4in² (750W/in² = 116W/cm²)
- Extremely compact design
- Modular system assembly

Slide 24

Micro Channel Water Cooled Module

Half bridge

- Cooling water up to 80°C
- 6 IGBTs, 12 Diodes
- 62 mm St'd module size

• 450 A

Courtesy of Curamik Electronics, circa 2003

PCB Carolina 2022

Slide 26

2. Review characteristics of Epoxy Resin Composite Dielectric (ERCD)

Epoxy Resin Composite Dielectrics – ERCDs These provide and opportunity to look at very low-cost modules with embedded components.

> "Novel Polymer Substrate-Based 1.2kV / 40A Double-Sided Intelligent Power Module," Xin Zhao1, Yifan Jiang1, Bo Gao1, Kenji Nishiguchi2, Yoshi Fukawa3, D. C. Hopkins1 1North Carolina State University, 2Risho Kogyo Co., LTD, 3TOYOTech LLC

Slide 27

State-of-art development of WBG power module

Insulated-Metal-Baseplate based IPM by Mitsubishi [4, 5]

- CTE of insulating resin layer ~17ppm, close to Copper, with better mechanical stress management
- 35% thermal impedance reduction from development of resin
- Less interconnection layers for lower profile, up to 55% size reduction from traditional DBC based module
- · Better thermal cycling reliability with less cracks during cycling
- · Depends on the resin interface material heavily

[4] Y. Kaji, et al. Novel IGBT Modules with Epoxy Resin Encapsulation and Insulating Metal Baseplate. ISPSD 2016.

[5] T. Takahashi, et al. A 1700V-IGBT module and IPM with new insulated metal baseplate (IMB) featuring enhanced isolation properties and thermal conductivity. PCIM Europe 2016.

High Thermal Conductivity Materials

PCB Carolina 2022

Slide 29

High thermal conductivity mat'ls: AC-7208 (8W/mK)

Product number	AC-7208			
Dielectric layer thickness	120)μm		
Thermal conductivity(W/mK)	8	Laser flash		
Tg (℃)	270	DMA method		
Peel strength(kN/m)	1.2	1 oz copper		
Solder limit(sec)	Over60	260°C		
CTE(ppm/°C)	9/22	α_1/α_2		
Breakdown V (kV)	> 5	JIS C2110		
СТІ	over600	IEC method		
Flammability	V-0equiv.	UL94		

PCB Carolina 2022

High voltage capability: CC-7208 (8W/mK)

"Novel Polymer Substrate-Based 1.2kV / 40A Double-Sided Intelligent Power Module," Xin Zhao, et.al., IEEE 67th ECTC –Orlando, FL, USA

Characterization of Leakage Current v. Temperature @250°C/1200V 20µA

Limited leakage current is measured on the 80 μm sample with copper bonded on both sides

- 20 µA leakage even at 250°C with 1200 V voltage applied
- 1 nA leakage at room temperature with > 4kV voltage applied

High thermal conductivity mat'ls: AC-7210 (10W/mK)

	PERHES				
Product number	AC-7210		High tempe	erature long term r	eliability(175°C)
Dielectric layer thickness	120 <i>µ</i> m		6.0 (k)		→
Thermal conductivity(W/mK)	10	Laser flush method	oltage		
Tg(°C)	270	DMA method			
Peel strength(kN/m)	1.2	1 oz copper	0.2 Gak		
Solder limit(sec)	60<	260°C	n		(
$CTE(ppm/°C) \alpha 1$	14/14/14	X/Y/Z	0	500 Troating time	1000
Breakdown V (kV)	>5	JIS C2110		neating time	5(111)
CTI	>600	IEC method			Copper foil
Flammability	V−0 equivalent	UL94			Dielectric layer Aluminum /Copper

CCL: Cu Clad Laminate with metal base (AC-XXXX)

Slide 32

A SIMPLER HIGHER POWER PCB

Ordered **1.5'x2'** ERCD B-Stage sheets from RISHO (120μm AD-7210N)

- Trimmed to 0.75'x12' for top-, 1'x1.5' for bottom-eIMS plates
- 4oz. Cu on 120µm ERCD laminated onto 2mm Cu baseplates *Panel Size eIMS Manufacturing*

RISHO KOGYO CO.,LTD TOKYO OFFICE

Product No.	AD-7210N
Material	High Thermal Bonding Sheet (10W/mk)
Production Lot No.	AK6-X419-4
Quantity(sheets)	15
Dielectric nominal thickness(mm)/(mil)	0.12/(5mil)
Panel size(mm) /(inch)	458×610/(18×24)
Releasing film	PET film double sided
Appearance	No problem
HS Code	3919.90.5060
Gross Weight (Kg)	3

LIST of TEST Samples

Slide 33

Other Suppliers

G清晰科技股份有限公司 Sem Chin-Shi Electronic materials Ltd. Hsinchu, Taiwan (HQ) 124 Zhonghua Rd, Hukou Township, Hsinchu County 303, Taiwan R.O.C.

CS-5100M9 (Super-High Thermal Conductivity)9W/m°C) Technology cooperate with HITACHI CHEMICAL CO., LTD CHIN-SHI ELECTRONIC MATERIALS LTD.

Specification of Aluminum Based Copper-clad Laminate

	CS-AL-88/89 AD8			
Item	Unit		Specification	Specification
Insulation thickness	μm	Max	150 95	200 75
Solder resistance (288°C)	Sec.	Min	600	600
Thermal shock	288°C*10"/cycle	Min	6 Times	6 Times
Peel strength (Normal status)	lb/in	Min	7.5	9
Breakdown Voltage	V/mil		750	750
Volume resistivity (Normal status >E+14)	Ω•cm		10 ¹³	3.5x10 ¹⁵
Surface resistivity (Normal status >E+12)	Ω	_	1011	4.7x10 ¹⁴
Dielectric constant				
1 MHz Normal status	_		8.0	5.8
1 GHz Normal status			7.6	5.7
Dissipation Factor				
1 MHz Normal status			0.005	0.015
1 GHz Normal status			0.003	0.008
Water absorption	%		0.2	0.2
Thermal conductivity	M/m°C		0.0	
(measured on insulation layer only)	W/m C		9.0	8.0
Flammability	94V-0		Pass	Pass
Tg	°C		160	100
Td	°C		350	450

Slide 34

3. Compare Ceramic to Organic ERCD

Slide 35

Advanced Concept for Double Sided Cooling

Ref: https://www.autonomousvehicletech.com/articles/1497-infineons-

dual-sided-power-module-for-electric-vehicle-systems

Slide 36

PCB Carolina 2022

Ref: https://www.systemplus.fr/wpcontent/uploads/2018/01/

Laboratory

PACKAGING RESEARCH IN ELECTRONIC ENERGY SYSTEMS

SP18375 Infineon double side cooling IGBT flyer.pdf

dchopkins@ncsu.edu

©2022 douglas c hopkins

Material Properties for Finite Element Modeling

Compon- ents	Materials	Thickness (mm)	Modulus (GPa)	CTE (ppm/°C)	Thermal cond'vity (W/mK)	
BiDFET	4H-SiC	0.36	347	4.5	380	
Spacer		1				
Conductor layer on dielectric	Cu	ERCD: 0.07 DBC: 0.2	110	17.6	398	ANS 2019 Readen
	Sn5/Pb92. 5/Ag2.5	0.1	13.8	28.9	36	
Solder	Sn95/Sb5	0.1	50	22.8	46	
	Sn96.5/Ag 3/Cu0.5	0.1	38.7	21	60	
Dielectria	ERCD	0.12	30	14	10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dielectric	AI2O3	0.32	310	6	24	
Molding	2-Pack type (Epoxy + Hardener)	Dual ERCD:2.1 8 Dual DBC: 3.1	15	16	3	

Thermal-Mechanical Analysis – WHAT IS NEEDED

- Thermal cycling test:
- ✓ Temperature range: -40 150°C
- ✓ Ramp rate of temperature: 19°C/min
- ✓ Dwell time : 10 mins
- Fatigue life prediction:
- ✓ Coffin-Manson fatigue life relationship
- $N_f = C(\Delta \varepsilon_{eq}^{pl})^{-\eta}$ where

$$\Delta \varepsilon_{eq}^{pl} = \frac{\sqrt{2}}{3} \sqrt{\left(\Delta \varepsilon_{x}^{pl} - \Delta \varepsilon_{y}^{pl}\right)^{2} + \left(\Delta \varepsilon_{y}^{pl} - \Delta \varepsilon_{z}^{pl}\right)^{2} + \left(\Delta \varepsilon_{z}^{pl} - \Delta \varepsilon_{x}^{pl}\right)^{2} + \frac{3}{2} (\Delta \gamma^{pl})}}{\Delta \gamma^{pl}}$$
$$\Delta \gamma^{pl} = \Delta \gamma_{xy}^{pl^{2}} + \Delta \gamma_{yz}^{pl^{2}} + \Delta \gamma_{zx}^{pl^{2}}$$

- Anand Viscoplastic Constitutive Model
- ✓ Considered rate-dependent plastic behavior and creep behavior
 - Flow Equation

$$\dot{\epsilon}_{p} = A \exp\left(-\frac{Q}{RT}\right) \left[\sinh\left(\frac{\xi \sigma}{s}\right)\right]^{\frac{1}{m}}$$

• Evolution Equations

$$\dot{s} = \{h_0 \left(|B| \right)^a \frac{B}{|B|} \} \dot{\varepsilon}_p; (a > 1) \qquad s^* = \hat{s} \left(\frac{\dot{\varepsilon}_p}{A} exp\left(\frac{Q}{RT} \right) \right)^n \qquad B = 1 - \frac{S}{S^*}$$

- Criteria:
- ✓ Fatigue life of SAC305 solder > 1000 cycles
- ✓ Max. principal stress of SiC die < 250 MPa</p>

- Thermal-mechanical reliability assessment:
- Since the failure mode is unknown in the simulation, two common failure criteria are assumed in this study as below.
- The solder layer (SAC305) between spacer and device would experience cyclic tensile and compressive stress due to the CTE mismatch and it can induce fatigue failure. According to the Coffin-Manson empirical equation, the fatigue life can be estimated by the equivalent plastic strain (ε^{pl}_{eq}).
- ✓ Chip crack is also a common failure mode in TCT. Based on the tensile strength of the SiC material, the maximum principal stress can't exceed 250 MPa.

Optimization of Material Selection (con'd)

Slide 39

Steady-state thermal analysis

Boundary conditions:

- Infinite heat transfer on top and bottom exposed Cu pads
- Heat sources on die top surface

Thermal resistance:

 $R_{jc} = \frac{T_{j,max} - T_c}{P}$

The advantage of ERCD material not only provides a competitive thermal and mechanical performance but also a cost effective solution for the advanced power module.

PCB Carolina 2022

Slide 40

The "Trigger" ERCD vs DBC Performance

ERCD (Epoxy Resin Composite Dielectric) by www.risho.co.jp

Thermal-mechanical reliability comparison: Only "dual ERCD" and "ERCD/DBC" pass failure criteria for SAC305 and SiC device.

4. Introduce a double-side cooled GaN ½-bridge power module using an Epoxy Insulated Metal Substrate (eIMS)

Slide 42

Integrated Power Module Circuit

A SIMPLER HIGHER POWER PCB

Brigitflex ordered **1.5'x2'** ERCD B-Stage sheets from RISHO (120µm AD-7210N)

- Trimmed to 0.75'x12' for top-, 1'x1.5' for bottom-eIMS plates
- 4oz. Cu on 120 μm ERCD laminated onto 2mm Cu baseplates

Panel Size eIMS Manufacturing

	LIST OF TEST Samples
Product No.	AD-7210N
Material	High Thermal Bonding Sheet (10W/mk)
Production Lot No.	AK6-X419-4
Quantity(sheets)	15
Dielectric nominal thickness(mm)/(mil)	0.12/(5mil)
Panel size(mm) /(inch)	458×610/(18×24)
Releasing film	PET film double sided
Appearance	No problem
HS Code	3919.90.5060
Gross Weight (Kg)	3

RISHO KOGYO CO.,LTD TOKYO OFFICE

LIST of TEST Samples

dchopkins@ncsu.edu ©2022 douglas c hopkins

PCB	Carol	ina	2022
-----	-------	-----	------

Slide 44

IPM Substrates for Assembly

Transphorm on eIMS Substrates

GaN System on eIMS Substrates

©2022 douglas c hopkins

IPM BOM & ERCD Patterned Panel

Component	Specification	Pcs.	Supplier/Mfg	Link/Note
Cascode GaN	650V/15mΩ	2 pcs	Transphorm	https://www.transphormusa.com/en/
GaN E-HEMT	650V/18mΩ	2 pcs	GaN Systems	https://gansystems.com/
Gate driver	Part number: UCC27512DRSR WSON PKG 3x3x0.8 mm	2 pcs	Texas Instr.	https://www.digikey.lu/product-detail/en/texas- instruments/UCC27512DRSR/296-34812-1- ND/3523717
Gate driver capacitor	Part number: CGA3E1X7R1E105K080AC 25V/1uF/0603	2 pcs	TDK	https://www.mouser.com/ProductDetail/TDK/CGA3 E1X7R1E105K080AC?qs=NRhsANhppD9VxGl2AsmR pw%3D%3D&countrycode=US¤cycode=USD
DC link capacitor	Part number: CGA5F4NP02J472J085AA 630V/4.7nF/1206	3 pcs	TDK	https://www.mouser.com/ProductDetail/TDK/CGA5 F4NP02J472J085AA?qs=sGAEpiMZZMvsSlwiRhF8qt YrDJZp5VWMvuhc8o6DvzFff%252B36HvyUUw%3D %3D
eIMS	4oz Cu/120um dielectric/2mm Cu	2 pcs	Risho/ Brigitflex	Material Supplier: https://www.risho.co.jp/english/ Manufacturer: http://www.brigitflex.com/
Spacer	7.1x7.9x1.2mm Cu	2 pcs	Hanz Mfg	https://hanzmanufacturing.com/
Power termn'l	4x12x0.6mm Cu	3 pcs	Hanz Mfg	https://hanzmanufacturing.com/
Signal termn'l	1x12x0.6mm Cu	6 pcs	Hanz Mfg	https://hanzmanufacturing.com/
Epoxy Encapsulant	Tg=219°C	966 mm^3	Risho	https://www.risho.co.jp/english/

Patterned ERCD from Brigitflex processed 9x12" and 12x18" panels for T1/T3 (Top) and T2/T4 (Bottom) for Transphorm/GaN Syst, respectively.

Slide 49

Use of Muti-Conductor Planes (Interstitial Layers, e.g. in PCBs)

4a. Supply Chain

Slide 51

Design Flow & Supply Chain

ERCD PCB Mfgrs & Assemblers

PCB MFGR'	ADDRESS	PANEL SIZE
Amitron	2001 Landmeier Road Elk Grove	18"x24"
	Village, IL 60007	
Aurora	2250 White Oak Circle, Aurora, IL	
	60502	
Brigitflex	1725 Fleetwood Drive, Elgin IL 60123	21"x41"
Electronic	2375 Estes Avenue, Elk Grove Village,	
Interconnect	IL 60007	
TCI (Taihong Circuit	No.81, Guangfu Rd., Hukou Township,	20"x24"
Ind. Co., Ltd.)	Hsinchu County 303, Taiwan (R.O.C.)	(510x610 mm)

MODULE ASSEMBLY	ADDRESS	WEBSITE
NCSU-PREES	N. C. State University Raleigh, NC 27606 USA	www.prees.org
IMI	North Science Avenue Special Export Processing Zone Laguna Technopark, Binan, 4024, Laguna, Philippines	https://www.global- imi.com/markets/auto motive
Starpower	Ai Ciòss, CH-6593 Cadenazzo, Switzerland	https://www.starpower europe.com/en
ASE	No.550, Chung-Hwa Rd. Sec. 1, Chung-Li, Taiwan (ROC)	https://ase.aseglobal.co m/en

PCB Carolina 2022

Typical IPM/Converter Supply Chain (including eIMS)

Ultra High Frequency Double Pule Testing (Continued with revisions underway-Aug'22)

By Sourish Sinha, PhD student

- Developed Double Pulse Tester (DPT)
- Initial tests:
 - GaN Sys IPM is more sensitive to CM
 - Transphorm fast, but with high Ciss
 - Module revisions underway
- Refined Q3D model.

Slide 54

Q3D & Thermal Comparison for Transphorm & GaN Systems IPMs

Commutation Loop Inductance	Value (nH)					
	DC	1 MHz	10 MHz	100 MHz		
Transphorm IPM	2.99	1.51	1.50	1.50		
GaN Systems IPM	2.51	1.18	1.18	1.18		

T _a = 50°C, T _{c,max} = 90°C P ₁ /P ₂ =12.5W (>98% eff)	Transphorm Baseplate		GaN S Base	ystems plate
IMS type	Cu Al		Cu	Al
h coefficient (W/m ² K)	1450	1585	1450	1570
Tj,1 (°C)	97.2	96.6	97.2	96.8
Tj,2 (°C)	99.1	98.5	101.3	101.3
Rjc,eq (°C/W)	0.36	0.34	0.45	0.45
Rja,eq (°C/W)	1.96	1.94	2.1	2.1
Pd,max (W)	51.0	51.5	48.7	48.7

Size: 20 x 30 x 4.24 mm (excludes terminals)

PCB Carolina 2022

Slide 55

DPT Circuit for Transphorm & GaN Systems

• "P"=+DC, "N"=-DC, "SN"=Switch Node, "in,HS"= PWM input to High Side driver

• The " V_{DD} " is power supply to internal gate driver

In contrast to Transphorm recommendation: No Bus snubber, device

snubber, gate ferrite beads or gate resistance.

Slide 56

Transphorm: $400V_{P-N}/33A (5VV_{DD})$

 $V_{rise} = 10.1 \, ns$ $V_{fall} = 30.8 \, ns$

When inductor current increased, the V_{P-SN} increased in voltage magnitude during the device ON state possibly due to the long on time, which would not occur during high frequency switching converter operation.

With higher inductor current the voltage rise time starts reaching datasheet values and fall time stays constant.

©2022 douglas c hopkins

Conclusion for Transphorm IPM Performance

- Without gate resistance, ferrite bead and bus snubber, as mentioned by Transphorm for their packaged device, it is difficult to run the device beyond 300V/18A without false tripping with $V_{gs} = 12V$ in the present PREES-FREEDM DPT circuit
- However, devices were run successfully at 400V/18A and 400V/33A with $V_{gs} = 5V$ (matching end application of 6.6kW EV charger). The V_{tr} was close to the datasheet value and $V_{tf} = 12ns$ a bit more.

t _R	Rise time	_	18	_	$\begin{array}{c} V_{DS}{=}400V, V_{GS}{=}\\ ns \qquad R_{G}{=}15\Omega, Z_{FB}{=}1\\ I_{D}{=}60A \end{array}$	$V_{DS} = 400V, V_{GS}$
t _{D(off)}	Turn-off delay	-	123			
t _F	Fall time	-	9.4	—		

 With a V_{gs} = 9-10V, no gate resistance, ferrite bead, or bus snubber it might be possible to test the devices at 400V/18A and higher without false tripping. A new DPT tester is in fabrication (July'22)

Slide 58

dchopkins@ncsu.edu ©2022 douglas c hopkins

 $L20\Omega$ at 100MHz.

Gan Syst IPM: 400V/40A (650V/30A datasheet comparison) $V_{rise} = 12.1 \text{ ns}$ $V_{fall} = 8.3 \text{ ns}$

Slide 59

PCB Carolina 2022

Impact: PCB Board, integrated gate driver & parasitics

Parameter	Implact	650V/30A/50μΩ GS66508B
Qg (nC)	Swit	ching 5.8
Coss (pF)	sp	eeo 65
tdelay(on) / tdelay(off) (ns) Swit	A 4.1 / 8.0
t_rise / t_fall (ns)	freq	uency 4.9 / 3.4
Eon / Eoff (μ)		47.5 / 7.5 (Vds 400V/lds 15A)
Eoss (µJ)	Effic	iency 7
Qrr (μC)		0
trr (ns)		0

SUMMARY DPT TEST RESULTS dt vs ID

I _D	t _{rise}	t _{fall}
10.5 (A)	44.5 (ns)	8.9 (ns)
28 (A)	35.0 (ns)	8.5 (ns)
33 (A)	15.7 (ns)	8.0 (ns)
40 (A)	12.1 (ns)	8.3 (ns)

Leakage Currents of IPMs

Transphorm: $15m\Omega(typ.)$ @ Vgs=10V **GaN Systems** 18mΩ(max.) @ Vgs=10V Drain to Source Leakage Current 6 V_{DS}= 650 V, V_{GS}= 0 V μΑ DSS Gate to Source Current 732 $V_{GS} = 6 V, V_{DS} = 0 V$ μA IGSS **GaN Systems Module** Transphorm 7 70 V_{DS}=650V, V_{GS}=0V _ 0 200 400 600 800 IDSS Drain-to-source leakage current μA eakage current Idss (A). 1.E-05 50 V_{DS}=650V, V_{GS}=0V, T_J=150°C _ _ ---GS-1-HS Gate-to-source forward leakage current 400 V_{GS}=20V _ _ 1.E-06 Igss nA ---GS-1-LS -400 V_{GS}=-20V Gate-to-source reverse leakage current _ ---GS-2-LS Blocking Voltage Vds @ 1.E-07 ---- GS-3-HS Rdson (m Ω) Leakage current Idss (uA) Sample Vgs=0 (V) ---GS-3-LS GS-1-HS 14.97 (Vgs=6V) 650 0.77 1.E-08 GS-1-LS 15.30 (Vgs=6V) 650 0.80 Blocking voltage (V) NA (one pin broken) NA (one pin broken) NA (one pin broken) GS-2-HS **Transphorm Cascode Module** GS-2-LS 15.22 (Vgs=6V) 650 1.50 (¥) 1.E-05 8.E-06 6.E-06 4.E-06 2.E-06 0.E+00 200 400 600 800 650 0.80 GS-3-HS 15.48 (Vgs=6V) 0 GS-3-LS 15.32 (Vgs=6V) 650 0.92 T-1-HS 9.72 (Vgs=10V) 650 4.57 T-1-LS 10.03 (Vgs=10V) 650 4.58 T-2-HS NA (Gate leaky) NA (Gate leaky) NA (Gate leaky) T-2-LS 9.85 (Vgs=10V) 650 4.37 T-3-HS 10.13 (Vgs=10V) 650 4.73 Blocking voltage (V) T-3-LS 10.21 (Vgs=10V) 650 4.8

Slide 60

dchopkins@ncsu.edu ©2022 douglas c hopkins

GaN Systems: $21m\Omega(typ.)$ @ Vgs=6V

Demo GaN Modules in 400V/6.6kW/1MHz Charger

Co-PI: Prof. Wensong Yu

Dakai Wang, PhD Student Xiang Li, Master Student

Vertical integration of GaN IPMs with 1MHz transformer, 6.6 kW resonant power stage, and DSP+ CPLD digital controller

Slide 61

dchopkins@ncsu.edu ©2022 douglas c hopkins

Control PCB

Complete 400V/6.6kW/1MHz/12.7kW/L Charger Using GaN IPMs

- Compact design of 400V/6.6kW, 1MHz charger demonstrator
 - 12.7kW/L (209 W/in3) power density including cooling plate
- Efficient liquid cooling design for both IPMs and transformer
 - Optimized cooling pattern for IPMs and transformer

- Power topology: LLC converter + digital control, using four half-bridge GaN IPMs
- Prototype modules used in final physical layout

Experimental Results at 960 kHz with 98.02% Efficiency

- The developed GaN IPMs are demonstrated using an isolated DC-DC converter, which is capable of operating at 960 kHz switching frequency.
- The <u>isolated</u> dc-dc converter efficiency is tested to 98.03% at 960 kHz and 2918 W out using high accuracy (± 0.02%) power analyzer Yokogawa WT3000

THANK YOU

Laboratory for Packaging Research in Electronic Energy Systems (PREES) NSF FREEDM Systems Center, North Carolina State University 1791 Varsity Drive, Suite 100; Raleigh, NC 27606-7571 Tele: 919-513-5929, Fax: 919-513-0405

www.prees.org

Prof. Douglas C Hopkins, NC State University

Dr Carl Neufeld, Transphorm, Inc.

Prof. Wensong Yu, NC State University

Dr. Peter Losee, United SiC

PCB Carolina 2022

Slide 64

