

B-cell Genome Engineering and Synthetic Biology to Cure Cancer Introductory Slide Deck February 1, 2023

Problem #1: Cancers Are Immune System Failures

Problem #2: Current I/O Drugs Have Major Limitations

We need a means of actuated, localized anticancer protein therapeutic delivery and tumor-associated antigen presentation to enhance on-tumor efficacy and eliminate systemic toxicity

I/O: immuno-oncology TAA: tumor-associated antigen mAbs: monoclonal antibodies DC: dendritic cell ICIs: immune checkpoint inhibitors CAR-T: chimeric antigen receptor T-cells FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Solution: Bespoke Engineered B-cell Therapeutics

Bespoke's Mission

To reprogram human B-cells into intuitive "living drug" immunotherapies that traffic to solid tumors and tumor-draining lymph nodes where they <u>locally express and secrete</u> engineered anticancer protein therapeutics and present tumor antigen to T-cells

Bespoke Foundation, Innovations, and Platforms TECHNOLOGIES PLATFORMS

CoM: composition of matter HMEJ: homology-mediated end-joining FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Deep Cell Therapy and B-cell Engineering Expertise

Steven R. Deitcher, MD Founder, CEO, and Chairman Serial biotechnology founder, oncologist, inventor, company builder, and C-suite executive Cleveland Clinic • Talon • Medeor • Radimmune

Branden Moriarity, PhD Scientific Co-Founder and CSO

B-cell genome engineering pioneer and serial entrepreneur B-MoGen • Luminary • Catamaran

Kirk Trisler, PhD Co-Founder and CTO Cell, gene, and antibody therapy process development and manufacturing expert

GSK • Gritstone • Stanford • Harvard

Tullia C. Bruno, PhD University of Pittsburgh Tumor immunologist with expertise in B-cell spatial imaging and transcriptomics

Brad H. Nelson, PhD University of British Columbia B-cell bioinformatics, genomics, and anti-cancer immunotherapy expert

Scientific Advisors

> Yuliya Pylayeva-Gupta, PhD University of North Carolina Regulatory B-cell, B-cells in pancreatic cancer, and tumor microenvironment expert

Justin Taylor, PhD Fred Hutch Cancer Research Center B-cell immunologist, B-cell engineering, and neutralizing antibody expert

Unequaled Foundational Intellectual Property

	B-cell Genome Engineering		Multi-specific CAR-T
Granted Patents	US 8,962,315 US 9,175,072 US 9,468,655 US 9,512,213 US 9,637,540 US 9,845,351 US 9,901,598	US 10,233,424 US 10,597,442 US 10,745,468 US 11,180,729* DE 602012077140.2 FR 2794858 GB 2794858	US 9,499,855 US 9,587,237 US 9,662,354
Patent Applications	US 63/289,858 US 20210095010 HK 40006404A EP 3469069	EP 3768707 CN 109563482 CN 112105641	190091263

Contain composition of matter claims

*: Compositions and methods for engineered B-cell receptors, secreted antibodies, and secreted proteins (e.g., cytokines)

Non-viral HMEJ-mediated B-cell genome engineering (option from University of Minnesota)

CAR-T: chimeric antigen receptor T-cell

FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Compelling Oncology Business Case

Large Oncology Market Opportunity 300K+ Stage III cancer diagnoses/year US

600K+ metastatic cancer cases/year US

Ex-US opportunities are even larger than the US opportunities

Anticipated Premium Pricing

Annual per-patient single-drug costs can average or exceed \$450K for genetic, oncologic, & immunologic diseases^{2,4}

Blood cancer CAR-T priced at \$373-475K³ Hemophilia B gene therapy priced at \$3.5M Markets Primed for B-cell Therapeutics

Systemic antibody-based cancer therapies generate > \$60B in annual sales¹

CAR-T, while relatively new and limited to blood cancers, has created > \$50B in combined company market value

Extensive Growth Opportunities Combined B-cell and CAR-T products Combined B-cell and checkpoint inhibitors Bioinformatics-driven personalized products

Non-cancer indications

Sources: ¹Fiercepharma.com/special-report/top-20-drugs-by-global-sales-2019. ²America's Health Insurance Plans. High Priced Drugs: Estimates of Annual Per-Patient Expenditures for 150 Specialty Medications. AHIP Issue Brief. April 2016. ³Hitchcock S. Does the cost outweigh the benefit for CAR T-cell therapy? Targeted Oncology 2019. ⁴Herper M. Alnylam prices first gene silencing drug at \$450,000 per patient but offers money-back guarantee. Forbes 2018. FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Seeking Exceptional Seed Round Lead and Investors

Establish in vitro and in vivo POC models

Submit Phase II NSF SBIR grant proposal

Conduct POC experiments looking at engineered B-cell fate, persistence, cognate antigen actuation, and anticancer activity

FDA Pre-IND meeting within 18 months

Build-out laboratory and management teams

Acquire key capital equipment

FDA engagement via INTERACT meeting

Corporate and scientific communications

IND-enabling studies and IND submission

SBIR: small business innovation and research HMEJ: homology-mediated end-joining NSG: NOD scid gamma INTERACT: Initial Targeted Engagement for Regulatory Advice on CBER producTs POC: proof-of-concept FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

The Power of B-cells

Re-programming B-cells Unlocks Their Full Potential

NATIVE B-CELL

ENGINEERED B-CELL

FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

BCR

The Vast Abilities of Bespoke Engineered B-cells

- Homing to tumors and tumor-draining lymph nodes to engage tumor cells and T-cells
- B-cell receptor (BCR) actuatable (inducible) expression and secretion of engineered anticancer antibodies and cytokines
- Localized secretion of immunomodulatory anticancer antibodies and cytokines
- Attraction of cytotoxic T-cells and NK-cells
- Promotion of TLS Formation
- Enhancement of CAR-T-cell function
- Sensitize immunologically "cold & lukewarm" tumors to immune checkpoint inhibitors

Bespoke Engineered B-cells Play Pivotal Roles

Innovation & Impact

Making B-cells into Precision "Living Drugs"

Johnson et al. Sci Rep 2018;8:12144 Laoharawee et al. Methods Mol Biol 2020;2115:435 Johnson et al. Mol Ther 2021;29:abstract #2

FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

B-cell Conditional Expression Systems ("On Switches")

BCR-associated Promotor Transgene (Bioinformatics-guided Design)

NINJA: <u>n</u>on-v<u>i</u>ral, large tra<u>n</u>sgene, HME<u>J</u> using CRISPR/C<u>a</u>s9 HMEJ: homology-mediated end-joining FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Preference for "On Switches" over "Kill Switches"

"Kill Switches" ("Suicide Genes")

- Cause adoptive cell therapy apoptosis
- Apoptosis requires a second drug
- e.g., GCV --- HSV-TK → GCV-TP (cytotoxic)
- Utilized in response to overt toxicity
- Delayed activation can be catastrophic

"On Switches" (Programmed B-cell Receptors [BCR])

- BCR activation triggers the "on" signal
- "On" triggers conditional expression
- Only activated B-cells deliver payload
- Tumor-concentrated payload delivery
- Potential for zero off-tumor toxicity!

Our B-cell conditional expression system allows engineered BCR to act as "on switches" capable of actuating (i.e., inducing or triggering) anticancer antibody and/or cytokine production and secretion only near sites of detected cancer cells

B-cell Conditional Expression System ("On Switch")

Our B-cell expression system emulates the physiologic spatio-temporal regulation of membrane-anchored immunoglobulin (i.e., BCRs on resting B-cells) and engineered secreted products (i.e., antibodies and/or interleukins from BCR activated B-cells)

NINJA Genome Engineering Platform

Non-Viral Engineering

- Circular plasmid DNA allows for large transgenes
- Avoids costs and safety concerns of viral transduction

Large Transgenes (>5kb)

- Bespoke products will require large transgenes
- rAAV and gamma-retrovirus would be impossible to use

Homology-Mediated End Joining (HMEJ)

- HMEJ supports use of short homology arms (48bp vs 0.5-1kb)
- Short homology arms increase transgene size capacity
- HMEJ allows for giant transgene cargo size (>6kb to date)

Non-viral, large transgene, HMEJ using CRISPR/Cas9 and plasmid DNA allows for an engineered BCR, actuatable secretion of programmed proteins

HMEJ: homology-mediated end joining HR: homology-directed repair BCR: B-cell receptor Wierson et al. Elife 2020; 9:e53968 <u>https://www.biorxiv.org/content/10.1101/2021.11.12.468427v1.full</u> Patent Application US 63/289,858

FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

Opportunities that <u>Need</u> NINJA Genome Engineering

Indications Requiring a Single Large Transgene (e.g., Factor VIII cDNA for Hemophilia A)

NINJA

Ability to introduce large cargo (>5kb) transgenes into B-cells

Indications Requiring Multiple Transgenes

(e.g., anti-HER2 antibody, IL-12, and IL-21 cDNAs for metastatic HER2+ cancers)

Platforms and Pipeline

TME: tumor micro-environment

Platforms Support Expandable Pipelines

"Seek and Destroy" Replaces "Watch and Wait"

Cancer Sentinels will create a new Stage III solid tumor (≈300,000 new cases per year in the US) surveillance paradigm by detecting occult residual or relapsed Stage III cancer cells and responding by locally producing and secreting anticancer antibodies and/or cytokines

BB-101 Synthetic Biology

#1

CD19+ B-cells are isolated using immunomagnetic bead separation from readily obtained venous whole blood

#6

Upon stimulation by HER2+ tumor cells, a BB-101 B-cell stops making anti-HER2 BCR and begins to secrete anti-HER2 soluble anticancer antibodies and a cytokine

"Conditional Expression"

‡5

Before and after injection, resting engineered B-cells (BB-101) display anti-HER2 BCR that recognize HER2+ tumors

#4

 Using Bespoke's NINJA genome
engineering, the transgenes are inserted into a chromosome 19 safe harbor site in B-cell DNA

#2 Isolated B-cells are activated with a proprietary reagent mixture to promote gene editing and expression of 4-1BBL, a potent T-cell co-stimulatory receptor

Plasmids with large transgenes coding for anti-HER2 BCR, anticancer anti-HER2 antibodies, and an immunomodulatory cytokine are electroporated into B-cells

BCR: B-cell receptor NINJA: non-viral, large transgene, HMEJ using CRISPR/Cas9 HMEJ: homology-mediated end-joining FOR INTENDED RECIPIENT ONLY - NOT FOR DISTRIBUTION

BB-2112: Tactical Weapon Against Metastatic Cancer

IL-21

Lymphoid cell proliferation ↑ CD8+ T-cell cytotoxicity ↑ NK cell cytotoxicity ↑ B-cell differentiation ↑ Germinal center function ↑

Spolski R and Leonard WJ. Annu Rev Immunol 2008; 26:57-79.

IL-12

↓ TAM/MDSC immunosuppression

↑ NK and CD8+ T-cell cytotoxicity

 \uparrow CD8+ T-cell & \downarrow Treg infiltration

 \uparrow IFN- γ production by NK & T-cells

 \uparrow Tumor cell MHC expression

Nguyen KG et al. Front Immunol 2020; 11:575597.

TARGET ONCOLOGY ROLES

- Single-agent treatment of metastatic solid tumors
- Combination with immune checkpoint inhibitors (turning "cold and lukewarm" tumors "hot")
- Combination with CAR-T in order to limit exhaustion and enhance T-cell tumor penetration

Contact Information:

Steven R. Deitcher, MD Founder, CEO and Chairman <u>steven@bespokebiotx.com</u>

www.bespokebiotx.com

733 Industrial Road San Carlos, CA 94070 **Current Affiliations:**

Astellas Venture Management LLC

Johnson Johnson innovation

