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Preface 

Of all the central topics in the undergraduate mathematics syllabus, complex 
analysis is arguably the most attractive. The huge consequences emanating 
from the assumption of differentiability, and the sheer power of the methods 
deriving from Cauchy's Theorem never fail to impress, and undergraduates 
actively enjoy exploring the applications of the Residue Theorem. 

Complex analysis is not an elementary topic, and one of the problems facing 
lecturers is that many of their students, particularly those with an "applied" 
orientation, approach the topic with little or no familiarity with the E-8 argu­
ments that are at the core of a serious course in analysis. It is, however, possible 
to appreciate the essence of complex analysis without delving too deeply into 
the fine detail of the proofs, and in the earlier part of the book I have starred 
some of the more technical proofs that may safely be omitted. Proofs ' are, how­
ever, given, since the development of more advanced analytical skills comes 
from imitating the techniques used in proving the major results. 

The opening two chapters give a brief account of the preliminaries in real 
function theory and complex numbers that are necessary for the study of com­
pfex functions. I have included these chapters partly with self-study in mind, 
but they may also be helpful to those whose lecturers airily (and wrongly) 
assume that students remember everything learned in previous years. 

In what is certainly designed as a first course in complex analysis I have 
deemed it appropriate to make only minimal reference to the topological issues 
that are at the core of the subject . This may be a disappointment to some pro­
fessionals , but I am confident that it will be appreciated by the undergraduates 
for whom the book is intended. 

The general plan of the book is fairly traditional, and perhaps the only 
slightly unusual feature is the brief final Chapter 12, which I hope will show 
that the subject is very much alive. In Section 12 .2 I give a very brief and 
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imprecise account of Julia sets and the Mandelbrot set , and in Section 12 .1 I 
explain the Riemann Hypothesis , arguably the most remarkable and important 
unsolved problem in mathematics. If the eventual conqueror of the Riemann 
Hypothesis were to have learned the basics of complex analysis from this book, 
then I would rest content indeed! 

All too often mathematics is presented in such a way as to suggest that it 
was engraved in pre-history on tablets of stone. The footnotes with the names 
and dates of the mathematicians who created complex analysis are intended to 
emphasise that mathematics was and is created by real people . Information on 
these people and their achievements can be found on the St Andrews website 
www-hi story.mc s.st-and.ac . uk/history/. 

I am grateful to my colleague John O'Connor for his help in creating the 
diagrams. Warmest thanks are due also to Kenneth Falconer and Michael Wolfe, 
whose comments on the manuscript have, I hope, eliminated serious errors. The 
responsibility for any imperfections that remain is mine alone. 

r 

John M. Howie 
University of St Andrews 

January, 2003 
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1 
What Do I Need to Know? 

Introduction 

Complex analysis is not an elementary subject , and the author of a book like 
this has to make some reasonable assumptions about what his readers know 
already. Ideally one would like to assume that the student has some basic 
knowledge of complex numbers and has experienced a fairly substantial first 
course in real analysis. But while the first of these requirements is realistic the 
second is not , for in many courses with an "applied" emphasis a course in com­
plex analysis sits on top of a course on advanced (multi-variable) calculus, and 
many students approach the subject with little experience of f.-0 arguments, 
and with no clear idea of the concept of uniform convergence. This chapter sets 
out in summary the equipment necessary to make a start on this book, with 
references to suitable texts. It is written as a reminder: if there is anything you 
don't know at all, then at some point you will need to consult another book, 
either the suggested reference or another similar volume. 

Given that the following summary might be a little indigestible, you may 
find it better to skip it at this stage, returning only when you come across 
anything unfamiliar. If you feel reasonably confident about complex numbers, 
then you might even prefer to skip Chapter 2 as well. 



2 Complex Ana lysis 

1 . 1  Set Theory 

You should be familiar with the notations of set theory. See [9, Section 1 .3] . 
If A is a set and a is a member, or element, of A we write a E A, and if x 

is not an element of A we write x r:J. A. If B is a subset of A we write B � A 
(or sometimes A 2 B) .  If B �A but B =f. A, then B is a proper subset of A. 
We write B C A, or A::) B. 

Among the subsets of A is the empty set 0, containing no elements at all. 
Sets can be described by listing, or by means of a defining property. Thus 

the set {3 , 6, 9, 12} (described by listing) can alternatively be described as 
{3x : x E { 1 ,  2 , 3, 4} }  or as {x E {1 ,  2 , . . .  , 12} : 3 divides x } .  

The union A U B of two sets i s  defined by: 
x E A U  B if and only if x E A or x E B (or both) . 

The intersection A n B is defined by 
x E A n B if and only if x E A and x E B. 

The set A \ B i s  defined by 
A \ B = {x E A : xr:J_B} . 

In the case where B � A this is called the complement of B in A. 
The cartesian product A x B of two sets A and B is defined by 

Ax B = {(a, b) : a E A ,  b E B} . 

1.2 Numbers 

See [9 , Section 1 . 1] . 
The following notations will be used: 
N = { 1 ,  2, 3, . . .  }, the set of natural numbers; 

Z = {0, ±1 ,  ±2, . . .  }, the set of integers; 

Q = {pfq : p, q E Z, q =f. 0} , the set of rational numbers; 

IR, the set of real numbers . 

It is not necessary to know any formal definition of IR, but certain properties 
are crucial. For each a in lR the notation I a!, the absolute value, or modulus, 
of a, is defined by 

ia i = { a �f a 2': 0 
-a 1f a <  0. 
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If U is a subset of IR, then U is bounded above if there exists K in lR 
such that u :$ K for all u in U, and the number K is called an upper bound 
for U. Similarly, U is bounded below if there exists Lin lR such that u;:::: L 
for all u in U, and the number L is called a lower bound for U. The set U is 
bou�ded if it is bounded both above and below. Equivalently, U is bounded 
if there exists M > 0 such that l u i  :$ M for all u in U. 

The least upper bound K for a set U is defined by the two properties 
(i) K is an upper bound for U; 
(ii) if K' is an upper bound for U, then K' ;:::: K. 
The greatest lower bound is defined in an analogous way. 

The Least Upper Bound Axiom for lR states that every non-empty subset 

of lR that is bounded above has a least upper bound in R Notice that the set Q 
does not have this property: the set { q E Q : q2 < 2 }  is bounded above, but 
has no least upper bound in Q. It does of course have a least upper bound in 
IR, namely V2. 

The least upper bound of a subset U is called the supremum of U, and 
is written sup U. The greatest lower bound is called the infimum of U, and is 
written inf U. 

We shall occasionally use proofs by induction: if a proposition JP>(n) con­
cerning natural numbers is true for n = 1, and if, for all k ;:::: 1 we have the 
implication JP>( k) ==> JP>( k + 1 ) ,  then JP>( n) is true for all n in N. The other version 
of induction, sometimes called the Second Principle of Induction, is as follows: 
if JP>( 1 )  is true and if, for all m > 1 ,  the truth of JP>( k) for all k < m implies the 
truth of JP>(m) , then JP>(n) is true for all n. 

One significant result that can be proved by induction (see [9, Theorem 
1 .7] )  is 

Theorem 1 . 1  (The Binomia l  Theorem ) 
For all a, b, and all integers n ;:::: 1 ,  

Here (n) 
= 

n! 
= 

n(n- 1) ... (n- r + 1) . 
r r!(n- r)! r! 

Note also the Pascal Triangle Identity 

( 1 . 1 )  
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EXERCISES 
1 . 1 .  Show that the Least Upper Bound Axiom implies the Greatest 

Lower Bound Axiom: every non-empty subset of'R that is bounded 

below has a greatest lower bound in R. 

1.2. Let the numbers Ql !  Q2 , Qa, • • •  be defined by 

Prove by induction that 

1 .3 .  Let the numbers It ,  h ,  /a , . .. be defined by 
ft = h = 1 ,  fn = fn-1 + fn-2 (n ;::: 3) · 

Prove by induction that 

fn = � ('y
n
- 8

n
)' 

where 1 = HI + J5), 8 = �(1 - J5). 
[This is the famous Fibonacci sequence. See [2] . ] 

1 .3 Sequences and Series 

See [9, Chapter 2] . 
A s equence (an)nEf\1. often wr itten simply as (an), has a limit L if an can be 

made arbitrarily close to L f or all sufficiently lar ge n. More  precisely, (an) has a 
[mit L if, for all f > 0, there exists a natural number N such that ian- Ll < f 

for all n > N. We write (an) -t L, or limn�oo an = L. Thus, for example, 
((n + 1)/n) --+ 1. A sequence with a limit is called convergent; otherwise it is 
divergent. 

A sequence (an) is monotonic increasing if an+l ;::: an for all n;::: 1, and 
monotonic decreasing if an+l :5 an for all n ;::: 1 .  It is bounded above if 
there exists K such that an :5 K for all n ;::: 1 .  The following r esult is a key to 
many important resul ts in real analysis: 
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Theorem 1 . 2  

Every sequence (an) that is monotonic increasing and bounded above has a 
limit . The limit is sup{an : n � 1} . 

A sequence (an ) is called a Cauchy sequence1 if, for every e > 0, there 
exists a natural number N with the property that lam -an i < € for all m, n > N. 
The Completeness Property of the set lR is 

Theorem 1 . 3  

Every Cauchy sequence is convergent . 

A series I::=l an determines a sequence (SN) of partial sums, where 
SN = I:;:=l an . The series is said to converge, or to be convergent, if the 
sequence of partial sums is convergent , and limN-+oo SN is called the sum to 
infinity, or just the sum, of the series. Otherwise the series is divergent . The 
Completeness Property above translates for series into 

Theorem 1 .4  (The Genera l Pr incip le of Convergence) 

If for every e > 0 there exists N such that 

for all m > n > N, then I::.1 an is convergent . 

For series I::=l an of positive terms there are two tests for convergence. 

Theorem 1 . 5  (The Comparison Test) 

Let I::=l an and I::=l Xn be series of positive terms. 
(i) If I::.1 an converges and if Xn :S an for all n, then I::=l Xn also converges. 
(ii) If I::=l an diverges and if Xn � an for all n, then I::=l Xn also diverges. 

1 Augustin-Louis Cauchy, 1789-1857. 
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Theorem 1.6 (The Ratio Test) 

Let :L:'=l an be a series of positive terms. 
(i) If limn--+oo (an+l/an ) = l < 1 ,  then :L:'=l an converges. 
(ii) If liffin--+oo (an+l/an ) = l > 1, then :L:'=1an diverges. 

Complex Analysis 

In Part (i) of the Comparison Test it is sufficient to have Xn :::; kan for some 
positive constant k, and it is sufficient also that the inequality should hold for 
all n exceeding some fixed number N. Similarly, in Part (ii) it is sufficient to 
have (for some fixed N) Xn � kan for some positive constant k and for all 
n > N. In the Ratio Test it is important to note that no conclusion at all can 
be drawn if limn--+oo (an+l/an) = 1 .  

Theorem 1.7 

The geometric series :L:'=o arn converges if and only if i r l < 1 .  Its sum is 
a/( 1 - r) .  

Theorem 1.8 

The series :L:'=l (1/nk) is convergent if and only if k > 1 .  

A series :L:'=l an of positive and negative terms is called absolutely con­
vergent if :L:'=1 I an l is convergent . The convergence of :L:'=l ian I in fact im­
plies the convergence of :L:'=1 an , and so every absolutely convergent series 
is convergent. The series is called conditionally convergent if :L�1 an is 
convergent and :L:'=l ianl is not . 

Theorem 1.9 

For a power series :L:'=o anxn there are three possibilities: 
(a) the series converges for all x; or 
(b) the series converges only for x = 0; or 
(c) there exists a real number R > 0, called the radius of convergence, with 

the property that the series converges when lxl < R and diverges when 
l x l  > R. 

We find it convenient to write R =  oo in Case (a) , and R = 0 in Case (b) . 
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Two methods of finding the radius of convergence are worth recording here: 

Theorem 1.10 

Let I:::'=o anxn be a power series. Then: 
(i) the radius of convergence of the series is liffin-+oo lan/an+ll ,  if this limit 

exists; 
(ii) the radius of convergence of the series is 1/ [limn-+oo l an l l/n] , if this limit 

exists. 

We shall also encounter series of the form 2::::'=-oo bn . These cause no real 
difficulty, but it is important to realise that convergence of such a series re­
quires the separate convergence of the two series I:::'=o bn and L:;:'=1 b-n ·  It 
is not enough that limN-too L:�=-N bn should exist . Consider, for example, 
L:::'=-oo n3 , where L:�=-N n3 = 0 for all N, but where it would be absurd to 
claim convergence. 

1.4 Functions and Continuity 

See [9 , Chapter 3] . 
Let I be an interval, let c E I, and let f be a real function whose domain 

dom f contains I, except possibly for the point c. We say that limx-+c f ( x) = l 
if f(x) can be made arbitrariiy close to l by choosing x sufficiently close to c. 
More precisely, lim.,-+c f(x) = l if, for every € > 0, there exists 8 > 0 such that 
l f (x) - l l < € for all x in dom f such that 0 < l x - c l < o. If the domain of f 
contains c, we say that f is continuous at c if lim.,-+c f(x) = / (c) . Also, f is 
continuous on I if it is continuous at every point in I. 

The exponential function exp x , often written e"', is defined by the power 
series L:;:'=0 (xn /n!). It has the properties 

e"' > 0 for all x, e"'+Y = e"'eY, 
-x 1 e =-e"' 

The logarithmic function log x, defined for x > 0, is the inverse function of 
e"': 

log(e"' )  = x (x E IR) , 

It has the properties 
e10g "' = X (X > 0) . 

log(xy) = log x + log y , log(1/x) = - log x .  



8 Complex Ana lysis 

The following limits are important . (See [9 ,  Section 6 .3] . )  

lim x <>e- k:l: = 0 
o:-too 

(a , k > 0) ; ( 1 .2) 

lim x- k(log x)a = 0 ,  lim x k(log x)a = 0 (a , k  > 0) . ( 1 .3) 
o:-too :r-tO+ 

The circular functions cos and sin, defined by the series 
00 2n 

COS X = 2 )- l )n '(X )I, 2n . 
n=O 

00 
x2n+1 

sin x = � ( - It (2n + l)! , ( 1 .4) 

have the properties 
cos2 x + sin2 x = 1 , 

cos( -x) = cosx sin( -x) = - sin x , 
(1 .5) 
( 1 .6) 

cos O = l , sin O = O , cos(11'/2) = 0 , sin(11'/2) = 1 , ( 1 .7) 
cos( x + y) = cos x cos y - sin x sin y , 
sin ( x + y) = sin x cos y + cos x sin y . 

( 1 .8) 
( 1.9) 

All other identities concerning circular functions can be deduced from these, 
including the periodic properties 

cos(x + 211') = cos x ,  sin(x + 211') = sin x ,  

and the location of the zeros: cos x = 0 if and only if x = (2n + 1 )11' /2 for some 
n in Z; and sin x = 0 if and only if x = n11' for some n in /£. 

The remaining circular functions are defined in terms of sin and cos as 
follows: sin x tan x = --, cos x 

1 sec x =- (x # (2n + 1)11'/2) ; 
COS X 

Remark 1 . 1 1  

cos x cot x = -.-, smx 
1 cosec x = -.- ( x  # n11') . 

Sin X 

It is not obvious that the functions defined by the series ( 1 .4) have any con­
nection with the "adjacent over hypotenuse" and "opposite over hypotenuse" 
definitions one learns in secondary school. They are, however, the same. For an 
account , see [9 , Chapter 8 ]. 
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The inverse functions sin- 1 and tan- 1 need to be defined with some care. 
The domain of sin- 1 is the interval [- 1 ,  1] , and sin- 1 x is the unique y in 
[-7r/2, 7r/2 ) such that sin y = x. Then certainly sin(sin- 1 x) = x for all x in 
[-1 ,  1 ) ,  but we cannot say that sin- 1 (sinx) = x for all x in�. for sin- 1 (sinx) 
must lie in the interval [ -1r /2, 1r /2 )  whatever the value of x. Similarly, the 
domain of tan- 1 is �. and tan-1 x is defined as the unique y in the open 
interval (-7r/2, 7r/2) such that tan y = x. Again, we have tan(tan- 1 (x) )  = x 
for all x, but tan- 1 (tanx) = x only if x E ( -1r /2, 1r /2) . 

The hyperbolic functions are defined by 

Equivalently, 

coshx = �(e"' + e-"'), sinhx = �(e"'- e-"'). 

00 2n 
cosh x = L (�n)! , n=O 

00 x2n+1 
sinhx = � (2n + 1 ) ! . 

By analogy with the circular functions, we define 

EXERCISES 

sinhx tanh x = --h- , 
COS X 

coshx coth x = -.-h- , sm x 

1 sechx = --h- (x E �) , 
COS X 

1 cosech x = --:----h ( x # 0) . sm x 

1 .4 . Use the formulae ( 1 .5) - ( 1 .9) to show that 
7r . 7r 1 cos4 = sm4 = J2" 

1 .5 .  a) Use the formulae (1 .5) - (1 .9) to obtain the formula 

and deduce that 

cos 30 = 4 cos3 B - 3 cos B , 

7r J3 cos6 = 2, . 7r 1 sm6 = 2. 

( 1 . 10) 

( 1 . 1 1) 
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b) Hence show that 

7r 1 cos 3 = 2' 

1 .6. Deduce from (1 .8) and (1.9) that 
x + y  x -y cos x + cos y = 2 cos -2- cos -2 -, 

2 . x + y  . y - x  cos x - cos y = sm -2 -sm -2-. 

1. 7. Define the sequence (an ) by 

Prove by induction that , for all n ;::: 1 ,  

(n - 1)7r an = 2n-l cos . 3 

1 .  5 Differentiation 

See [9, Chapter 4] . 

Com plex Ana lysis 

A function f is differentiable at a point a in its domain if the limit 

lim ::.._.:/ ('-'x ):__-___::!__,_(a....:... ) 
o:--ta. x -a 

exists. The value of the limit is called the derivative of f at a, and is denoted 
by f' (a) . A function is differentiable in an interval (a, b) if it is differentiable 
at every point in (a, b) . 

The function f' (x) is alternatively denoted by 

where y = f(x) . 

d dy 
dx [f (x)] , or (D.,f) (x) or dx , 

Theorem 1 . 12 (The Mean  Va lue Theorem) 

If f i s continuous in [a ,  b] and differentiable in (a ,  b) , and if x E (a, b) , then 
there exists u in (a, b) such that 

f(x) = f(a) + (x - a)f' (u) . 
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Moreover, if f' exists and is continuous in [a, b] , then 
f(x) = f(a) + (x - a) (f' (a) + f(x)) , 

where f(x) -+ 0 as x -+  a. 

Corol lary 1 . 13 

Let f be continuous in [a, b] and differentiable in (a, b) , and suppose that 
f' ( x) = 0 for all x in (a, b) . Then f is a constant function. 

The following table of functions and derivatives may be a useful reminder: 
f(x) f' (x) 
xn nxn-1 
e"' e"' 
log x (x > 0) 1/x 
sin x cos x 
cos x - sin x 
tan x (x � (n + � )1r) 1/ cos2 x 
sin- 1 x ( !x ! < 1) 1/v1- x2 
tan- 1 x 1/(1 + x2 ) 

Recall also the crucial techniques of differential calculus. Here u and v are 
differentiable in some interval containing x. 

The Linearity Rule. If f (x) = ku(x) + lv(x), where k, l are constants, then 

J' (x) = ku' (x) + lv' (x) . 

The Product Rule. If f(x) = u(x)v(x), then 
f' (x) = u' (x)v(x) + u(x)v' (x) . 

The Quotient Rule. If f(x) = u(x)jv (x) (where v(x) � 0) then 
!'( ) = 

v(x)u' (x) - u(x)v' (x) x [v(x)J 2  
· 

The Chain Rule. If f(x) = u(v(x)) , then 
f' (x) = u' (v (x)) .v' (x) . 
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We shall have cause to deal with higher derivatives also. A function I 
may have a derivative I' that is differentiable, and in this case we denote 
the derivative of f' by I" . The process can continue: we obtain derivatives 
I"' , 1( 4) , • • .  , l(n), . . . . (Obviously the transition from dashes to bracketed su­
perscripts is a bit arbitrary: if we write "l(n) (n � 0)", then by 1(0) , 1(1 ) , 
1(2) and 1(3) we mean (respectively) I, J', f" and 1"'. )  The linearity rule ap­
plies without change to higher derivatives, and the product rule is replaced by 
Leibniz's2 Theorem: 

Theorem 1 . 14 

Let I, g be functions that are n times differentiable . Then 

(!, g)(n) = � (;) l(n-r) . g(r). 

1.6 Integration 

See (9, Chapter 5) . 
It is not necessary to have studied any formal integration theory, but )'ou 

should know the following results. 

Theorem 1 . 15 (The Fundamenta l Theorem of Ca lcu l us) 

Let I be continuous in [a, b] , and let 

F(x) = lx l(u) du (x E (a, bl). 

Then F is differentiable in (a, b), and F' (x) = l(x). 

Theorem 1.16 (The Antiderivative Theorem) 

Let I be continuous in [a, b] . Then there exists a function q> such that q>' ( x) = 

l(x) for all x in [a, b] , and 

lb l(x) dx = g>(b) - g>(a) . 

2 Gottfried Wilhelm Leibniz, 1646-1716. 
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Of course, the existence of the function ip does not mean than we can express 
it in terms of functions we know. The table of derivatives in the last section 
gives rise to a corresponding table of antiderivatives: 

f(x) ijj (x) 
xn (n =I - 1) xn+l /(n + 1 )  
ex ex 
1/x log l x l 
sin x - cos x 
cos x sin:p 
1/v'L- x2 ( lx l < 1 ) sin-1 x 
1/ (1  + x2 ) tan- 1 x 

We usually denote an antiderivative of f by J f(x) dx. It is defined only to 
within an arbitrary constant - by which we mean that , if ijj( x) is an antideriva­
tive, then so is ip(x) + C, where C is an arbitrary constant . 

The finding of antiderivatives is intrinsically harder than the finding of 
derivatives. Corresponding to the Linearity Rule, the Product Rule and the 
Chain Rule for differentiation we have 
The Linearity Rule. If f(x) = ku(x) + lv (x) , where k ,  l are constants, then 

I f(x) dx = k I u(x) dx + l I v(x) dx . 

Integration by Parts. 

I u(x)v(x) dx = u(x) I v(x) dx - I u' (x) [Jv(x) dx] dx . 

Integration by Substitution. Let f be continuous in [a , b] , and let g be a 
function whose derivative g' is either positive throughout , or negative through­
out , the interval [a, b] . Then 

1b 1g-1(b) 
f(x) dx = f (g(u) )g' (u) du . 

a g-1 (a) 
This last rule looks more frightening than it is, and here the dy / dx notation 
for derivatives is useful. To evaluate 

1 1 xs I =  dx 
o v'1 + x6 
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we argue as follows. Let u = 1 + x6• Then du = 6x5 dx. Also , x = 0 gives u = 1 ,  
and x = 1 gives u = 2 . So 

I = [2 �u-112 du = [�·u1 12]2 = �(v'2- 1) .  11 6 3 1 3 

(Here g(u) = (u- 1) 1 16 , g- 1 (x) = 1 + x6.) 

1 .  7 Infinite Integrals 

See [9 , Sections 5.6 and 5.7). 
If limK-+oo J: f(x) dx exists, we write the limit as fa.oo f(x) dx, and say that 

the integral is convergent. Similarly, we write limL-+oo J�L f(x) dx, if it exists, 
as f�oo f(x) dx. If both limits exist , we write 

(The value is, of course, independent of a.) 
It is important to note that , by analogy with sums from -oo to oo ,  we 

require the separate existence of f�oo f(x) dx and fa.oo f(x) dx, and that this is 
a stronger requirement than the existence of limK-+oo J!:K f(x) dx. The latter 
limit exists, for example, for any odd function (!( -x) = -f(x)) whatever. 

The limit limK-+oo J� f(x) dx is often called the Cauchy principal value 
ofJ�oo f(x) dx, and is written (PV) f�oo f(x) dx. If f�oo f(x) dx is convergent , 
then 

(PV) I: f(x) dx = I: f(x) dx . 
The theory of infinite integrals closely parallels the theory of infinite series, 

and, as with infinite series, we say that fa.oo f(x) dx is absolutely convergent 
if fa.oo 1 / (x) l dx is convergent . As with series, absolute convergence implies con­
vergence. 

By analogy with Theorem 1.8, we have 

Theorem 1 . 17 

The integrals 
roo dx 
11 xn 

are convergent if and only if n > 1 . 

J-1 d and __:_ 
-oo xn 
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Given two functions I and g, we write I::::: g (as x -t oo) (read "I has the 
same order of magnitude as g") if 

lim l(x) = K ,  :.-too g( X) 
where K > o. The stronger statement I rv g (read "I is asymptotically equal 
to g") mean� that 

lim l(x) = 1 .  :z:-too g(x) 
This gives us the most convenient form of the Comparison Test : 

Theorem 1 . 18 

Let I ,  g be positive bounded functions on [a, oo) such that I ::::: g. Then 
I;" l(x) dx is convergent if and only if Iaoo g(x) dx is convergent. 

Example 1 . 19 

Show that /oo dx 
-oo ( 1  + x6) 1 /3 

is convergent. 

Solution 
Compare the integrand with 1/( 1 + x2) .  Since ( 1 + x2)/( 1  + x6 ) 1 13 -t 1 as 
x -t ± oo ,  both the integral from 0 to oo and the integral from - oo  to 0 exist , 
by Theorems 1 . 18 and 1 . 17. D 

We often encounter integrals in which the integrand has a singularity some­
where in the range. If l(x) -t oo  as x -t a+, but I is,bounded in any [a + e,b], 
we say that the improper integral I: l(x) dx exists if'J:+e l(x) dx has a finite 
limit as e -t 0+. A similar definition applies if l(x) -t oo as x -t b-. If the 
singularity is at c, where a < c < b, then the integral exists only if both the 
limits 

lim lc-'1 
l(x) dx and lim 1b l(x) dx 

f/--+0+ a e--+0+ c+e 

exist , and I: l(x) dx is the sum of these limits . This is a stronger requirement 
than the existence of 

lim [ r-e 
l(x) dx + 1b l(x) dx] . 

e--+0+ j a c+e 
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If this latter limit exists we have a Cauchy principal value, and we denote the 
limit by (PV) I: f(x) dx. For example, (PV) I�1 ( 1/x) dx = 0, but I�1 ( 1 /x) dx 
does not exist . 

In fact we have a pair of theorems that can often enable us to establish the 
convergence of improper integrals. First , it is easy to prove the following result . 

Theorem 1 . 20 

The integral 1b 
dx 

a (b - x)n 
converges if and only if n < 1 . The integral 

1b 
dx 

a (x - a)n 

converges if and only if n < 1 . 

It is straightforward to modify the definitions of:::=:: and,....., to deal with limits 
as x --+ c, where c is a real number. Thus f :::=::gas x --+ c if there exists K in lR 
such that limx--+c [f (x)jg(x) J = K, and f,....., g as x --+  c if limx--tc[f (x) /g(x)] = 1 . 

Theorem 1 . 2 1  

Suppose that f is bounded in [a, b] except that f (x) --+ oo as x --+ b- . If 
f(x) :::=:: 1/ (b - x)n as x--+ b, then I: f(x) dx converges if and only if n < 1 . 

A similar conclusion exists if the singularity of the integrand is as the lower 
end of the range of integration. 

Example 1.22 

Show that 11 . dx 
o v'1 - x2 

converges . 

Sol ution 
Here f(x) --+ oo as x--+ 1 . Now 

1 - X 1 1 lim -- = lim -- - - , 
o:--+1- 1 - x2 o:--+1- 1 + X  2 
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and so 
lim 1/ -lf=X2 

= __!__ . :z:-+1- 1/ ( 1 - x) l/2 J2 

17 

Thus f(x) ::=: 1/ ( 1 - x) 1 12 as x � 1-, and so the integral converges. 0 

1.8 Calculus of Two Variables 

Let f : (x, y) f-t f(x, y) be a function from lR x lR into R Then we say 
that lim(:z:, y)-+(a, b) f(x, y) = L if, for all E > 0, there exists 8 > 0 such that 
lf(x, y) - L/ < E whenever 0 < J(x - a)2 + (y - b)2 < 8. The function f is 
continuous at (a, b) if lim(:z:, y)-+(a, b) f(x, y) = f(a, b) . These definitions are in 
essence the same as for functions of a single variable : the distance Jx - a/ be­
tween two points x and a in lR is replaced by the distance J(x - a)2 + (y - b)2 
between two points (x, y) and (a, b) in JR2. [Note that when we write y' we 
always mean the positive square root . ] 

The limit 
r f (a + h, b) - f (a, b) 
h� h , 

if it exists, is called the partial derivative of f with respect to x at (a, b) , 
and is denoted by 

Similarly, 

af af 
ax , or ax (a, b) , or f:z:(a, b) . 

r f (a, b + k) - f(a, b) 
k� k 

is the partial derivative of f with respect to y at (a, b) , and is denoted 
by 

af af · · 
ay 

, or ay 
(a, b) , or fy (a, b) . 

By analogy with the familiar notation in one-variable calculus, we write 

Alternative notations are f:z::z:, fyy and f:z:y· 
Suppose that f : lR x lR � lR is a function whose partial derivatives are 

continuous . Then 

f(a + h, b + k) = f(a, b) + h{J:z:(a, b) + c:r) + k{Jy (a, b) + E2 ) , ( 1 . 12) 

where c:1 ,c:2 � 0 as h, k � 0. 
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Suppose now that z = f ( u, v) , where u and v are functions of x and y. The 
chain rule for functions of two variables is 

{) z  {) z  au {) z  OV {) z  {) z  {) u  {)z ov 
- = -- + -- , ox au ax {)v ox - = -- + --. {) y  au {) y  OV {)y 



2 
Complex Numbers 

2.1 Are Complex Numbers Necessary? 

Much of mathematics is concerned with various kinds of equations, of which 
equations with numerical solutions are the most elementary. The most funda­
mental set of numbers is the set N = { 1 ,  2, 3, . . .  } of natural numbers. If a 
and b are natural numbers, then the equation x + a = b has a solution within 
the set of natural numbers if and only if a < b. If a 2': b we must extend the 
number system to the larger set Z = { . . . , -2, - 1 ,  0, 1, 2, 3 . . . } of integers. 
Here we get a bonus, for the equation x + a = b has a solution x = b - a in Z 
for all a and b in Z. 

If a, b E Z and a :j; 0, then the equation ax+ b = 0 has a solution in Z if and 
only if a divides b. Otherwise we must once again extend the number system 
to the larger set Q of rational numbers. Once again we get a bonus, for the 
equation ax+ b = 0 has a solution x = -bja in Q for all a :j; 0 in Q and all b 
in Q. 

When we come to consider a quadratic equation ax2 + bx + c = 0 (where 
a, b, c E Q and a # 0) we encounter our first real difficulty. We may safely 
assume that a, b and c are integers: if not , we simply multiply the equation by 
a suitable positive integer. The standard solution to the equation is given by 
the familiar formula 

-b ± v'b2 - 4ac 
x= 2a 

Let us denote b2 - 4ac, the discriminant of the equation, by Ll. If Ll is the 
square of an integer (what is often called a perfect square) then the equation 
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has rational solutions, and if ..:1 is positive then the two solutions are in the 
extended set JR. of real numbers . But if ..:1 < 0 then there is no solution even 
within JR.. 

We have already carried out three extensions (to Z, to Q, to JR.) from our 
starting point in natural numbers, and there is no reason to stop here . We can 
modify the standard formula to obtain 

-b ± J( -l)(4ac- b2) X= ' 2a 

where 4ac - b2 > 0. If we postulate the existence of A , then we get a 
"solution" 

-b±AJ4ac- b2 
x =  

2a 
Of course we know that there is no real number A, but the idea seems 

in a way to work. If we look at a specific example, 
x2 + 4x + 13 = 0 , 

and decide to write i for A, the formula gives us two solutions x = -2 + 3i 
and x = -2- 3i. If we use normal algebraic rules, replacing i2 by -1 whenever 
it appears, we find that 

( -2 + 3i)2 + 4( -2 + 3i) + 13 = ( -2)2 + 2( -2)(3i) + (3i)2 - 8 + 12i + 13 
= 4- 12i- 9 - 8 + 12i + 13 (since i2 = -1) 

= 0 , 

and the validity of the other root can be verified in the same way. We can 
certainly agree that if there is a number system containing "numbers" a+ bi, 
where a, b E JR., then they will add and multiply accortng to the rules 

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i (2.1) 

(a1 + b1i)(a2 + b2i) = (a1a2- b1b2) + (a1b2 + b1a2)i. (2.2) 

We shall see shortly that there is a way, closely analogous to our picture of real 
numbers as points on a line , of visualising these new complex numbers. 

Can we find equations that require us to extend our new complex number 
system (which we denote by q still further? No, in fact we cannot: the impor­
tant Fundamental Theorem of Algebra, which we shall prove in Chapter 
7, states that , for all n 2: 1, every polynomial equation 

with coefficients ao, a1, ... , an in C and an =/= 0, has all its roots within C. This 
is one of many reasons why the number system C is of the highest importance 
in the development and application of mathematical ideas . 
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EXERCISES 
2 . 1 .  One way of proving that the set C "exists" is to define it as the set 

of all 2 x 2 matrices 

where a, b E JR.. 

M(a, b)= ( �b ! ) , 
a) Determine the sum and product of M(a, b) and M(c, d). 

b) Show that 

M(a, 0) + M(b, 0) = M(a + b, 0) , M(a, O)M(b , 0) = M(ab, 0) . 

Thus C contains the real numbers "in disguise" as 2 x 2 diagonal 
matrices. Identify M (a, 0) with the real number a. 

c) With this identification, show that M(O, 1 ) 2 = -1 .  Denote 
M(O, 1) by i. 

d) Show that M(a, b)= a+ bi . 

2.2 . Determine the roots of the equation x2 - 2x + 5 = 0. 

2.2 Basic Properties of Complex Numbers 

We can visualise a complex number z = x + yi as a point (x, y) on the plane. 
Real numbers x appear as points (x, 0) on the x-axis , and numbers yi as points 
(0, y) on the y-axis. Numbers yi are often called pure imaginary, and for 
this reason the y-axis is called the imaginary axis. The x-axis , for the sa�e 
reason, is referred to as the real axis. It is important to realise that these 
terms are used for historical reasons only: within the set C the number 3i is no 
more "imaginary" than the number 3. 

If z = x + iy, where x and y are real, we refer to x as the real part of z 

and write x = Re z. Similarly, we refer to y as the imaginary part of z, and 
write y = Im z. Notice that the imaginary part of z is a real number. 

The number z = x - iy is called the conjugate of z. It is easy to verify 
that, for all complex numbers z and w, 

and 

z = z ' z + w = z + w ' zw = zw ' 

z + z = 2 Re z , z - z = 2i Im z 

(2 .3) 

(2.4) 
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Note also that z = z if and only if z is real, and z = -z if and only if z is pure 
imaginary. 

The following picture of a complex number c = a + ib is very useful. 
y 

t 
b = lm c 

----�� �-----=----�------x 
-- a = Re c -

• c = a - ib 

The product cc is the non-negative real number a2 + b2• Its square root 
/Cc = ../ a2 + b2 ,  the distance of the point (a, b) from the origin, is denoted by 
Jc l and is called the modulus of c. If c is real, then the modulus is simply the 
absolute value of c. Some of the following results are familiar in the context 
of real numbers: 

Theorem 2 . 1  

Let z and w b e  complex numbers. Then: 
(i) ! Re z ! :S ! z ! , ! Imz l :S ! z ! , iz ! = ! z ! ; 

(ii) ! zw ! = ! z l !w ! ; 

(iii) ! z + w ! :S ! z ! + !w ! ; 

(iv) ! z - w ! 2: l i z ! - lw !j . 

Proof 

(i) is immediate. 
(ii) By (2 .3) , 

!zw!2 = (zw) (zw) = (zz) (ww) = ( ! z l!w l ) 2 

and Part (ii) follows immediately. 
For Part (iii) , observe that 

Now, 

!z + w!2 = (z + w) (z + w) = zz + zw + wz + ww. (2 .5) 

zw + wz = zw + zw = 2 Re (zw) :S 2 ! zw ! = 2!z l lw l  = 2 l z l lw l , 
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and so, from (2 .5), 

l z + w l 2 S l z l 2 + 2 l z l lw l  + lw l 2 = ( l zl + lw l ) 2 • 

The result now follows by taking square roots. 
For Part (iv) , we observe first that 

l z l = i (z - w) + w l S l z - w l + lw l 

and deduce that 
l z - wl � l z l - lw l . (2.6) 

Similarly, from 
lw l = l z - (z - w) l S l z l + l z - w l 

we deduce that 
l z - wl � lw l - lz l . (2 .7) 

Hence, since for a real number x we have that l x l = max {x, -x} , we deduce 
from (2 .6) and (2 . 7) that 

l z - w l � l l z l - lw ll · 

D 

The correspondence between complex numbers c = a + bi and points (a, b) 
in the plane is so close that we shall routinely refer to "the point c", and we 
shall refer to the plane as the complex plane, or as the Argand1 diagram. 
The point c lies on the circle x2 + y2 = r2, where r = l e i  = v' a2 + b2 . 

y 

If c I 0 there is a unique 0 in the interval ( -1r, 1r] such that 

and we can write 

• ll b Sinu = , v'a2 + b2 

c = r (cos O + i sin O) . 
1 Jean-Robert Argand, 1768-1822. 

(2 .8) 
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This amounts to describing the point {a, b) by means of polar coordinates, 
and r{ cos 0 + i sin 0) is called the polar form of the complex number. By some 
standard trigonometry we see that 

(cos O + i sin O) {cos ¢ + i sin ¢) 
= (cos O cos ¢ - sin O sin ¢) + i{sin O cos ¢ + cos O sin ¢) 
= cos(O + ¢) + i sin{ O + ¢) . {2 .9) 

Looking ahead to a notation that we shall justify properly in Chapter 3, we note 
that , if we extend the series definition of the exponential function to complex 
numbers, we have, for any real 0, 

We may therefore write {2 .9) in the easily remembered form 

eiB ei<l> = ei(B+</>) • 

From well known properties of sin and cos we deduce that 
ei( -B) = cos( -0) + i sin{ -0) = cos 0 - i sin 0 ,  

and Euler's2 formulae follow easily: 
1 ., ., cos O = -(e�" + e-�") , 2 

1 ., ., sin O = 
2i

(e�"- e-�" ) . {2. 10) 

With the exponential notation, the polar form for the non-zero complex 
number c == a + bi is written as rei6, where a = r cos 0, b = r sin 0. The positive 
number r is the modulus le i of c, and 0 is the argument , written arg c, of c. 
The polar form of c is re-i6. 

The periodicity of sin and cos implies that ei6 = ei(6+2mr) for every integer 
n, and so, more precisely, we specify arg c by the property that arg c = 0, where 
c = rei6 and -11' < 0 ::; 11'. We call arg c the principal argument if there is 
any doubt . 

Multiplication for complex numbers is easy if they are in polar form: 

{rl ei61 ){r2ei92) = {rlr2 ) ei(Bl+B2). 

We already know that l c1 c2l = lclllc2l, and we now deduce that 

arg{c1 c2 ) = arg c1 + arg c2 (mod 211' ) .  

2 Leonhard Euler, 1707-1783. 
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By this we mean that the difference between arg(c1c2) and arg c1 + arg c2 is an 
integral multiple of 211". 

The results extend: 

arg c1 c2 . . .  Cn = arg c1 + arg c2 + · · · + arg cn (mod 211") , 
and, putting c1 = c2 = · · · = en, we also deduce that, for all positive integers 
n, 

Example 2 . 2  

Determine the modulus and argument o f  c5 , where c = 1 + iv'3. 

Solution 
An easy calculation gives l e i  = 2 , arg c = 0, where cos O = 112 , sin O = v'312; 
hence arg O = 11"13. It follows that l c5 1 = 25 = 32, while arg(c5 ) = 57rl3 = -1!"13. 
(Here we needed to make an adjustment in order to arrive at the principal 
argument. ) The standard form of c5 , by which we mean the form a +  ib, 
where a and b are real, is 32 ( cos( -11" 13) + i sin( -11" 13)) = 16(1 - iv'3) .  0 

Remark 2 .3  

For a complex number c = a +  bi = rei9 i t  i s  true that tan O = bla, but 
it is not always true that (} = tan- 1 ( bla) . For example, if c = -1 - i, then 
(} = -311" I 4 =/= tan -l 1 .  It is much safer - indeed essential - to find (} by using 
cos (} = air, sin O = blr . 

Finding the reciprocal of a non-zero complex number c is again easy if the 
number is in polar form: the reciprocal of rei9 is ( 1 I r )e -i(J. In the standard 
form c = a + bi tlie reciprocal is less obvious: 

1 a- bi 
a + bi = a2 + b2 • 

The technique of multiplying the denominator of a fraction by its conjugate is 
worth noting: 
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Example 2.4 

Express 

in standard form. 

Solution 

3 + 7i 
2 + 5i 

3 + 7i = (3 + 7i)(2 - 5i) = -.!_(41 - i) . 2 + 5i (2 + 5i) (2 - 5i) 29 

Complex Analysis 

0 

Again, the fact that every complex number has a square root is easily seen 
from the polar form: .JFei(fJ/2) is a square root of rei8 • From this we may deduce 
that every quadratic equation 

az2 + bz + c = 0 , 

where a, b, c E C and a =/:- 0 has a solution in C. The procedure, by "completing 
the square" , and the resulting formula 

-b± ../b2- 4ac z =  2a 
are just the same as for real quadratic equations. 

Example 2 .5  

Find the roots of the equation 

z2 + 2iz + (2 - 4i) = 0. 

Solution 
By the standard formula, the solution of the equation is 

� ( -2i ± J( -2i)2 - 4(2 - 4i)) = � ( -2i ± ../ -12 + 16i) = -i ± J -3 + 4i . 

Observe now that ( 1  + 2i)2 = -3 + 4i, and so the solution is 

z = -i ± (1 + 2i) = 1 + i or - 1 - 3i . 

0 
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The addition of complex numbers has a strong geometrical connection, being 
in effect vector addition: 

The geometrical aspect of complex multiplication becomes apparent if we use 
the polar form: if we multiply c by rei9 we multiply le i by a factor of r, and 
add () to arg c. Of special interest is the case where r = 1 ,  when multiplication 
by ei9 corresponds simply to a rotation by B. In particular : 

- multiplication by -1 = ei" rotates by 7l'j 

- multiplication by i = ei" 12 rotates by 7l' /2; 

.:.... multiplication by -i = e-i1r 12 rotates by -71' /2; 

y 

2C 

Exa mple 2.6 

c 

Find the real and imaginary parts of c = 1/(1 + ei9 ) . 

X 
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Solution 
One way is to use the standard method of multiplying the denominator by its 
conjugate, obtaining 

1 + e-i8 (1 + cos O) - i sinO c =  ( 1 + ei8 ) ( 1 + e-i8 ) = 2 + 2 cos 8 ' 
and hence 

1 Re c = 2, I - sin O m c = ----=-2 + 2 cos O 
Mor e  ingeniously, we can multiply the numerator and denominator by e-i(812) , 
obtaining 

e-i (8/2) cos(0/2) - i sin(0/ 2) c - - _ _o_:.,--..:�,-:-:.,...,....:'--'---'-- e_i(()j2) + ei(()j2)- 2 cos(0/2) ' 
and hence 1 Re c = 2, 1 Im c = -2 tan(0/2) . 
The ver ification that the two answers for the imaginary part are actually the 
same is a simple trigonometrical exer cise. 0 

Example 2 .7  

Sum the (finite) ser ies 

C = 1 + cos (J + cos 28 + · · · + cos nO , 

where (J is not an integral multiple of 211' . 

Solution 
Consider the series 

z = 1 + ei8 + e2i8 + . . .  + eni8 . 

This is a geometr ic ser ies with common ratio ei8 • The formula for a sum of a 
geometric ser ies works just as well in C as in IR, and so 

ei(n+1 )8 _ 1 ei(n+!J8 _ e-!i8 Z= --=---
ei8 _ 1 di8 _ e-!i8 

ei(n+!)8 _ e-!i8 
= (by the Euler formula (2 .10)) 2i sin � (J 
_ -i (cos(n + � )8 + i sin(n + � )8) -n i (cos � (J - i sin �8) - 2 sin �(J  

= (sin(n + � )8 + sin �8) + i (cos � (J- cos(n + � )8) 
2 sin � (J 

(since 1/i = -i) 
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Hence, equating real parts, we deduce that 

C = 
sin(n + � )0 + sin � 0  

2 sin � 0  

29 

(0 =f. 2k7r) . 

As a bonus, our method gives us (if we equate imaginary parts) the result that 
cos lO - cos(n + l )0 sin 0 + sin 20 + · · · + sin nO = 2 1 2 . 2 sin 2 0  

Example 2 . 8  

0 

Find all the roots of the equation z4 + 1 = 0. Factorise the polynomial in C, 
and also in R 

Sol ution 
z4 = -1 = ein: if and only if z = e±n:i/4 or e±3n:i/4 • The roots all lie on the unit 
circle , and are equally spaced. 

y 

en:i/4 
• 

X 

• 

In C the factorisation is 

Combining conjugate factors , we obtain the factorisation in lR: 

z4 + 1 = (z2 - 2z cos("rr /4) + 1 ) (z2 - 2z cos (311'/4) + 1 ) 
= (z2 - zJ2 + 1 ) ( z2 + zJ2 + 1) . 

The strong connections between the operations of complex numbers and 
the geometry of the plane enable us to specify certain important geometrical 
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objects by means of complex equations. The most obvious case is that of the 
cir cle { z : jz - c l = r} with centr e c and radius r � 0. This easily tr anslates to 
the familiar form of the equation of a cir cle: if z = x + iy and c = a + ib, then 
l z - cl = r if and only if l z -cl 2 = r2 , that is, if and only if (x -a)2+ (y- b)2 = r2 . 
The other form, x2 + y2 + 2gx + 2fy + c = 0, of the equation of the cir cle can 
be rewritten as zz + hz + hz + c = 0, where  h = g - if . More generally, we 
have the equation 

Azz + Bz + Bz + C = 0 ,  
where A (� 0) and C are r eal, and B is complex. The set 

{z E C : Azz + Bz + Bz + C = 0} 

is: 

(2 . 11 ) 

{C1) a circle with centre -E/A and radius R, where  R2 = (BE - AC)/A2 if 
BE - AC � 0; 

{C2) empty if BE - AC < 0. 
If A = 0, the equation reduces to 

(2. 12) 

and this {provided B � 0) is the equation of a straight line: if B = B1 + iB2 
and z = x + iy the equation becomes 

Theorem 2 .9  

Let c ,  d be distinct complex numbers, and let k > 0. Then the set 

{z : l z - cl = k l z - dl } 

is a cir cle unless k = 1 ,  in which case the set is a straight line, the perpendicular 
bisector of the line joining c and d. 

Proof 

We begin with some routine algebra: 

{z : l z - cl = k i z - dl } = {z : l z - cl 2 = k2 i z - dl 2 } 
= {z : (z - c) (z - c) = k2 (z - d) (z - d)} 
= {z : zz - ci - cz + cc = k2 (zz - dz - dz + dd)} 
= {z : Azz + Bz + Bz + C = 0} , 
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where A = k2 - 1, B = c - k2d, C = k2dd - cc. 
If k = 1 we have the set 

{z : (c - d)z + (c - d)z + (dd - cc) = 0} 

and this is a straight line . Geometrically, it is clear that it is the perpendicular 
bisector of the line joining c and d. 

If A =f. 1 then the set is a circle with centre 

for we can show that BB - AC > 0: 

BB - AC = (c - k2d) (c - k2d) - (k2 - 1 ) (k2dd - cc) 

= cc - k2cd - k2cd + k4dd - k4dd + k2dd + k2cc - cc 

= k2 ( cc - cd - cd + dd) 

= k2 (c - d) (c - d) = k2 l c - dl 2 > 0 . 

The radius of the circle is R, where 

R2 
= 

BE - AC 
= 

k2 i c - d l 2  
A2 (k2 - 1 )2 

. 

Remark 2. 10  

( 2 . 13 )  

(2 . 14) 

0 

The circle { z : l z  - ci = k l z  - dl } has PQ as diameter. If S is the centre of the 
circle , then 

C(c) 

From (2 . 13)  and (2 . 14) we see that 

I SC I I SD I = I _ k2d - c l ld -
k2d - c 1 = k2 1 c - d l 2 

2 
. c 

k2 :._ 1 k2 - 1 (k2 - 1 ) 2 
= R . (2 .15) 

We say that the points C and D are inverse points with respect to the circle . 
We shall return to this idea in Chapter 11. 
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Remark 2. 1 1  

The observation that C and D are inverse points is the key t o  showing that 
every cir cle can be r epresented as {z : J z - cJ = k J z - dJ } .  Suppose that E is 
a circle with centr e a and radius R. Let c = a + t, wher e 0 < t < J a J ,  and let 
d = a + (R2 jt) . Then c and d are inverse points with r espect to E. For every 
point z = a + Rei6 on E, 

I ; = �  I = I ; = � � = I Re-�6
e: (;2 /t) I = I t�B I I �:et�-; I = � ' 

and so J z - cJ = (t/R) Jz - dJ . The answer is not unique. 

EXERCISES 
2 .3 .  Show that Re (iz) = - Im z , Im(iz) = Re z. 

2.4 . Write each of the following complex numbers in the standard  form 
a + bi, where a, b E R 
a) (3 + 2i)/ ( 1  + i) ; 

b) ( 1  + i)/(3 - i) ; 

c) (z + 2)/(z + 1 ) ,  wher e z = x + yi with x, y in R 
2 .5 . Calculate the modulus and pr incipal argument of 

a) 1 - i 
c) 3 + 4i 

b) -3i 
d) - 1 + 2i 

2 .6 Show that, for every pair c, d of non-zer o  complex numbers , 

arg(c/d) = arg c - arg d  (mod 211") .  

2 .7. Express 1 + i in polar form, and hence calculate ( 1  + i) 16 • 
2.8 .  Show that (2 + 2iv'3)9 = -:-218 • (Don't use the binomial theor em!) 
2.9. Let n E Z. Show that , if n = 4q + r, with 0 ::; r ::; 3 ,  then 

2. 10. Calculate E!�o ir . 

·n { � 
t = - 1  

-i 

if r = 0 
if r = 1 
if r = 2 
if r = 3. 
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2 . 1 1 .  Show by induction that , for all z =/ 1 , 

1- (n + l)zn + nzn+ l 
1 + 2z + 3z2 + · · · + nzn-1 = ----'-----,-_;_--:-::----

(1- z)2 

Deduce that , if l z l  < 1 ,  
00 

""" n-1 1 
L...,; nz = ( )2 • 
n=1 1 - z 

33 

2 . 12 .  Let z1, z2 be complex numbers such that l z1 1 > l z2 l · Show that, for 
all n � 2 , 

2 . 13 . Prove that , if z1, z2 E C, then 

Deduce that , for all c, d in C, 

2 . 14. Sum the series 

cos 8 + cos 38 + · · · + cos(2n + 1 )8 . 

2 . 15 .  Let 1 = peifi ( ¢ �) be a root of P(z) = 0, where 

and where a0 , a1 , . . •  , an are real. Show that 1 is also a root , and 
deduce that z2 - 2p cos 8 + p2 is a factor of P( z) . 

2 . 16 . Determine the roots of the equations 
a) z2 - (3 - i)z + ( 4 - 3i) = 0; 
b) z2- (3 + i)z  + (2 + i) = 0. 

2 . 17. Give geometrical descriptions of the sets 

a) {z : l 2z + 31 :S 1} b) {z : l z l � l 2z + I I } .  
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2 . 18. Determine the roots of z5 = 1, and deduce that 

2 271" 2 471" z5 - 1 = (z - 1 ) (z - 2z cos 5 + 1) (z - 2z cos S + 1) . 

Deduce that 
27r 47r 1 cos - + cos - = - -5 5 2 ' 

and hence show that 
7r v'5 + 1 cos 5 = --

4
- , 

27r 47r 1 cos - cos - = - -5 5 4 ' 

271" v'5 - 1 cos 5 = --4-



3 
Prelude to Complex A nalysis 

3 . 1  Why is Complex Analysis Possible? 

The development of r eal analysis (sequences, ser ies, continuity, differentiation, 
integration) depends on a number of proper ties of the r eal number system. 
Fir st , lR is a field, a set in which one may add, multiply, subtract and (except 
by 0) divide. Secondly, there  is a notion of distance: given two number s a and 
b, the distance between a and b is Ja - bj . Thirdly, to put it very informally, lR 
has no gaps. 

This third  proper ty is made more precise by the Least Upper Bound Axiom 
(see Section 1 .2 ) ,  a proper ty that distinguishes the r eal number system from 
the r ational number system and is crucial in the development of the theory of 
real functions. Might something similar hold for complex number s? 

Certainly C is a field, and the distance between two complex number s a 
and b is J a - b j .  However , the whole idea of a bounded set and a least upper 
bound depends on the existence of the order relation S in IR, and ther e  is no 
useful way of defining a relation S in C. In IR, the "compatibility" proper ty 

a $ b  and c 2:: 0 ==::} ac $ bc 

has the consequence that a2 > 0 for all a -:f; 0 in JR. It is this that makes a useful 
order ing of C impossible, for the same compatibility proper ty - and an order 
without that property would be of no inter est - would force us to conclude that 

12 = 1 > 0 ' i2 = -1 > 0 .  
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Despite the absence of order in C, inequalities play as crucial a r ole in 
complex analysis as they do in r eal analysis. We cannot wr ite a statement 
z < w concerning complex numbers, but we can, and very frequently do write 
l z l < lw l .  (One beneficial effect of the absence of order in C is that when we 
say something like "Let K > 0 . . . " we do not need to explain that K is r eal. )  

All i s not lost, however . In r eal analysis we can deduce fr om the Least 
Upper Bound Axiom the so-called Completeness Property. See Theor em 
1.3. Informally one can see that this is another version (in fact equivalent to 
the Least Upper Bound Property) of the "no gaps" proper ty of R In a Cauchy 
sequence the terms an of the sequence can be made arbitrar ily close to each 
other for sufficiently large n. The proper ty tells us that there is a number , the 
limit of the sequence, which the terms approach as n --+ oo .  

It is clear that the definition of a Cauchy sequence and the Completeness 
Property do make sense if we switch from lR to C. A sequence (en) of complex 
numbers is said to be a Cauchy sequence if, for every «: > 0 ther e  exists N 
such that l am - an i < «= for all m, n > N. Then we have: 

Theorem 3 . 1  (Completeness P roperty of C) 
If (en) is a Cauchy sequence in C, then (en) is convergent . 

Proof 

We assume the completeness of R Let en = an +  ibn, wher e an and bn are r eal, 
and suppose that (en) is a Cauchy sequence. That is, suppose that for all «= > 0 
there exists N such that l em - en I < «: for all m, n > N. Now 

l em - en I = ! (am - an) +  i(bm - bn)l 

= [(am - an)2 + (bm - bn)2] 1 /2 

2: max { l am - an i , I bm - bn l } , 

and so (an), (bn) are both real Cauchy sequences, with limits a ,  f3 respectively. 
Thus, for all «: > 0 ther e  exists N1 such that i an - o l < �:/2 for all n > Nl ! 
and ther e  exists N2 such that I bn - /3 1 < �:/2 for all n > N2 . Hence, for all 
n > max {N1 , N2 } ,  

and so  (en) --+ a + i/3. 0 

As in Section 1 .3, the Completeness Property translates for series into 
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Theorem 3 .2 {The Genera l  Principle of Convergence) 

Let E:'=l Cn be a ser ies of complex terms. If, for every e > 0, ther e  exists N 
such that 

for all m > n > N, then E:'=l Cn is convergent. 

In general terms, because the definitions involve inequalities of the type 
l a l < l b l , the notions of limit and convergence for sequences and ser ies apply 
to the complex case without alteration. The geometry of the plane is, however , 
more complicated than that of the line, and the next section draws attention 
to this aspect. 

3 . 2  Some Useful Terminology 

In r eal analysis one makes fr equent refer ence to intervals, and notations such 
as [a, b) for the set {x E lR : a :5 x < b} are very useful. In complex analysis 
the situation is inevitably more complicated, since we are usually dealing with 
subsets of the plane rather than of the line. It is therefor e convenient at this 
point to intr oduce some ideas and terms that will make our statements less 
cumber some. 

Fir st ,  if c E C and r > 0, we shall denote the set {z E C : l z - cl < r} by 
N(c, r ) .  We shall call it a neighbourhood of c, or , if we need to be more 
specific, the r-neighbourhood of c. 

Next , a subset U of C will be called open if, for all u in U, there exists 
a >  0 such that N(u, a) c U. 

Among impor tant cases of open sets, apar t  from C itself, ar e 
C \ {c} , N(c, r) , {z E C : l z - cl > r} . 

The empty set 0 is also open; the definition applies "vacuously" , for in this case 
ther e  ar e no elements u in U. 
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A subset D of C will be called closed if its complement C \ D in C 
is open, that is, if, for all z � D there exist o > 0 such that N(z,  o) lies 
wholly outside D. Among closed subsets of C are C, 0, any finite subset of C, 
{z E C : l z - c l :::; r} ,  {z E C : l z - cl � r} .  There exist sets that are neither 
open nor closed (see Example 3 .4) , but the only two subsets of C that are both 
open and closed are C and 0. (See Example 3.5 below.) 

The closure S of a subset S of C is defined as the set of elements z with the 
property that every neighbourhood N(z, o) of z has a non-empty intersection 
with S. The interior I(S) of S is the set of z in S for which some neighbourhood 
N(z, o) of z is wholly contained in S. The boundary fJS of S is defined as 

S \ I(S) . 

Theorem 3 .3  

Let S be a non-empty subset of  C. 
(i) I(S) is open. (ii) 

(iii) S is closed. (iv) 

Proof* 

S = I( S) if and only if S is open. 
S = S if and only if S is closed. 

(i) If I(S) = 0 the result is clear. Otherwise , let z E I(S) . By definition, there 
exists a neighbourhood N(z, o) of z wholly contained in S. Let w E N(z,  o) . 
Since N ( z, o) is open, there exists a neighbour hood N ( w, e) of w such that 

N(w, e) c N(z, o) c S .  

N(w, e) N(z , o) 

Thus w E I(S) , and, since w was an arbitrary element of N(z, o) , we con­
clude that N(z,  o) c I(S) . Thus I(S) is open. 

(ii) From Part (i) , S = I(S) immediately implies that S is open. For the con­
verse, suppose that S is open, and let z E S. Then there exists N(z,  o) 
wholly contained in S, and so, by definition, z E I(S) . Since it is clear that 
I(S) � S, we deduce that S = I(S) . 
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(iii) If C\S is empty then it is certainly open, and so S = C is closed. Otherwise, 
let z E C \ S. Then it is not the case that every N(z,  8) intersects S, and 
so there exists some N(z, 8) wholly contained in C \ S. Let w E N(z, 8 ) .  
As in Part ( i )  we must have a neighbourhood N(w,  E) of w such that 

N(w, E) C N(z, 8) C C \ S .  

Thus w � S and, since this holds for every w in N(z,  8) , we deduce that 
N(z,  8) C C \ S. Thus C \ S is open, and hence S is closed. 

(iv) From Part (iii) , S = S immediately implies that S is closed. It is clear 
from the definition that S � S for every set S. Suppose now that S is 
closed, and let z E S. Then every N(z, 8) intersects S. If z � S, then, since 
C \ S is open, there exists N(z, E) wholly contained in C \  S, and we have 
a contradiction. Hence z E S, and so we have proved that S = S. 

Example 3 .4  

Let 
S = { (x , y) : -a < x < a, -b � y � b} . 

Find I(S) , S, as, and deduce that S is neither open nor closed. 

Solut ion 

where 

I(S) = { (x , y) :  -a < x < a, -b < y < b} ,  
S = { (x, y) :  -a � x � a, -b � y � b} , 

as = r u u u v u w , 

T = {(a, y) :  -b � y � b} , U = { (-a, y) :  -b � y � b} , 

V = { (x, b) : -a � x � a} , W = { (x, -b) : -a � x � a} . 

0 

Since S =I I(S) and S =I S, it follows from Theorem 3 .3 that S is neither open 
nor closed. 0 

Example 3 . 5  

Show that C and 0 are the only two subsets of C that are both open and closed. 
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Solution 
Let U be both open and closed. Suppose, for a contradiction, that U and C \ U 
are both non-empty, and let z E U, w E C \ U. 

w 

Let 
u = sup {A E (0, 1) : ( 1 - .X)z + .Xw E U} . 

Let c = ( 1 - u)z + uw. Then either c E U or c E C \ U. Suppose first that 
c E U. Since U is open, there is a neighbourhood N (c, o ) lying wholly within 
U, and so in particular there is a .X > u for which ( 1 - .X)z + .Xw E U. This is a 
contradiction. On the other hand, suppose that c E C \ U. Then, since C \ U is 
open, there is a neighbourhood N (c, o) lying wholly within C \ U. Thus there 
exists T < u such that T is an upper bound of {A E (0, 1) : ( 1 - .X)z + .Xw E U} .  
This too i s a contradiction. Hence C and 0 are the only open and closed sets 
in C. 

We shall use the following notations and terminology: 
• N (a, r ) = {z : l z - a l  < r} , a neighbourhood, an open disc; 

• N(a, r ) = {z : l z - a l ::::; r } , a closed disc,  the closure of N (a, r ) ; 
• ��: (a, r ) = {z  : l z - a l  = r} = 8N (a, r ) = 8N (a, r ) ,a circle; 

• D' (a, r ) = {z  : 0 < l z - al < r} = N(a, r ) \ {0} ,  a punctured disc . 

EXERCISES 
3 . 1 .  Show that a closed interval [a, b] on the real line is a closed subset 

of C, but that an open interval (a, b) is not an open subset of C. Is 
it closed? 

3 .2 .  Show that the set A = {z E IC : 1 < l z l  < 2} is open. Describe its 
closure and its boundary. 
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3 .3 Functions and Continuity 

In complex analysis, as in other areas of mathematics, we think of a function as 
a "process" transforming one complex number into another. While this process 
may involve a complicated description, most of the important cases involve the· 
use of a formula. Frequently the function is defined only for a subset of C, and 
we talk of the domain of definition, or simply the domain, of the function. 
Thus the function z f-t 1/ z has domain of definition C \ { 0} . 

If z = x + iy E C and I : C --+ C is a function, then there are r eal functions 
u and v of two var iables such that 

l(z) = u(x, y) + iv(x, y) . (3 .1) 

For example, if l(z) = z2 , then 

l(z) = (x + iy)2 = (x2 - y2 ) + i (2xy) , (3.2) 

and so 
u(x , y) = x2 - y2 , v(x, y) = 2xy . 

We refer to u and v as  the real and imaginary par ts of 1, and wr ite u = Re I , 
v = Im l . By Il l  we shall mean the function z f-t l l (z) l .  

We cannot draw graphs o f  complex functions in the way that we do for real 
functions, since the graph { (z, l(z)) : z E C} would r equire four dimensions. 
What can be useful is to pictur e  z and w = l(z) in two complex planes, and it 
can be instructive to pictur e  the image in the w-plane of a path in the z-plane. 

y v 

n P' 

� 
---+----------------• U 

z-plane w-plane 

As the point z moves along the path P in the z-plane, its image l(z) traces 
out the path P' in the w-plane. 

For the function z f-t z2 , the hyperbolic curves x2 - y2 = k and 2xy = l in 
the z-plane transform (see Figure 3 .1 )  r espectively to the straight lines u = i 
and v = l in the w-plane. 
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Figure 3. 1 .  The z-plane 

Less obviously, but by a routine calculation, we see that the straight lines 
x = k and y = l in the z-plane transform respectively (see Figure 3 .2) to the 
parabolic curves 

in the w-plane: 

Figure 3. 2 .  The w-plane 

The concept of a limit is, as in real analysis, central to the development of 
our subject . Given a complex function f and complex numbers l and c, we say 
that limz-+c /(z) = l if, for every f > 0, there exists <5 > 0 such that 1 /(z) - l l  < f 
for all z such that 0 < l z - c l < <5. Formally this definition is exactly the same as 
fQ,r real functions, and many real analysis proofs can simply be reinterpreted as 
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proofs in complex analysis. Our accompanying picture is different , however, for 
the set {z E C : 0 < l z - cl < 8} is not a punctur ed interval, but a punctured 
disc: 

0 
The two-dimensional nature  of the definition does introduce some compli­

cations. For r eal numbers ther e  ar e in effect only two dir ections along which 
a sequence of points can approach a r eal number c, but in the complex plane 
ther e  are infinitely many paths towards c, and the existence of a limit r equir es 
that the limit should exist for every possible path. 

Example 3 .6  

Let f(x + iy) = u(x, y )  + iv (x, y) , where v(x, y )  = 0 for all x , y, and 

u(x, y) = /y 
2 ( (x, y) =;f (O, O) ) . 

X + y  

Show that lim.,-+o f(x+iO) and limy-+0 f(O+iy) both exist , but that limz-to f(z) 
does not . 

Solut ion 
Since u(x, 0) = 0 for all x and u(O, y) = 0 for all y, it is clear that 

I lim f(x + iO) = lim /(0 + iy) = 0 .  
:z:-tO y-+0 

On the other hand, if z = rei9 = r(cos B + i sin B) ,  

1 / (z) l = I r2 co�� sin O I = I cos 0 sin B l . 

If, for example, 0 = 7r/4, then 1 / (z) l = 1/2 for all values of r .  Thus, no matter 
how small c: may be, within the neighbourhood N(O, c:) ther e  is a z (= (c:/2 )+i0) 
for which f(z) = 0 and a z (= (c:/2)ei,./4) for which f(z) = 1/2. The limit does 
not exist . 0 

In that example we obtained differ ing limiting values when 0 was ap­
proached fr om different angles by straight line paths. It might be thought that 
the limit of f(z) as z -+ 0 would exist if all these str aight line paths led to the 
same result . But even this is not so: 
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Example 3 .7 

Let f(x + iy) = u(x, y) + iv(x, y) , where v(x, y) = 0 for all x, y, and 
xy2 u(x, y) = 2 4 ((x, y) # (O, O) ) . 

X + y 
Show that, for all 0, limr-+0 f(rei9 ) = 0, but that limz-+0 f(z) does not exist . 

Solution 

l / (reifJ) I  = I r3 cos 0 sin2
.
0 I · r2 cos2 0 + r4 sm4 0 

If cos O = 0 then l /(rei9 ) 1 = 0 for all r .  Otherwise, for any fixed 0 such that 
cos O # O, 

for sufficiently small r , and so limr-+0 f(rei9 )  = 0. On the other hand, 
4 

f(y2 + yi) = y 
y4 + y4 = 2 '  

1 

and so ther e  are points z arbitrar ily close to 0 for which f(z) = 1/2. The limit 
does not exist . D 

Naturally, we ar e chiefly inter ested in cases where the limit does exist , and 
especially in continuous functions: a complex function f is said to be contin­
uous at a point c if limz-+c f(z) = !(c) . To spell it out in full, f is continuous 
at c if, for all e > 0, ther e  exists o > 0 such that 1 / (z) - /(c) l < e for all z in 
the punctured disc D' ( c, o) .  

Example 3 .8 

Show that the function f : z H l z l 2 i s  continuous at every point c. 

Sol ution 
Let e > 0 be given. Observe that 

l f (z) - /(c) l = l l z l 2 - l cl 2 1 = l l z l - lc l l ( l z l + l e i ) � l z - c l ( l z l + l e i ) · 
Let o � 1 .  Then 0 < l z - cl < 1 implies l z l  - l e i < 1 (by Theor em 2 . 1 ) ,  and so 
l z l < l e i + 1 . Hence 

l f(z) - /(c) l � (2 l cl + 1) l z - cl . 

Hence, if o = min {1 ,  e/(2 lc l + 1 ) } ,  then z E D' (c, o) implies that 1 / (z) - f(c) l < 
e. Thus f is continuous at c. D 
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Remark 3 .9  

The standard "calculus of limits" , familiar for r eal functions, applies also to 
complex functions, and the proofs ar e formally identical. (See [9 ,  Chapter 3) . )  
If limz-tc l(z) = l and limz-tc 9 (z) = m, then kl(z), l(z) ± g(z), l(z)g(z) and 
(pr ovided m =ft 0) l(z)/g(z) have limits kl, l ± m, lm and ljm, r espectively. 
Also, the continuity of I and g at c implies the continuity of kl, I ±  g, I · g 
and (unless g(c) = 0) I jg. 

We shall also be inter ested in limits as z --+ oo, and here  ther e  is a potential 
difficulty, since ther e  ar e many paths to infinity on the complex plane. The 
obvious definition is that limz-too l(z) = L if, for every e > 0, ther e  exists 
K > 0 such that l l (z) - Ll < e whenever l z l  > K. Similar ly, l(z) --+ oo as 

z --+ oo if, for all E > 0 ther e  exists D > 0 such that l l (z)l > E whenever 
l z l  > D. It can sometimes be useful to think of oo as a single point, and to 
extend the complex plane by adjoining that point . If this seems artificial, one 
can change the visualisation of complex numbers by thinking of the complex 
plane as the equator ial plane of a sphere of radius 1, with north pole N. 

For each P =ft N on the spher e we define P' as the point in which N P meets 
the equator ial plane. This gives a one-to-one correspondence between the points 
P on the sphere (except N) and the points on the plane. We may thus visualise 
the complex numbers as points on a sphere  (the Riemann1 sphere, and the 
"missing" point N is the point at infinity. For the most part ,  however , it is 
sufficient to note that limz-too l(z) is the same as the more  easily understood 
limlz l-too l(z). 

1 Georg Friedrich Bernhard Riemann, 1826-1866. 
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3.4 The 0 and o Notations 

This is a convenient place to introduce some extr emely useful notations which 
enable us to grasp the essence of analytic arguments without unnecessary  detail. 
In analysis one fr equently r equir es to prove that a quantity q is "small" . That 
is an over-simplification, for what is small depends on the context : we do not 
normally think of the diameter of the earth's orbit as small, but it is indeed 
small compared with the distance to the edge of the galaxy. So, more precisely, 
one r equires in fact to prove that q is small by comparison with another quantity 
Q. Furthermore, we are always inter ested in the ultimate compar ison between 
the quantities, and so to say that q is small compared with Q is to say that, in 
the limit , the ratio qjQ is zer o. We can save a lot of unnecessary technicalities 
by using 0 and o notations, which we now proceed to explain. 

Let f, ¢ be complex functions (and here ther e  is a tacit assumption that ¢ 
is in some way "better known" than !) ;  then 

• f(z) = O(¢(z) )  as z ---+ oo means that ther e  is a positive constant K such 
that i f (z) i ::::; K j¢(z) i for all sufficiently large i z i ; 

• f(z) = O(¢(z) )  as z ---+ 0 means that ther e  is a positive constant K such 
that i f (z) i ::::; Kj¢(z) i for all sufficiently small j z j ;  

• f(z) = o(¢(z) ) as z ---+ oo means that limlz l-+oo f(z )j¢(z) = 0 ;  
• f(z) = o(¢(z))  as z ---+ 0 means that limz-+0 f(z)j¢(z) = 0 .  
We can use the notation in a very flexible way, wr iting, for example, 0(¢) 

for any function f with the property that l f(z) i ::::; K j¢(z) i for sufficiently small 
(or sufficiently large) z.  

Example 3 . 10 

Show that , as z ---+ 0, 

1 .  O(z) + O(z) = O(z) ,  o(z) + o(z) = o(z) ; 

2. for all K ::/:- 0, K O(z) = O(z) , K o(z) = o(z) ; 
3. O(z)O(z) = O(z2) ,  O(z)O(z) = o(z) . 

Sol ution 
1 .  Let ft (z) = O(z) ,  h (z) = O(z) . Thus ther e  exist positive constants K1 ,  K2 
such that , for all sufficiently small z, 
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Hence 
i h (z) + f2 (z) i ::;  ih (z) i + if2 (z) i ::;  (K1 + K2) iz l , 

and so h (z) + f2 (z) = O(z). 

47 

Suppose now that h (z) = o(z ) ,  f2 (z) = o(z). Then, as z -+  0, fi (z)/z -+ 0 
and h (z)/z -+ 0. It follows immediately that 

h (z) + h (z) 
= 

f(z) + h (z) 
-+ 0 

and so h (z) + h (z) = o(z ) .  

z z z 

2. Let f(z) = O(z) ,  so that there exists a positive M such tliat 1 / (z) l � Mlz i 
for all sufficiently small z. Hence 

IKf(z) i = IK I I f(z) i ::; MIK I Iz i , 

and so Kf(z) = O(z) .  
Let f(z) = o(z ) ,  so that f(z)/z -+ 0 as z -+  0. Hence Kf(z)/z -+ 0, and so 

Kf(z) = o(z ) .  

3. Let /1 (z) = O(z) ,  h (z) = O(z) ,  so that there are constants K1 1  K2 such 
that, for sufficiently small z, 

ih (z) i � K1 iz l , lh (z) i  � K2 iz l . 

Then i h (z )f2(z) i ::;  K1K2 Iz2 j ,  and so h (z)h (z) = O(z2 ) .  Also, 

I h (z�2 (z) I ::; K1K2 iz l -+ 0 ,  

and so h (z)f2 (z) = o(z ) .  
0 

Note that f(z) = o(¢(z ) )  implies that f(z)  = O(¢(z) ) ,  but that the converse 
is not true: 1 + z :::::: 0(1)  as z -+ 0, but it is not true that 1 + z = o(1 ) .  

Exa mple 3 . 11  

Show that , as z -+ 0 ,  

1 2 
( 1 + z)2 

= 1 - 2z + O(z ) . 
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Sol ution 
By an easy calculation, for all lz l ::; � ,  

I 
1 _ ( 1 - 2z) l = � 1 - ( 1 - 2z) ( 1  + 2 z  + z2 ) 

I ( 1 + z)2 ( 1 + z)2 
l 3z2 + 2z3 1 3 l z l 2 + 2 l z l 3 

= < ---'-:--'______,---,-:....,,.:-
1 1 + z l 2 - ( 1 - l z l ) 2 

< 4 l z l 2 = 16 l z l 2 - 1/4 , 

since l z l ::; � implies that ( 1  - l z l ) 2 � i and 3 l z l 2 + 2 l z l 3 ::; 4 l z l 2 . Thus 
1 ) 2 

( ) 2 - (1 - 2z = O(z ) , 1 + z  
and the result follows. 

Example 3 . 12 

Show that, as z -+ oo ,  

4z3 + 7 _ i _ 16 + 0 (_.!._) (z2 + 2)2 - z z3 z4 . 

Sol ution 

4z3 + 7  4 + (7/z3 ) 
(z2 + 2)2 

= 
z (1 + (2/z2 ) ) 2 

= � (4 + 2_) [1 - ..i_ + 0 (_.!._)] (by Example 3 . 1 1 )  
z z3 z2 z4 

EXERCISES 

= i - 16 + 0 (_.!._) . 
z z3 z4 

3 .3 .  Show that 

3.4 Show that, for all positive integers n, 

as z -+ 0  
as z -+  oo .  

( 1  + zt = 1 + nz + o(z) 

as z -+  0. 

0 
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3 05 0  Show that , as z --+ oo, 

3z2 + 7z + 5 
= 3 � O( _2 ) (z + 1)2 + z + z 0 
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3 o6  Let p(z) = a0 + a1 z + o o o + anzn , where n � 1 and an # Oo Show 
that 

p(z) = 0(1 )  as z --+ 0 ,  p(z) = O(zn) as z --+  oo o 





4 
Differentiation 

4. 1 Differentiability 

The definition of differentiability of a complex function presents no problem, 
since it is essentially the same as for a real function: a complex function I is 
said to be differentiable at a point c in C if 

1. l(z) - l(c) liD '--'--=----=-� z-tc Z - C 

exists. The limit is called the derivative of I at c and is denoted by /'{c) . Al­
though the definition is formally identical to that used in real analysis, the fact 
that differentiability requires the rate of change of I to be the same in all possi­
ble directions means that its consequences are much more far-reaching. Certain 
things, however, do not change: the standarq "calculus" rules for differentiation 
of sums, products and quotients, and the "chain rule" (fog) ' (z) = f' (g(z) )g' (z) 
are all valid for complex functions, and the proofs are in essence formally iden­
tical to those in real analysis. {See [9, Chapter 4] . )  Since (trivially) z t-t z is 
differentiable, with derivative 1 ,  it follows that polynomials are differentiable 
at every point in the plane, and that a rational function p(z) /q(z) {where p 
and q are polynomials with no common factor) is differentiable except at the 
zeros of q. 

If, as usual, we write l(x + iy) as u(x, y) + iv(x , y) , and write c as a +  ib, 
then, keeping b fixed, we have 

l(x + ib) - l (a + ib) u(x, b) - u(a, b) . v (x, b) - v (a, b) 
( 'b) ( 'b) = + t . x + t - a + t  x - a  x - a  
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Hence the existence of f' (c) implies the existence of the limits 

1. u(x, b) - u(a, b) d 1. v (x, b) - v(a, b) 1m an 1m , 
z-ta X - a z-+a X - a 

that is, the existence at the point (a, b) of the partial derivatives auj ax and 
avjax. Moreover !' ( ) _ au . av c - ax + � ax · 
If we now keep a fixed, we see that 

f(a + iy) - f(a + ib) u(a, y) - u(a, b) i (v (a, y) - v(a, b)) 
(a + iy) - (a + ib) 

= i(y - b) + i (y - b) 
v(a, y) - v(a, b) . u(a, y) - u(a, b) = - � ' (y - b) y - b 

(4. 1) 

and so the differentiability of f at c implies the existence at (a , b) of the partial 
derivatives aujay and avjay. Moreover, 

f' (c) = av _ i au . ay ay 

Comparing (4. 1 ) and (4.2) gives the Cauchy-Riemann equations 

au av av au 
ax = ay ' ax = - ay . 

We record our observations thus far: 

Theorem 4 . 1  

(4.2) 

(4 .3) 

Let f be a complex function, differentiable at c = a + ib, and suppose that 
f(x + iy) = u(x, y) + iv (x, y , where x y, u(x, y) and v(x, y) are real. Then 
the partial derivatives auj ax, v a , auj ay and av / ay all exist at the point 
(a, b) , and 

au av av au 
ax = ay ' ax = - ay · 

0 

We thus have a necessary condition for differentiability a.t c. Is it also suffi­
cient? Well, not quite. Consider the following example: 
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Example 4.2 

Let f(x + iy) = u(x, y) + iv (x, y) ,  where 

u(x, y) = vfxYj ,  v(x, y) = 0 . 

Show that the Cauchy-Riemann equations are satisfied at z = 0, but that f is 
not differentiable at that point .  

Solution 
It is clear that 8vj8x = 8vj8y = 0, and almost as clear that 8uj8x = 8uj8y = 
0 at the point (0, 0) , since the function u(x, y) takes the constant value 0 along 
both the x- and the y-axes. More formally, at the point (0, 0) , 

8u = lim u(x, O) - u(O, O) = lim Q = O , 8x z-+0 X - 0 z-+0 x 
and the computation for 8u/ 8y is essentially identical. Thus the Cauchy­
Riemann equations are trivially satisfied. 

On the other hand, 

f(z) - f(O) = JiXYI = y'
j cos O sin O I = Ji cos O sin O i e-i9 ,  z - 0 x + iy cos 0 + i sin 0 

where x = r cos 0 and y = r sin 0. The expression on the right is independent of 
r, and so (! ( z) - f ( 0) ) / ( z - 0) takes this constant value for points on the line 
x sin 0 - y cos 0 = 0 arbitrarily close to 0. For 0 = 0 or 0 = rr /2 the constant 
value is 0, but (for example) for 0 = rr/4 the value is ( 1 - i)/2. We are forced 
to conclude that the limit does not exist . 

The Cauchy-Riemann equations arise fr/-ement that the ,.: 
of change of the function at the point c must be the same in the x- and y­
directions, and with hindsighht it was probably unreasonable to suppose that 
they might be a sufficient condition for differentiability, for there are many 
other ways of approaching the point c. Remarkably, they do come close: 

Theorem 4 .3 

Let D = N(c, R) be an open disc in C.  Let f be a complex function whose do­
main contains D, let f(x + iy) = u(x, y) + iv(x , y) , and suppose that the partial 
derivatives 8uj8x, 8vj8x, 8uj8y, 8vj8y exist and are continuous throughout 
D. Suppose also that the Cauchy-Riemann equations are satisfied at c. Then 
f is differentiable at c. 
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Proof* 
Let c = a + ib and let l = h + ik be sU<;h that the neighbourhood N(c, I l l )  lies 
entirely in D. 

N(c,� 
� 

By a standard argument in two-variable calculus, 

u(a + h, b + k) - u(a, b) = [u(a + h, b + k) - u(a, b + k)] 
+ [u(a, b + k) - u(a, b)] 
8u 8u = h Bx (a + Bh, b + k) + k By (a, b + ¢k) , 

by the mean value theorem, where 8, ¢ E (0, 1 ) .  Since the partial derivatives 
are continuous, we may deduce that 

where €1 , €2 --+ 0 as h, k --+ 0, and where the partial derivatives are now evalu­
ated at (a, b) . Similarly, 

v(a + h, b + k) - v (a, b) = h (�� + €3) + k (�� + €4) 

where again €3 1 €4 --+ 0 as h, k --+ 0. Hence 

/(� h (�� + <,) + k (� + <•) + ih (: + <s) + ik (: + «) 

= (h + ik) (�: + i��) + €1h + €2k + i€3h + i€4k 1 

by the Cauchy-Riemann equations. Thus 
f(c + l) - f(c) 8u . 8v 1 . .  8u . 8v 

l 
= Bx + z 8x + y (€1h + €2k + t€3h + t€4k) --+ Bx + �ax 

as l --+ 0 . Thus f' (c) exists, and equals 8uj8x + i(8vj8x) . 0 
A slight modification of this argument, in which c is repla�ed by an arbitrary 

point w in D, gives: 
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Theorem 4 .4 

Let D be an open disc in C. Let I be a complex function whose domain contains 
D, let l(x + iy) = u(x , y) + iv(x, y) , and suppose that the partial derivatives 
8uf8x, 8vf8x, 8uf8y, 8vf8y exist and are continuous throughout D. Suppose 
also that the Cauchy-Riemann equations are satisfied at all points in D. Then 
I is differentiable at all points in D. D 

Remark 4 .5  

What goes wrong in Example 4.2 i s  that the partial derivatives are not contin­
uous at the origin. If x, y > 0, then 

81 - !  fi_ 
8x - 2 V ; '  

and neither of these has a limit as (x, y) -+ (0, 0) . 

Let U be an open set in C. A complex function is said to be holomorphic 
in U if it is differentiable at every point in U. A function which is differenyable 
at every point in C is called an entire function. From our opening remarks 
about differentiability, it is clear that every polynomial is an entire function. A 
rational function such as z H ( z + i) / ( z + 1 ) is holomorphic in the set C \ { - 1 } . 

Some examples are instructive: 

Example 4 .6  

Verify the Cauchy-Riemann equations for the functioj z H z2 • 

Solut ion 
Here 

and so 
u(x, y) = x2 - y2 , v(x, y) = 2xy , 

8v 
= 

_ 8u = 2Y . 8x {)y 
The partial derivatives are continuous and the Cauchy-Riemann equations are 
satisfied. Observe also that the derivative is 

{)u . 8v 2( . ) 2 {)x + z {)x = x + zy = z . 

D 
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Example 4.7 

Verify the Cauchy-Riemann equations for the function z H 1/z (z =f. 0) . 

Solut ion 
Here 

and 
au 
ax 

The derivative is 

X u(x, y) = 2 2 ' X + y 

av 
ay 

-y v(x, y) = 2 2 ' X + y  

av au = ax ay 
2xy 

au . av (y2 - x2 ) + 2ixy - + z - = ax ax (x2 + y2 )2 
and we can check this answer by calculating that 

Example 4.8 

1 .z2 
= z2 - (zz)2 

(y2 - x2 ) + 2ixy 
(x2 + y2 )2 

Show that the function z H l z l 2 is differentiable only at 0 .  

Sohtion 

0 

Here u(x, y) = x2 + y2 and v(x, y) = 0. Since auf ax = 2x and aujay = 2y, the 
Cauchy-Riemann equations are satisfied only at z = 0. Hence differentiability 
fails at all non-zero points. To verify differentiability at 0, observe that 

l z l 2 - 10 1 2 zz 
.:._:_ _ _;__c... = - = z --t 0 z - 0  z 

as z --t 0. The derivative exists, and has value 0. 0 
Given that in real analysis the functions x H x2 and x H l x l 2 are identical, 

the very different conclusions of Examples 4.6 and 4.8 are, on the face of it , 
surprising. One way of explaining the crucial difference between them is to 
observe that z2 depends only on z ,  whereas l z l 2 = zz depends on both z and z. 
Exploring this idea, we express the complex function f(x, y) = u(x, y) + iv(x, y) 
of two real variables x and y as a function of z and z, using the equations 

1 
Y = 2i (z - z) . 
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If we then pretend that we can apply standard two-variable calculus to this 
situation, we find that 

af 
:;::: &f ax + af ay = � ( &I + i &f ) 

{}z ax az ay az 2 ax {}y ' 

and this is equal to 0 (so that f is a function of z only) if and only if of fax + 
i& f / ay = 0, that is, if and only if (au - av ) + i ( av + au) = 0 ' ax ay ax ay . 

that is, if and only if the Cauchy-Riemann equations are satisfied. This far from 
rigorous argument helps to convince us that the Cauchy-Riemann equations 
mark the difference between a true function of z and something that is merely 
a complex-valued function of two real variables. 

From the Mean Value Theorem of real analysis (see [9, Theorems 4.7 and 
4.8] ) we know that a function whose derivative is 0 throughout (a, b) has a 
constant value. A similar result holds for holomorphic complex functions. 

Theorem 4 .9 

Let f be holomorphic in a neighbourhood U = N(a0 , R) , and suppose that 
f' (z) = 0 for all z in U. Then f is constant. 

Proof 

In the usual way, let f(x + iy) = u(u:, y) + iv(x, y) . Then 

/'(z) = au + i 8v = av - i au
' ax ax ay ay 

and so f' (z) = 0 implies that 

at every point in U. 

au 
= 

av = au 
= 

av 
= 0 

ax ax {}y ay 

Let p = a + bi and q = c + di be points in U. Then 
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at least one of r = a + di and s = c + bi lies in U. (See Exercise 4.2 below.) 
Suppose, without essential loss of generality, that r lies inside U. Then both 
x H u(x, d) and y H u(a, y) are real functions with zero derivative, and so are 
constant . Thus 

u(a, b) = u(a, d) = u(c, d) , 
and similarly v (a, b) = v(c, d) . Thus I is constant . 

Remark 4 . 10  

D 

This theorem can certainly be extended to a subset more general than an open 
disc, but not to a general open set . For example, if the open set U is a union 
of two disjoint open discs D1 and D2 , 

then the function 
l(z) = { 1 �f x E D1 

2 If z E D2 
has zero derivative throughout its domain. This is an example where a more 
precise general theorem would require some exploration of topological ideas 
(the illustrated set U is not "connected" ) .  In a first course, however, it is not 
a good idea to introduce too many new concepts, and I intend that all the sets 
we consider should have the connectedness property. 

The proof of Theorem 4.9 involves a slightly clumsy double use of the real 
Mean Value Theorem, and it is natural to ask whether there is a useful complex 
analogue. One's first guess at such an analogue might be something like this : 
given a holomorphic function I and a pair of points c and w in its domain, then 
l(w) = l (c) + (w - c)/' (() , where ( lies on the line segment between c and w. 

But this cannot be true in general. Suppose, for example, that c = 1 ,  w = i 
and l(z) == z3 •  Then the proposed theorem would require the existence of ( on 
the line segment between 1 and i with the property that -i = 1 + 3(i - 1 )(2 • 
Thus 

2 -i - 1 i ( = 3(i - 1) 
= 3 

and so ( = ±(1/Ja)ei.,./4 • For neither of these values does ( lie on the line 
segment between 1 and i .  

What we do have i s a similar but less precise result , sometimes known as 

Goursat 's1 Lemma. Its proof is trivial; but we shall see that it is nonetheless a 
1 Edouard Jean-Baptiste Goursat, 1858-1936. 
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useful observation. 

Theorem 4 . 1 1  (Goursat 's Lemma) 

Let I be holomorphic in an open subset U of C, and let c E U. Then there 
exists a function v with the property that 

l(z) = l(c) + (z - c)l' (c) + (z - c)v(z, c) , 

where v(z, c) -+ 0 as z -+ c. 

Proof 

Let 
v(z, c) = l(z) - l(c) - I' (c) . z - c 

( 4.4) 

Since f is holomorphic, v(z, c) -+ 0 as z -+ c, and Equation ( 4.4) clearly 
follows. D 

The following alternative formulation of the lemma is perhaps worth record­
ing here: if I is holomorphic in an open subset containing c, then there exists 
v such that 

l(c + h) - l(c) - h/' (c) = hv(c, h) , 
and v(c, h) -+ 0 as h -+ 0. 

There is a converse to Goursat's Lemma: 

Theorem 4 . 12 

(4.5) 

Let I be a function defined in an open subset U of C, and let c E U. If there 
exists a complex number A such that 

l(z) - l(c) - A(z - c) -+ 0 as z -+ c , z - c 
then I is differentiable at c, and f' (c) = A. 

Proof 

From (4.6) , with z "# c, we deduce that 

l(z) - l(c) _ A -+ 0 z - c  
as z -+ c, and the result follows immediately. 

(4.6) 

D 
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We end this section with a striking result that is an easy consequence of 
Theorem 4.9: 

Theorem 4 .13 

Let f be holomorphic in  N(ao , R) . If I! I is constant in N(ao ,  R) , then so is f. 

Proof 

H 1!1 = 0, then certainly f = 0. Suppose that l f (z) l = c > 0 for all z in 
N(a0 , R) . Thus 

f(x + iy) = u(x, y) + iv(x, y) , 

and 
[u(x, y)]2 + [v(x, y)] 2 = c2 

for all x + iy in N(a0 , R) . Hence, differentiating with respect to x and y, we 
have 

UU., + VV., = 0 , UUy + VVy = 0 . 
From these equalities and the Cauchy-Riemann equations we deduce that 

and from these equalities we deduce that 

Thus 

and so 

2 - 2 - 2 - 2 - 0 C u., - C Uy - C v., - C Vy - , 

u., = Uy = V., = Vy = 0 . 
Hence, by Theorem 4.9, f is constant throughout U. 0 
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EXERCISES 

4 .1 .  Verify the Cauchy-Riemann equations for the functions 
a) f(z) = iz2 + 2z; 

b) f(z) = (z + i)/ (2z - 3i) .  

4.2 . Let p = a +  ib, q = c + id  lie within the neighbourhood N(O, R) .  
Show that at least one of a +  id, c + i b  lies within N(O, R) . 

4.3 Show that f is differentiable at c if and only if there is a function A, 
continuous at c, such that f(z) = f(c) + A(z) (z - c) . If this holds, 
show that lim .. �c A(z) = f' (c) . 

4.2  Power Series 

Infinite series involving real numbers play an important part in any first 
course in analysis, and some familiarity with the main ideas is assumed. (See 
Chapter 1 . )  Many of the essential definitions and results are easily extended 
to series involving complex numbers. For example, if E�=l Zn = SN, and if 
SN -t S as N -.+ oo, then we say that the infinite series E:=l Zn converges 
to S, or that it has sum S. Again, it is just as true in the complex field as in 
the real field that if E:=l Zn is convergent then limn�oo Zn = 0. 

If E:=l l zn l is convergent we say that E:=l Zn is absolutely convergent, 
and we may show, exactly as in the real case (see [9, Theorem 2.36] ) ,  that 
E:=l Zn is itself convergent. Since E:=l l zn l is a series of (real) positive terms, 
the standard tests for convergence, such as the Comparison Test and the Ratio 
Test, can be applied. (See [9] . )  

Power series E:=o cn (z - a)n , where z, a and Cn are complex, play a 
central role in complex analysis, and it is entirely appropriate, indeed necessary, 
to introduce them at this relatively early stage. The following simple theorem 
has some quite striking consequences: 

Theorem 4 . 14 

Suppose that the power series E:=o cn (z - a)n converges for z - a =  d. Then, 
it converges absolutely for all z such that l z - al < l d l .  
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Proof 

The series converges at all interior points of the circle . 
Since cndn � 0 as n � ·  oo, there exists K > 0 such that l cndn l � K for all n. 
Let z be such that l z - a l < l d l . Then the geometric series :E:'=o ( l z - a l / ld lf 
converges. Since, for all n, 

n n I Z - a in ( l z - a l ) n l cn (z - a) I = l end I -d- � K -ldl
- , 

the series :E:'=o cn (z - a)n is, by the Comparison Test, (absolutely) convergent . 
0 

As a consequence, we have an almost exact analogue of a result (Theorem 
1 .9) in real analysis: 

Theorem 4 . 15 

A power series :E:'=o cn (z - a)n satisfies exactly one of the following three 
conditions: 
(i) the series converges for all z; 

(ii) the series converges only for z = a; 

(iii) there exists a positive real number R such that the series converges for all 
z such that l z - al < R and diverges for all z such that l z - a l > R. 

Proof 

Let V be the set of all z for which the series :E:'=o cn (z - a)n is convergent , 
and let 

M = { l z - al : z E V} . 
Suppose first that M is unbounded. Then, for every z in C, there exists d in V 
such that l d l > l z - a l , and it follows from Theorem 4. 14 that :E:'=o cn (z - a)n 
is convergent . This is Case (i) . 

Suppose now that M is bounded, and let R = sup M .  If R = 0 then 
V = {a} , and we have Case (ii) . So suppose that R > 0, and let z be such that 
l z - al < R. Then, by definition of R, there exists d such that l z - al < l d l < R, 
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and such that L:::'=o cndn is convergent. From Theorem 4.14 it follows that L:::'=o cn (z - a)n is convergent. 
Now let z be such that lz - a l > R, and suppose that L:::'=o cn (z - a)n is 

convergent . Then z - a E V, and so we have an immediate contradiction, since 
R was to be an upper bound of M .  0 

The number R is called the radius of convergence of the power series, 
and we absorb Cases (i) and (ii) into this definition by writing R = oo for Case 
(i) and R = 0 for Case (ii) . 

Theorem 4 .15 is silent concerning numbers z for which lz - a i = R, and this 
is no accident , for it is not possible to make a general statement . The circle 
iz - a i = R is called the circle of convergence, but in using this terminology 
we are not implying that convergence holds for all - or indeed any - of the 
points on the circle . 

The strong similarity between real and complex power series continues, for 
Theorem 1 .9 extends to the complex case, and the proof is not significantly 
different . (See [9, Theorems 7.26 and 7.28] . )  

Theorem 4 . 16 

Let L:::'=o cn (z - a)n be a power series with radius of convergence R. 
(i) If 

I. I Cn I ' lm -- = /\ ,  n->oo Cn+l 
then >. =  R. 

(ii) If 
lim lcn l - 1/n = ). , n->oo 

then >. =  R. 
0 

It is often convenient to prove results about power series for the case where 
a = 0, since it simplifies the notation, and it is easy to modify the results to 
cope with the general case, simply by substituting z - a for z. The following 
useful theorem is a case in point . It tells us that if we differentiate a power 
series term by term we do not change the radius of convergence. 

Theorem 4 . 17 

The power series L:::'=o cn (z - a)n and 2::::'= 1 ncn (z - a)n- 1 have the same 
radius of convergence. 
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Proof* 
We shall prove this for the case where a = 0. 

Suppose that the series I::=o CnZn and 2:::::= 1 ncnzn- 1 have radii of con­
vergence R1 1 R2 , respectively. For each z # 0 and for all n ;?:  1 ,  

and so ,  by the comparison test , I::=o CnZn i s  absolutely convergent for every 
z with the property that 2:::::=1 ncnzn- 1 is absolutely convergent , that is , for 
every z such that l z l  < R2 . It follows that R2 � R1 . 

Suppose now, for a contradiction, that R2 < R1 1 and let Zt .  z2 be such that 

From Exercise 2 .12 we have 

I z2 �n- 1 
n - < Z1 

and from this we deduce that , for all n ;?: 2, 

Since l z1 1 < R1 , the series I::=o lcnz1 1 is convergent. Hence, by the comparison 
test , 2:::::=1 lncnz�- 1 1 converges also, and this is a contradiction, since l z2 l > R2 . 
We deduce that R1 = R2 . 0 

Remark 4 . 18  

The theorem holds good for a series with zero or (more importantly) infinite 
radius of convergence. 

The crucial importance of power series can be seen from the next result . 
It is quite awkward to prove, but easy enough to understand. It tells us that , 
within the circle of convergence, it is legitimate to differentiate a series term 
by term. 

Theorem 4 . 19 

Let I::=o cn (z - a)n be a power series wi�h radius of convergence R # 0, and 
let 00 

f(z) = L Cn (z - at ( l z l < R) . 
n=O 
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Then f is holomorphic within the open disc N(a, R) , and 
00 

f' (z) = L ncn (z - at-1 . 
n=1 

Proof* 
Again, it will be sufficient to prove this for the case where a = 0. 

Let g(z) =:::: L::'=1 ncnzn- 1 . From Theorem 4.17 we know that g is defined 
for l z l < R. We shall show that, within the disc N(a, R) , 

I f(z + h� - f(z) - g(z) l -+ 0 as h --+ 0, 

from which we deduce that f is differentiable, with derivative g. 
The proof, though conceptually simple, is technically awkward, and it pays 

to record some preliminary observations. Let 0 < p < R, and let z, h be such 
that l z l < p, l z ! + !h i < p. Then the geometric series 

are both convergent , with sums 
p 

p - !z ! ' 
p 

p - !z ! - !h ! ' 

respectively. Also, from Exercise 2 .11  we know that 

and it follows that 

We have that 

00 
'"' �-1 1 f;:o nz = ( 1 - z)2 ( ! z ! < 1) , 

oo n! z ln- 1 p l: = 2 · 
n=O pn (p - !z ! ) 

I '(• 
+ ht f(z) - g(z)H� c. c· + h�· - .. - nr') I 

:::; � l en ! I {
z + he - zn 

- nzn- 1 1
· 

(4 .7) 

{4.8) 
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Now, by the binomial theorem, 

I 
(z + h�n - zn 

- nzn- 1 1 = I (;) zn-2h + (;) zn-3h2 + . . .  + hn- 1 1 
::; (;) l z ln-2 l h l + (;) l z l n-3 l h l 2 + · · · + l h l n- 1 

_ ( l z l + l h l ) n - l z ln _ I l n- 1 -
lh l 

n z . 

Also, since CnPn --+ 0 as n --+  oo, there exists K > 0 such that , for all n 2: 1 ,  

Hence 

Hence, 

I f(z + h) - f(z) _ (z) l < � K ( ( l z l + l h l ) n _ 13:_ _ nlh l l z l n- 1 ) 
h g - � l h l pn pn pn 

K ( p P P ih i ) = 1hf p - l z l  - l h l - p - lz l -
(p - lz l ) 2 

(by (4.7) and (4.8) )  

Kp ( l h l l h l ) 
= Thf (p - l z l - l h l )  (p - l z l ) 

- (p - l z l ) 2 

= 
P ��z l 

( 
(p - l z� - lh l ) 

- P � l z l
) 

Kplh i = 
2 ' 

(p - l z l - l h l )  (p - l z l ) 
and this tends to 0 as h --+  0.  

Example 4 . 20 

Sum the series 

D 
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Sol ution 
From 

2 3 1 1 + z + z + z + . . · = -- ( l z l < 1) 1 - z  
we deduce, by differentiating term by term, that 

Hence 

1 + 2z + 3z2 + 4z3 + · · · = 
1 ( l z l  < 1 ) . ( 1 - z)2 

z + 2z2 + 3z3 + 4z4 + · . .  = 
z ( l z l < 1 ) , ( 1 - z)2 

and so, again by differentiation, for all z in N(O, 1 ) ,  

2 2 2 2  2 3 d ( z ) 1 + z  1 + 2 z + 3 z + 4 z + . . . = dz ( 1 - z)2 = ( 1 - z)3 . 
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We define the function exp by means of a power series , convergent for all z : 
oo zn z2 z3 exp z = '"" - = 1 + z + - + - + · · · . L,.; n! 2! 3 ! n=O 

(4.9) 

The function is holomorphic over the whole complex plane, and one easily 
verifies that 

(exp) ' (z) = exp z .  
Let Fw (z) = exp(z + w)f exp z. Then, by the quotient rule, 

F' (z) = 
(exp z) (exp(z + w) ) - (exp(z + w) ) (exp z) 

= O ,  w (exp z)2 

(4 . 10) 

and so Fw (z) = k ,  a constant . (See Exercise 3.2 . ) Since Fw (O) = exp w ,  we 
deduce that Fw (z ) = exp w for all z, and so we have the crucial property of the 
exponential function, that 

exp(z + w) = (exp z) (exp w) . (4. 1 1 )  

In real analysis (see [9, Chapter 6] ) we use this property t o  establish, for every 
rational number q, that exp q = eq , where e = exp 1, and then we define e"' to 
be exp x for every real number x. It is equally reasonable to define ez to be 
exp z for all z in C. We shall use both notations. The functions cos, sin, cosh 
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and sinh defined by 
oo z2n z2 z4 cos z = � (-1 )n (2n) ! = 1 - 21 + 41 - . . .  , 

oo z2n+l z3 z5 sin z = 2 )- 1t = z - - + - - · · · 
n=O (2n + 1) ! 3 !  5 ! ' 
oo z2n z2 z4 cosh z = L -(2 ) ' = 1 + I + I + · · ·  , 
n=O n . 2. 4 . 
oo z2n+l z3 z5 sinh z = � (2n + 1 ) !  = z + 31 + 5T + · · · , 

(4 .12) 

( 4 . 13) 

(4.14) 

( 4 . 15) 

are all entire functions (holomorphic over the whole complex plane) ,  and it is 
easy to verify that the formulae 

cos z + i sin z = eiz , 
1 . . 

cos z = - (e"" + e-"" ) ,  2 
cosh z + sinh z = e"' , 

1 . . sin z = - (e"" - e - "" ) 2i ' 

cos2 z + sin 2 z = 1 , 
1 1 cosh z = 2 (ez + e ·- z ) , sinh z = 2 (ez - e - "' ) , 

(cos)' (z) = - sin z ,  (sin) ' (z) = cos z ,  
(cosh) ' (z) = sinh z ,  (sinh)'(z) = cosh z ,  

are valid for all complex numbers z. 

( 4.16) 

( 4. 17) 
( 4 . 18) 
( 4 .19) 
(4.20) 
(4 .21) 

It is not by any means obvious that for all real x the sine and cosine defined 
by means of these power series are the same as the geometrically defined sine 
and cosine that enable us to put complex numbers into polar form. A proof 
that they are in fact the same can be found in [9, Chapter 8] . Here we shall 
assume that the functions cos and sin, defined by the above power series, have 
the properties 

cos x > 0 (x E [0 , 7!'/2)) , cos(7!'/2) = 0 .  
(In a strictly logical development of analysis , this is the definition of 1r. See [9, 
Chapter 8] . ) From (4 . 18) we deduce that 

sin(7!'/2) = ±J1 - cos2 (rr/2) = ±1 . 
Since sin O = 0 and (sin) ' (x) = cos x > 0 in [O , rr/2) , we must in fact have 
sin(rr/2) = 1 .  From (4. 1 1 )  and (4 .16) we see that 

cos(z + w) + i sin(z + w) = ei(z+w) = eiz eiw 

= (cos z + i sin z ) (cos w + i sin w) 
= (cos z cos w - sin z sin w) + i (sin z cos w + cos z sin w) , 
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and so the familiar addition formulae 

cos(z + w) = cos z cos w - sin z sinw 
sin{z + w) = sin z cos w + cos z sinw 

hold for all z, w in C. From these it follows that 

cos 211' = cos2 1l' - sin2 1l' = 1 ,  sin 211' = 2 sin 1l' cos 1l' = 0 . 
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(4.22) 
{4.23) 

Hence we have the periodic property of the exponential function: for all z in C, 

e.z+21ri = e.z (cos 211' + i sin 211') = e.z . (4.24) 

Writing z as x + iy with x ,  y in IR, we see that 

Thus 
le.z l = ez , arg e.z = y (mod 211') . (4.25) 

Since ez is non-zero for all real x ,  we have the important conclusion that e.z 
is non-zero for all complex numbers z. Thus z H e-.z = 1/e.z is also an entire 
function. 

EXERCISES 
4.4. Let p(z ) = a0 + a1 z + a2z2 + · · · + anzn be a polynomial of 

degree n .  Show that 

4.5 . Show that e.z = ez for all z in C, and deduce that 

sin z = sin z, cos z = cos z .  

4.6 . Use Formulae (4.17) to prove that , for all complex numbers z, w 

cosh{z + w ) = cosh z cosh w + sinh z sinh w ,  

sinh{z + w) = sinh z cosh w + cosh z sinh w .  

4.7. Show that , if F (z) = cosh2 z - sinh2 z, then F' (z ) = 0, and deduce 
that cosh2 z - sinh2 z = 1 for all z . 
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4.8 . Show that cos( iz) � cosh z and sin( iz) = i sinh z. Determine the 
real and imaginary parts of cos z and sin z , and verify the Cauchy­
Riemann equations for each of the functions cos and sin. 
Show that 

I sin z l 2 = sin2 ai + sinh2 y ,  I cos z l 2 = cos2 x + sinh2 y .  

4 .9 . We know that , for all z in C, 

cos2 z + sin2 z = 1 . 

This does not imply that I cos z I :::; 1 and I sin z I :::; 1 .  Show in fact 
that , for all real y, 

I cos(iy) l > �eiY I , I sin(iy) l � �(e iY I - 1 ) . 

4.10 . Show that , for all z in C and all n in Z, 
sin(z + mr) = (-1 )n sin z , cos(z + mr) = (-1t cos z . 

4 . 1 1 .  Show that , for all z in C, 

cosh(z + 2rri) = cosh z sinh(z + 2rri) = sinh z .  

4 .12 . Determine the real and imaginary parts of exp(z2 ) and exp(exp z) .  
4 .13 . Show that , i f x and y are real, 

I sin(x + iy) l � sinh y .  

4 . 14. Show that , as z ---+ 0, 
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4.3 Logarithms 

In real analysis the statements y = e"' and x = log y (where y > 0) are equiv­
alent . (Here log is of course the natural logarithm, to the base e . ) If we try to 
use this approach to define log z for complex z then we hit a difficulty, for the 
fact that ez = ez+21ri for all z means that z H ez is no longer a one-to-one 
function. The notion of a logarithm is indeed useful in complex analysis, but we 
have to be careful. Let us suppose that w = log z (where z '# 0) is equivalent 
to z = ew , where w = u + iv. Then 

and so eu = lz l , v = arg z (mod 211"). Thus u = log l z l , while v is defined only 
modulo 27r. The principal logarithm is given by 

log z = log I z I + i arg z , 

where arg z is the principal argument , lying in the interval ( -1r, 1r] . It is conve­
nient also to refer to the value of the principal logarithm at z as the principal 

value of the logarithm at z. It should be emphasised that the choice of the 
principal argument as lying in ( -1r, 1r] is completely arbitrary: we might have 
chosen the interval [0, 27r) - or indeed the interval ( -1r /8, 1571" /8] - instead. It 
follows that the choice of the principal logarithm is similarly arbitrary. However, 
we have made a choice, and we shall stick to it . 

With the choice we have made, 

log ( -1) = i1r , log( -i) = -i( 1r /2) , log( ! + iv/3) = log 2 + i (  1r /3) , 

and so on. Statements such as 

need to be treated with some care, for the imaginary parts may differ by a 
multiple of 21r. To take the simplest example, log( -1 )  + log( - 1) = 2i7r, and 
this is not the principal logarithm of ( -1 ) (  -1 ) .  

A useful approach to  the untidiness caused by functions such as arg and 
log is to define a multifunction f as a rule associating each z in its do­
main with a subset of C. The elements of the subset are called the values 

of the multifunction. Thus we can define Arg z (note the capital letter) as 
{arg z + 2n7r : n E Z}, and Log z as {log z + 2n1ri : n E Z}.  Then we can say 
definitely that 

Arg(zw ) = Arg z + Argw , Log (zw) = Log z + Log w , 
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where, for example, the second statement means that every value of the mul­
tifunction Log (zw) is a sum of a value of Log z and a value of Log w; and, 
conversely, the sum of an arbitrary value of Log z and an arbitrary value of 
Log w is a value of Log(zw ) . 

The multifunctional nature of the logarithm affects the meaning of powers 
cz , where c, z E C. We define cz in the obvious way as ez log c , and immediately 
realise that z t-t cz may sometimes have to be interpreted as a multifunction. 
If we use the principal logarithm of c we can assure ourselves that cz cw = 

cz+w , but (cz )w  = czw and czdz = (cd)z may fail unless we interpret them in 
multifunction mode. 

Example 4 .21  

Describe ( 1  + i)i . 

Solution 
This is not a single complex number, but a set : 

( 1  + i) i = ei Log( Hi) = { exp [i (log ( J2) + (2n + i )1ri) ] : n E Z} 
= {exp [- (2n + i )7r + i log (J2)] : n E Z} . 

Example 4 .22 

Comment on the statements 

Solution 

0 

For the first formula, given the ambiguity of log, we should examine the mul­
tifunction eLog z .  However, we find that 

eLog z =· {elog l z l+i arg z+2mri : n E Z} = { lz l ei arg ze2mri : n E z} 
= {ze2mri : n E Z} = {z} , 

and so the first formula can be used with perfect safety. 
On the same principle, we next examine the multifunction Log (ez ) . Here 

w E Log ( ez ) if and only if ew = ez , that is, if and only if 

w E  {z + 2n1ri : n E Z} = {x + (y + 2n1r )i : n E Z} . 
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This set certainlv includes z, but we cannot be sure that using the principal 
logarithm will gi · � us the answer z. For example, if z = 5irr/2, then log( e.: ) = 

irr /2 =/:- z. 

By definition, 

In fact all we can say is that ezw is a value of the multifunction ( ez )w . 0 

All this may seem somewhat confusing, but in practice it is usually sur­
prisingly easy to sort out whether or not a formula is true in function or in 
multifunction mode. If a is real and positive, we shall normally regard z f--t az 

as a function rather than a multifunction. Thus az is defined as e.: log a , where 
log has its usual real analysis meaning. 

Finally, we would expect that the formula for the differentiation of the real 
function log x might extend to the complex plane. Also, since all the values of 
the multifunction Log z differ by a constant, we would expect the ambiguity to 
disappear on differentiation: 

Theorem 4 .23 

P roof 

1 (log) ' (z) = - .  
z 

Let z = x + iy = rei8 • Then the values of Log z are given by 

{log r + i(O + 2nrr) : n E Z} . 

If we choose any one of these values, we see that 

log z = � log(x2 + y2 ) + i(tan- 1 (y/x) + 2nrr + C) ,  

where C = 0 or ±rr. (The ±rr is necessary, since tan- 1 (y/x) by definiti�n 
lies between -rr /2 and rr /2, and so, for example, arg ( -1 - i) = - 3rr /4 = 

tan - l 1 - rr. ) Hence, calculating the partial derivatives with respect to x of the 
real and imaginary parts , we see that 

(l ) ' (  ) X . 1 og z = x2 + y2 + t _1_+_(.,.--y--,./x-'-:)""72 
-y 
-;2 

X - iy 
x2 + y2 = 

1 
z 
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EXERCISES 
4 .15 . Describe the multifunction zi , and determine the real and imaginary 

parts of the multifunction ( -i)i . 
4 .16 . Define the multifunction Sin- 1 by the rule that w E  Sin- 1 z if and 

only if sin w = z. Show that 

Sin- 1 z = -i Log (iz ± �) . 
Describe Sin - 1 (1/ J2). 

4. 17. By analogy, define Tan- 1 by the rule that w E  Tan- 1 z if and only 
if tan w = z . Show that 

1 1 ( 1 + iz ) Tan- z = --: Log --.-2z 1 - zz (z # ±i) . 

Suppose now that z = ei11 , of modulus 1 ,  where -1r /2 < (} < 1r /2. 
Show that 

Tan- 1 (ei11 ) = ;i (log 1 1 :o:i�(} I +  i (2n1r + �) ) , 
and deduce that 

Re (Tan- 1 (ei11 )) = { n1r + � : n E z} . 
4 .18 . Comment , on the mathematical rather than the literary content , of: 

Little Jack Horner sat in a corner 
Trying to work out 1r. 
He said, "It 's the principal logarithm 
Of (- 1) -i ." 

4.4 Cuts and Branch Points 

As we have seen in the exercises above, there are many multifunctions, and it 
is easy to define still more complicated examples. For our purposes only two 
multifunctions will really matter, namely Log z (along with its close companion 
Arg z) and z1/n , and there is an easy way of dealing with them. First , the 
principal logarithm is holomorphic in any region contained in C \  ( - oo , 0] . We 
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think of the plane as having a cut along the negative x-axis , preventing arg z 
from leaving the interval ( - 1!' ,  1!' ] . 

y 

======�-- x 

If z moves round any closed path wholly contained in C\ ( - oo ,  OJ , the logarithm 
changes continuously and returns to its original value. 

· 
As with the definition of the principal argument and the principal logarithm, 

the position of the cut is ultimately arbitrary. The positive x-axis would do as 
well. So would any half-line containing the origin, and more complicated cuts 
would also be possible. The key points are that the cut should contain 0 and 
should go off to infinity, and we say that 0 and oo are branch points. If our 
cut failed to contain 0 or failed to go off to infinity without gaps we could find 
a circular path round which the logarithm could not both change continuously 
and return to its original value. 

The other inescapable multifunction is z1ln , where n is a positive integer. 
If z = ei9 then, as a multifunction, 

zlfn = {r1fnei(9+2k,.)/n : k = 0, 1 , . . . , n _ 1 } . 

Again the position of the cut is to an extent arbitrary, but the natural way 
to proceed is to define r11nei9fn as the principal value and to make a cut 
along [0, oo) . Once again, if z moves round any closed path wholly contained in 
C \ [0 , oo ) then the value of z1fn (whether the principal value or not ) changes 
continuously and returns to its original value. Again, 0 and oo are branch 
points. 

For more complicated multifunctions it can be harder to determine the 
branch points and the appropriate cut , but the functions we have mentioned 
will be sufficient for our requirements. 

4 . 5  Singularities 

Let f be a complex function whose domain includes the neighbourhood N(c, r) .  
I t can happen that limz-+c f(z) exists, but i s not equal to f(c) . In such a case 
we say that f has a removable singularity at the point c. The terminology is 
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apposite , for we can remove the singularity by redefining f (c) as limz-+c f(z) . 
For example, we might , admittedly somewhat perversely, define 

f(z) = { z2 �f z # 2 
5 lf z = 2. 

Then f has a removable singularity at 2, and the singularity disappears if we 
redefine /(2) to be 4. Singularities of this kind play no significant part in the 
development of our theory, and when in future we refer to singularities , it will 
be assumed that they are not of this artificial kind. 

More importantly, we have already come across a function, namely z f-t 1/ z ,  
which is holomorphic in any region not containing 0 . For a complex function f , 
a point c such that f(z) has no finite limit as z --+ c is called a singularity. If 
there exists n � 1 such that ( z - c) n f ( z) has a finite limit as z --+ c, we say that 
the singularity is a pole. The order of the pole is the least value of n for which 
limz-+c (z - c)n f(z) is finite. Poles of order 1 ,  2 and 3 are called (respectively) 
simple, double and triple. If f is a function holomorphic on an open subset 
H of C except possibly for poles, we say that f is meromorphic in H . It is, 
for example, clear that the function 1/z is meromorphic (in C) , with a simple 
pole at 0 . 

Example 4 .24 

Show that 1/ sin z is meromorphic in C, with simple poles at z = mr ( n E Z) . 

Solution 
From Exercise 3.8 we know that 

sin(x + iy) = sin x cosh y + i cos x sinh y ,  

and we know that cosh y � 1 for all real y, and sinh y = 0 if and only if y = 0. 
Hence Re (sin(x + iy)) = 0 if and only if sin x = 0, that is , if and only if 
x = mr. Since cos mr = ±1 , Im(sin(x + iy)) = 0 if and only if y = 0. Thus the 
singularities of the function 1/ sin z occur exactly at the points mr. 

From Exercise 3 . 11 we know that sin z = ( -1  )n sin(z - mr) for all n in Z. 
Hence 

lim z � mr 
= lim ( -.

l )n (z - mr) 
= (- It . z-+mr Sln z z-+mr Sln(z - n1l') 

0 
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Example 4 .25 

Show that cos z = -1 if and only if z = (2n + 1)1!', where n E Z. Hence show 
that 

1 
1 + cosh z 

has double poles at z = (2n + 1)1l'i. 

Solution 
One way round the first statement is clear: we know that cos (2n + 1)1!' = -1 .  
For the converse, note that cos(x + iy) = -1 i f  and only if 

cos x cosh y - i sin x sinh y = -1 ,  

that is, if and only if 
cos x cosh y = -1 ,  

sin x sinh y = 0 .  
(4.26) 

(4.27) 

From (4.27) we deduce that either (i) y = 0 or (ii) x = m1!' (where m E Z) . 
Suppose first that y = 0. Then cosh y = 1 and so, from (4.26) ,  cos x = -1 .  
Hence x + iy = (2n + 1)1!' + Oi, as required. Next , suppose that x = m1!' . 

Then cos x = ±1,  and so (4.26) gives (±1) cosb y = -1 .  Since cosb y > 1 for 
all y =f 0, this can happen only if y = 0 and cos x = -1 ,  that is, only if 
x + iy = (2n + 1)1!' + Oi . 

Turning now to the second part of the question, we begin by observing that 
1 +cosh z = 1 +cos( iz) , and so 1 +cosh z = 0 if and only if iz is an odd multiple 
of 1!', that is, if and only if z = (2n + 1)1l'i. So the singularities of 1/(1 + cosh z) 
occur at these points. The periodicity of cos gives 

cosh z = cos(iz) = - cos (iz + (2n + 1)1!') 
= - cos i (z - (2n + 1)1l'i) = - cosh (z - (2n + 1)1l'i) , 

and so, as z --+ (2n + 1)1l'i, 

(z - (2n + 1)1l'i) k (z - (2n + 1)1l'i) k 

1 + cosh z = 1 - cosh {z - (2n + 1)1l'i) 

( ( ) .
) k/ [ (z - (2n + 1)1l'i) 2 (z - (2n + 1)1l'i) 4 ] = z - 2n + 1 1l't - - · · · 

2! 4! 
{ 00 if k = 1 --+ -2 if k = 2 . 

Thus the singularities are all double poles. 0 
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If p and q are polynomial functions, we say that the function r, defined on 
the domain {z E C : q(z) # 0} by r(z) = p(z)jq(z) ,  is a rational function. If 
we suppose, without essential loss of generality, that p and q have no common 
factors, then r is a meromorphic function with poles at the roots 9f the equation 
q(z) = 0. For example, z t-+ (z + 1)/z(z - 1)2 has a simple pole at z = 0 and a 
double pole at z = 1 .  

Other types of singularity can arise, and will be discussed properly later . 
For example, the function e1fz clearly has a singularity at z = 0, but this is 
not a pole, since for all n ;::: 1 

n 1/z n (1 1 1 ) z e = z  + - +  . .  · + + . . .  z (n + 1 ) !zn+l 

has no finite limit as z --+ 0. This is an example of an isolated essential sin­
gularity. Even worse is tan(1/ z) , which has a sequence (2/mr)nEN of singular­
ities (in fact poles) with limit 0. At 0 we have what is called a non-isolated 
essential singularity. 

EXERCISES 
4.19. Show that z t-+ tan z is meromorphic, with simple poles at 

(2n + 1)7r/2 (n E Z) . 
4.20. Investigate the singularities of z t-+ 1/(z sin z ) . 

4.21 . Let r be a rational function with a pole of order k at the point c. 
Show that the derivative of r has a pole of order k + 1 at c. 



5 
Complex Integra tion 

5.1 The Heine-Borel Theorem 

The rather technical Heine1-Borel2 Theorem is necessary for some of our proofs, 
and this is as good a place as any to introduce it . The result we shall need most 
immediately is Theorem 5.3 . 

A subset S in C is said to be bounded if there exists a positive constant 
K such that j z j  :::; K for all z in S. Geometrically speaking, S lies inside the 
closed disc N(O, K) . 

By an open covering of a set S we mean a possibly infinite collection 

C = {Vi : i E I} 

of open sets Vi whose union U {Vi : i E I} contains the set S. If I is finite we 
say that the covering is finite. A subcovering of C is a selection S of the open 
sets Vi which still has union containing S: 

S = {Vi : i E J} , 

where J is a subset of I and S <;; U {Vi : i E J} .  It is called a finite subcovering 
if J is a finite subset of I. 

1 Heinrich Eduard Heine, 1821-1881 .  
2 Felix Edouard Justin Emile Borel, 1871-1956. 
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Theorem 5 . 1  (The Heine-Borel Theorem) 

Let S be a closed, bounded subset of C . Then every open covering of S contains 
a finite subcovering of S. 

Proof* 
Since S is bounded, we may suppose that it is enclosed within a square Q with 
side l :  

Let C be an open covering of S, and let us suppose, for a contradiction, that 
there is no finite subcollection of C that covers S. Divide the square Q into 4 
equal parts by bisecting the sides. Then for at least one of these parts - call it 
Ql - the set S n Q1 of S is not covered by a finite subcollection of C.  We may 
now subdivide the square Q1 in the same way and obtain a still smaller square 
Q2 with the property that the set S n Q2 is not covered by a finite subcollection 
of C. Continuing this argument we find squares 

with the property that S n Qn is not covered by any finite subcollection of C.  
For n = 1 ,  2, 3, . . .  , Qn i s a square with side l/2n , and the distance between 
any two points within Qn is less than l.,fij2n , the length of the diagonal of the 
square. 
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For each n, let an be the centre of the square Qn . We show that the sequence 
(an) is a Cauchy sequence . For a given E > 0 there exists N such that l.;2j2N < 
E. If m, n > N then both am and an are inside or on the boundary of the square 
QN , and so 

J am - an i  :S l.../2j2N < E . 

By the completeness property it follows that the sequence (an ) has a limit a.  
We show now that a lies inside or on the boundary of every square QN. 

Let N E N. Then, for all m > N the point am lies inside or on the square Q N, 
and so J am - aN I :::; lV'i/2N+l . I t follows that 

. 

J a - aN I = lim J am - aN I :::; lh/2N+l , m--too 
and so a lies inside or on the boundary of Q N . 

Since C is a covering, a E U for some U in C. Since U is open, there exists 
a neighbourhood N(a, J) wholly contained in U. If we now choose n so that 
l.;2j2n < J, we see that the square Qn lies entirely within N(a, J) and so 
entirely within U. 

N(a, J) 

u 

Qn 

This is a contradiction, for Qn , chosen so as to be covered by no finite 
selection of the open sets from C, is in fact covered by the single open set 
u. 0 

Remark 5 . 2  

Both "closed" and "bounded" are required in  the theorem. If, for example, S 
is the bounded open disc N(O, 1 ) ,  then 

C = {N(O, 1 - � )  : n E N} 

is an open covering of S, but no finite subcovering of C will suffice. Similarly, 
if S is the closed, unbounded set 

{z E C : Re z � O , Im z � O} 
(the first quadrant of the complex plane) ,  then 

C = {N(O, n) : n E N} 
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is an open covering of S, but again no finite subcovering will suffice. 

One very significant consequence of the Heine-Borel Theorem is as follows: 

Theotem 5 . 3  

Let S be  a closed, bounded set, and let I, with domain containing S ,  b e  con­
tinuous. Then I is bounded on S; that is, the set 

{ l l(z) l : z E S} 

is bounded. Moreover, if M = sups I l l , then there exists z in S such that 
l l (z) l = M. 

Proof* 
Let f = 1. By continuity, for each c in S there exists 8c > 0 such that 
l l (z) - l(c) l < 1 for all z in N(c, 8c) ·  The sets N(c, 8c ) certainly cover S, 
and so, by the Heine-Borel Theorem, a finite subcollection 

covers S. Let 
K = max { l l(ci ) I + 1, . . .  , I I ( ern ) I +  1} , 

and let z E S. Then z E N(ci , 8c. ) for at least one i in { 1 ,  2 , . . . , m} , and so 

l l (z) l - l l(ci ) l :::; l l(z) - l(ci ) l < 1 .  

Hence 
l l (z) l < l l (ci ) l + 1 :::; K . 

Let M = sups I l l , and suppose, for a contradiction, that l f (z) l < M for all 
z in S. It follows that the function g : S ---+ � given by 

g(z) = 1/ (M - 1 / (z) l )  

being continuous, is bounded in S. On the other hand, for all K > 0 there 
exists z in S such that M - I f ( z) I < 1/ K (for otherwise a smaller bound 
would be possible) . Thus lg (z) l = g(z) > K, and so g is not bounded. From 
this contradiction we gain the required result , that the function I ! I attains its 
supremum within S. 0 

The following result is an easy consequence: 
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Corol lary 5 .4 

Let S be a closed bounded set, and let I,  with domain containing S, be con­
tinuous and non-zero throughout S. Then inf { l l(z) l : x E S} > 0. 

Proof 

From the hypotheses we see that 1/ I is continuous throughout S. Hence 
there exists M > 0 such that sup { 1 1/ I ( z) I : z E S} M. It follows that 
inf { l l (z) l : x E 8} = 1/M > 0. D 

EXERCISES 
5 . 1  Show that both "closed" and "bounded" are required in Theorem 

5.3 . 

5 . 2  Parametric Representation 

It will be convenient in thi3 section to define curves by means of a parametric 
representation. That is, a curve, or path, C is defined as 

C = { (r1 (t) , r2 (t) ) : t E [a, b] } ,  

where [a, b] is an interval, and r1 , r2 are real continuous functions with domain 
[a, b] . 

This has some advantages over the standard approach 

C = { (x, l(x)) : x E [a, b] } , 

for there are no problems when the curve becomes vertical, or crosses itself: 

The other advantage is that the definition imposes an orientation, which is 
the direction of travel of a point on the curve as t increases from a to b. 

We shall find it useful to use vector notation and to write 

C = {r(t) : t E [a, b] }  
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where r(t) is the vector (rt (t) , r2 (t) ) . 
If r(a) = r(b) we say that C is a closed curve. If a � t < t' � b and 

I t' - t l < b - a implies that r(t) =f. r(t' ) ,  we say that C is a simple curve. 
Visually, a simple curve does not cross itself. 

Some examples will help. 

Example 5 . 5  

If r (t) = (cos t , sin t) ( t  E [0 , 21r] ) ,  then C is a simple closed curve. The curve, 
a circle of radius 1, begins and ends at the point ( 1 ,  0) , and the orientation is 
anticlockwise. 

Example 5 . 6  

Let r(t) = (t2 , t )  (t E [- 1 , 1] ) .  The curve, a parabola, is simple but not closed. 
It begins at A(1 ,  - 1 ) and ends at B(1 , 1 ) ,  and the orientation is as shown. 

y 
B 

X 

A 

Example 5 .7  

Let r (t) = (cos t cos 2t, sin t cos 2t) (t E [0 , 21rl ) . This is a closed curve, but is 
not simple, since 

r( � )  = ren = r ( 5n = rCn = (o, o) . 
As t increases from 0 to 21r the point r(t) follows a smooth path from A to 0 
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to B to 0 to C to 0 to D to 0 and back to A: 

X 

Consider a curve 
C = {r(t) : t E [a, b] } , 

and let D = {a = to , t1 , . . .  , tn = b} be a dissection of [a, b] , with 
to < t1 < · · · < tn . 

Each ti in D corresponds to a point Pi = r(ti ) on the curve C, and it is 
reasonable to estimate the length of curve C between the point A = Po and 
B = Pn as 

C(C, D) = j PoP1 j + jP1P2 j + · · · + IPn- 1Pn l · 
In analytic terms, this becomes 

n 
C(C, D) = L l ! r (ti ) - r(ti- 1 ) 1 1 , 

i=1 

(5 . 1 )  

(5.2) 

where, for a two-dimensional vector v = (vl !  v2 ) , we define l !v l ! , the norm of 
v, to be y'v? + v� . 

It is clear that if we refine the dissection D by adding extra points then 
C(C, D) increases: if Q is a point between Pi- 1 and Pi , then, by the triangle 
inequality, the combined length of segments Pi- 1Q and QPi is not less than 
the length of the segment Pi- 1Pi . 

Q 

Let 'D be the set of all dissections of [a, b] . If {C.(C, D) : D E 'D} is bounded 
above, we say that the curve C is rectifiable, and we define its length A(C) 
by 

A( C) = sup {C(C ,  D) : D E 'D} . 
Not every curve is rectifiable: 
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Exam ple 5 .8  

Let C = { (t, r2 (t)) : t E [0, 1] } ,  where 

r2 (t) = 
{ t
0
sin(1/t) if t -:f. 0 

if t = 0. 
Show that C is not rectifiable. 

Solut ion 
For n = 1 ,  2 , 3, . . . , let 

{ 2 2 2 2 } Dn = 0, - , ( 1) , . . .  , -2 , - , 1  • n1r n - 71' 71' 71' 

Observe that 

( 
2 ) 2 . 

(
k-:r

) 
{. 0 if k is even r2 k7l' = k7l' sm 2 = ±2/k71' if k is odd. 

Hence, if k is even, 

> (k + 1)7r ' 

and if k is odd we can similarly show that 

It follows that 
l l r ( k�) - r Ck : 1)11'

) I I > k� > (k :  1}11' · 
2 ( 1 1 1 ) C(C, Dn) > ; 2 + 3 + · · · n , 

and from the divergence of the harmonic series we see that there is no upper 
bound on the set {C(C ,  D) : D E  1>}. D 

The following theorem, whose proof can be found in [9 ,  Theorem 8 .5] ,  iden­
tifies a wide class of rectifiable curves, and gives a formula for their lengths: 

Theorem 5 .9 

Let C = {r(t) : t E [a, b] } ,  where r(t) = (r1 (t) , r2 (t) ) ,  and suppose that r1 , r2 
are differentiable and r� , r� are continuous on [a , b] . Then C is rectifiable, and 
the length A( C) of C is given by 

A(C) = 1& l l r' (t) l l  dt . (5 .3) 

D 
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Here r' (t) = (r� (t) , r� (t) ) , and so we have the alternative formula 

(5.4) 

We can easily "translate" a pair (a(t) , ,B(t) ) of real continuous functions 
defined on an interval [a, b] into a continuous function "' : [a , b] ---+ C, where 

"!(t) = a(t) + i,B(t) (t E [a, bl ) . 

Thus, in Example 5.5 , 'Y(t) = eit , and in Example 5.7, 'Y(t) = eit cos 2t. The 
image of "' is the curve 

"'* = {'y(t) : t E [a , b] } .  

Observe that l l r (t) j j  translates to i'Y(t) j ,  so that (5 .3) becomes 

A("!* ) = 1b h' (t) j dt . (5 .5) 

The formula applies if "' is smooth, that is to say, if "' has a continuous deriva­
tive in [a, b] . 

We shall not always be meticulous about preserving the distinction between 
the function "' and the associated curve "/* . 

Example 5 . 10 

Determine the length of the circumference of the circle {reit : 0 :::; t :::; 211' } . 

Solution 
Here h' (t) j = j ireit j = r ,  and so, with some relief, we see that 

{21r 
A = J 0 r dt = 21l'r . 

Example 5 . 1 1  

Find the length of "/* , where 

'Y(t) = t - ie-it (0 :::; t :::; 211') . 

0 
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Solution 
Since 

it follows that 
'Y' (t) = 1 - e-it = ( 1 - cos t) + i sin t , 

I'Y' (tW = ( 1 - cos t)2 + sin2 t = 2 - 2 cos t = 4 sin2 � .  
Hence, since sin(t/2) is non-negative throughout the interval [0, 211'] , 

I 'Y' (t) l = 2 sin � .  
Thus 

Remark 5 . 12 

The curve 'Y* is called a cycloid, and looks like this : 

1 .0 

· ·  . . . . .  o.o . . . . . . . . .  · . .  , :o· . . . . . . . . .  "2:o· . . . . . . . " ' '3:0" " . . . . . . . .  4 :o· . . . . . . . . . .  'S:o . . . . .  · · . . .  � :o . . .  · . .  . . 

-t p : 0 

Figure 5 . 1. A cycloid 

0 

It is the path of a point on the circumference of a wheel of radius 1 rolling 
along the line y = -1  and making one complete rotation. The points Po , P1 
and P2 correspond respectively to the values 0, 71' and 271' of t .  

EXERCISES 
5 .2 .  For any two distinct complex numbers, the line segment from c to d 

can be parametrised by 

l(t) = ( 1 - t)c + td (O s; t s; 1 ) .  
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By using (5 .5) ,  verify that the length of the line segment is what it 
ought to be. 

5.3. Sketch the curves 

a) { (a cos t , b sin t) : 0 S t S 27r} (a, b > 0) ;  

b) { (a cosh t, b sinh t) : t E [O, oo)} (a, b > 0) ;  

c) { (at, aft) : t E (O, oo)} (a > O) . 

5.4. Sketch the curve { teit : t E (0, 21r] } ,  and determine its length. 
5.5. Let a, b E JR., with a < b. Determine the length of A( a, b) of the curve 

{et+it : t E [a, b] } . Determine lima-t-oo A(a, b) . 

5 .3 Integration 

We aim to define the integral of a complex function along a curve in the complex 
plane. 

Let "( : (a , b) -+ IC be smooth, and let I be a "suitable" complex function 
whose domain includes the curve 'Y* . We define 

i l(z) dz = 1b I ('Y (t) )'Y ' (t) dt .  (5.6) 

This does require a bit of explanation. First , if we define g : [a, b] -+ IC by 

g(t) = I ('Y(t) )'Y ' (t) ' 

then g(t) = u(t) + iv(t) , where u, v are functions from [a, b) to JR., and we define 
J: g(t) dt in the obvious way by 

1b g(t) dt = 1b u(t) dt + i 1b v (t) dt . 

Secondly, I is "suitable" if and only if the right hand side of (5 .6) is defined, 
that is, if and only if I ('Y(  t) h' ( t) is integrable. The reader who is familiar 
with some version of formal integration theory will know what this means, but 
for our purposes it is sufficient to know that every continuous function I is 
suitable. 

We refer to f-r l(z) dz as the integral of I along 'Y· If 'Y is a closed curve, 
we call it the integral round 'Y. 

The following easy result has, as we shall see in Chapter 8, far-reaching 
consequences. 
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Theorem 5 . 13 

Let -y(t) = eit (0 :::; t :::; 2rr) , so that -y* is the unit circle (with centre 0 and 
radius 1 ) ,  and let n be an integer. Then 

Proof 

By (5.6) , 

1 n d { 2rri if n = - ..L z z = 
'Y 0 otherwise. 

i zndz = 121< 
rnenitieit dt = i 121< 

rne(n+l )it dt . 

If n = -1  this becomes (21r 
i Jo dt = 2rri . 

Otherwise 

i zndz = i 121< 
rn [cos(n + 1 )t + i sin(n + 1 ) t] dt 

Remark 5 . 14 

_ . n ( [sin(n + 1)t _ . cos(n + 1)t ] 21r) _ 0 
- lT l - . n + 1  n + 1 0 

0 

We shall see shortly that it is legitimate to shorten the argument by writing 

Remark 5 . 15 

rne(n+l )it dt = 
r e(n+l )it = 0 .  121< [ n ] 21r 

0 (n + 1 )i 0 

Although we write J'Y , the integral does not depend on the particular (smooth 
increasing) parametrisation of the contour -y* . Thus, for example, if in Theorem 
5 .13 we were to parametrise the circle by 8(t) = e2it (0 :::; t :::; rr) the value of 
the integral would not change. 

In Theorem 5 . 13 the parametrisation -y(t) = eit implied that the closed 
curve was traversed in the positive (anti-clockwise) direction. If it is traversed 
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in the other direction we must take 'Y(t) = e-it . If n # -1 this makes no 
difference to the answer, but if n = -1 we obtain 

� z-1 dz = 12.,. eit ( -ie-it ) dt = -21l'i . 

In general, if 'Y : [a, b] ---+ C is a curve, we define y, the same path but with 
the opposite orientation, by 

Then we have 

(y)(t) = 'Y(a + b - t) (t E [a, bl ) . 

To see this, observe that 

jy 
l(z) dz = 1b 

I (Y(t) ) (Y)' (t) dt 

= 1b 
I ('Y(a + b - t)) ( -')'1 (a + b - t)) dt 

= 1" I ('Y(u)} (-'Y' (u)) (-du) , where u = a + b - t, 

= - 1b 
I ('Y(u))'Y ' (u) du = -� l(z) dz . 

(5 .7) 

(5 .8) 

At this point it is important to recall some of the standard properties of 
integrals. For real numbers a <  b < c,  real functions I and g, and a constant k ,  

1b (! ± g) = 1b 
I ± 1b 

g ' 

1b 
kl = k 1b 

I ' 

1b 
I + lc I = 1c I . 

We define J: I = 0, and if a > b we define 

(5 .9) 

(5 . 10) 

(5 . 1 1 ) 

With these conventions, (5 . 11 )  holds for arbitrary real numbers a, b and c. 
These formulae easily extend to functions I, g : lR ---+ C, and to the case where 
the constant k is complex. 
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The requirement in (5.6) that -y be a smooth function is inconveniently 
restrictive, and there is no great difficulty in extending the definition to the 
case where -y is piecewise smooth. Geometrically, the curve consists of finitely 
many smooth segments: 

Analytically, -y : (a, b) � C is piecewise smooth if there are real numbers 
a = Co < c1 < · · · < Cm = b 

and smooth functions "fi : [Ci- 1 ,  ci] � C (i = 1 ,  . . . , m) such that 

'Yi (ci) = 'Yi+l (ci ) (i = 1, . . . , m - 1) . 

Then i f(z) dz = � (i1 f(z) dz) 
In practice we proceed in a slightly different way. 

Example 5 . 16 

Let -y = a(O, R) be the closed semicircle shown. 

Determine J'Y z2 dz. 

Solution 

(5 . 12) 

The curve is in two sections, first the line segment -y1 from ( -R, 0) to (R, 0) , 
then the semicircular arc 'Y2 (in the positive direction. The easiest way to 
parametrise -y1 is by 

'Yl (t) = t + iO (t E [-R, Rl ) , 
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and so 1 z2 dz = !R 
t2 dt = 2R

3 
3 

. 
1'1 -R 

Again, it is natural to take 

and so, from (5.6) 

Hence 

Remark 5 . 17 

'Y2 (t) = Reit (t E [0, 1rl ) , 

1 z2 dz = 1 z2 dz + 1 z2 dz = 0 . 
'Y 'Yl 1'2 
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D 

The procedure adopted is not quite in accordance with (5. 12 ) . It is, however, 
always possible to carry out the "official" procedure by re-parametrising '/'1 and 
1'2 so that the end of the interval domain of '}'1 coincides with the beginning of 
the interval domain of '/'2 . In our example we could define 

1'1 (t) = 4Rt - R (t E [0, ! I ) , 'Y2 (t) = Rei""(2t- 1 > (t E [! , 1] ) . 

The answer is the same as before, since the changes simply amount to 
making a substitution in the integral: 

1 {112 [ 1 ] 112 2R3 
,.1 z2 dz = Jo (4Rt - R)24R dt = 3 (4Rt - R)3 0 = -

3
- ;  

1 z2 dz = {
1 

R2e2i71"(2t- 1) 2i11"Rei""(2t- 1 ) dt 
1'2 

11/2 
= R3 1"" ie3iu du (where u = 211"(2t - 1) )  

= �3 [e3iuJ : = _ 2�3
. 

All we achieve by doing it this way is more likelihood of error because of the 
extra technical difficulty involved. 
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We have already dared to suppose that some of the rules of real variable 
calculus might apply to complex-valued functions. In solving Example 5 .16 we 
wrote 11< 3it d = [.!_ 3it] 1< = _.3_  = 2i 

e t 3 . e  3 ' 3 . 
0 z 0 z 

This certainly works, for if we do it the hard way we have 

11< e3it dt = 11< (cos 3t + i sin 3t) dt = Hsin 3t - i cos 3tJ :  = �i
. 

We might suspect that there is a theorem lurking in the shadows, and we would 
be right : 

Theorem 5 . 18 

Let I : [a, b] � C be continuous, and let 

F (x) = 1z l(t) dt (x E [a, b] ) . 

Then F' (X) = I (X) for all X in [a, b] . If e : [a, b] � c is any function such that 
E>' = I , then 

1b 
l(t) dt = E>(b) - E>(a) . 

Proof 

The proof is entirely routine, and depends on the separation of real and imag­
inary parts. Suppose that Re I = g, Im I = h. Then 

F(x) = 1z [g (t) + ih(t)] dt = 1z g(t) dt + i 1z h (t) dt 

= G(x) + iH(x ) (say) . 

Hence, by the Fundamental Theorem of Calculus, 

F' (x) = G; (x) + iH' (x) = g(x) + ih (x) = l (x ) . 

Suppose now that E>' = I .  Writing e = p + i!li in the usual way, we see 
that 

P' = G' = g, !li' = H' = h ,  

and so, for some constants C, C' , and for all x in [a, b] , 

G(x) = P(x) + C, H(x) = !li(x) + C' . 
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Putting x = a  gives C = -<P(a) , C' = -!li(a) , and so 

1b f(t) dt = G(b) + iH(b) = (<P(b) - <P(a) ) + i (!li(b) - !li(a) ) 
= (<P(b) + i!li(b) ) - (<P(a) + i!li(a) ) = B(b) - B(a) .  

As a consequence of this result we have the following theorem: 

Theorem 5 . 19 
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D 

Let 1 : [a , b] -t C be piecewise smooth. Let F be a complex function defined 
on an open set containing 1* , and suppose that F' (z) exists and is continuous 
at each point of 1* . Then 

i F' (z) dz = F (/(b) ) - F (!(a)) . 

In particular, if 1 is closed, then 

i F' (z) dz = 0 .  

P roof 

Suppose first that 1 is smooth. The assumptions imply that Fo1 is differentiable 
on [a, b] .  Since (F o 1) ' (t) = F' (l(t) ) i' (t) , it follows from Theorem 5 . 18 that 

i F' (z) dz = 1b (F o 1)' (t) dt = F (/(b) ) - F (/(a) ) . (5 . 13) 

Now suppose that 1 is piecewise smooth. That is, suppose that there are real 
numbers a = c0 < c1 < · · · < Cm = b and smooth functions li [ci- 1 > ci] -t 
C (i = 1 ,  . . . , m) such that 

(5 . 14) 

and, for each i , 1 coincides with li in the interval [ci- 1 , ci ] · Then (5 . 13) applies 
to each of the functions li and so 

1 F' (z) dz = f 1 F' (z) dz 
I i= l  li 

= [F (11 (c1 ) ) - F (/1 (a) ) ]  + [F (12 (c2 ) ) - F (/2 (cl ) ) ] + · · · 
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• · • + [F ('Ym(b)) - F ('Ym(Cm-d) ]  
= F('Ym(b) ) - F ('Y1 (a)) (by (5 . 14) 
= F('y(b)) - F ('Y (a)) .  

If "Y is closed, then -y(b) = -y(a) , and so J"' F' (z) dz = 0. 

Two easy cases are worth recording formally as a corollary: 

Corol lary 5 .20 

Let "Y be piecewise smooth and closed. Then 1 1 dz =  1 z dz = O . 

Proof 

In the theorem, take first F(z) = z, then F(z) = z2 /2. 

Example 5 .21  

Let -y *  be  the top half o f  the ellipse 
x2 y2 
a2 + b2 = 1 

traversed in the positive (counterclockwise) direction. Determine 1 cos z dz .  

Solution 

D 

D 

The ellipse meets the x-axis at the points (a, 0) and (-a, 0) . By Theorem 5 . 19, 
we do not need to find a parametrisation of -y: 1 cos z dz = [ sin zJ :a = -2 sin a .  

D 

Remark 5 .22 

A closed piecewise smooth curve "Y can be quite a complicated object, but 
Theorem 5 .19 assures us that, for suitable functions F, the integral of F' round 
"Y has the value 0. 
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For the most part , however, we shall be interested in simple curves, with no 
crossings. 

In its most general aspect , a contour is a simple closed curve. Here we shall 
make a more restrictive definition, for we shall not be considering anything 
more general: a contour in C is a piecewise smooth, simple, closed curve. This 
definition is certainly general enough to cover all the significant applications in 
a book at this level. Unless we specify otherwise, we shall assume that contours 
are traversed in the positive (anti-clockwise) direction. 

Let 'Y : [a, b] -7 C be a piecewise smooth function, determining a simple 
closed curve 1* . 

1(a) = r (b) 
We shall regard it as geometrically obvious that the complement of the set 'Y* 
is the disjoint union of two open sets I (r) , called the interior of 1* , and E (r) , 
called the exterior of 1* . The interior is bounded and the exterior unbounded. 
In its general form this is the Jordan Curve Theorem, and a proper proof, 
not appealing to geometric intuition, is difficult . It appears in Jordan's3 Cours 
d 'Analyse of 1887. I am not suggesting that you read this: in a much more 
ambitious book than this, Ahlfors [1] remarks that "no proof is included of the 
Jordan Curve Theorem, which, to the author's knowledge, is never needed in 
function theory." 

3 Marie Ennemond Camille Jordan, 1838-1922. 
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EXERCISES 
5 .6 . Let 1(t) = z - a - t (0 :::; t :::; h) . Show that 

1 (�:1 = � Cz - a
1
- h)n - (z ! a)n ) 

5 .7 . Evaluate J, f(z) dz, where 
a) f(z) = Re z, 1(t) = t2 + it , t E [0, 1] ;  
b) f(z) = z2 , 1(t) = eit , t E [0 , 11'] ;  
c) f (z) = 1/z ,  1(t) = eit , t E [0, 611'] ; 
d) f ( z) = cos z ,  where 1* is the straight line from -71' - i7l' to 71' - i7l' 

followed by the straight line from 71' - i7l' to 71' + i7l'. 

5.4 Estimation 

In analysis, both real and complex, it is important to be able to estimate a 
quantity, especially to put a bound on its value. The results of this section will 
prove to be powerful tools as the theory develops. 

Theorem 5 . 23 

Let g : [a, b] ---+ C be continuous. Then 

Proof 

We know (see [9 , Theorem 5 . 15 (iv)] ) that the inequality holds for every inte­
grable real function g, 

l 1b g(t) dt l :::; 1b l g(t) l dt . 

To show that it holds also for complex-valued functions , observe first that , for 
some (), 
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= 1b Re [ei8 g(t)] dt + i 1b Im [ei8 g(t) ] dt . 
Since the imaginary part of the left-hand side is zero, we deduce that 

1b g(t) dt l = 1b Re [ei8g(t)] dt 
� 1b J ei8 g(t) J dt (by Theorem 2 . 1 ) 

= 1b Jg(t) J dt . 

As a consequence, we have 

Theorem 5 .24 
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Let 'Y : [a, b] -+ C be piecewise smooth, and let J be a continuous complex 
function with the property that J / (z) J � M for all z in 'Y* . Then 

1 1: f(z) dz l � Ml , 
where l = J: h' (t) J dt is the length of 'Y* . 
Proof 

By Theorem 5.23, 

11: f(z) dz l = l1b J ('Y(t) ) 'Y' (t) dt � 1b I ! ('Y(t) ) l h' (t) J dt 
� M  1b h' (t) J dt = Ml .  

0 

Theorem 5 .24 has many applications. First , by a convex contour we mean a 
contour 'Y with the property that , for all a, b in I('Y) , the line segment connecting 
a and b lies wholly in I('Y) .  
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Theorem 5 . 25 

Let "Y be a convex contour, and suppose that J.,. f(z) dz = 0 for every triangular 
contour T within I("Y) . Then there exists a function F, holomorphic in I{ ""f), such 
that F' (z) = f(z) for all z in I("Y) . 

Proof 

Let z E I("Y) . Since I("Y) is open, there exists 8 > 0 such that N{z, 8) C I("Y ) .  If 
we choose h in C so that ! h i < 8, we can be sure that z + h E I("Y) . Let a be an 
arbitrary fixed point in I("Y) . Then, by the convexity of i{"Y ) , the entire triangle 
with vertices at a, z and z + h lies within I( "Y) . 

� 
z + h 

Our hypothesis concerning f implies that 

r f(w) dw + 
J
r f(w) dw - r f(w) dw = 0 j 

J[a ,z] [z , z+h] J[a ,z+h] 
hence, if we define F(z) as f[a ,z] f(w) dw, we have that 

F(z + h) - F(z) = { f(w) dw . 
J[z ,z+h] 

We know that , for a constant k, f[z,z+h] k dw = kh, and so in particular 

r f(z) dw = hf(z) . 
J[z ,z+h] 

By Theorem 5 .3 ,  the function / , being continuous, is bounded within I{"Y), and 
so, by Theorem 5.24, 

I F(z + h) - F(z) -4tf(z) l = 2_ I r (/(w) - f (z) ) dw h j h j J[z ,z+h] 
1 

� -!h i · ! h i sup i f (w) - /(z) j . 
wE (z ,z+h] 
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Since this, again by the continuity of I, tends to zero as h -+ 0, we deduce that 
F' exists and that F' = I. D 

In view of Theorem 5.19 , this theorem has an immediate consequence: 

Corol lary 5 .26 

If 'Y is convex; and if JT l(z) dz = 0 for every triangular contour T within I('Y) ,  
then J"Y l(z) dz = 0. 

Example 5 .27 

Let l(z) = 1/(z3 + 1 )  and let "((t) = Reit (0 � t S 11") .  Show that 

Solution 
For each point on 7* , 

Now, by Theorem 2 . 1 ,  

lim 1 1 l(z) dz l = 0 .  R-too "Y 

IR3e3it + I I � IR3e3it i - 1 = R3 - 1 ' 
and the length of 7* is R11". Hence 

0 S l i l(z) dz l S R�= 1 , 

which clearly tends to zero as R tends to infinity. 

Example 5 .28 

Let l(z) = 1/(z + � ) and let 'Y(t) = eit (0 � t S 11") . Show that 

Solution 
Here 

li l(z) dz l � 211" . 

i l (z) i = 
1 1 -- < -- S 2 

i z + � I l z l - � 

D 
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for all z on -y• , and the length of the curve is 'IT. The required inequality follows 
immediately. 0 

EXERCISES 
5 .8 .  Let -y(t) = ( 1  - t)i + t (0 � t � 1 ) ,  so that -y• is the straight line 

from i to 1 .  Show that , for all z on -y, 

and deduce that , if 
I = 1 dz

' z4 'Y 

then I I I � 4v'2. What is the true value of I I I ? 
5.9 .  Let 

z3 - 4z + 1 
f (z) = 

(z2 + 5) (z3 - 3) ' 

and let -y(t) = Reit (0 � t � 11") . Show that 

1 1 I 7rR(R3 + 4R + 1 )  
'Y f(z) dz � (R2 - 5) (R3 - 3) . 

5 . 10 .  Show that , if u and v are real, 

I sin(u + iv) l � cosh 2v . 

5 . 1 1 .  Let -y• be as shown 

(-a, a) y (a, a) 

--+--.,.oo+---+- x 

(-a, -a) (a, -a) 
and let f (z) = sin(z2 ) .  Show that 

�� f(z) dz l � 6a cosh(4a2 ) .  
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5. 5 Uniform Convergence 

In Theorem 4 .17 we established that the process of differentiating a power series 
(within the circle of convergence) term by term is valid. It was useful to have 
that result at an early stage, but in fact it is an instance of a general result in 
a theory whose key notion is that of uniform convergence. It is convenient 
to finish this chapter with a brief account of the main ideas. We include only 
results that will be used later. 

Let f be a bounded complex function whose domain is a subset S of C. We 
define 1 1 ! 1 1 ,  the norm of /, by 

I I I I I  = sup l f(z) l .  (5 . 15 ) 
zE S 

It is clear that I I I I I 2 0, and that I I I I I  = 0 only if f = 0. Less obviously, we 
also have the triangle inequality : if f and g have the same domain, then 

I I ! + g i l :::; I I I I I  + l l g l l · (5 .16) 

To see this , observe that , for all z in the common domain S of f and g, 

i f(z) + g(z) l :::; l f(z) l + lg (z) l :::; I I I I I  + l l g l l · 
Hence 

I I ! + g i l = sup l f(z) + g(z) i :::; I I ! I I + l l g l l · z E S 
Let fn be a sequence of complex functions whose domain is a subset S of 

C. We say that Un) tends uniformly in S to f, or has uniform limit f,  
or is uniformly convergent to f, if, for every € > 0 there exists a positive 
integer N such that I I! - fn l l  < € for all n > N. This certainly implies that, for 
each z in S, the sequence Un (z) ) tends to f(z) , but the converse implication 
may be false . 

Example 5 . 29 

Let 
1 - zn 

fn (z) = 1 _ z (z E N (O, 1 ) ) . 

Show that (fn ) converges pointwise, but not uniformly, to f, where f (z) 
1/ ( 1 - z) . 

Sol ution 
For each z in N(O, 1 ) ,  

lim fn (z) = -1 - .  n-+oo 1 - z 
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(We say that (/n ) tends pointwise to j, where f(z) = 1/ (1 - z) .  ) On the 
other hand, for each fixed n, f - fn is not even bounded in the set N(O , 1) , 
since, as z ---+ 1 ,  

1 = 1 - z ---+ � = O .  f (z) - fn (z) zn 1 
The convergence is not uniform. 

Theorem 5 .30 

0 

Let f n be a sequence of functions with common domain S, converging uniformly 
in S to a function f. Let a E S. If each fn is continuous at a, then so is f. 

Proof 

Let f > 0 be given. There exists N such that I I / - /n i l < t:/3 for all n > N, 
and there exists 8 > 0 such that l fN+I (z) - fN+1 (a) l  < t:/3 for all z such that 
l z - a l < 8. Hence, for all such z , 

l f(z) - f(a) l  = l (! (z) - IN+I (z) )  + (/N+I (z) - IN+I (a) )  + (/N+I (a) - f(a) ) l  
� l f (z) - !N+I (z) l  + l fN+I (z) - !N+I (a) l  + l f (a) - IN+1 (a) l  
� I I / - fN+I I I  + l fN+1 (z) - fN+I (a) l  + I I / - fN+I i i  
< f ,  

and so f is continuous at a. 0 

The idea of uniform convergence applies also to series of functions. Given a 
sequence (/n ) of functions with common domain S, we define the function Fn 

n 
Fn (z) = L fk (z) (z E S) . k=1 

If the sequence (Fn ) tends uniformly in S to a function F, we say that the 
series 2:;:'=1 fn is uniformly convergent , or that it sums to F uniformly 
in S. Again, it is possible for a series to sum pointwise, but not uniformly: 
it follows immediately from Example 5.29 that the series 2:;:'=1 zn converges 
pointwise to 1/ (1 - z) in N(O, 1 ) ,  but not uniformly. 

The following result , known as the Weierstrass4 M-test , is a useful tool 
for establishing the uniform convergence of a series . 

4 Karl Theodor Wilhelm Weierstrass, 1815-1897. 
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Theorem 5 .31  

For each n 2: 1 ,  let In be a complex function with domain S, and suppose that 
there exist positive numbers Mn (n 2: 1) such that l l ln l l :S: Mn . If E:=l Mn is 
convergent , then E:=l In is uniformly convergent in S. 

Proof 

For each z in S and each n 2: 1 

and so, by the Comparison Test, E:=l ln (z) ,  being absolutely convergent, is 
convergent. Denote its sum by F(z) and its sum to N terms by FN(z) . Let 
f > 0. Since E:=l Mn is convergent, there exists N such that, for all n > N, 

00 
2:: Mk < E/2 . 

k=n+l 
Hence, for all m > n > N and all z in S, 

l kf l 
lk (z) l ::;; 

kt. l
l lk (z) l ::;; 

kfl 
Mk < f/2 . 

Letting m tend to oo, we deduce that, for all z in S, 
IF(z) - Fn (z) l :S: f/2 < f . 

Hence I IF - Fn l l  < f for all n > N, and the proof is complete. 

The following example should be compared with Example 5.29: 

Example 5 .32 

D 

Show that the geometric series E:=o zn converges uniformly in any closed disc 
N(O, a) , provided 0 :S: a < 1 .  

Solution 
For all z in N(O, a) and all n 2: 1, 

l zn l :=;; an . 

Since E:=o an is convergent , it follows by the M-test that E:=o zn converges 
uniformly in N(O, a) . D 

This is in fact a special case of a more general result concerning power 
SPriPS� 
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Theorem 5 .33 

Let r::,o Cn (z - a )n be a power serie3 with radius of convergence R > 0 . . Then, 
for all r in the interval (0, R) , the series is uniformly convergent in the closed 
disc N(a, r) . 

Proof 

For all z in N(a, r ) ,  and for all n, we have that 

Since I::'o:o i anrn i is convergent by Theorem 4.14, the required conclusion fol­
lows immediately from the M-test . 0 

In Chapter 8 we shall have occasion to use the following result : 

Theorem 5 .34 

Let "( be a piecewise smooth path, and suppose that (/n ) is a sequence of 
continuous functions, with common domain containing 'Y* , such that 2::,1 In 
sums uniformly to a function F. Then 

Proof 

For each n, denote l:�o:l lk by Fn , so that F = limn-too Fn . By Theorem 5 .24, 

� � F(z) dz - � � lk (z) dz l = �� [F(z) - Fn(z)] dz l 
:::; L('Y* ) I IF - Fn l l , 

where L('Y* ) is the length of 'Y* . By the assumption that 2::';:1 In sums uni­
formly to F, this can be made less than any pre-assigned € > 0 by taking n 
sufficiently large. 0 



6 
Cauchy 's Theorem 

6 . 1  Cauchy's Theorem: A First Approach 

From Theorem 5. 19, which can be seen as a complex version of the Funda­
mental Theorem of Calculus, we discern a strong tendency, when "reasonable" 
functions f and contours 'Y are involved, for f f(z) dz to be zero. Corollary . 7 
5.20 mentions two special cases which we shall need to quote later, but many 
other familiar functions have the same property: for example, for a piecewise 
smooth contour 'Y ,  i sin z dz = i cos z dz = i exp z dz = 0 . 

(Simply observe that sin z = (- cos) ' (z) , cos z = (sin) ' (z) , exp z = {exp)' (z) . )  
The following general result occupies a central position in complex analysis: 

Theorem 6 . 1  (Cauchy's Theorem) 

Let 7* , determined by a pie?ewise smooth function 'Y : [a, b] ---+ C, be a contour, 
and let f be holomorphic in an open domain cont(!.ining I( 'Y) U 7* . Then i f(z) dz = 0 .  

How hard this is to prove depends on how general we want to be. In this 
chapter we first examine an approach that is adequate provided I( 'Y) U 7* is 
either 

· 
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(a) convex, or 

(b) polygonal (whether convex or not) . 
In the next section we shall present a more difficult proof, which establishes 
the result for a general piecewise smooth contour. 

We begin by showing that the theorem holds for a triangular contour: 

Theorem 6 .2  ---:) Sro� - \� f4 ·, "' w� \c:tQ. 

Let T be a triangular contour, and suppose that f is holomorphic in a domain 
containing I(T) U T. Then JT f(z) dz = 0. 

Proof 

Let T be a triangle whose longest side is of length l , and suppose, for a contra­
diction, that IL f(z) dz l = h > 0 .  • 
We divide the triangle T into four equal subtriangles L1t .  L12 , L13 , L14 , as shown: 

and (for t =  1, 2, 3, 4) let Ui be the boundary of L1i , oriented as shown. Observe 
now that 4 h f(z) dz = £; i; f(z) dz , 
since on the right hand side each of the internal lines is traversed once in each 
direction, and so only the outer contour survives. Since 

we must have 

h = IL f(z) dz l s; t, li; f(z) dz l , 
IL, f(z) dz l � � 
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for at least one of the triangular contours Ui . Choose one of these triangles, 
and rename it as Tt . Thus T1 . with longest side l/2, has the property that 

We may repeat the process by subdividing T1 . choosing T2 , with longest 
side l /4, such that 

1£2 f(z) dz l � � ;  
then, continuing, we obtain, for each n � 1 ,  a triangle Tn , with longest side 
l/2n , such that 

(6 .1 )  

Much as in the proof of the Heine-Borel Theorem (Theorem 5 . 1 ) ,  we can, for 
each n, select a point O:n within Tn and obtain a Cauchy sequence (o:n ) ,  with 
limit o: lying inside every Tn . o,.wJrt11.l. \ ...J:e.rtot�',;·.,.-, -H� • 

Let e > 0 be given. From Theorem 4 .11 ,  there exists o > 0 such that 

l f (z) - f(o:) - (z - o:)f' (o:) l  < e i z - o: l  

for all z in N(o:, o) .  Choose n so that Tn c N(o:, o) . 
By Corollary 5 .20, 

Hence 

f f(o:) dz = 0 and [ (z - o:)f' (o:) dz = 0 .  }Tn }Tn 
[ f(z) dz = [ [f(z) - f(o:) - (z - o:)f' (o:) ] dz . }Tn }Tn 

(6.2) 

Now, the perimeter of Tn is at most 3l/2n , and the maximum value of l z - a: I 
for z and o: in or on Tn is l/2n . Hence, by (6.2) and Theorem 5.24, 

Comparing this with (6. 1 ) ,  we see that 

h � 3l2e . 

Since e can be chosen to be arbitrarily small, this gives a contradiction, and we 
are forced to conclude that 

£ f(z) dz = 0 .  

0 
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Corol lary 6 .3 

Let 'Y be a piecewise smooth function determining a convex contour 'Y* , and let 
f be holomorphic in an open domain containing I("'() U 'Y* .  Then 

i f(z) dz = 0 .  

Proof 

From Theorems 6.2 and 5.25 we deduce that there exists a function F such 
that F' = f. Hence, by Theorem 5 . 19, f-r f(z) dz = 0. D 

Corol lary 6 .4 

Let 'Y be a function determining a polygonal contour 'Y* ,  and let f be holomor­
phic in an open domain containing I( 'Y) U 'Y* . Then 

i f(z) dz = 0 .  

Proof 

The polygon can be divided into triangles L11 , L12 , . . .  , L1n , with contours 
T1 1 T2 , . . .  , Tn , respectively: 

Then, by Theorem 6.2 , 

j f(z) dz = t 1 f(z) dz = 0 .  
"I i=l  T; 
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6.2 Cauchy's Theorem: A More General Version 

Since we shall need to use Cauchy's Theorem and its conse.quences for contoUJ:s 
that are neither convex nor polygonal, it becomes a duty on the author's part 
to present a proof of a more general case. Whether there is a corresponding 
duty on the reader's part is left to individual conscience! There is no doubt, 
however, that useful skills follow from the mastery of substantial proofs. 

Proof* of Theorem 6 . 1  

We begin by remarking that , by Corollary 6.4, Cauchy's Theorem is valid for 
any square or rectangular contour. 

It will be convenient to use the notation Q(a, E) for the open square with 
sides parallel to the coordinate axes, centre at the point a and diagonal of 
length f. 

From the differentiability of f we deduce that, for every f > 0 and every a 
in I('Y) U 'Y* , there exists �a > 0 with the property that 

i f(z) - f(a) - (z - a)J' (a) l < E iz - a l  
for all z in the open square Q (a, �a ) .  From the open covering 

{Q(a, �a ) : a E I('Y) U "f* } 

of the closed bounded set I('Y) U "(* we can, by the Reine-Borel Theorem (The­
orem 5 . 1 ) ,  select a finite subcovering 

then, simplifying the notation by writing �i rather than �a, ,  we may assert that 
there exist points ai (i = 1, . . .  , N) with the property that 

(6 .3) 

for all z in the open square Q( ai , �i ) · 
Since the squares Qi = Q(ai , �i ) are open, a point on the boundary 8Qi of 

one square Qi must lie properly inside another square Qi . Hence there exists 
ry > 0 with the property that, for all z in I( 'Y) U 'Y* , there is a square Qi for 
which z E Qi and the distance d(z, 8Qi ) � ry. 
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Now suppose that I (-y) U 1* is covered by a square of side L, divided into 
smaller squares of side l by a grid of lines parallel to the coordinate axes, and 
choose l < ryj../2. 

v � 
/ II 

r � / 1/ 
;-..._ / 

\ I 
1\ v 

\ / 1"'--""' / ""-
-......._ v 

Lemma 6 .5  

Let Q be a square in the grid such that Qn  (I(-y) UI* ) =f. 0 .  Then Q i s  contained 
in some Qi . 

Proof 

Suppose, for a contradiction, that Q is not wholly contained in any one of 
Q1 1 Q2 , . . . , QN . Let z E Q. By the covering property, z lies in at least one of 
the squares Q1 , Q2 , • . •  , QN . Choose one of those squares, and call it Qi . By our 
assumption, there exists w in Q such that w rJ. Qi . By the covering property, 
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w E  Q3 for some j .  
l'li 

z (,J 

w 

Q · 

The line from z to w crosses the boundary of Qi , and so, for every Qi containing 
z, 

This is a contradiction, and so Q must be wholly contained in a single Qi . 0 

Returning now to the main proof, we see that I( 'Y) is thus divided into a set 
S of squares a and a set T of incomplete squares r, with boundaries 8a, or, 
respectively. Each a and each r is contained in one of the squares Q1 ,  Q2 , . . . Q N 
covering I(r) U 'Y* . We have lots of diagrams like 

l l  
- -
--- ---

l l 
some involving incomplete squares, and because of all the internal cancellations 
we can assert that 

1 f(z) dz = I:: 1 f(z) dz + I:: r f(z) dz . 
"' crE S 8cr TET J 8T 

Hence, using Theorem 6.4 , we deduce that 

1 f(z) dz = I:: 1 f(z) dz . 
"' TET 8T 

(6 .4) 



1 14 Complex Ana lysis 

By Theorem 5.5 ,  our assumption about the function 'Y is sufficient to assure 
us that the curve 'Y* is rectifiable, with total length A (say) . Now consider a 
typical incomplete square T, contained, by Lemma 6.5 ,  in an open square Qi , 

and suppose that the length of the piece of contour forming part of the boundary 
of T is >.T . By Lemma 6.5 , T is contained in a square Qi = Q(ai , c5i ) with the 
property that 

for every z in Qi , and so certainly for every z in T. By a now familiar argument, 
we deduce that I !aT f(z) dz l � faT e l z - ai l dz . 

The total length of the boundary of T is certainly not greater than 4l + >.T , and 
l z - ai l cannot exceed lv'2. So, by Theorem 5.24, 

llaT f(z) dz l � (4l + >.T )elv'2 < 4(l2 + l>.T )eJ2 . 
Summing over all T gives 

li f(z) dz l � 4(A + lA)eJ2 , 

where A is the area of the outer, bounding square, and A is the length of the 
cQ_ntcnu·_ 'Y* . Since the expression on the right can be made arbitrarily small, we 
are forced to conclude that 

i f(z) dz = 0 . 

0 
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6 . 3  Deformation 

As we shall see, the consequences of Cauchy's Theorem are many and impor­
tant . We end this chapter with some of the most obvious corollaries to the 
result.. 

Theorem 6 .6  

Let 'Yl , .'Y2 : [a, b] --t C be  piecewise smooth curves such that 

If I is holomorphic throughout an open set containing 'Yi , 'Y2 and the region 
between, then 

Pro<;>f 

1 l(z) dz = 1 l(z) dz . 
1'1 1'2 

'Y2 

Let u• be the simple closed curve travelling from A to B via 'Yl and from B to 
A via --y2 • Since I is holomorphic in an open domain containing I(u) U u• , we 
have that 

0 = 1 l(z) dz = 1 l(z) dz - 1  l(z) dz . 
a 1'1 1'2 

Finally, we have 

Theorem 6 .  7 (The Deformation Theorem) 

0 

Let 'Yl , -y2 be contours, with -y2 lying wholly inside 'Yl , and suppose that I is 
holomorphic in a domain containing the region between 'Yl and 1'2 .  Then 

1 l(z) dz = 1 l(z) dz .  
1'1 1'2 
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Proof 

c 

1'1 
Join the two contours by lines AB and CD as shown. Denote the (lower) 
section of ")'1 , from A to D, by 'Yll and the (upper) section, from D to A, by 
'Y1u · Similarly, denote the lower section of 1'2 from B to C, by 1'21 .  and the 
upper section, from C to B, by 'Y2u · 

Form a contour 0'1 by traversing from A to B, then from B to C by -'Y2u 1 
then from C to D, and finally from D back to A by 'Y1u ·  By assumption, the 
function I is holomorphic inside and on 0'1 , and so fu1 l (z) dz = 0. That is, 

r l(z) dz - r l(z) dz + r l(z) dz + r l(z) dz = 0 .  (6 .5) 
JAB �2. �D �lu 

Similarly, form a contour 0'2 by traversing from A to D by 1'11 . then from D to 
C, then from C to B by -1'21 . and finally from B back to A. Thus 

r l(z) dz - r l(z) dz - r l(z) dz - r l(z) dz = 0 .  (6 .6) fw len l-r21 JAB 
Adding (6 .5) and (6 .6) gives 

( f I ( z) dz + f I ( z) dz) - ( f I ( z) dz + f I ( z) dz) = o , fn. 1-ru j'Y2u j'Y21 
and so 

as required. 

r l(z) dz = r l(z) dz ' J'Yl J'Y2 
0 
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EXERCISES 
6 . 1 .  Let 'Y be a contour such that 0 E I( "f) . Show that 

if n = -1  
otherwise. 

By taking 'Y* as the ellipse 

show that 

{(x , y) 

1211" ____ d_t --..,.- - 211' 
o a2 cos2 t + b2 sin2 t - ab · 

6.2 . Look again at Exercise 5 . 1 1 ,  and obtain the improved bound 

li sin(z2 ) dz l :::; 2a cosh(4a2 ) . 

117 

6.3. By applying Cauchy's Theorem to ez and integrating round a circu­
lar contour, show that 

1211" 
0 ercos9 cos(r sin 9 + 9) d9 = 0 . 





7 
Some Consequences of Cauchy 's Theorem 

7. 1 Cauchy's Integral Formula 

We have already observed in Theorem 5.13 that if a is a circle with centre 0 
then 

More generally, if �t( a, r) is a circle with centre a, then 

for, with z = a + rei9 , 

r -1- dz = 21l"i j J ... (a ,r) z - a 

1 . 1 - 12"" irei9 d(J _ . -- dz - .9 
- 21l"l . 

t<.(a,r) z - a 0 re' 

(7. 1 )  

This observation will play a part in  the proof of  the main result of  this sec­
tion, which shows that the value of a holomorphic function inside a contour is 
determined by its values on the contour. (Recall that by a contour we shall 
always mean a closed, simple, piecewise smooth curve, and that, unless we spec­
ify otherwise, it is traversed in the positive direction. )  That is an extraordinary 
result, and reveals a fundamental difference between complex analysis and real 
analysis. Even for an analytic real function f (infinitely differentiable and with 
a Taylor series expansion) we can make no deduction at all about the values of 
the function in (a, b) from its values at a and at b. 
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Theorem 7 . 1  (Cauchy's I ntegra l Formu la)  

Let 'Y be a contour and let f be holomorphic in an open domain containing 
I('Y) U 'Y* . Then for every point a in I('Y) , 

f(a) = �1 f(z) dz . 21l'z -y z - a  

Proof 

Let a E I('Y) .  By the differentiability of f at a we know (see Theorem 4 .11 ) that 

f(z) = f (a) + (z - a)J' (a) + v(z, a) (z - a) , (7.2) 
where v(z, a) tends to 0 as z -+  a. That is , for all e > 0 there exists 6 > 0 such 
that l v(z , a) l  < e for all z in N(a, o) . 

Let K = K( a, r) , the circle with centre a and radius r, where r is chosen s&­
that 

(i) the disc N(a, r) lies wholly inside 'Yi and 

(ii) r < 6. 
Since f(z)/ (z - a) is holomorphic in the region between a and 'Y we deduce by 
the Deformation Theorem (Theorem 6.7) that 

1 M dz = 1 M dz -y z - a  ,. z - a  

Thus 

= f(a) 1 � dz + J' (a) 1 1 dz + 1 v(z, a) dz (by (7.2)) ,. z  a ,. ,. 
= 21l'i f(a) + 1 v (z, a) dz (by (7. 1 ) and Corollary 5. 19) . 

1.£ ;�� dz - 21l'i f(a) l = 11 v(z, a) dz l < 21l're (by Theorem 5.24) . 

Since this holds for every positive e, we deduce that 

f(a) = �1 f(z) dz . 2n -y z - a 
D 
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Remark 7 .2  

Dividing f(z) by z - a introduces a singularity (unless f(a) = 0) .  Cauchy's 
Integral Formula is the first indication that integration round a contour depends 
crucially on the singularities of the integrand within the contour. 

Example 7 .3  

Evaluate 

Solut ion 
Since 

we may deduce that 

{ sin z d },.(0 ,2) z2 + 1 z . 

1 1 ( 1 1 ) 
z2 + 1 = 2i z - i - z + i ' 

{ sin z dz = _.!._ { sin z dz _ _.!._ { sin z 
} .. (o ,2 ) z2 + 1 2i } �<(o ,2) z - i 2i } �<(o ,2) z + i 

= 1r (sin i - sin(-i) ) = 21r sin i = � (e- 1 - e) =  1ri(e - e- 1 ) . 
z 

0 
If we could be sure that the procedure of differentiating under the integral 

sign was valid, we could deduce from Cauchy's Integral Formula that 

f' (a) = � 1 � ( f(z) ) dz = � 1 f(z) dz . 21rz 7 da z - a 21r2 7 (z - a)2 

In fact this is true, though what we have just written does not even approximate 
to a proof. 

Theorem 7 .4 

Let 'Y be a contour, let f be holomorphic in  a domain containing I( 'Y) U -y• , and 
let a E I('Y) . Then 

Proof 

, 1 1 f(z) f (a) = -2 . ( ) 2 dz . 1r2 7 z - a  

Since a E I( 'Y) ,  there exists o > 0 such that 

i z - ai > 2o (7.3) 
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for all z on the contour 'Y* .  If 0 < J h l < 8, then a + h E I('Y) and, for all z on 

l z - a - hi � l z - aJ - Jh l > 8 .  (7.4) 

Since I is continuous on the closed, bounded set 'Y* ,  it follows by Theorem 5.3 
that the set 

{ i l(z) i : z E 'Y* } 
is bounded, with supremum M (s�y) . 

By Cauchy's Integral Formula, 

Hence 

I (  a + h) - I( a) = _1_. 1 l(z) ( 1 _ _ 1_) dz h 2nh 'Y z - a - h z - a 

= _1 1 l(z) dz . 27ri 'Y (z - a - h) (z - a) 

I I(  a + h) - I( a) _ _ 1 1 l(z) dz l h 211"i 'Y (z - a)2 

= 1-1 1 l(z) [ 1 - 1 ] dz l 27ri 'Y (z - a - h) (z - a) (z - a)2 
l h l l1 l(z) d I = 211" 'Y (z - a)2 (z - a - h) z · 

By Theorem 5.24 and Equations (7.3) and (7.4) we now conclude that 

I I( a + h) - l(a) _ _ 1 1 l(z) dz l < MLlhl 
h 211"i 7 (z - a)2 81r83 ' 

where L is the length of the contour 'Y. Thus 

and so 

as required. 

lim I l(a + h) - l(a) - _1 1 l(z) dz l = 0 ' h-tO h 211"i 'Y (z - a)2 

1 1 1 l(z) I (a) = -2 . ( ) 2 dz ,  1rz 'Y z - a 
0 
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More generally, we have the following theorem: 

Theorem 7 .5  

Let '"Y be  a contour, let I be holomorphic in a domain containing I( 'Y) U '"Y* , and 
let a E I('"Y ) .  Then I has an nth derivative l(n) for all n ;?: 1 ,  and 

l(n) (a) = � 1 l(z) dz .  27ri -r (z - a)n+l 

Proof* 

The proof is by induction on n, and we have already proved the result for n = 1 .  
We suppose that the result holds for n = k - 1 and consider the expression 
[l (k- ll (a + h) - l(k- ll (a)]/h. As in the proof of Theorem 7.4, we can find 8 > 0 
and can choose h such that J z - aJ > 28, J z - a - h J  > 8. By the induction 
hypothesis, 

l(k- l l (a + h) - l (k- l l (a) = (k - 1) ! 1 z [ 1 - 1 ] dz .  h 21rih -r I( ) (z - a - h)k (z - a)k 

To prove the theorem, we need to show that E(h) , defined by 

l(k- l) (a + h) - l(k- ll (a) k! 1 l(z) E(h) == h - -2 . ( ) k+l dz ,  
7rt -r z - a 

tends to 0 as h -+ 0. Now, 

and 

( k - 1) ! 1 [ 1 1 kh ] E(h) = 
21rih -r l(z) 

(z - a - h)k - (z - a)k - (z - a)k+1 dz ' 

D = 1 
(z - a - h)k 

1 
(z _

k:) k+l = g(a + h) - g(a) - hg' (a) , 
(z - a)k 

where g(w) = 1/(z - w)k . Hence, by (4.5) , we know that D = hv(a, h) , where 
v(a, h) -+ 0 as h -+  0. 

There exists M such that J l(z) J  � M in I('"Y) U 1* . and the contour '"Y* has 
length L (say) . Hence, by Theorem 5.24, 

JE(h) J � (k - l) !�: J v (a, h) J , 

which tends to 0 as h -+ 0. 0 
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Remark 7 .6  

It is worth drawing attention to  the fact, on the face of i t  rather surprising, that 
a differentiable function I necessarily has higher derivatives of every order. This 
is in complete contrast to the situation in real analysis, where, for example, the 
function I given by 

l(x) = { x2 sin(1/x) �f x # 0 
0 1f x = O  

is differentiable at 0, but f' is not even continuous. 

The statement of Theorem 7.5 tends to suggest that one wants to use the 
integral to obtain the derivative. Frequently, however, it is appropriate to turn 
the formula round, and to use the equality 

1 l(z) = 271"i 
l(n- 1l (a) 

-r (z - a)n (n - 1 ) !  

to  compute the integral. 

Example 7 .7 

Evaluate 

Solution 

1 esin z  
-3- dz . 

1<(0,1 ) z 

(7.5) 

By Theorem 7.5, the value of the integral is (1/2 ! )211"i/" (0) , where l(z) = esin "' . 
Now, f' (z) = esin z  cos z ,  and I" (z) = esin z ( cos2 z - sin z) . Thus I" (0) = 1 ,  and 
so 1 esin z 

-3- dz = 11"i .  
1<(0, 1 )  z 

0 
We finish this section by showing that Cauchy's Theorem has a converse: 

Theorem 7 .8 (Morera 's  Theorem ) 
Let I be continuous on an open set D. If f-r I ( z) dz = 0 for every contour 
contained in D, then I is holomorphic in D. 
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Proof 

Let a E D, and let r be such that N (a, r) � D. Within this convex open 
set every contour "Y, in particular every triangular contour "Y, is such that 
f f(z) dz = 0. Hence, by Theorem 5. 19, there exists a function F, holomorphic � . 
in N(a, r) , such that F' (z) = f(z) for all z in N(a, r) .  By the remark following 
Theorem 7 .5 , F has derivatives of all orders within N (a, r) , and so certainly f' (a) exists. Since a was chosen arbitrarily, it follows that f is holomorphic 
� �  D 

EXERCISES 

7 . 1 .  Evaluate the following integrals: 

1 ekz 
a) 

n+ l  
dz; ��;(0, 1 ) z 

b) 
1 z3 dz· ��;(o,2) z2 - 2z + 2 ' 

c) 
1 . ez 

2 
dz. ��;(0,2) 1rt - z 

7.2. Evaluate 1 ( zm ) dz ( m, n E N) . ��;(0,2) 1 - Z n 

7.3. Suppose that the function f is holomorphic in N(a, R) . Show that, 
i£ 0 < r < R, 

!' (a) = _.!._  f2tr F(9)e-i9 d9 1rr lo 
where F(9) is the real part of f(a + re'9 ) .  

7.4. Suppose that the function f is holomorphic in N(O, R') , and let a 
be such that la l = r < R < R' . 

a) Show that 

1 1 R2 - aa f(a) = - f(z) dz . 
27ri ��;(O,R) (z - a) (R2 - za) 

_b) Deduce Poisson's1 formula: if 0 < r < R, then 

1 12fr f(re'9 ) = -
27r o R2 -

1 Simeon Denis Poisson, 1781-1840. 

R2 2 - r /(Re'�) d4J .  2Rr cos(9 - <P) + r2 
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7.5. Evaluate 
r sin2 z dz 
},.(0,4) [z - (1rj6)]2 [z + (1rj6)] · 

7.6. Prove the following result : 

Complex Ana lysis 

Let 'Y be a contour, and let f be continuous on 'Y* . Then g, defined 
by 

g(z) = r f(w) dz ' }"'' w - z  
is holomorphic in C \ 'Y* . 

7.2  The Fundamental Theorem of Algebra 

Recall now that a function f which is holomorphic throughout C will be called 
an entire function. We have already encountered several such functions: every 
polynomial function is an entire function, and so are exp, sin and cos. When 
regarded as real functions, sin and cos are also bounded, but the boundedness 
property fails when we consider the whole complex plane: both I cos(iy) l = 

cosh y and I sin(iy) l = l i sinh yl (where y is real) tend to infinity as y --+ oo .  
It i s  thus natural to ask whether there exist any bounded entire functions. 
Liouville's Theorem2 says in essence that there are none: 

Theorem 7 .9 ( Liouvi l le 's Theorem) 

Let f be a bounded entire function. Then f is constant . 

Proof 

Suppose that l f (z) l � M for all z in C. Let a E C and let 'YR be the circular 
contour lz - a l = R. Then, by Theorems 7.4 and 5.24, 

I 1 1 r f(z) I 1 M M I f (a) l = 27ri J"YR (z - a)2 dz � 271" .  R2 . 211"R = R .  
This holds for all values of R, and so f' (a) = 0. Since f' (a) = 0 for all a in C, 
it follows from Theorem 4.9 that f is a constant function. 0 
2 Joseph Liouville, 1809-1882. 
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The rather grandly named FUndamental Theorem of Algebra has already 
been mentioned (see Section 2 . 1 )  as one of the justifications for studying com­
plex numbers . It was proved first by Gauss3 , and is a fine example of a deep 
and difficult theorem that yields easily once we have developed suitable tools. 
For a history of the theorem, see [1 1 ] . 

Theorem 7 . 10 

Let p(z) be a polynomial of degree n ;::: 1 ,  with coefficients in C. Then there 
exists a in C such that p (a ) = 0 . 

Proof 

Suppose, for a contradiction, that p(z) =f. 0 for all z in C. Then both p(z) and 
1/p(z) are entire functions . Certainly lp(z) l -+ oo as l z l  -+ oo (see Exercise 
3.6) ,  and so there exists R > 0 such that 1 1/p(z) l :::; 1 whenever l z l > R. By 
Theorem 5 .3, the function 1/p(z) is also bounded on the closed bounded set 
{z : l z l  :::; R} . Thus, by Theorem 7.9, 1/p(z) , being a bounded entire function, 
must be constant . From this contradiction we deduce, as required, that the 
polynomial equation p(z) = 0 must have at least one root . 0 

It is now straightforward to prove 

Theorem 7 . 1 1  (The Fundamenta l Theorem of Algebra ) 

Let p(z) be a polynomial of degree n, with coefficients in C. Then there exist 
complex numbers /3, a1 , a2 , . . .  , an such that 

p(z) = f3(z - a 1 ) (z - a2 ) . . .  (z - an ) .  

Proof 

The proof is by induction on n,  it being clear that the result is valid for n = 1 .  
Suppose that the result holds for all polynomials of degree n - 1 ,  and let p(z) 
have degree n. By Theorem 7.10 there exists a1 in C such that p(a1 ) = 0. 
Hence p(z) = (z - ai )q(z) , where q(z) is of degree n - 1 .  By the induction 
hypothesis there exist /3, a2 , . . .  , an in C such that 

q(z) = /3(z - a2 ) . . .  (z - an) .  
3 Johann Carl Friedrich Gauss , 1777-1855. 



128 Complex Analysis 

Hence 
p(z) = {3(z - at ) (z - a2 ) . . .  (z - an) , 

as required. 0 

EXERCISES 

7.7. Let p(x) = a0 + a1x + · · · + anxn be a polynomial of degree n with 
real coefficients. Show that p(x) factorises into linear and quadratic 
factors. That is, show that, for some k, l � 0 such that k + 2l = n, 
there exist real . numbers a1 , a2 , . . .  , ak , /31 , /32 , . . . , /3! , '1'1 , '1'2 , . . . , 'YI 
such that 

Deduce that a polynomial of odd degree must have at least one real 
root. 

7.8 Find the real factors of 

7.3 Logarithms 
We have already encountered the logarithm function in Section 3.5, where we 
discussed the problem of finding w such that ew = z. A related problem is that 
of find:ing, for a contour 'Y, such that 0 � I('Y) U 'Y* , a function log"Y , holomorphic 
in I('Y), such that exp [log"Y z] = z. 

This follows from a theorem concerning what, following the terminology of 
real analysis, we might call the Indefinite Integral Theorem: 

Theorem 7 . 12 

Let 'Y be a contour and let f be holomorphic in an open domain containing 
I('y) U 'Y* . Then there exists a holomorphic function F such that F' ( z) = f ( z) 
for all z in I('Y) . 

Proof 
Cbooee and fix a point a in I('Y) , and, for each z in I('Y) , let Cz be a smooth 
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curve from a to z, lying wholly within I('y) . Let 

F(z) = f f(w) dw ; 16. 
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by the deformation theorem (Theorem 6.7) , this is independent of the precise 
curve we choose from a to z. Choose h so that N(z, l h l ) lies wholly in I('y) . 
Then certainly the line segment [z, z + h) lies within I('y) . 

We can certainly arrange for the closed path (15z , [z, z + h] , -15z+h) to be 
simple (that is, without crossings) ,  and so, by Cauchy's Theorem, 

Hence 

Now, 

F(z) + f f(w) dw - F(z + h) = O . J[z ,z+h] 

F(z + h) - F(z) = f f(w) dw .  J[z ,z+h] 

f f(z) dw = f(z) f 1 dw = hf(z) , J[z ,z+h] J[z , z+h] 

and so, by Theorem 5.24, 

I F(z + h) - F(z) - f(z) i = 2_ I f (f(w) - f(z)) dw l h lh l J(z ,z+h] 

:::; 
l� l [ l h l sup l f (w) - f(z) l] · 

wE [z ,z+h] 

Since, by the continuity of f, this tends to 0 as h --+ 0, we deduce that F is 
differentiable at z, with derivative f(z) . 0 
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Example 7 . 13 

Show that there exists F such that F' (z) = ez2 within the neighbourhood 
N(O, R) .  

Solution 
By the theorem just proved, the required function is given by 

where 'Y is any smooth path from 0 to z. The fact that we cannot "do" the 
integral by antidifferentiation has nothing to do with the existence of the func­
tioo. 0 

Theorem 7 . 14 

Let D be an open disc not containing 0. Then there exists a function F, holo­
morphic in D, such that 

Proof 

eF(z) = z (z E D) . 

Let a be an arbitrary fixed point in D and, for each z in D, let Oz be a smooth 
path in D from a to z. The function 1/z is holomorphic in C \  {0} and so, by 
Theorem 7 . 12 ,  the function G given by 

G(z) = 1 _! dw 
8, w 

has the property that G' (z) = 1/z .  Let H(z) = ze-G(zl . Then, for all z in D ,  
H' (z) = e-G(z) - ze-G(z) G' (z) = e-G(z ) - e-G(z ) = 0 ,  

and so, by Theorem 4.9 , eG(z) = Cz, for some constant C. Let F(z) = G(z) ­
log C; then eF(z ) = z, as required. 0 

Remark 7 . 15  

It is reasonable t o  denote the holomorphic function F as logD z .  Like the log­
arithm of a number, it is not quite unique. If eFl (z ) = eF2 (z ) (= z) for all z in 
D, then differentiation gives 

zF{ (z) = eF1 (z ) F{ (z) = eF2 (z) p� (z) = zF� (z) . 
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Thus F1 - F2 has zero derivative and so is a constant K. Since eK = 1 we must 
have K = 2mri for some integer n: 

7.4 Taylor Series 

In real analysis there are distinctions between functions that are differen­
tiable, infinitely differentiable (having derivatives of all orders) , and ana­
lytic (having a Taylor4 series expansion) . We have already seen that a holo­
morphic function is infinitely differentiable. In fact it also has a Taylor series 
expansion. Precisely, we have the following theorem: 

Theorem 7 . 16 

Let c E C and suppose that the function I is holomorphic i11 some neighbour­
hood N(c, R) of c. Then, within N(c, R) , 

00 

l(z) = L an (z - ct , 
n=O 

where, for n = 0, 1 ,  2, . . . , 
l (nl (c) an = --- . n! 

Proof 

It is helpful first to record the sum of the following finite geometric series: 

1 h hn 1 hn+l 
- + + . .  · + = - (7 6) 
z - c (z - c)2 (z - c)n+l z - c - h (z - c)n+l (z - c - h) · · 

Let 0 < R1 < R2 < R. Then I is holomorphic throughout the closed disc 
N(c, R2 ) . Let C be the circle �t(c, R2) ,  and let c + h E N(c, R1 ) .  Then, by 
Theorems 7 .1 and 7.5 and Equation (7.6) , 

l(c + h) = � r l(z) 
27l't J c z - c - h 

= -1 [ f I ( z) dz + h f I ( z) dz + . . .  + h n f I ( z) dz 27l'i Jc z - c Jc (z - c)2 }0 (z - c)n+ l ----
4 Brook Taylor, 1685-1731 .  
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where 

+ hn+l r f(z) dz] Jc (z - c)n+l (z - c - h) 
hn = /(c) + h/' (c) + · · · + 1 /(n) (c) + En , n. 

hn+l r f(z) 
En = 27ri Jc (z - c)n+l (z - c - h) dz · 

We complete the proof by showing that En -+ 0 as n -+ oo. First , by Theorem 
5.3 , there exists M > 0 such that 1 / (z) l � M for all z on the circle C. For all 
z on C, 

l z - c - hi � l z - cl - I h i � R2 - Rt , 
since l z - cl = R2 and l h l � Rt . Hence, by Theorem 5.24, 

l h ln+l M Mlh l ( I h i ) n 
IEn l � ----z;- . 21rR2 . R2+1 (R2 - Rt ) = R2 - Rt R2 

Since I h i / R2 < 1 ,  we deduce that En -+ 0 as n -+ oo .  Thus 
oo hn f(c + h) =  L 1 /(n) (c) , 

n=O n. 
and substituting z = c + h gives 

where 

Remark 7. 17 

00 
f(z) = L an (Z - c)n , n=O 

_ 1 (n) _ 1 1 f(z) an - -1 f (c) - -2 . ( ) +l dz . n. 1r't c z - c n (7.7) 

0 

The Taylor series of a function f is unigue. If f(z) = L::'=o an (z - c)n then, by 
Theorem 4.19, f(n) (z) = n!an+ positive powers of z - c, and so an = f(n) (c)jn! .  
Thus if we find, by whatever method, a power series for a function, the series 
we find must be the Taylor series . 

Example 7 . 18 

Show that , for all real a, 

( 1 +  z)a = 1 + f a(a - 1 ) . ·��a - n + 1 )  zn ( l z l < 1) . 
n=l 
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Solution 
The function is holomorphic in the open set C \ { -1} ,  so certainly in the 
neighbourhood N(O, 1 ) .  Moreover, the principal argument of 1 + z lies safely 
in the interval ( -1r /2 , 1r /2) , and so there is no ambiguity in the meaning of 
( 1 + z)a = ea log( l+.z) . A routine calculation gives 

and so 

Hence 

/(n) (z) = a( a - 1)  . . .  (a - n + 1 ) ( 1 + z)a-n (n = 1 , 2, . . .  ) 

f(n) (O) = a(a - 1 )  . . .  (a - n + 1) 
n !  n !  

( 1  + z)a = 1 + f: a( a - 1) . . . �a - n + 1) zn ( l z l < 1 )  
n=l n. 

as required. 

We sometimes want to say that the Taylor series 

00 

f(z) = 2: an (z - ct 
n=O 

D 

is the Taylor series of f at c, or that the series is centred on c, or that c is 
the centre of the series. To qualify Remark 7.17 above, the Taylor series of a 
function is unique once we choose the centre, but a function has many different 
Taylor series, with different centres. For example, the function 1/ ( 1 + z)2 is 
holomorphic in C \  { -1} ,  and its Taylor series, centred on 0, is 

00 
1 - 2z + 3z2 - 4z3 + · · · = 2:( - 1)n (n + 1)zn ( l z l < 1 ) .  

n=O 
If we choose an arbitrary complex number c -# -1  as centre, we find that 

1 1 1 
( 1 + z)2 = [(c + 1) + (z - c)J 2 

= 
(c + 1 )2 {1 +  ((z - c)/ (c + 1) ) ] 2 

Example 7 . 19 

Show that 

= � (- 1 )n (n + 1 )  (z - ct ( l z - cl < l c + 1 1 ) . f;:o (c + 1 )n+2 

z2 z3 
log ( 1  + z) = z - - + - - · · · 

2 3 ( l z l < 1 ) . 
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Solution 
Within the neighbourhood N(O, 1 ) ,  1+z stays clear of the cut along the negative 
x-axis. 

f(z) = 
f' (z) 

f" (z) = 

f'" (z) 

f (n) (z) = 

and so 

Remark 7 .20 

log(1 + z) 
1 

1 + z 
1 

( 1 + z)2 
2 

( 1 + z)3 

( -1 )n- 1 (n - 1 ) ! 
( 1 + z)n 

/(0) 
f' (O) 

!" (0) 
2 ! !"' (0) 
3! 

f(n) (0) --
n! 

oo n 

= 

= 

= 

= 

log(1 + z) = _L) -1t-1:_ 
n=1 n ( l z l < 1 ) . 

0 
1 
1 
2 
1 -
3 

( -1 )n- 1 
n 

D 

The ambiguity in the definition of log presents no problem here. When we wrote 
f (O) = 0 we were taking the sensible view that log 1 = 0. If, say, we insisted on 
taking log 1 = 2?Ti (which is certainly one of the values of Log 1 )  then only the 
first term of the Taylor series would be altered. 

Remark 7 .21  

The series for 1/ (1 + z)2 could be obtained from the series for log(1 + z) by 
differentiating twice. 

EXERCISES 
7.9. Recall that f is an even function f if f(-z) = f(z) for all z in C, 

and that f is an odd function if / (  -z) = -f(z) for all z in C. Let 
f be a holomorphic function with Taylor series 

00 

f(z) = L anzn ( l z l < R) . 
n=O 

Show that: 
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a) if I is even, then an = 0 for all odd n; 
b) if I is odd, then an = 0 for all even n. 

7.10 . Let c E C. Determine Taylor series centred on c for ez and cos z .  
7 . 11 .  Let I be an entire function, with Taylor series 

00 

n=O 
For each r > 0, let M(r) = sup { J I (z) i : z E K(O, r ) } . 

a) Deduce from (7 .7) that 
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b) Suppose now that I is bounded. Give an alternative proof of 
Liouville 's Theorem (Theorem 7.9) by deducing that an = 0 for 
all n � l . 

c) More generally, suppose that there exists N � 1 and K > 0 such 
that l l (z) l ::; K lzN I for all z. Show that I is a polynomial of 
degree at most N. 

7. 12 . Let I, g be functions whose Taylor series 
00 00 

l(z) = L anzn , g(z) = L bnzn 
n=O n=O 

have radii of convergence R1 , R2 , respectively. Let h(z) = l(z)g(z) , 
where i z l < min {R1 , R2 } . By using Leibniz 's formula for Mnl (z ) ,  
show that h has Taylor series 

00 
h(z) = L CnZn , 

n=O 
where Cn = L:;=O an-rbr ,  the radius of convergence being at least 
min {R1 , R2 } .  

7. 13 . The odd function tan z, being holomorphic in the open disc 
N (O , 1r /2) , has a Taylor series 

tan z = a1 z  + a3z3 + asz5 + · · · . 
Use the identity sin z = tan z cos z and the result of the previous 
exercise to show that 

(- 1)n a2n- l a2n-3 ( )n a1 ( ) (2n + 1) ! = a2n+l - 2! + � - · · · + - 1  (2n) ! n � O . 
Use this identity to calculate ar , a3 and as . 
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7. 14. The odd function tanh z is also holomorphic in N(O, 1r /2) , and has 
a Taylor series 

With the notation of the previous example, show that b2n+l = 
( -l)na2n+ l •  



8 
Laurent Series and the Residue Theorem 

8 . 1  Laurent Series 

In Section 3 .5 we looked briefly at functions with isolated singularities. It is clear 
that a function I with an isolated singularity at a point c cannot have a Taylor 
series centred on c. What it does have is a Laurent1 series, a generalized 
version of a Taylor series in which there are negative as well as positive powers 
of z - c. 

Theorem 8 . 1  

Let I be holomorphic in the punctured disc D' ( c ,  R) ,  where R > 0 .  Then there 
exist complex numbers an (n E Z) such that, for all z in D' (a, R) , 

00. 

l(z) = L an (z - c)n . 
n=-oo 

If 0 < r < R, then 
1 1 l(w) d an = 

2rri �<(c,r) (w - c)n+l w . (8. 1 ) 

Proof 

It will be sufficient to prove this for the case c = 0. Let z E D' (O, R) ,  and let 
1 Pierre Alphonse Laurent, 1813-1854. 
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0 < r1 < J z J  < r2 < R. 
H 

Let z E D(O,  R) . The function f is holomorphic inside and on both the 
contours 

1i : A --7 E --7 D --7 C --7 F --7 B --7 A , 
12 : A --7 B --7 G --7 C --7 D --7 H --7 A , 

and we may suppose without loss of generality that z lies inside 1i . Hence, 
since the function f(w)/(w - z) is holomorphic on I(/2 ) U 12' , 

� 1 !(w) dw = 0 .  (8.2) 27rt 1' 2  w - z 
By contrast , it follows from Theorem 7. 1 that 

� 1 f (w) dw = f(z) . 27rt 1'1 w - z (8.3) 

If we now add (8 .2) and (8.3 ) ,  the integrals along the straight line segments 
cancel each other. The outer and inner circles are traversed in the positive and 
negative directions respectively, and so 

f(z) = � 1 f (w) dw - 1 f(w) dw . (8.4) 27rt tt{O,r2 ) W - Z tt{O,rl ) W - Z 

For all w on the circle ��:(0, r2 ) it is clear that J z/wJ < 1 . Thus 
1 1 1 1 -- = - = - (1 + (z/w) + (z/w)2 + (z/w)3 + . . · ) w - z w 1 - (z/w) w 

oo n 

= L w
:
+l · 

n=O 
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Similarly, lw/z l < 1 for all w on ��:(O, r1 ) ,  and so 

Hence, from (8 .4) , 

1 oo wn - - - " ­
w - z - � zn+l · 

n=O 
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1 r 00 zn 1 1 00 wn 
f(z) = 211'i },. f(w) L wn+l dw + 211'i f(w) L zn+l dw . (8 .5) 

tt(O ,r2 ) n=O tt(O ,rl ) n=O 
Both the series are uniformly convergent by Theorem 5 .33 and so, by Theorem 
5 .34, 

where 

00 00 
f (z) = L anzn + L bnz- (n+l ) , 

n=O n=O 

an = � r !(:� dw , bn = -2
1 . r f (w)wn dw . 211't j �t(O ,r2 ) wn 11't j �t(O ,rl ) 

By the deformation theorem (Theorem 6.7) we can replace both ��:(O, r1 ) and 
��:(O, r2 ) by ��:(O , r ) ,  where 0 < r < R. Then, changing the notation by writing 
bn as a-n- 1 ,  we obtain the required result , that 

where 
n=-oo 

an = _1_ r f ( w) dw . 211'i j �t(O ,r) wn+l 

(8 .6) 

(8.7) 

0 

The series (8 .6) is called the Laurent expansion, or Laurent series of 
f in the punctured disc D' (O, R) . The sum g(z) = 2:��-oo an (z - c)n is called 
the principal part of f at c. 

There is a uniqueness theorem for Laurent series: 

Theorem 8 . 2 

Let f be holomorphic in the punctured disc D' ( c, R) , and suppose that , for all 
z in D' (c, R) , 

Then, for all n in Z, 

00 
n=-oo 

bn = _1 r f ( w) dw . 211'i Jtt(c,r) (w - c)n+l 

(8 .8) 
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Proof 
Again, it will be sufficient to consider the case where c = 0. Let an be as defined 
in (8.7) ,  and let r E (0, R) . Then 

21rian = r ���� dw = r [ f bkwk-n-1] dw J tc{O,r) } tc(O,r) k=-oo 
= r [E bkwk-n- 1J dw + r [E b-�w-l-n- 1J dw . j tc(O,r) k=O j tc(O,r) 1=1 

Both these power series are convergent by assumption, and so, by Theorems 
5.33 and 5.34, may be integrated term by term. Hence 

since, by Theorem 5.13 ,  f. (o wk-n-1 dw = 0 unless k - n - 1 = -1 .  Thus ,. ,r) bn = an , and so the series (8.8) is indeed the Laurent expansion of f. 0 

Corol lary 8 .3 

H f has Laurent expansion 
00 f(z) = L an(z - ct n=-oo 

in the punctured disc D' (c, R) , then 

Proof 

r f(z) dz = 21ria_ 1 . },.(c,r) 

Simply put n = -1 in the formula (8.7) . 0 

This rather innocent result has far-reaching consequences, as we shall see 
shortly. The coefficient a_1 is called the residue of f at c, and we denote it by 
res(!, c) . 

Example 8.4 

Determine 

1 �1 dz ,  '"( z + 
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where "Y is the semicircle [-R, R] U {z : l z l  = R ,  Im z � 0}, traversed in the 
positive direction, with R > 1 . 

Solution 

The integrand has a singularity at i .  The Laurent expansion at i is given by 

_1_ _ 1 _ _ 1_ . 1 _ _ 1 _ __!_ (1 z - i ) - 1 

z2 + 1 - (z - i) (z + i) - z - i 2i + (z - i) - z - i 2i + 2i 
1 ( z - i (z - i)2 (z - i)3 ) = 

2i(z - i) 1 - 2i + (2i)2 - (2i)3 + · · · · 
The function z H 1/(z2 + 1) has a simple pole at i, and the residue is 1/2i. 
Hence 

Remark 8 .5  

1 +-1 dz = 21l'i(l/2i) = 1l' .  
"Y z + 

0 

You will notice that in this example nearly all of the Laurent expansion is irrel­
evant. We shall shortly consider techniques for obtaining the crucial coefficient 
a _ 1 without going to the trouble of finding the whole expansion. 

The uniqueness theorem proves very useful in obtaining Laurent expansions, 
since the formula (8.7) for the coefficients often presents us with an integral that 
is far from easy to evaluate. For example, the function sin( 1/ z) is holomorphic 
in C \ {0} , and the uniqueness theorem assures us that the obvious series 

00 -2n- 1 ; (-1t (�n + 1 ) !  

i s  none other than the Laurent expansion. From (8.7) we note that 

a _ n  = -2
1 . r f(w)wn- 1 dw ' 1l't J K.(O,r) 
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and so we have the incidental conclusion that, for every non-negative integer n 
and every contour 'Y such that 0 E I('Y) , 

while 

1 2n . ( / ) d  (- 1 )n27ri 
"Y w sm 1 w w = (2n + 1 ) ! 

, 

l wk sin(1/w) dw = o.  
unless k is even and non-negative. These conclusions would be hard to reach 
without the power of Laurent 's Theorem. 

Remark 8 .6  

For a function f that is holomorphic in an open domain containing the disc 
D(c, R) , we have a Taylor series 

00 

f(z) = L:an(z - ct , 
n=O 

where 
an = 

J<:!(c) = 2�i 1(c,R) (w �(��+1 dw . 

This is also the Laurent expansion. If f is holomorphic throughout the disc 
then the negative coefficients in the Laurent expansion are all 0. 

It is often sufficient to know the first few terms of a Laurent expansion, and 
here the 0 and o notations can save a lot of unnecessary detail. 

Example 8 .7 

Calculate the first few terms of the Laurent series for 1/ sin z at 0. 

Solution 
The function 1/ sin z has a singularity at 0 but is otherwise holomorphic in the 
neighbourhood N(O, rr) . We know that, as z ---+ 0, 

z3 sin z = z - 6" + O(z5 ) . 

Hence, for z near 0, 
1 1 [  ( z2 ) ] - l 1 [ z2 ] -. - = - 1 - - + O(z4) = - 1 + - + O(z4 ) sm z z 6 z 6 

1 z 3 = - + - + O(z ) .  
z 6 
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D 

If we require more terms it is in principle easy to compute them. See Exercise 
8 . 1 .  

Example 8 .8 

Show that 

Solution 

1 z cot z = - - - + O(z3 ) .  z 3 

From what we know already, 
cos z ( z2 ) ( 1 z 3 ) cot z = -. - = 1 - - + O(z4 ) - + -6 + O(z ) 
Sill Z 2 Z 

EXERCISES 

1 ( 1 1 ) 3 = - - z - - - + O(z ) z 2 6 
1 z 3 = - - - + O(z ) .  z 3 

D 

8. 1 .  Show that 

8 .2 .  Show that 

1 1 z 7z3 4 -. - = - + -6 + 360 + o( z ) · 
Sill Z Z 

1 2 1 z2 
1 - cos z = z2 + 6 + 120 + o(z3 ) • 

8.3. Show that the coefficient of z- 1 in the Laurent series of e1fze2z is 
oo 2n 
� n!(n + 1) ! · 

8.4. Determine res(!, 0) ,  where: 
a) f(z) = 1/ (z4 sin z) ; 
b) f(z) = 1/ [z3 ( 1 - cos z)] . 
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8 . 2  Classification of Singularities 

We encountered singularities in Section 3.5 , but the Laurent series helps us to 
understand them better. Let f(z) have a Laurent series 2::.::'=-oo an (z - c)n . 
If an # 0 for infinitely many negative values of n, then f has an essential 
singularity at c. Otherwise, if n is the least integer (positive or negative) such 
that an # 0, we say that n is the order of f at c, and write n = ord{!, c) . It is 
clear that ord{f, c) is the unique integer n such that f(z) = (z - c)ng(z ) ,  where 
g is differentiable and non-zero at c. 

Example 8 .9  

Show that cos{l/z) has an essential singularity at 0 .  

Solution 
Since cos{1/z) has the Laurent series 

1 -2 1 - 4  1 - 2 1 z + 41 z 

it is clear that it has an essential singularity at 0. 0 

The coefficients of the Laurent series for f do not depend on the value of 
/{c) , which we may take as undefined. If ord{f, c) = n 2': 0 then f becomes 
differentiable at c if we define /(c) as a0 • Thus, whether /(c) was undefined, or 
had a value other than a0 , we can remove the singularity at c by defining (or 
redefining) /(c) to be ao . This is what is called a removable singularity. Note 
that f has (at worst) a removable singularity at c if and only if limz�c f (z) is 
finite. 

If ord{!, c) = - m, where m > 0, then f has a pole of order m at c. A 
pole of order 1 is usually called a simple pole. From Examples 8. 7 and 8.8 
we see that sin and cot both have simple poles at 0, and from Exercise 7.2 we 
see that 1/(1 - cos z) has a pole of order 2 (a double pole) at 0. 

It is clear that if c is a pole of f then f(z) -4 oo as z -4 c. If f has an 
essential singularity at c, then limz�c f(z) does not exist . Indeed we have the 
following remarkable theorem, due to Casorati2 and Weierstrass, which says 
that within an arbitrarily small punctured disc D'(c, o) the value of f(z) can 
be made arbitrarily close to any complex number whatever: 

2 Felice Casorati, 1835-1890. 
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Theorem 8 . 10 (The Casorati-Weierstrass Theorem) 

Let f have an essential singularity at c, and let d be an arbitrary complex 
number. Then, for all � > 0 and for all e > 0 there exists z in D' ( c, �) such that 
l f (z) - dl < e. 

Proof 

Suppose, for a contradiction, that for some d in C there exists e > 0 and � > 0 
such that l f (z) - dl ;:::: e for all z in D'(c, �) . Let g(z) = 1/ (/(z) - d) . Then, for 
all z in D' ( c, �) , 

1 lg(z) l :::; -
€ 

and so g has (at worst) a removable singularity at c. Since g is not identically 
zero, ord(g, c) = k ;:=:: 0, and so 

ord(f, c) =  ord(f - d, c) =  -k .  

(See Exercise 8.5 below.) This contradicts the assumption that f has an essen­
tial singularity at c. 0 

As a consequence we have the following result , which says that a non­
polynomial entire function comes arbitrarily close to every complex number in 
any region { z : l z l > R} : 

Theorem 8 . 1 1  

Let f b e  an entire function, not a polynomial. Let R > 0 ,  e > 0 and c E C. 
Then there exists z such that l z l > R and 1 / (z) - cl < e. 

Proof 

The function f has a non-terminating Taylor series :L::'=o anzn , converging for 
all z. It follows that the function g, defined by g(z) = /(1/z) , has an essential 
singularity at 0. So, by Theorem 8.10 , for all e, R > 0 and all c in C, there 
exists z such that l z l < 1/ R and lg (z) - c l < e. That is, 1 1/ z l > R and 
l / ( 1/z) - cl < e. 0 

EXERCISES 
8.5 .  Let f and g have finite order at c. Show that : 
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a) ord(f · g, c) = ord(f, c) + ord(g, c) ; 
b) ord(l/1, c) = -ord(f, c) ; 
c) if ord(f, c) < ord(g, c) , then ord(f + g, c) = ord(f, c) . 

8.6 Use the previous exercise to deduce that 
a) 1/ z sin2 z has a triple pole at 0; 

b) (cot z + cos z) / sin 2z has a double pole at 0. 

c) z2 (z - 1)/ [ ( 1 - cos z) log(1 + z)] has a simple pole at zero. 

8.3 The Residue Theorem 

Let "f be a contour and let I be holomorphic in a domain containing I( 'Y) U 'Y ' , 
except for a single point c in I( 'Y) . Then I has a Laurent expansion 

00 
l(z) = L an (z - ct , 

n= - oo 

valid for all z i- c in I('Y)U"f* . From Corollary 8.3 and the Deformation Theorem 
(Theorem 6. 7) , we deduce that 

� l(z) dz = 2rria_ l . 
We refer to a_1 as the residue of I at the singularity c, and write a_l = res(!, c) . (8.9) 

The next result extends this conclusion to a function having finitely many 
singularities within the contour: 

Theorem 8 . 12  (The Residue Theorem) 

Let 'Y be a contour, and let I be a function holomorphic in an open domain 
U containing I('Y) U 'Y* , except for finitely many poles at c1 , c2 , . . . , Cm in I('Y) . 
Then 

�-{ u �\ �d���-�i t, •�(!, c, ) 
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Proof 

For k = 1, 2, . . .  , m, let fk be the principal part of f at Ck · Suppose in fact that 
Ck is a pole of order Nk , so that the Laurent series of f at Ck is 

00 

L a�k) (z - Ck )n . 
n=-Nk 

Then fk (z) = L:��-Nk a�k) (z - ck )n , a rational function with precisely one 
singularity, a pole of order Nk at Ck . Notice also that 

00 
f(z) - !k (z) = L a�k l (z - ck )n 

n=O 
and so f - fk is holomorphic in some neighbourhood of Ck . 

Let g = f - (11 + h + · · · + fm) · We write g = (! - fk ) - L:Nk !; and 
observe that f - !k and each !; (j # k) are holomorphic at Ck · This happens 
for each value of k and, since there are no other potential singularities for g, 
we conclude that g is holomorphic in U. Hence J"Y g(z) dz = 0, and so 

By Theorem 5. 13, 

1 f(z) dz = f: 1 !k (z) dz . 
"'( k=l "'( 

� !k (z) dz = 27ria�f = 27rires(f, Ck ) ,  

and the result now follows immediately from (8. 10) . 

(8. 10) 

D 

Accordingly, the key to integration round a contour is the calculation of 
residues, and it is important to be able to calculate those without computing 
the entire Laurent series. Simple poles are the easiest : 

Theorem 8 . 13 

Let f have a simple pole at c. Then 

res(!, c) = lim (z - c)f (z) . .z--+c 

Thus, if 
a f(z) = - + 0(1 ) , z - c  

then res(!, c) = a . 
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Proof 

Suppose that I has a simple pole at c, so that the Laurent series is 
00 

l(z) = a_ l (z - c) - 1 + L an (z - ct . 
n=O 

Then, as z -+ c, 
00 

(z - c)l(z) = a- 1 + L an (z - ct+l -+ a- 1 = res{!, c) . 
n=O 

Example 8 . 14 

Evaluate 1 sin{1rz) dz 
'Y z2 + 1 

where "( is any contour such that i , -i E I('"Y) .  

Sol ution 

D 

The integrand I has simple poles at i and -i. Recalling that sin(iz) = i sinh z, 
we obtain from Theorem 8.13 that 

Hence 

(I .) _ 1. sin(1rz) _ sinh 1r res , z  - liD: . - -2- ,  z-H Z + Z 

(I .) 1. sin{ 1rz) sinh 1r res , - z  = 1m . . = -2- . z-t-l  Z - t 

1 sin{1rz) d . . h 2 Z = t7r Sln 7r .  
'Y z + 1 

D 

In that example, and in many others, the integrand l(z) is of the form 
g(z)/h(z) , where both g and h are holomorphic, and where h(c) = 0, h' (c) =I 0. 
A technique applying to this situation is worth recording as a theorem: 

Theorem 8 . 15 

Let l(z) = g(z)/h(z ) ,  where g and h are both holomorphic in a neighbourhood 
of c, and where h{c) = 0, h' (c) =/; 0. Then 

g(c) res{!, c) = 
h' (c) 

. 
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Proof 

res(!, c) = !�g(z) :�� = g(c) !� h(z� = �(c) = ���?) . 
0 

In the last example this observation makes little or no difference, but it can 
help in other cases. 

Example 8 . 16 

Evaluate 1 dz 
-y z4 + 1 , 

where 'Y is the semicircle [- R, R] U { z : I z I = R and Im z > 0} ,  traced in the 
positive direction, and R > 1 .  

R 

Solution 
Within the semicircle, the integrand J has two simple poles, at ei-rr/4 and e3i-rr/4 . 
From (8 . 15) we see that 

Hence 

(! i-rr/4 ) _ _ 1 _ _ e-3i-rr/4 = - 1 - i res ' e - 4e3i-rr/4 - 4 4J2 ' 
1 -i-rr/4 1 . 3i-rr/4 _ ___ _ _ e __ _ ---=.: res (!, e ) - 4e9i-rr/4 - 4 - 4J2 

. 

0 
Multiple poles are a little more troublesome. A more general version of 

Theorem 8 .13 is available, but it does not always give the most effective way 
of computing the residue: 
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Theorem 8 . 17 

Suppose that f has a pole of order m at c, so that 

and a_m =f- 0. Then 

00 

f( z) = L an (z - c t , 
n=-m 

1 res(f c) = g(m- l) (c) ' (m - 1 ) !  ' 

where g(z) = (z - c)m f(z) .  

Proof 

From 
g(z) = a_m + am+l (z - c) + · · · + a_ l (z - c)m- l + · · · 

we deduce, differentiating m - 1 times, that 
g(m- l ) (z) = (m - 1) !a_ 1 + positive powers of (z - c) ; 

hence 
g(m- l) (c) = (m - 1) !a_ 1 = (m - 1) !res(f, c) .  

Example 8 . 18 

Evaluate 1 dz 
-r (z2 + 1)2 ' 

0 

where 'Y is the semicircle [-R, R] U { z : I z I = R and Im z > 0} ,  traced in the 
positive direction, and R > 1 .  

Solution 
The integrand f has a double pole at i , and f(z) = (z - i) -2g(z) , where 
g(z) = 1/(z + i) 2 . Hence g' (z) = -2/(z + i)3 , and so 

Hence 

(f " ) ' ( ") -2 -2 1 res ' �  = 9 z = (2i)3 = -8i = 4i · 

1 dz . 1 rr 
-r (z2 + 1)2 

= 2rrz 4i = 2 . 
0 

For multiple poles it is frequently less troublesome to calculate the relevant 
terms of the Laurent series . 
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Example 8 . 19 

Find the residue of 1/(z2 sin z) at the triple pole 0. 

Solution 

The residue is the coefficient of z- 1 , namely 1/6. 
The alternative method, which involves calculating limz�o g" (z ) ,  where 

g(z) = z31(z) = z/ sin z , is much harder. 0 

EXERCISES 
8.7. Let I be an even meromorphic function, that is to say, let I be 

such that I( -z) = l(z) for all z , and suppose that I has a pole at 
0. Show that res(/, 0) = 0. 

8.8. Calculate the residue of 1/(z - sin z) at 0. 
8.9. Calculate the residue of 1/(z3 + 1)2 at -1 .  

8 . 10. Calculate the residue at 0 of 

z3 ( 1 - 2z) (2 - z) · 

8 . 11 .  Using the method of Example 8.19, show that the residue of cot rrzjz2 
at the triple pole 0 is -rr /3. 

8.12. Show that cot rrz and cosec rrz have simple poles at every integer n, 
and that 

1 res(cot rrz, n) = - ,  
7r 

( - l)n 
res(cosec rrz, n) = -- . 

7r 

Show, more generally, that, if I has no zeros on the x-axis, 

res(rr l(z) cot rrz, n) = l(n) , res(rr l(z) cosec rrz, n) = (-It l(n) . 

8 .13 . Evaluate the integrals: 
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a) 

b) 

{ sin rrz dz 
},.(o ,2 ) (2z + 1)3 · 

1 dz 
2 . 

,.(0,,.;4) z tan z 

Complex Ana lysis 



9 
Applica tions of Contour Integration 

9.1 Real Integrals :  Semicircular Contours 

One of the very attractive features of complex analysis is that it can provide 
elegant and easy proofs of results in real analysis. Let us look again at Example 
8 .16 .  The contour "( is parametrised by 

'Yl (t) = t + iO (-R � t � R) }. 
'Y2 (t) = Reit (0 < t < rr) , 

(9 .1 ) 
and so 

1r 1 dz 
J

R dt r iReit 
J2 

= 
'Y z4 + 1 

= 
- R  t4 + 1 + Jo R4e4it + 1 dt . (9 .2 ) 

By Theorem 5 .24, 

I r iReit 
I 

rrR 
lo R4e4it + 1 dt � R4 - 1 ' 

which tends to 0 as R -7 oo. Hence, letting R -7 oo in (9 .2) , we obtain the 
Cauchy principal value: 

Since 

both 

(Pv) j
oo � - � -oo t4 + 1 - J2 

. 

1 1 -- rv - as t -7 ±oo t4 + 1  t4 100 dt j
o dt -- and --o t4 + 1 -oo t4 + 1 
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converge. So we can leave out the (PV) and conclude that 

If necessary, we may then deduce by symmetry that 

100 t4 � 1 = 2� . 
This result can of course be obtained by elementary methods, but the process 
is lengthy and tedious . 

Similarly, if we examine Example 8. 18 , in which the contour has the same 
parametrisation (9. 1 ) , we find that 

and 

1r 1 dz JR dt (" iReit dt 
2 = 

'Y (z2 + 1 )2 = -R (t2 + 1 )2 + Jo (R2e2it + 1 )2 ' 

1 1,. (R���:
t
:\)2 1 � (R27r� 1)2 ' 

which again tends to 0 as R --+  oo. Hence !00 dt 1r 

-oo (t2 + 1)2 - 2 ' 
since, as in the last example, we can dispense with the (PV) in front of the 
integral. Here the elementary method is not quite so tedious as in the previous 
case: substituting t = tan (} gives 

Joo dt !,. 12 sec2 (} !,. 12 ( 2 )2 = --4- d(} = cos2 (} d(} _00 t + 1 _,.;2 sec (} _,.;2 
1 J1r 12 1 [ ] 1r /2 1r 

= -2 ( 1 + cos 28) d(} = - (} + � sin 28 = -2 . -?r/2 2 -?r/2 
The two integrals we have examined are both special cases of the following 

general theorem. 

Theorem 9 . 1  

Let f b e  a complex function with the properties: 
(i) f is meromorphic in the upper half-plane, having poles at finitely many 

points Pl , P2 , . · · , Pn i 
(ii) f has no poles on the real axis; 
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(iii) zf(z) --+ 0 uniformly in the upper half-plane, as j z j --+ oo; 

(iv) f000 f(x) dx and f�oo f(x) dx both converge. 
Then 

Proof 

!oo n 

-oo f(x) dx = 21ri� res(f, pk ) .  
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Consider J"' f(z) dz , where the contour 'Y is the semicircle of radius R in the 
upper half-plane. Thus 

1 f(z) dz = !R f(x) dx + r f(Rei8 )iRei8 dO . (9.3) "' -R lo 
From Condition (iii) we know that , for all e > 0, there exists K > 0 such that 
i zf(z) l < e for all z in the upper half-plane such that i z l  > K. Hence, for all 
R > K, 1111" f(Reie )iReie dO l < 7re .  

Thus J01T f(Rei8 )iRei8 dB --+ 0 as R --+  oo and so, letting R tend to oo in (9.3) 
and applying the residue theorem, we see that 

Joo n 

(PV) -oo f(x) dx = 27ri � res(f, pk ) .  
Condition (iv) means that we can dispense with the principal value prefix 
(PV) . D 

Example 9 . 2  

Evaluate 

Solution 
Let 

Joo cos x dx 
2 • _00 X + 2x + 4 

eiz f(z) = . z2 + 2z + 4 
Then f(z) has two poles, at -1  + iV3 and -1 - iV3, and only the first of these 
is in the upper half-plane. From (8 .15) we calculate that 

ei( - l+i¥'3) e-ie-¥'3 res(!, -1  + iV3) = V3 2( -1 + i 3) + 2 2iV3 
. 
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In the upper half-plane, for all sufficiently large l z l , 

i zf(z) i = I z2 :�;: + 4 1 
I zei"' e-Y I - z2 + 2z + 4  (where x = Re z and y = Im z) 

< l z l (since l ei"' I = 1 and l e-Y I < 1) · - lz l 2  - 2 l z l - 4 
It follows that l zf(z) l tends uniformly to 0 in the upper half plane. 

All the conditions of Theorem 9 .1 are satisfied, and so 
!oo ei"' 2 . (f 1 . r;:;3) 7r -i - ¥'3 2 2 4 = -rrnes , - + z v J = r.; e · e . 

_ 00  X + X + y 3 
Equating real parts gives 

!oo cos x dx _ 1r - ¥'3 1 - r.; e cos . 
_ 00  x2 + 2x + 4 y 3 

Our method gives us a bonus, since equating imaginary parts gives 

Remark 9 .3  

An approach using 

!oo sin x dx 1r -¥'3 . 1 = - - e sm . -oo x2 + 2x + 4 y'3 

cos z f(z) = z2 + 2z + 4 

0 

would not work, since cos iy = cosh y "' !eY as y -+ oo ,  and so Condition (iii) 
certainly fails. 

EXERCISES 
9 . 1 Show that 

9.2 Show that 

-- dx - -1oo x2 7r 
0 1 + x4 - 2J2 · 
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9.3 . Show that 

9.4 . Show that 100 1 311' 
( 2 1 )3 dx = 8 .  -oo X + 

9.5 . More generally, show that 

9.6 . Show that 

9.7. Show that 

100 1 dx _ _  11' (2n - 2) 
-oo (x2 + 1)n - 22n-2 n - 1 . 

100 1 411' -oo (x2 + X + 1)2 dx = 3v'3 . 

roo 
COS X dx = � • Jo x2 + 1 2e 

9.8 . By expressing sin2 x as � { 1 - cos 2x ) , determine the value of 

roo sin2 x dx 
Jo 1 + x2 • 

9.9 . Suppose that c > 0, d > 0 and c =f. d. Show that 

100 cos x dx 11' ( e-d e-c ) _00 (x2 + c2 ) (x2 + d2 ) = c2 - d2 d - 7 

9. 10. Show that , if c > 0, 

100 cos x dx 
= 11'(c + l)e-c 

-oo (x2 + c2 )2 2c3 

9 . 1 1 .  Show that, if k > 0 and s > 0, 

!00 COS SX d 11' -ks k2 2 z = -k e . -oo + Z 

157 
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9 . 2  Integrals Involving Circular Functions 

We are familiar with the idea of rewriting an integral 
r f(z) dz }�<{0, 1 ) 

round the unit circle ��:(0, 1) as an integral 

121< f(ei8 )iei8 d() . 

Sometimes it is useful to reverse the process. Consider an integral of the form 

r21r 
Jo f(sin B, cos B) dB . 

If z = ei8 then 

cos B = � (z + ;) , sin () = � (z - �) 2z z 
dz 

' d() = -;- ' 
2Z 

and so the integral can be expressed asf�<{0, 1 ) g(z) dz . 
Some examples will demonstrate the technique. 

Example 9.4 

Evaluate 

Solution 

I - 121< __ d_B ­- 0 a + b cos B (a > b > 0) . 

The substitution gives 

where 

I 
= 1 1 dz = -2i 1 dz 

�<{0, 1 ) a +  � b(z + z- 1 ) iz �<{0 , 1 ) bz2 + 2az + b 

2 '1 dz = - 2 �<(0, 1 ) b(z - a)(z - {3) ' 

-a + v' a2 - b2 -a - v' a2 - b2 a = and {3 = -----b b 
are the roots of the equation bz2 + 2az + b = 0. The integrand has simple poles 
at a and {3. Now, 

a +  v'a2 - b2 a l/3 1  = b > b > 1 ' 
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and so /3 does not lie within the contour K(O, 1 ) . Since o:/3 = 1 we deduce that 
l o: l < 1 .  The residue at o: is 

and so 

1 1 
b(o: - /3) - 2.../a2 - b2 ' 

0 

The technique requires that the limits of integration be 0 and 211'. It is, 
however, sometimes possible to transform an integral into the required form. 

Example 9 . 5  

Evaluate 

Solution 

I - r -=-_d_() ---::--::­
- Jo a2 + cos2 () (a >  0) .  

We use the identity 2 cos2 () = 1 + cos 2() and then substitute 4> = 2() to obtain 

1211' drJ> I = 
0 (2a2 + 1 ) + cos rt> '  

Then from the previous example we deduce that 

Example 9 .6  

Evaluate 

Sol ution 

11' I =  . a.../a2 + 1 

1211' cos () d() I - -----� -
0 1 - 2a cos B + a2 ( la l < 1 )  · 

With z = ei9 as usual, we find that 

I = _.!... f 1 + z2 
dz . 2i J�(O , l ) z ( 1 - az) (z - a) 

0 
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The integrand has simple poles at 0, a and 1/ a, the first two of which lie inside 
the contour. The residue at 0 is -1/a, and at a is (1 + a2 ) / [a (1 - a2 ) ] .  Hence 

I = 7r ( 1 + a2 _ !) = rr(1 + a2 - 1 + a2 ) = 
2rra . a(1 - a2 ) a a(1 - a2) 1 - a2 

0 
Sometimes it is easier to solve the problem by considering the integral from 

0 to 2rr of a complex-valued function. The next example could be done by 
substituting (z3 + z-3 ) /2 for cos 3B, but the resulting integral is much more 
difficult to evaluate . 

Example 9.7 

Show that 
[271' cos 3B dB rr 

Jo 5 - 4 cos B 
= 

12 · 

Solution 

[271' e3i8 dB 1 z3 dz 1 z3 dz 
Jo 5 - 4 cos B 

= .. (o , 1 ) iz [5 - 2(z + z- 1 )] = i ,.(o , 1 ) 2z2 - 5z + 2 

1 z3 = i ,.(o , 1 ) (2z - 1) (z - 2) dz · 

The integrand has a simple pole within �t(O, 1 )  at 1/2, and the residue is - 1/24. 
Hence, equating real parts, we deduce that 

EXERCISES 

{271' cos 3B dB . rr 

Jo 5 - 4 cos B = Re[2rrL i . ( - 1/24)] = 
12 . 

9. 12 .  Evaluate {271' ___ d_B-=---=-}0 1 - 2a cos B + a2 
(i) if l a l < 1 ; (ii) if i a l > 1 . 

9.13. Show that 
{271' cos2 2B dB = rr(1 + p4) } o 1 - 2p cos B + p2 1 - p2 (0 < p < 1 ) . 

0 
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9 . 14 . Show that , if a > b > 0, 
12" sin2 O dO = 211" (a - Ja2 - b2 ) . 0 a +  b cos O b2 

9 . 15 .  Let a > 0. Show that 12" cos 38 dO 27re-3"' 
0 cosh a - cos O - sinh a · 

By putting a =  cosh- 1 (5/4) , recover the result of Example 9.7 . 
9 . 16 . Evaluate 

Deduce that 
1 e• -- dz ( 

) z
n+1 · 

I< 0, 1 

1
27T 211" ecos fJ  cos(nO - sin O) dO = - .  o n! 
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9 . 17. Let m E JR. and a E ( - 1 ,  1) . By integrating e""" j(z - ia) round the 
circle �t(O, 1 ) ,  show that 

12" em cos B [cos(m sin O) - a sin(m sin O + 8)] dO 2 = 1l" COS ma , 
0 1 - 2 sin e + a2 
12" em cos 8 [sin(m sin 8) + a cos(m sin O + 8)] dO 2 . = 7r Sinma . 
0 1 - 2 sin e + a2 

9 . 3  Real Integrals : Jordan's Lemma 

The range of applications to real integrals is extended by the use of the following 
result , usually known as Jordan's Lemma: 

Theorem 9 .8  ( Jordan ' s  Lemma) 

Let f be differentiable in C, except at finitely many poles , none of which lies on 
the real line, and let c1 , c2 , • . .  , Cn be the poles in the upper half-plane. Suppose 
also that f(z) -t 0 as z -t oo  in the upper half-plane. Then, for every positive 
real number a, 

L: f(x) cos ax dx + i L: f(x) sin ax dx = 27ri� res(g , ci ) ,  

where g(z) = f(z)eiaz . 
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Proof 

Let E > 0. Let R be such that 
(i) l ck l < R for k =  1, 2, . . .  , n; 

(ii) 1 / (z) l s; E for all z such that l z l ;:::: R and Im z > 0; 
(iii) xe-ax s; 1 for all x ;:::: R. 

Complex Ana lysis 

Let u, v > R. Let a be the square with vertices -u, v, v + iw, -u + iw, where 
w = u + v. 

y 
-u + iw v + iw .-------+-+-------� 

0 ----�-------+----------�-----u v 
From the Residue Theorem (Theorem 8.12) we know that 

for the poles of g are in the same places as those of f . Now, 

r g(z) dz = r f(x)eiax dx + r f(v + iy)eiav-ay dy Jcr }_,. Jo 

X 

- r f(x + iw)eiax-aw dx - rw !(  -u + iy) e- iau-ay dy . 
}_,. lo 

Our choice of u and v ensures that lv + iy l , 1 - u + iy l > R for all y in [0 , w] , 
and l x + iwl > R for all x in [-u, v] . Hence 

11w f(v + iy)eiav-ay dy l s; E 11w e-ay dy l = � ( 1 - e-aw ) s; � '  (9.4) 

and similarly 



9. Appl ications of Contour I ntegration 163 

while (for sufficiently large w) 

II: f(x + iw)eia:t-aw dx l � € II: e-aw dx l = e:e-aw � e . (9.6) 

Hence, for sufficiently large u and v,  

can be made smaller than any positive number. Thus 

(9 .7) 

0 

Remark 9 .9  

If, instead of the square, we had used the semicircle with centre 0 and radius 
R we would have concluded only that 

and it is possible for this to exist when the integral from -oo to oo does not . 
(See Section 1 .  7 . ) 

Example 9 . 10 

Evaluate 
{00 x sin x dx 

Jo x2 + b2 . 

Solution 
In Jordan's Lemma, let f (z) = z/(z2 +b2 ) and let a =  1 .  Thus g(z) = zeiz /(z2 + 
b2 ) . The only pole in the upper half-plane is at ib, and the residue is 

Hence 

ibe-b 1 -b 
2ib 

= 
2

e 

100 xei"' dx . -b 
2 b2 

= 7Tte • 
- co  X + (9.8) 
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Equating imaginary parts gives 
100 x sin x dx _ - b  

2 b2 - 7re . - oo X + 
The integrand is an even function, so 

100 x sin x dx 1r -b  
o :z:2 + b2 = 2 e . 

If we equate real parts in (9.4) , we obtain 
100 x cos x dx = 0 

- oo :z:2 + b2 ' 

which we knew anyway, for the integrand is an odd function. 

Remark 9 . 1 1  
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0 

Here we cannot deduce from the comparison test (Theorem 1 . 18) that the 
integral from 0 to oo converges. 

Sometimes we need to make a small detour in our preferred contour so as to 
avoid, or sometimes to include , a pole. Before giving an example, we establish 
the following lemma: 

Lemma 9 . 12  
/ 

Suppose that f has a simple pole at c, with residue p, and let 'Y* be a circular 
arc with radius r :  

Then 

'Y (B) = c + rei9 (a ::; 0 ::; /3) . 

lim 1 f(z) dz = ip(/3 - a) . r -+ 0  'Y 
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Proof 
In a suitable neighbourhood N(c, 8) we have a Laurent expansion 

00 
f(z) = _P_ + """ an (z - ct . z - c  L.J n=O 
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If we define g(z) as f(z) - (pj(z - c) ) , we see that g is bounded in N(c, 8) . 
That is, there .exists M > 0 such that Jg(z) i :5 M, and so, if 0 < r < 8, 

l i g(z) dz l :5 Mr(f3 - a) . 

Thus f-r g(z) dz -t 0 as r -t 0. Next , recall that 

1 p 1/3 riei8 -- dz = p -.8 d() = ip(f3 - a ) . -r z - c "' re• 

Given e > 0, it now follows that , for sufficiently small r , 

li f(z) dz - ip({3 - a) l = li f(z) dz - i z � c dz l 
Thus 

as required. 

Example 9 . 13 

Show that 

Solution 

= li g(z) dz l :5 Mr(f3 - a ) < E .  

lim 1 f(z) dz = ip({3 - a) r--?0 "Y 

100 sin x d _ 
-rr 

-- X - - . 0 X 2 

0 

Consider eiz / z, which has a simple pole at z = 0, with residue eio = 1 .  Except 
for the existence of this pole, the conditions of Jordan's Lemma are satisfied 
by the function 1/ z, and we modify the contour to a square with a small 
semicircular indentation CT to avoid 0. 
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-u + iw f) +  iw 

-u f) 

The inequalities (9.4) , (9.5) and (9.6) all survive, and so, instead of (9.7) ,  
we have the modified conclusion that 

f-r eiz dx - 1 eiz dz + 1
oo 

eiz dx = 0 .  _00 X r:T Z r X 

By Lemma 9 .12 , as r -t 0 , 

r eiz dz -t 1ri • J(T z 
Hence, letting r tend to 0 and taking imaginary parts, we deduce that 

foo sin x d -- X = 'Tf' . 

-oo X 

Since sin x/x is an even function, we obtain finally that 

Remark 9 . 14 

100 sin x d _ 1r -- X - - . 

0 X 2 

Taking real parts in (9.9) gives 

f-r COS X d 100 COS X d -- x +  -- x -t 0 
-oo X r X 

(9 .9) 

D 

as r -t 0, which was obvious anyway, since cos xjx is an odd function. However, 
since cos xjx "" 1/x as x -t 0, the integral f�oo (cos xjx) dx does not exist . (See 
Section 1. 7.) 
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EXERCISES 

9. 18. Evaluate 

9. 19. Show that 

roo COS 1!'X dX 
Loo x2 - 2x + 2 ' 

roo sin 1l'x dx 
} -oo x2 - 2x + 2 · 

9.20. Show that, for all real a, 

9.21. Show that 

foo (x2 - a2 ) sin x dx 
= (2 -a 1) ( 2 2 ) 

11' e + · _00 X X + a  

100 sin 1l'X dx 
= 

11' • 

0 x(1 - x2 ) 

9.4 Real Integrals : Some Special Contours 
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An ingenious choice of contour can sometimes be used to compute a difficult 
integral. 

Example 9 . 15  

Evaluate 

Solution 

100 X --4 dx . 
0 1 + x  

Here there is no point in finding the integral from - oo  to oo ,  since the inte­
grand is an odd function, and this integral is trivially equal to 0. We consider 
Jq(O,R) [z/ ( 1  + z4 )] dz , where q(O , R) is the quarter circle in the first quadrant. 

iR 

R 
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The integrand has a simple pole at ei'lr/4 , with residue 
ei'lr/4 1 . i ___ = -e-11r/2 = 4e3i7r/4 4 - 4 ' 

and so 

Complex Analysas 

{R x 11r /2 Rei9 . i9 {R iy . - . ( i ) - 7r Jo 1 + :z:4 dx+ o 1 + R4e4i9 �Re dO-Jo 1 + y4 � dy - 27r� - 4 - 2 . 
The middle term tends to 0 as R -+ oo, and the contribution of the section 
from iR to 0 is 

{R iy . {R y 
- Jo 1 + y4 � dy = lo 1 + y4 dy ' 

the same as the contribution from the section from 0 to R. Letting R -+ oo ,  we 
deduce that 

and so 

Example 9 . 16 

Evaluate 

Solution 

roo X 1f 2 Jo 1 + x4 dx = 2 ' 

1oo 
X 1f 

0 1 + x4 dx = 4 · 

!00 ea"' 
-1 ., dx (0 < a < 1) . 

- oo  + e 

Here there is no problem over the convergence of the integral, since 

and 

ea"' -- rv e- ( 1 -a)z as X -+ 00 1  
1 + e"' 

ea"' -- "" ea"' as x -+ - oo. 
1 + e"' 

D 

We consider the complex function f(z) = eaz / ( 1 + ez ) ,  and the rectangular 
contour with corners at ±R, ±R + 27ri .  

y -R + 27ri 

I �· 

R + 27ri 

j 1 . . -R 0 • R 
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The function has a simple pole at 1ri , with residue ea1ri I e1ri = ea1ri I ( - 1 )  = 

-ea1ri . Hence 
. 1R eax 121r ea(R+iy) 

-21riea1r• = --- dx + . i dy 
-R 1 + e"' O 1 + eR+•Y 1R ea(x+Z1ri) 121r ea( -R+iy) . - 2 . dx - R . 1 dy . 

-R 1 + ex+ 1r• 0 1 + e- +•Y 

Now, for sufficiently large R, 

Hence 

-----,�.:- < ___ < 2e- ( 1 -a)R . I ea(R+iy) I eaR 

1 + eR+•Y - eR - 1 -

--=-c-.:- i dy < 47re- ( l-a)R 1 121r ea(R+iy) I 0 1 + eR+•Y - ' 

which tends to 0 as R -+  oo. Similarly, for sufficiently large R, 

Hence 

---;;:-,-..,.:- < < 2e -aR . I ea( -R+iy) I e-aR 
1 + e-R+ty - 1 - e-R -

1121r ea(-R+iy) "
d I < 4 -aR R+ . t y _ 1re , 

o 1 + e- •Y 
which again tends to 0 as R -+  oo. Also, 

..,...----:-::---:-. dx = e2a1r• --· - dx . 
1R ea(x+Z1ri) · jR eax 

-R 1 + ex+21rt - h 1 + e"' 

Hence, letting R -+ oo, we see from (9. 10) that 

Hence 

Remark 9 . 17  

1oo � dx = 
. 27ri . = _

7r_ 
-oo 1 + e"' ea1rt - e-a'ln sin a7r 

If we substitute x = log t in this integral, we obtain 

1oo ta- l 

--t dt , 
0 1 +  

(9. 10) 

(9. 1 1 )  

D 
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and if you have come across real beta- and gamma-functions (see [13] )  you may 
recognise this last integral as B (a , 1 - a) = F(a)F(1 - a) . (The further substi­
tution t = u/(1 - u) changes the integral to J01 ua- 1 ( 1 - u)-a du, which relates 
to the usual definition B (m, n) = J01 xm- 1 ( 1 - x)n- 1 dx of the B-function. ) 
Formula (9. 1 1 ) thus gives us the identity 

7r r(a)F(1 - a) = -. - (0 < a < 1) .  s1n a1r (9 .12) 

Following on from this remark, we see that from (9. 12) it follows, by putting 
a = � ' that 

rU) = ..;rr . (9 . 13) 

From (13] we have the definition 

r(n) = 100 
tn- 1 e-t dt = 2 100 

x2n- 1e-"'2 dx . 

Thus 
roo _.,2 d - 1 r ( 1 ) - 1 r= 

Jo
e x - 2  2 - 2 y 7r . (9 . 14) 

Since e-"'2 is an even function, we can deduce that 

(9 . 15) 

These integrals are important in probability theory, since e-"'2 occurs as the 
probability density function of the normal distribution. See, for example, [6] .  

Here I have been breaking the rules by referring t o  aspects of real analysis 
not mentioned in Chapter 1 . It is in fact possible to obtain the integral (9 .15) 
by contour integration, and the beautifully ingenious proof is a rare delight: 

Theorem 9 . 18 

Proof 

Let f(z) = ein2 , and let g(z) = f(z)/ sin 1rz. Let c = ei1r/4 = (1/V2) ( 1  + i) .  
Note that c2 = i .  We integrate g(z) round the parallelogram with vertices 
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±Rc ± � · 

-Rc - � 

Since the zeros of sin 1rz are at 0, ±1 ,  ±2, . . .  , the only pole of g within the 
contour is at 0, where the residue is lj1r. Hence the integral round the contour 
has the value 2i. The sloping sides can be parametrised (respectively) by 

Now, 

at (t) = ct + L a2 (t) = ct - ! (-R -::; t -::; R) . 

J (ct + ! )  = exp [i1r(ct + ! ) 2] 
= exp [i1r(it2 + ct + � )] (since c2 = i) 
= exp [-1rt2 + 1rict + (i7r/4)] , 

and so, since sin 1r(ct + ! )  = cos 1rct , 

g(ct + ! )  = exp[-1rt2 + 1rict + (i7r/4)] / cos 1rct . 

Similarly, since sin 1r( ct - ! ) = - cos 1rct , 

g(ct - ! )  = - exp[-1rt2 - 1rict + (i7r/4)] /  cos 1rct . 

Hence the combined contribution to the integral of g of the sections of the 
contour from -Rc + !  to Rc + ! and from Rc - !  to -Rc - !  is 

1R exp(-7rt2 ) exp(i7r/4) ( itrct -itrct ) d 1R 2c2 exp(-7rt2 ) cos 7rct d e + e c t =  t -R COS 7rCt -R COS 7rCt 

= 2i jR 
e - ,.t2 dt . -R 



172 Complex Ana lysis 

As for the contribution of the horizontal section from Rc - ! to Rc + ! , for 
all u in [- ! , ! J , 

I exp(i7r(Rc + u)2] 1  = I exp(i7r(R2i + J2Ru(l + i) + u2)] 1 
= exp(-7r(R2 + J2Ru)] ::; exp (-7r (R2 - (R/v'2)) ] , 

and, from Exercise 4. 13, we have that 

I sin(7r (Rc + u)] j = I sin ( (7r /v'2) (R + iR + J2 u)] l � sinh(7r R/v'2) .  

Hence 1! 1/2 
g(Rc + u) du l < exp (-7r(R2 - (R/v'2)) ]  

' 
- 1/2 

- sinh(7rR/v'2) 
and this· certainly tends to 0 as R -+ oo. A similar argument establishes that , 
as R -+  oo ,  ! 1/2 

g(-Rc + u) du -+ 0 . 
- 1/2 

Letting R -+ oo ,  we have 

and so 

The proof is completed by substituting x = t/ ..fi in this last integral. D 

Example 9 . 19 

Show that 

Solution 
It is sufficient to consider a > 0, since cos is an even function. We consider the 
function e -z2 and integrate round the rectangle with vertices 0, R, R + ia, ia. 

y 
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The function e-z2 has no poles, and so 

0 = 1R e-:�:2 dx + 1a. e- (R+iy)2 i dy - 1R e- (z+io.)2 dx - 1a. eY2 i dy . (9. 16) 

Now, 

1R e-(:�:+ia.)2 dx = ea.2 1R e-:�:2 e-2ia.:�: dx 

= ea.2 1R e-z2 (cos 2ax - i sin 2ax) dx . 

Also, 
1 1a. e- (R+iy) 2 i dy i = e-R2 11o. e-2iRyey2 i dy i � e-R2 aea.2 ' 

and this tends to 0 as R --* oo .  Hence, letting R --* oo in (9. 16) ,  taking real 
parts, and noting that the final term of {9. 16) is pure imaginary, we find that 

0 = 100 e-z2 dx - ea.2 100 e-:�:2 cos 2ax dx . 

Hence, from (9. 14) ,  

0 
The solution of the next example requires a simple result in real analysis: 

Lemma 9.20 

If 0 < 0 � "Tr/2, then 

Proof 

Since lime-to (sin 0/0) = 1, and since [sin("Tr/2)] / ("Tr/2) = 2/"Tr, it is enough to 
show that sin B /0 decreases throughout the interval (0, 1r /2] . The derivative is 

O cos O - sin O 
02 

and so the problem reduces to showing that F (O) = O cos O - sin O � 0 through­
out [O, "Tr/2] . This is clear, since F(O) = 0 and F' (O) = -O cos O is certainly 
non-positive in [0, 1r /2] . 0 
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Example 9 .21  

Evaluate 

Solution 
Here again we devise a contour where the sections that do not tend to 0 both 
contribute to the answer. We consider J.., exp(iz2 ) dz where 'Y is as shown: 

l z i = R 

The function is holomorphic throughout, and so 

rR r/4 rR 0 = Jo exp(ix2 ) dx + Jo exp(iR2e2i9 )iRei9 dO - Jo exp(it2ei""f 2 )ei""/4 dt 
= It + /2 - Ia (say) . 

Now, 

I exp(iR2e2i9 )iRei9 1 = IR exp (R2 (i cos 20 - sin 20) ) 1 = R exp( -R2 sin 20) 
� R exp ( -4R20 /tr) (by Lemma 9.20) . 

Hence 
f"/4 7r I I2 I � R Jo exp(-4R20/tr) d0 = 4R [1 - exp(-R2 ] , 

which tends to 0 as R -+  oo. Hence, letting R -+  oo and using (9.14) , we deduce 
that 

1oo iz2 d - 1" I - 1 + i 1oo -t2 dt - (1 + i)J?r e x - 1m a - rn e - rr; • o 
R-+oo v 2  o 2v 2 

Taking real and imaginary parts, we see that 

0 
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EXERCISES 

9.22. By considering the integral of eaz / cosh z round the rectangular con-
tour 

y 
1f'i 

--�u--------�---+----------�v---.x 

show that 
1oo ea"' 1f' 
_00 cosh x  

dx = cos(7ra/2) ( -1 < a <  1) . 

9 .23 . By integrating f(z) = z4n+3e-z round the contour 'Y shown, 

prove that 

l z i = R 

roo x4n+3e-"' cos x dx = ( - 1)n+l (4n + 3) ! 
h �n+2 · 

You may assume that J000 xne-"' dx = n! . 
9.24. Show that, for all a, b > 0, 

100 cos ax - cos bx d (b ) 2 x = 1f'  - a . 
- oo  X 

Deduce that 

9.25. By considering the integral of zj (a - e-iz ) round the rectangle with 
vertices ±1r, ±1r + iR, show that 

111" x sin x 1r 
1 2 2 dx = - log(1 + a) 0 - a cos x + a a (0 < a <  1) . 
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9 . 5  Infinite Series 

One of the more unexpected applications of the residue theorem is to the sum­
mation of infinite series . The key to the technique is the observation that cot 1r z 
and cosec 1rz both have simple poles at each integer n. These in fact are the 
only poles, since sin 1r z = 0 if and only if z is real and an integer. 

We begin with an example. 

Example 9.22 

Show that 

Sol ution 
Let 

00 1 1 1 """' 
2 2 = -2 coth 1ra - - (0 < a <  1 ) . � n + a  a 2a2 

( ) 1r cot 1rz 
g z = --::----::­z2 + a2 (0 < a <  1 ) , 

and consider the square contour an with vertices at ( n + � ) ( ± 1 ± i) . 

y 

n n + 1  X 

Within the contour, the function g has simple poles at ai , -ai and ±1 ,  ±2, . . .  ± 
n. The residue of the simple pole (see Exercise 8 .12) at the non-zero integer k 
is 1/(k2 + a2 ) .  The residue at ai is 

. 1r cot 1rz 1 1 lim. . = -2 . 1r cot i1ra = - -2 1r coth 1ra , 
z-ta• z + at at a 

and a similar calculation shows that this is also the residue at -ai .  Hence 

r g(z) dz = 27ri ( t 2 
1 

2 - � 7r coth 7ra) . l�r.. " = - n  n + a  a (9 . 17) 
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We now examine what happens as n -+  oo, and for this it is useful to prove 
a lemma, only half of which we need immediately. 

Lemma 9 .23 

Let n be a positive integer and let O'n be the square with corners at (±1 ± 
i ) (n + � ) . Then there exist constants A, B such that , for all n and for all z on 
the square 0' n ' 

Proof 

I cot 1rz l � A I cosec 1rz l � B .  

On the horizontal sides , where z = x ± i (  n + � ) ,  

- I ei,. [x±i (n+ ! ) J + e-i,.[x±i (n+ ! ) J I I cot 7rz l - ei,. [x±i (n+ ! )] - e-i7r[x±i (n+ ! ) ] 

e7r(n+ ! ) + e-7r(n+ ! ) 
:::; 1 1 e7r(n+ 2 ) - e-7r(n+ 2 ) 

= coth(n + � )1r 
� coth( � 1r) , 

since coth is a decreasing function in the interval (0, oo ) . On the vertical sides, 
where z = ± (n + � )  + iy , using the properties that cot (z + �1r) = - tan z and 
cot (z + n1r ) = cot z, we see that 

(See Exercise 4 .7 . )  
As for cosec 1rz, on the vertical sides we make use of the equalities cosec (z + 

�1r) = sec z and cosec (z + n1r ) = ( - 1 )n cosec z to show that 

I cosec 1r [± (n + � )  + iy] l = I sec iy l = I sech Y l  � 1 .  

(See Exercise 4 .7 . )  On the horizontal sides , where z = x ± i (n + � ) ,  

I cosec 1r z I = I 1 I < 
-,.---..,-,--1--:---.-:­ei,. [x±i(n+ ! ) ] - e-i7r [x±i (n+ ! )J - e7r(n+ ! ) - e-7r(n+ ! )  

= cosech ( n + � )1r � cosech( � 1r) , 

since cosech is a decreasing function in the interval (0, oo ) . 0 
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It now follows, since the contour O'n is of total length 4(2n + 1 ) ,  and since 
min { lz l : z E O'n} = n + ! , that 

11 I I cot 1rz I 1r A g(z) dz $; 4(2n + 1)11" sup 2 2 $; 4(2n + 1) ( 1 ) 2 2 , 
CTn ZECTn z + a n + 2 - a 

and this tends to 0 as n � oo. Hence, letting n � oo in (9 .17) , we find that 

That is, 

and so 

00 
n=-oo 

1 11" 
2 2 = - coth 1ra . n + a  a 

1 00 1 11" 2 + 2  L 2 2 = - coth 7ra ,  a n=l n + a  a 

00 1 11" 1 L 2 2 = -2 coth 1l"a - -2 2 • n=l n + a  a a 
This example is an instance of a general result : 

Theorem 9 .24 

(9 .18) 

(9. 19) 

Let I be a function that is differentiable on C except for finitely many poles 
c1 , c2 , . . .  , Cm , none of which is a real integer. Suppose also that there exist 
K, R > 0 such that l z2 l(z) l $; K whenever l z l > R. Let 

Then 

Proof 

g(z) = 1r l(z) cot 1rz h(z) = 1r l(z) cosec 1rz . 

00 m 
L l(n) = - L res(g, ck ) ,  

n=-oo k=l 
oo m 
L (-1 )nl(n) = - l: res(h, ck) .  

n=-oo k=l 

(9.20) 

(9.21) 

Certainly the series L: l(n) and L:( -1)n l(n) are (absolutely) convergent, since 
ll (n) l < Kjn2 whenever ln l > R. For both 1l" COt 7rz and 1l" Cosec 7rz the set of 
poles is precisely the set of real integers, and so for both g and h the set of 
poles is { c1 . c2 , . . . , Cm} U Z. The residue of g at the integer n is I ( n) , and the 
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residue of h at n is {- 1)n/(n) . {See Exercise 8 .12 . )  We use the square contour 
O'n of Example 9.22 . Then, by Lemma 9.23, if n is large enough, 

and 

11 g(z) dz l � 4{2n + 1) sup 111'/{z) cot 11'zl � 4(2n + 1) K1 , 
�n zE�n 

n 

1 1 h(z) dz l � 4(2n + 1 )  sup 111' f(z) cosec 11'z l � 4(2n + 1 )  K � , 
�n zE�n 

n 
and these both tend to 0 as n --t oo. Thus, letting n --t oo ,  we obtain the 
equalities (9.20) and (9.21 ) .  D 

Example 9 .25 

Show that 

Solution 
The function 11' h( z) = �--:-:-::-:-­{2z + 1)3 sin 11'Z 
has a pole of order 3 at - ! · The residue is !q" (- ! ) ,  where 

Since 

11' 1 
q(z) = (z + ! )3h(z) = -8 -. - .  Sln 11'Z 

2 ' ( ) 11' COS 11'Z q z = - - -- , 8 sin2 11'z "( ) 11'2 - sin2 11'Z 11' sin 11'Z - 2 sin 11'Z 11' cos 11'Z q z = - -8 sin4 11'z 
we see that res{h, - ! )  = -11'3 /16. Hence, by Theorem 9 .24, 

11'3 1 1 1 1 1 1 
16 = 

. , , _ (-5)3 + {-3)3 - (-1 )3 + 13 - 33 + 53 _
, , 

= 2 ( 1
1
3 - 3

1
3 + 5

1
3 _

,
-) ' 

and so, as required, 

D 
The requirement in Theorem 9.24 that f have no poles at real integers can 

be relaxed, simply by treating the "offending" integer on its own. 
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Example 9 .26 

Show that 

Solution 
Here the function 

( ) 1C' COS 1C'Z 
g z = z2 sin 1rz 

has simple poles at ±1 ,  ±2, . . . , and a triple pole at 0. The residue at each 
non-zero integer n is 1/n2 , and at 0 (see Exercise 8 . 1 1 ) the residue is -1r2 /3 . 
Hence 

and so 

0 

Remark 9 . 27 

Alternatively one could deduce the value of 2::'=1 (1/n2 ) from (9 .19) by letting 
a -7 0. The limiting process is legitimate since the series :L:'=d1/(n2 + a2 )] 
is uniformly convergent for a in [- 1 ,  1] . The actual calculation is a pleasant 
exercise on L'Hopital's Rule. 

EXERCISES 
9.26. Sum the series 

9.27. Show that , if a is not an integer, then 

� 1 2 2 
L....t (n + a)2 = 1r cosec 1ra . 

n=-oo 

Deduce the values of 
00 1 L (2n + 1)2 ' 
-oo 

00 1 -L (3n + 1) 2 ' 
-oo 

00 1 L (4n + 1) 2 · -oo 
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9.28. Show that , if a is not an integer , 
00 1 1 71' L 4 4 = -2 4 - -4 3 (cot 1!'a + coth 7!'a) . 

n=l  n - a a a 

181 
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Further Topics 

10.1 Integration of f'/ f ; Rouche's Theorem 

In this section we examine an integral that in effect counts the number of poles 
and zeros of a meromorphic function f. Recall that , if f has Laurent series 
2::"=-oo an (z-c)n at c, then ord(f, c) = min {n : an =j:. 0} . If ord(f, c) = m > 0 
then f(c) = 0, and we say that c is a zero of order m of the function f. If 
ord(f, c) = -m < 0, then c is a pole of order m. 

Theorem 10 . 1 

Let 'Y be a contour, let f be meromorphic in a domain that contains I( 'Y) U 'Y* , 
and suppose that Q = {q E I('Y) : ord (f, q) =j:. 0} is finite . Then 

Proof 

1 1 f'(z) -. -f( ) dz = L ord(f, q) . 27n 1 z Q qE 

The function f' / f is differentiable in I( 'Y) \ Q. Let q E Q and suppose that 
ord(f, q) = m =j:. 0. Then f(z) = (z - q)mg(z) , where g is holomorphic and 
non-zero at q. Hence 

/' (z) = m(z - q)m-1g(z) + (z - q)mg' (z) , 
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and so f' (z) = � + g' (z) . f (z) z - q g(z) 
Since g' lg is holomorphic at q, we deduce that 

res(!' I J, q) = m = ord{f, q) . 

The result now follows from the Residue Theorem. 

Remark 10 .2 

Complex Analysis 

D 

Informally, this result says that the integral of f' If is 27ri times the number of 
zeros minus the number of poles, where each is counted according to its order. 
Thus, for example, if 'Y = �t(O, 6) and 

(z - l) (z - 2)3 f(z) = (z - 3)2 (z - 4)2 (z - 5)2 ' 
then 1 �g; dz = 27ri [( l + 3) - (2 + 2 + 2)] = -47ri . 

The fact ,  on the face of it surprising, that ( ll27ri) J"Y (!' I f) is an integer has 
the following interesting consequence, as observed by Rouche1 : 

Theorem 10 .3 (Rouche 's  Theorem) 

Let 'Y be a contour, and let f, g be functions defined in an open domain D 
containing I( 'Y) U 'Y• . Suppose also that : 
(i) f and g are differentiable in D, except for a finite number of poles, none 

lying on 7• ; 
(ii) f and f + g have at most finitely many zeros in D; 

(iii) lg(z) l < 1 / (z) l for all z in  "{• . 
Then 1 f' (z) + g' (z) dz = 

1 f(z) dz . 
"Y f(z) + g(z) "Y g(z) 

1 Eugene Rouche, 1832-1910. 
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Proof 

The basic idea of the proof is that a small change in the function I should 
bring about a small change in ( 1/27l"i) J...,U' j !) .  But integers are not amenable 
to small changes, and so, if the change in I is sufficiently small, as measured 
by Condition (iii) in the statement of the theorem, then the change must be 
zero. 

By Corollary 5.4, 

in£ { J I(z) J - Jg(z) J : z E -y* } = 8 > 0 .  

Let 0 :::; t :::; 1 ,  and let 
J(t) = _1 1 !' + tg' 

27l"i .., I + tg 

( 10. 1 )  

If I( c) + tg(c) were 0 for some c on -y• , then we would have Jg (c) J = J l (c) J jt � 
J l(c) J ,  in contradiction to (iii) above. Hence I + tg has no zeros on -y• . 

We show that J(t) is continuous. Let 0 :::; t < u :::; 1 .  Then · 1 (!' + ug' ) (z) _ (!' + tg' ) (z) I = I (u - t)(fg' - f'g) (z) I · (! + ug) (z) (! + tg) (z) (! + ug)(z) (f + tg) (z) 

Now, lg' - f'g, being continuous on -y* , is bounded, by Theorem 5.3: say 
J (fg' - f' g) (z) l :::; M for all z on -y* . Also, from (10. 1 ) ,  J (f +ug) (z) (f + tg) (z) J � 
82

• Hence 

I (/' + ug' ) (z) _ (!' + tg' ) (z) I < MJu - t J  
(! + ug) (z) (! + tg) (z) - 82 ' 

which can be made less than any positive e by choosing Ju - t J  sufficiently small. 
Let A denote the length of the contour ')'. Then 

A l f' + u ' f' + t ' l AM 
IJ(u) - J(t) J :::; 271" sup I + u: - I +  t: :::; 271"82 J u - t l = KJu - t l , 

where K is a constant independent of u and t . If Ju - t J  < 1/K, then j J(u) ­
J(t) J < 1 and so, since J(u) and J(t) are both integers, J(u) = J(t ) .  Hence, if 
n > K, J(O) = J(1/n) , J(1/n) = J(2/n) , . . .  , J ( (n - 1)/n) = J(1 ) , 

and so J(O) = J(1) .  0 

The Fundamental Theorem of Algebra (see Theorem 7 .11 )  is an immediate 
corollary. Let 

p(z) = anzn + an- l Zn- l + · · · + a1 z  + ao = anzn + q(z) 
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be a polynomial of degree n. On a circle �t(n, R) with sufficiently large radius, 
lq(z) l :S l anzn l .  Neither function has any poles, and so the number of zeros 
(counted according to order) of anzn + q(z) is the same as that of anzn . The 
latter function has a single zero of order n, and the theorem follows. 

Another interpretation of f../f' I!) is useful. In Section 7.3 we encountered 
the function log z, defined within a contour 'Y such that 0 � I('y) u 'Y• . Certainly 
(log)' {f(z) ) = f' (z)ll(z) , and so, recalling Theorems 5 . 18 and 5 . 19 ,  we can 
interpret f../ I' I!) as measuring the change in log {! ( z) ) as z moves round the 
contour 'Y· If I has no zeros or poles within 'Y· then f' I I is holomorphic, and 
J-y (!' I!) = 0. In this case there are no branch points of log {f(z)) within 'Y· 
and the function returns to its original value. Since 

log {f(z) ) = log l l(z) l + i arg {f(z) ) , 

we can equally well interpret the integral J'Y as measuring the change in 
arg {! ( z) ) as z moves round 'Y. This observation is frequently referred to as 
the Principle of the Argument . 

A very simple example illustrates the point . If l(z) = z3 , then l' (z)ll(z) = 
31 z, and the integral of 31 z round the unit circle is 6rri . {This is in accord with 
Theorem 10. 1 ,  since I has a triple pole at 0. ) The change in arg(z3 ) is 6rr, since 
z3 goes round the circle three times. This prompts a definition: 

1 1 !' Ll-y {arg !) = i -y f .  
Thus, in the notation of Theorem 10. 1 ,  

for 

Ll-y {arg !) = 2rr L ord(f, z) . 
zEQ 

We easily see that Ll-y behaves logarithmically: 

Ll ( (I ) ) = � 1 (!g) ' = � 1 f'g + lg' = � 1 I' "'( arg 9 . I . I . I � "'( g � "'( g � "'( 
= Ll-y {arg !) + Ll-y {arg g) . 

In a similar manner one can show that 

Ll-y ( arg{11 !) ) = -Ll-y {arg !) .  

{ 10 .2) 

{ 10.3) 

+ � 1 g' � "'( g 
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The argument changes continuously as z moves round the contour, and if 
we divide the contour r into pieces 11 and 12 , 

/1 

/2 

then 
..:11' ( arg /) = ..:11'1 ( arg !) + ..:11'2 ( arg !) . 

The Fundamental Theorem of Algebra establishes that every polynomial of 
degree n has n roots, but gives no indication of where in the complex plane 
these roots might be. We can sometimes use the principle of the argument to 
be more specific over the location of roots. 

Example 10 .4 

Show that the function f(z )  = z4 + z3 + 1 has one zero in the first quadrant. 

Solution 
We can use elementary calculus to establish that the equation x4 + x3 + 1 = 0 
has no real roots, for x4 + x3 + 1 has a minimum value of 229/256 when 
x = -3/4. There are no zeros on the y-axis either, since f(iy) = (y4 + 1 ) - iy3 , 
and this cannot be zero. Let R be real and positive, and consider a contour 
'Y consisting of the line segment 11 from 0 to R, the circular arc 12 from R 
to iR and the line segment /3 from iR to 0. It is clear that arg f(z) has the 
constant value 0 throughout rl !  and so ..:11'1 (arg !) = 0. On 'Y3 the argument is 
tan-1 ( -y3 / (y4 + 1 ) ) . This has the value 0 when y = 0, and its value at y = R 
tends to 0 as R --+ oo. Thus ..:11'3 (arg !) --+ 0 as R --+ oo Coming finally to 12 , 
we use Rouche's Theorem to observe that , for sufficiently large R, 

..:11'2 (arg /) = ..:11'2 (arg z4 ) --+ 2rr as R --+  oo .  

Thus ..:1-r (arg !) = 2rr for sufficiently large R, and so there is one root of f(z) = 0 
in the first quadrant . D 
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EXERCISES 
10. 1 .  Show that the equation z8 + 3z3 + 7z + 5 = 0 has two roots in the 

first quadrant. Are the roots distinct? 
10.2 . Let a > e. Show that the equation ez = azn has n roots inside the 

circle K(O, 1 ) .  
10.3 . Show that the polynomial z5 + 15z  + 1 has precisely four zeros in 

the annular region {z : 3/2 < l z l < 2} .  
10 .4 .  Show that the equation z5 + 7z + 12 = 0 has one root on the neg­

ative real axis. Show also that there is in addition one root in each 
quadrant, and that all the roots are in the annulus {z : 1 < l z l < 2} .  

10 .5 .  Let n � 3. Show that the polynomial zn + nz - 1 has n zeros in 
N(O, R) , where ( 2 ) 1/2 

R = 1 +  -­n - 1 

1 0 . 2  The Open Mapping Theorem 

In this section we explore some further properties of holomorphic functions. 
The first observation is that, unless the holomorphic function J is identically 
zero, the zeros of f are isolated. Precisely, we have: 

Theorem 10 .5 

Let J be holomorphic in an open set U and let c E U be such that J (c) = 0 . 
Then, unless f is the zero function, there exists 6 > 0 such that f(z) is non-zero 
for all z in the punctured disc D' ( c, 6) .  

Proof 

Since f is holomorphic in an open set containing c, it has a Taylor series: within 
N(c, r) , 

00 
f (z) = L: an (z - ct . 

n=O 
If f is the zero function then all the coefficients an are zero. Otherwise there 
exists m > 0 such that am =J 0 and 

f(z) = am (z - c)m + am+l (z - c)m+l + · · · . 
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Let 
g(z) = (z - c)-m f(z) = am + am+l (z - c) + · · ·  . 

Then g( c) '# 0 and so, since g is continuous at c, there exists o > 0 such that 
g(z) '# 0 for all z in N{c, o) .  Since f(z) = (z - c)mg(z) , it follows that f(z) '# 0 
for all z in D' {c, o) 0 

Before stating our next theorem, let us look again at the function z �--+ zn . 
It maps 0 to 0, and maps each neighbourhood of 0 onto another neighbourhood 
of 0. In fact the function maps the neighbourhood N(O, f) onto N(O, fn ) ,  and 
for 0 < r < f, maps each of the points rei(a+2k1r)/n (k = 0, 1, . . .  , n - 1) to the 
single point rneia . We say that the neighbourhood N{O, f) maps to N{O, fn ) in 
an "n-to-one" fashion. 

The following theorem in effect states that every non-constant holomorphic 
function behaves in essentially the same way: 

Theorem 10 .6 

Let f be non-constant and holomorphic in a neighbourhood of c ,  and let f(c) = 
d. Let g(z) = f(z) - d, and let n be the order of the zero of g at c. If f > 0 
is sufficiently small, then there exists o > 0 such that, for each w in D' ( d, o) ,  
there exist n distinct points Zi (i = 1 ,  . . .  , n) in D' {c, f )  su�h that f(zi ) = w .  

Proof 

By Theorem 10.5, if f > 0 is sufficiently small then f(z) '# d for all z in 
D' ( c, 2f) . If f' (c) '# 0 then the continuity of f' ensures that f' ( z) '# 0 in some 
neighbourhood of c. On the other hand, if f' (c) = 0 it follows by Theorem 10.5 
that f' (z) '# 0 in a suitably small punctured disc with centre c. So we refine 
our choice of f so as to have both f(z) '# d and f'(z) '# 0 for all z in D' {c, 2f) . 

Since the set 1\:{c, f) = {z : i z - ci = f} is closed and bounded, it follows by 
Theorem 5.3 that 

inf { lg(z) i : l z - ci = f} = o > 0 .  
Let w E D' (d, o) .  Then 

f(z) - w = g(z) + (d - w) . 

Since i u(z) i > o > i d - w i  for all points on the circle 1\:{c, f)., and since g has 
a zero of order n inside that circle , it follows by Rouche's Theorem {Theorem 
10.3) that f(z) - w (  = g(z) + (d - w)) has n zeros z; (j = 1, 2, . . . , n) in 
D'{c, f) . Since g' (z) = f'(z) '# 0 for all z in D' {c, f) ,  these zeros are all simple, 
and so distinct . 0 
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One consequence of this result is the Open Mapping Theorem: 

Theorem 10 .7 (The Open Mapping Theorem) 

Let f be holomorphic and non-constant in an open set U. Then f(U) i s  open. 

Proof 

Let d E f(U) ,  and let c E U be such that f(c) = d. Choose e > 0 and 8 as in 
the proof of Theorem 10.6 and such that N(c, e) C U. Let w E N(d, 8). Then 
there is at least one zero z0 of f(z) - w in N(c, e ) .  That is, there exists at least 
one zo in N(c, e) such that f(zo ) = w. Thus 

N(d, 8) � {f(z) : z E N(c, e) } � f (U) . 

Hence f (U) is open. 0 

The Maximum Modulus Theorem now follows easily: 

Theorem 10 .8 (The Maximum Modu lus  Theorem) 

Let f be holomorphic in a domain containing I('y) U 'Y* , and let M = 

sup { 1 / (z) J : z E I('y) U 'Y* } .  Then 1 / (z) J < M for all z in I('y) , unless f is 
constant , in which case l f (z) l = M throughout I('y) U "f* · 

Proof 

Let c be an element of the open set I('y) , and let N(c, e) C I('y) . Then, by 
Theorem 10.7, d = f (c) lies in an open set U, the image of N(c, e) , and U is 
wholly contained in the image of the function f. Hence there is a neighbourhood 
N(d, 8) of d contained in U and so certainly contained in the image of J, and 
within this neighbourhood there are certainly points w such that Jw l  > Jd J . 
Hence, unless f is constant , the maximum value of f (z) for z in I('y) U 'Y* is 
attained on the boundary. 0 

Another consequence is the Inverse Function Theorem: 

Theorem 10 .9  (The I nverse Function Theorem) 

Suppose that f is holomorphic in an open set containing c and that f' (c) =f: 0. 
Then there exists 1J > 0 such that f is one-to-one on N = N(c, ry) .  Let g be 
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the inverse function of f iN (the restriction of f to N) . Let z E N and write 
f(z) = w. Then g' (w) = 1/ f' (z ) .  

Proof 

Write f(c) as d, and let €, 0 be as in the proof of Theorem 10.6 . Since f is 
continuous at c, there exists 'T] such that 0 < rJ � € and l f (z) - dl < o whenever 
l z - cl < ry. Let N = N (c , ry) . Since f' (c) # 0, the zero of f(z) - d at c is of order 
one, and so, by Theorem 10 .6 , f iN is one-to-one, and has an inverse function 
g. 

Look again at Theorem 10.6 , in the case where n = 1 . It establishes the 
existence of a single point z1 in D' (c, €) such that f(z1 ) = w, and we can of 
course write z1 = g(w) . Thus g(w) E D' (c, €) whenever w E  D' (d, o) .  It follows 
that g is continuous at d. 

Finally, if z, ( E N and if f(z) = w, f(() = w, then, by Exercise 4.4, 

/(() - f(z) = A(z) (( - z) , 
where A(z) is continuous at z , and tends to f' (z) as ( -+  z . That is, 

w - w = A(g(w) ) (g(w) - g(w)) , 
or, equivalently, 1 g(w) - g(w) = A(g(w) ) (w - w) . 

Since 1/(A o g) is continuous at w, we deduce that g is differentiable at w and 
that g' (w) = 1/f' (g(w)) = 1//' (z ) . 0 

It is important to note that the one-to-one property in the statement of the 
inverse function theorem is a local property, holding within a neighbourhood: 
for example, the exponential function has non-zero derivative at every point , 
but the function is not one-to-one. In fact, one-to-one entire functions are very 
rare: 

Theorem 10 . 10 

Let f be a non-constant entire function, one-to-one throughout C. Then f is 
linear, that is, there exist a, b E C such that f ( z) = az + b ( z E C) . 

Proof 

Suppose first that f is not a polynomial. By Theorem 10.7 the image of the 
open set N(O, 1 ) is an open set , and so contains a neighbourhood N(f(O) , €) of 
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f(O) . On the other hand, from Theorem 8 .11 we know that there exists z such 
that l z l  > 1 and such that 1 / (z) - /(0) 1 < e, and so we have a contradiction to 
our assumption that f is one-to-one. Hence f must be a polynomial, of degree 
n (say) , and by the Fundamental Theorem of Algebra we must have 

f(z) = c(z - at ) (z - a2 ) . . .  (z - an ) . 

The one-to-one property forces all the roots to coincide, and so f(z) = c(z-a)n , 
for some a in C and some n � 1. Now, if w1 1 w2 are two distinct nth roots of 
1 ,  we have /(a + w1 ) = f(a + w2 ) = c, and this gives a contradiction unless 
n =  1 . 0 

EXERCISES 

10.6. Let f be holomorphic in a domain containing N(O, R) , and let M 
be a positive real number. Show that, if 1 /(z) l > M for all z on 
the circle ��:(0, R) and l / (0) I < M, then f has at least one zero in 
N(O, R) . 

Use this result t'o outline a proof of the Fundamental Theorem of 
Algebra. 

10.7. Let f be holomorphic in the closed disc N(O, R) . Show that Re f 
cannot have a maximum value in N(O, R) . Can it have a minimum 
value? [Hint: consider ef .J 

10.3  Winding Numbers 

Many of the theorems we have stated and proved in this book concerning 
piecewise smooth functions 'Y(t) giving rise to simple, closed curves can, with 
some modification, be extended to curves that are not simple. The key is the 
notion of the winding number of a curve. For clarity, let us refer to 'Y* as a 
W -contour if 'Y is closed and piecewise smooth. 

If in ( 10.2) we take f(z) = z - c, then f' (z) = 1 and so 
1 1 dz 
-:- - = Ll.., ( arg(z - c)) . 
z ...,. z - c 

If the contour 'Y is simple, then this is equal to 211" if c E I('Y) and 0 if c E E('Y) ,  
but if 'Y* is a W-contour we may obtain 2n7r, where n is an integer other than 
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Figure 10.1. A curve that is closed but not simple 

0 or 1 .  This integer is called the winding number of the W -contour, and is 
denoted by w('y, c) . That is, 

1 1 dz w('y, c) = -2 . -- . 
11'� 7 z - c  {10.4) 

For the contour in Figure 10.1 we have w('y, 1) = 2 ,  w{'y, 3/2) = 1 and w{'y, 3) = 

0 .  
It is possible to extend several key theorems to the case of W -contours. See 

[3) or [ 10) . In particular, the residue theorem becomes 

Theorem 10. 1 1  

Let "' b e  closed and piecewise smooth, and let the function f be a meromorphic 
within a disc containing "/* , with poles at c1 1 c2 , • • •  , c,. .  Then 

1 f(z) dz = 211'i t w{'y, ci )res{f, ci ) · 
'Y i=l 

For example, if "/* is as in Figure 10. 1 ,  and if f is meromorphic in the open 
disc N(O, 4) with poles at 1 ,  3/2 and 3, then 

i f (z) dz = 211'i [2res{f, 1) + res{!, 3/2) + Ores{!, 3)) . 

In the same way, Theorem 10 .1 becomes 
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Theorem 10 . 12 

Let "' be a W -contour, let f be meromorphic in a disc D that contains "'* , and 
suppose that Q = { q E D : ord(f, q) =/= 0} is finite . Then 

1 1 f' (z) 
21ri -y f(z) 

dz = L w("t , q)ord(/, q) . 
qEQ 

Remark 10 . 13  

It is o f  course possible that for some of the members q of  the set Q we have 
w("t , q) = 0 . For example, referring again to Figure 10. 1 ,  we might have /(z) = 
(z - 1) 2 (2z - 3)(z - 3) ,  with zeros at 1 (double) , 3/2 and 3, and our theorem 
would give 

r f;f(�; dz = 27ri [(2 X 2) + ( 1  X 1 )  + (0 X 1 ) ]  = 107r .  



1 1  
Conformal Mappings 

11.1 Preservation of Angles 

This chapter explores the consequence of a remarkable geometric property of 
holomorphic functions. Look again at Figures 3 . 1  and 3.2 on page 42. For 
arbitrary k and l the lines u = k an,d v = l in the w-plane are of course 
mutually perpendicular, and visually at least it seems that the corresponding 
hyperbolic curves x2 -y2 = k and 2xy = l in the z-plane are also perpendicular . 
Again, the lines x = k and y = l are mutually perpendicular, and it appears also 
that the corresponding parabolic curves in the w-plane are also perpendicular. 
These observations are in fact mathematically correct (see Exercise 1 1 . 1 ) ,  and 
are instances of a general theorem to be proved shortly. First , however, we need 
to develop a little more of the theory of the parametric representation of curves 
that was introduced in Section 5 .2 .  

In the space IR2 of two dimensions, the parametric representation of a 
straight line L through a = ( a1 , a2 ) in the direction of the non-zero vector 
v = (v1 , v2 ) is 

Suppose now that we have a curve 

C = { (r1 (t) , r2 (t) ) : t E [a, bl } , 

where r1 and r2 are differentiable . For each u in [a, b] , the tangent Tc to C at 
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the point (r1 (u) , r2 (u) )  is in the direction of the vector (r� (u) , r� (u) ) , and so 

T u = { {ri ( u) + tr� ( u) ,  r2 ( u) + tr� ( u) )  : t E lR} . 
As in Section 5 .2 , we can easily translate the vector (r1 (t) , r2 (t)) into a 

complex number l'(t) . Thus, if 1' is differentiable , the tangent to the curve 

C = b(t) : t E [a, b] }  

at the point 1'( u )  is 
Tu = {l'(u) + h' (u) : t E IR} , 

provided l''(u) =!= 0. If l'' (u) = 0 then there is no well-defined tangent at the 
point l'(u) . (For example, consider the cycloid in Figure 5 . 1 ,  where l'' (t) = 

1 - e-it = 0 when t = 2mr (n E Z) . At each of these points the graph has a 
cusp . ) 

Now consider two smooth curves 

c1 = bl (t) : t E [0, 1] } , c2 = b2 (t) : t E [0 , 1] } , 

intersecting in the point /'l ( 0) = /'2 ( 0) .  Suppose that I'H 0) and 1'� ( 0) are both 
non-zero, so that there are well defined tangents T1 and T2 at the point of 
intersection: 

We then define the angle between the curves C1 and C2 to be the angle between 
the tangents, namely arg (/'� ( 0) - 1'� ( 0) ) . This is a reasonable definition: for 
i = 1 ,  2 , arg (T'H 0)) is the angle made by the non-zero vector 1H 0) with the 
positive x-axis, and the angle between the two vectors l'i (0) and 1HO) is the 
difference between the two arguments. 

We now have a theorem which says roughly that angles are preserved by 
holomorphic functions . More precisely, if we take account of the potential am­
biguity in the argument, we have 
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Theorem 1 1 . 1  

Let f b e  holomorphic in an open subset U of C. Suppose that two curves 

c1 = {-n (t) : t E [o, 1] } , c2 = b2 (t) : t E [o , 1] } , 

lying inside U meet at a point c = "Yl ( 0) = ')'2 ( 0) . Suppose that f' (c) , "YH 0) and 
"Y� (O) are all non-zero. Let 

'D1 = { / ("Yl (t) ) : t E [0, 1] } , 'D2 = { f ("Y2 (t) ) : t E [0, 1] } . 

If the angle between cl and c2 is ¢ and the angle between 'Dl and 'D2 is t/J, 
then t/J = ¢ (mod 211') .  

Proof 

The curves 'D1 and 'D2 meet at f (c) at an angle 

t/J = arg(f o 1'2 ) ' (0) - arg(f o 1'2 ) '  (0) . 

By the chain rule, 
(! o "Y1 ) ' (0) f' ("Y1 (0) )"Y� (O) f' (c)"Y� (O) "Y� (O) 
(f o "Y2 ) ' (0) 

= 
f' ("Y2 (0))"Y� (O) 

= f' (c)"Y� (O) = "Y� (O) ' 
Hence 

t/J = arg(f o 1'2 ) ' (0) - arg(f o 1'2 ) ' (0) 
= arg ')'� (O) - arg "Y� (O) (mod 211') (by ( 1 1 . 1 )  and Exercise 2 .6) 
= ¢ . 

Remark 1 1 . 2  

( 1 1 . 1 )  

0 

The proof of the theorem makes it clear that the sense as well as the magnitude 
of the angle between C1 and C2 is preserved by f. An obvious example of a (non­
holomorphic) f preserving magnitude but not sense is f : z f-t z, which we can 
think of geometrically as reflection in the x-axis. 

Remark 1 1 . 3  

The trivial observation that 

\ f(z) - f(c) \ -+ \ f' (c) \ as z -+  c \ z - c \ 
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has a geometric interpretation, that the local magnification of the mapping 
f at the point c is 1 /' {c) l .  

Remark 1 1 . 4  

The condition /' {c) -:f. 0 in the statement of Theorem 1 1 . 1  i s  essential. For 
example, consider the holomorphic function f : z H z2 , noting that /' {0) = 0. 
The positive x-axis maps to itself, and the line () = 1r /4 maps to the positive 
y-axis. The angle between the lines doubles . 

We shall say that a complex function f is conformal in an open set U if 
it is holomorphic in U and if /' {c) -:f. 0 for all c in U. Thus, for example, the 
function z H z2 is conformal in the open set C \ {0} . Theorem 1 1 . 1  tells us 
that conformal mappings preserve angles. 

EXERCISES 
1 1 . 1  With reference to Figures 3 . 1  and 3.2 ,  suppose that k, l ,  x, y -:f. 0. 

a) Show that the hyperbolas x2 - y2 = k and 2xy = l (with k ,  l > 0) 
meet at right angles. 

b) Show that the parabolas v2 = 4k2 (k2 - u) and v2 = 4l2 (l2 + u) 
meet at right angles. 

1 1 . 2  Let f be conformal in the open set U. Show that the function g 

z H f(z) preserves the magnitude of angles but not the sense. 

11.2 Harmonic Functions 

Let U be an open subset of IR2 • A function f : U -+ IR is said to be harmonic 
if 
{i) f has continuous second order partial derivatives in U; 
{ii) f satisfies Laplace's1 equation 

1 Pierre Simon Laplace, 1749-1827. 

{ 1 1 .2) 
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Harmonic functions are of immense importance in applied mathematics, and 
one major reason why complex analysis is important to applied mathematicians 
is thc.t harmonic and holomorphic functions are closely related. First, we have 

Theorem 1 1 . 5  

Let f b e  holomorphic in an open set U ,  with real and imaginary parts u and 
v. Then both u and v are harmonic in U. 

Proof 

We are supposing that u, v : �2 --+ � are such that 

f(x + iy) = u(x, y) + iv(x, y) . 

Since f is infinitely differentiable by Theorem 7.5, we know that u and v have 
partial derivatives of all orders, and by the Cauchy-Riemann equations we have 

and similarly 
[)2v [)2v 
8x2 -

{)y2 . 

Thus both u and v are harmonic functions . 

There is a converse: 

Theorem 1 1 . 6  

0 

Let D be an open disc, and suppose that u : D --+ � is harmonic. Then there 
exists a complex function f, holomorphic in D, such that u = Re f . 

Proof 

If such an f exists, with Re f =  u and Im f = v (say) , then f' (z) = u., + iv., = 

u., - iuy . So we define g(z) = u., (x, y) - iuy (x, y) (where, as usual, z = x + iy) . 
Then u., and -uy have continuous first order partial derivatives and, in D, the 
Cauchy-Riemann equations are satisfied by the real and imaginary parts of g: 
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Hence, by Theorem 4.3 ,  g is holomorphic in U. By Theorem 5.25 there exists 
a holomorphic function G such that G' = g. If we write Re G = H, Im G = K, 
then 

G' = H., + iK., = H., - iHy = u., - iuy , 
and so (H - u)., = (H - u)y = 0 throughout D. Hence H(x, y) - u(x, y) = k, 
a real constant . Let f (z) = G(z) - k; then Re f = H - k = u. 0 

Remark 1 1 .7 

The function Im f , which is also harmonic, is called a harmonic conjugate 
for u. 

In practice a certain amount of guessing can produce a harmonic conjugate 
and an associated holomorphic function: 

Example 1 1 . 8  

Let u(x, y) = x3 - 3xy2 - 2y. Verify that u is harmonic, and determine a 
function v such that f = u + iv is holomorphic. 

Solution 
We easily see that 

()2u ()2u 
ox2 + {)y2 = 6x + ( -6x) = 0 .  

The required function v must satisfy the Cauchy-Riemann equations, and so 
ov = au 

= 3x2 - 3y2 . 
{)y OX 

By integration we deduce that v(x, y) = 3x2y - y3 + g(x) for some function g. 
Then from OV I OU 

OX 
= 6xy + g (X) and -

{)y 
= 6xy + 2 

we deduce from the Cauchy-Riemann equations that g' ( x) = 2. Hence, choosing 
g(x) = 2x, we obtain 

and we easily verify that v is again a harmonic function. Observe that 
f(z) = (x3 - 3xy2 - 2y) + i (3x2y - y3 + 2x) = z3 + 2iz .  

0 
Many boundary-value problems in applied mathematics come under the 

general heading of the Dirichlet2 problem: 
2 Johann Peter Gustav Lejeune Dirichlet, 1805-1859. 
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• Let U be an open set bounded by a simple closed piecewise smooth curve, 
and let F be a continuous real-valued function with domain aU, the bound­
ary of U. Can we find a function f that is continuous on U, harmonic in 
U, and such that f = F on aU? 

The following solution (which I shall not prove) exists for the case where 
U is the open disc N(O, 1 ) .  Here the boundary value function F has domain 
{ei11 : 0 � (} < 27r} .  For rei11 in U, let 

Let 

. 1 12,.. 1 - r2 . g (re'11 ) - - F(e't ) dt - 271" 0 1 - 2r cos((} - t) + r2 · 

f(reill ) = 
{ g(rei� ) if 0 � r < 1 

F(re'11 ) if r = 1 ; 

( 1 1 .3) 

then f is harmonic in N(O, 1) , continuous in N(O, 1) , and f = F on the circle 
K(O, 1 ) .  (For a proof, see [4) . )  

It is clear that rescaling and translating will give a solution of the Dirichlet 
problem for a general open disc N(a, R) . We now look at a strategy for solving 
the problem in the general case. The first element of the strategy is a theorem 
due to Riemann: 

Theorem 1 1 . 9  {The Riemann  Mapping Theorem) 

Let 'Y* be a contour. Then there exists a one-to one conformal mapping f from 
I('Y) onto N (O, 1 ) ,  with f-1  : N(O, 1) � I('Y) also conformal. 

A proof of this can be found in [4) . Unfortunately there is no practical general 
method for finding the function f, which is why the next section will deal with 
a number of ways of transforming open sets using conformal mappings. 

The other part of the strategy is a theorem to the effect that the composition 
of a harmonic function and a conformal mapping is harmonic. Precisely, 

Theorem 1 1 . 10 

Let D = I('Y) , where 'Y defines a simple, closed, piecewise smooth curve in the 
z-plane, and let /, where f(x + iy) = u(x, y) + iv(x, y) , be a conformal mapping 
transforming D into D* (in the w-plane) .  If ()* (u, v) is harmonic in D* , then 
(}, given by 

O(x, y) = O* (u(x, y) , v(x, y)) , 

is harmonic in D. 
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Proof 

By Theorem 1 1 .6 , there is a harmonic conjugate ¢* for ()* such that F* (w) = 

()* ( u, v ) + i¢* ( u, v ) is holomorphic in D* . Hence F* o f is holomorphic in D, 
and so B, its real part , is harmonic in D. 0 

To "solve" the Dirichlet problem we first use a suitable holomorphic func­
tion f to transform U into N{O, 1 ) ,  find the appropriate harmonic function in 
N(O, 1 ) ,  then use f- 1 to transform back into U. This is a strategy rather than 
a solution, for there are practical difficulties in the way. As already mentioned, 
there is no general method for finding f, and the feasibility of evaluating the 
integral in { 1 1 .3) depends on the nature of the boundary value function F. 

Using the close connection with holomorphic functions, we finish this section 
by establishing a maximum principle for harmonic functions . .  

Theorem 1 1 . 1 1  

Let 'Y be a contour, and let u be harmonic and non-constant in I {  'Y) U 'Y* . Then 
u is bounded in I( 'Y) U 'Y* . Let 

M = sup {u(x , y) : (x, y) E I("f) U "f* } .  

Then u(x , y) < M for all (x, y) in I('Y) . 

Proof 

Choose v so that f = u + iv is holomorphic. Then g z H ef (z) is again 
holomorphic. Observe that 

lg(z) l = eu(:c ,y) . { 1 1 .4) 

By Theorem 5 .3 , g(z) is bounded, and it follows from { 1 1 .4) that u(x, y) is 
bounded above. Next , observe that 

eM = sup { lg(z) l : z E I('Y) U 'Y* } · 
By the Maximum Modulus Theorem {Theorem 10.8) , lg(z) l < eM for all z in 
I('Y) . Hence u(x, y) < M for all (x, y) in I('Y) .  0 

EXERCISES 
1 1 .3 . Verify that the following functions u are harmonic, and determine a 

function v such that u + iv is a holomorphic function. 
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a) u(x, y) = x( 1 + 2y) ; 
b) u(x, y) = e"' cos y; 

y c) u(x, y) = x - 2 2 . . X + y  
1 1 .4 With reference to Theorem 1 1 . 1 1 ,  let 

m = inf {u(x, y) : (x, y) E I(r) U r* } . 

Show that u(x, y) > m for all (x, y) in I(r) · 

11.3 Mobius Transformations 

203 

In transforming regions by means of conformal mappings, straight lines and 
circles play an significant role, and there is an important class of conformal 
mappings that transform circles and lines into circles and lines . 

In this section it is convenient to deal with the extended complex plane 
<C U { oo} mentioned in Section 3 .3 .  (Recall that there is a single point at 
infinity. ) We shall denote <C U { oo} by <C* ,  and will use the following conventions, 
in which c is a (finite) complex number: 

C ± 00 = ±oo + C = 00 C X 00 = 00 X c = 00 

c/ oo = 0 , c/0 = oo . 
oo = - oo = oo , oo + oo = oo x oo = oo .  

We shall also extend the meaning of "circle" to include a straight line, which 
we think of as a circle with infinite radius. 

A Mobius3 transformation, also called a bilinear transformation, is a map 
az + b  

Z H -­cz + d  (z E <C* ,  a, b, c, d  E <C ad - be =/= 0) . ( 1 1 .5) 

The condition ad - be =/= 0 is necessary for the transformation to be of interest : 
if a = b = c = d = 0 the formula is meaningless, and otherwise the condition 
ad - be = 0 gives ajc = b/d = k (say) and the transformation reduces to z H k.  

It is clear that a Mobius transformation is holomorphic except for a simple 
pole at z = -d/ c. Its derivative is the function 

ad - be 
Z H  (cz + d)2 ' 

and so the mapping is conformal throughout <C \ { -d/c} . 
3 August Ferdinand Mobius 1790-1868. 
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Theorem 1 1 . 12 

The inverse of a Mobius transformation is a Mobius transformation. The com­
position of two Mobius transformations is a Mobius transformation. 

Proof 

As is easily verified, the Mobius transformation 
dw - b 

W I-t --­-cw + a  { 11 . 6) 

is the inverse of z 1-t (az + b)/(cz + d) .  
Given Mobius transformations 

a1z + b1 a2z + b2 It : z 1-t d and h : z 1-t , c1 z + 1 c2z + d2 
an easy calculation gives 

where 

Az + B  (It o h) (z) = Cz + D ' 

Thus It o h is a Mobius transformation, since a routine calculation gives 

Remark 1 1 . 13 

0 

The composition of Mobius transformations in effect corresponds to matrix 
multiplication. If we define the matrices of It and h as 

( �� �� ) and ( �: 
then the matrix of It o h is 

Recalling that 

( ac b ) - 1 1 ( d 
d = ad - be -c 

-b ) a ' 
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we see that this is essentially the matrix of the inverse of z � ( az + b)/ ( cz + d) 
as indicated in { 1 1 .6) , since multiplication of all the coefficients by a non-zero 
complex constant k does not change a Mobius transformation. 

Among special Mobius transformations are: 
(M1) z � az (b = c = 0, d = 1) ; 

(M2) z � z + b (a = d = 1 ,  c = 0 - translation by b) ; 
(M3) z � 1/z (a = d = 0, b = c = 1 - inversion) . 
In (M1 ) , if a = Rei8 , the geometrical interpretation is an expansion by the 
factor R followed by a rotation anticlockwise by (}. 

Theorem 1 1 . 14 

Every Mobius transformation 

F az + b  : z � --d cz + 

is a composition of transformations of type (M1 ) ,  (M2) and (M3) . 

Proof 

If c = 0 then d "# 0 and it is clear that F = 92 o 91 , where 
a 91 : z � d z ' 

b 92 : z � z + ;:z · 

If c "# 0, then F = 95 o 94 o 93 o 92 o 91 • with 

for 

91 : z � cz ' 92 : z � z + d ' 
1 

93 : z � - ' z 
1 94 : z �  - (bc - ad)z , c 

a 
95 : z � z + - ' c 

91 ( z) = cz ' (92 0 9d ( z) ,;, cz + d ' 
1 

(93 o 92 o 9d (z) = 
cz + d ' 

a be - ad az + b 
(95 o 94 o 92 o 91 ) ( z) = - + 

( d) 
= --d . c c cz + cz + 

0 
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It is clear that transformations of type (M1) and (M2) preserve shapes, and 
in particular that they transform circles to circles . Inversion transformations in 
general will change shapes, but circles survive. From Theorem 2.9 , a circle E 
in the z-plane can be written as the set of z such that 

I-=--=-: I = k • z - d 
where c, d E C and k > 0. If w = 1/ z , the image E' in the w-plane is the set of 
w such that 

k = l ( 1/w) - c i = M � w - (1/c) l , ( 1/w) - d [d[ w - (1/d) 
(1 1 . 7) 

and so this too is a circle . Recall from Remark 2 . 1 1  that the points c and d 
are inverse points with respect to the circle E. From ( 1 1 . 7) it follows that their 
images 1/c and 1/d are inverse points with respect to E' . 

It thus follows from Theorem 1 1 . 14 that (with our extended definition of 
"circle" ) we have: 

Theorem 1 1 . 15 

A Mobius transformation transforms circles into circles , and inverse points into 
inverse points. 

Here we must recall that two points are inverse with respect to a line if each 
is the reflection of the other in the line. 

If we require to find a Mobius transformation that carries out a particular 
transformation, it can be useful to know a way of writing down the transfor­
mation that sends three chosen distinct points to distinct chosen destinations: 

Theorem 1 1 . 16 

Let (z1 . z2 , z3 ) , (w1 . w2 , w3 ) be triples of distinct points. There is a unique 
Mobius transformation f mapping Zi to Wi for i =  1 , 2, 3. 

Proof 

The Mobius transformation 
( Z - Zl ) ( Z2 - Z3 ) g : z f--7 -- ---
z - Z3 Z2 - Z1 

maps z1 , z2 , Z3 to 0, 1 , oo ,  respectively. Similarly, the Mobius transformation 
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maps w1 , w2 , W3 to 0, 1, oo. It follows that h- 1 o g maps Z1 , z2 , Z3 into WI , w2 , 
W3 . 

To prove uniqueness, suppose first that j : z H (az + b)j (cz + d) has 0, 1 ,  
oo as fixed points. Then j ( 0 )  = 0 implies that b = 0, j ( oo ) = oo implies that 
c = 0, and j ( 1 )  = 1 implies that a = d. It follows that j is the identity function 
z H z. If p is a Mobius transformation mapping each zi to wi , then h o p o g- 1 

fixes 0, 1 ,  oo, and so is equal to the identity function j .  It follows that 

p = ( h -l 0 h) 0 p 0 (g - 1 0 g) = h - l 0 ( h 0 p 0 g - l ) 0 g = h - l 0 j 0 g = h - l 0 g . 

0 

From Theorems 1 1 . 15 and 1 1 . 16 we deduce: 

Theorem 1 1 . 17 

Let S1 , S2 be circles in the plane. There exists a Mobius transformation map­
ping sl onto s2 . 

Proof 

A circle is determined by the position of three distinct points on it. (If the three 
points are collinear, or if one of the points is oo we have a straight line. )  Choose 
three distinct points on S1 and three on S2 . A suitable Mobius transformation 
is then the unique Mobius transformation F mapping the three chosen points 
on s 1 to the three chosen points on s2 . 0 

Example 1 1 . 18 

Find a Mobius transformation mapping the real axis L = {z : Im z = 0} onto 
the circle S =  {z : l z l = 1} .  

Sol ution 
Choose -1 , 0, 1 on L and -1 , i ,  1 on S. Let F(z) = (az + b)j(cz + d) , and 
suppose that F( - 1) = -1 ,  F(O) = i, F(1 )  = 1. We obtain the equations 

-a + b = c - d ,  b = id ,  a + b = c + d ,  

from which we easily deduce that 

The solution is not unique. 

F(z) = .
z + i

. 
zz + 1 
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We can check the answer. If z is real, then i z + i l = v'1 + z2 = l iz + 1 1 , and 
so IF (z) l = 1 .  Also, 

p-l (w) = V: - i , -zw + 1 
and if lw l  = 1 ,  then 

p-l (w) = (w - i) ( 1  + iw) = w + w + i ( lw l 2 - 1) = 2 Re w  
1 1 - iw l 2 1 1 - iw l 2 1 1 - iw l 2 E JR .  

Remark 1 1 . 19 

D 

In Example 1 1 . 18 above, we can in fact obtain more information. If Im z > 0 
then z is closer to i than to -i, and so i z - i l < l z  + i l . It follows that 

IF(z) l = I i(: � 
i
i) I = :: � !l < 1 , 

and so the upper half-plane {z : Im z > 0} maps to the interior {w : lw l < 1 }  
of the circle. If we wanted the upper half-plane to map to the exterior, then 

iz + 1 
Z H  z + i 

would do the trick. 

The next example shows that we can control the exterior /interior question 
in advance by using the inverse points property of Theorem 1 1 . 15 .  

Example 1 1 . 20 

Find a Mobius transformation mapping the half-plane { z : Re z :::; 1 }  onto 
{z :  l z - 1 1 2: 2} . 

Solution 
y v 

0 1 2 ------+-�--�-- x 

The points 0 and 2 are inverse points with respect to the line 

L = {z :  Re z = 1} 
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while the points 0 and -3 are inverse with respect to the circle 

S = {w : lw - 1 1 = 2} . 

Since we wish to map { z : Re z ::; 1} to the exterior of the circle S, we look 
for a Mobius transformation F such that F(O) = -3 and F(2) = 0. We now 
choose 1 , a point on L and -1 ,  a point on S, and .suppose that F(1 ) = -1 .  
Writing F(z) as (az + b) / (cz + d) ,  we then have 

b = -3d , 2a + b = 0 ,  a + b = -c - d ,  

from which we easily deduce that 

F(z) = 3z - 6 . z + 2  ( 1 1 .8) 

D 
We can examine the transformation (1 1 .8) more closely. Consider its inverse, 

given by 
p-l (z) = 2z + 6 , -z + 3  . ( 1 1 .9) 

which maps the circle S =  {z : l z - 1 1 = 2} onto the line L = {w : Rew = 1} . 
A typical point 1 + 2ei11 on S maps to 

2(1 + 2ei11 ) + 6) 4 + 2ei11 ( 4 + 2ei11 ) ( 1 - e-i11 ) w = - (1 + 2eill ) + 3 = 
1 - eill = ( 1 - eill ) (1 - e-ill ) 

2 + 2ei11 - 4e-i11 (2 - 2 cos 0) + 6i sin 0 = 2 - 2 cos 8 = 
2 - 2 cos 8 = 1 + 

= 1 + 6i sin(0/2) cos(0/2) . 0 
• 2 ( / ) = 1 + 3l cot -2 . 2 sm 0 2 

. . .:.:1 0 1 

Q 
1 - 2 i  

1 - 3 i  

3i sin O 
1 - cos O 
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Thus, as () goes from 0 to 21r, the image point in the w-plane traverses the 
line Re z = 1 from 1 + ioo to 1 - ioo. The image of the semicircle from 1r /2 to 
311" /2 {from the P?int 1 + 2i to the point 1 - 2i) is the line segment frpm 1 + 3i 
to 1 - 3i. To find the image of the line from Q to P, we note that Re z = 1 if 
and only if z + z = 2, that is {by { 1 1 .8 ) ) if and only if 

3w - 6 3w - 6 -- + -- = 2 . w + 2  w + 2  
After a bit of algebra, this reduces to ww - (w + w) - 8 = 0, that is, to 
(u - 1)2 + v2 = 9, the circle with centre 1 and radius 3 . That the image is 
the semicircle shown can be seen either by noting that the image of 1 under 
the transformation { 1 1 .9) is 4, or by using the conformal property to argue as 
follows: a spider in the z-plane crawling from P to Q on the semicircular arc 
makes a left turn of 1r /2 when it moves on to the line-segment from Q to P; 
the image spider, which has been crawling on the line segment from P' to Q' , 
must then make a left turn of 1r /2 on to the semicircular arc from Q' to P' 
shown in the diagram. 

EXERCISES 
1 1 .5 Find Mobius transformations mapping: 

a) 1, i , 0 to 0, 1, oo, respectively; 
b) 0, 1 ,  oo to i, oo, 1, respectively; 
c) 1, i , -1 to i , -1 ,  oo, respectively. 

1 1 .6 Determine the local magnification of the Mobius transformation z H 
(az + b) /(cz + d) at a point ( in C. 

11 .7 a ) Determine a Mobius transformation mapping the disc 

D1 = {z : jz + 1 \ ::;; 2} 

onto the complement of the disc D2 = {z : j z  + 2 \  < 1} . 
b) Determine a ... �obius transformation mapping the disc D1 (as 

above) onto the half-plane {z : lm z 2: 3}. 

1 1 .8 Find a Mobius transformation F which maps the disc 

D1 = {z : \ z \  :S: 1} 

onto the disc D2 = {w : jw - 1 \  ::;; 1 } , and such that F(O) = � .  
F ( 1 )  = 0. Do these properties define F uniquely? 
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11 .9 Let 
F(z) = 1

.
+ iz . t + z  

Obtain formulae for F2 (= F o F) ,  F3 and F4 • Describe the image 
under each of F, F2 , F3 and F4 of the line segment on the real axis 
between -1 and 1 . 

1 1 .4 Other Transformations 

We have already noted the geometrical aspects of the mapping z f-t z2 , which is 
holomorphic for all z and conformal for all z #- 0. This applies more generally 
to the mapping Fn : z f-t zn , where n 2:: 2 is a positive integer. Clearly 
Fn maps the unit circle to itself, but the mapping is not one-to-one: the arc 
{ei9 : 0 :::; () < 21rjn} maps to the whole circle {ein9 : 0 :::; () < 27r} .  

Angles between curves are preserved unless they meet at the origin, where 
they multiply by n: if z = ei9 ,  so that Oz makes an angle () with the positive 
x-axis, then zn = ein9 ,  and Ozn makes an angle nO with the x-axis. 

The mapping z -+ z<> ,  where a ? 0 is real, is of course a multifunction if 
a � N, but is conformal in a suitably cut plane. 

Example 1 1 . 2 1  

Let a E ( 0 ,  1r) . Find a transformation, conformal in 
{ rei9 : r > 0 , -1r < () < 1r} 

that maps the sector {rei9 : r > 0 ,  0 < () < o} onto the half-plane 
{w : Imw > 0} . 

Solut ion 
Let F(z) = z1r/<> .  Then 

{F(rei9 ) : r > 0 ,  0 < () < o} = {r1rlaei91r/a : r > 0 ,  0 < () < o} 
= {pei.P : p > 0 , 0 < 4> < 1r} , 

where p = r1r fa , 4> = B1r /a. 0 

We have already remarked that the image under z f-t z2 of a circle 
{z : l z l = R} is again a circle with centre 0, but the circle in the w-plane 
is traversed twice. Circles with centre other than the origin have more compli­
cated images: 



212 Lomplex Ana lysis 

Example 1 1 .22 

Find the image under z H z2 of the circle S =  {z : j z - I I  = 3} . 

Solut ion 
If z = 1 + 3ei8 is an arbitrary point on the circle S, then 

w = 1 + 6ei8 + 9e2i8 , 
and so 

w + 8 = (6 + 9(ei8 + e-ill ) ) eill = 6 ( 1  + 3 cos O)ei8 • 
The path of w is a curve called a lima�on, and looks like this: 

-8 - 6i : 

As z moves on the circle S along the upper arc from 4 to -2, w moves from 
the point 16 along the loop through the points -8 + 6i and -8 to the point 4. 
Then, aJ z continues along the lower arc from -2 back to 4, w moves from 4, 
passes through -8 and -8 - 6i, and finishes at 16 . D 

The exponential function z H ez = exp z is conformal for all z. As we 
recorded in ( 4.25) , if z = x + iy, then ez = ezeiY ,  and so 

l ez l = ez arg(ez ) = y (mod 27r) . 

The line x = a maps by exp to the circle lw l  = ea , and the line y = a maps to 
the half-line arg w = a. A vertical strip bounded by x = a and x = b maps to 
the annulus 

y v 
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and, if I a - bl < 21r, a horizontal strip bounded by y = a  and y =  b maps to an 
infinite wedge between the half-lines arg w = a and arg w = b: 

y v 

b arg w = b 

arg w = a  

----+-------+- X 

If we drop the restriction that Ia - bl < 27r, this needs some qualification. 
Certainly it is the case that as z moves from ia to ib, w moves on the unit 
circle from eia to eib , but may in the process have travelled all the way round 
several times. 

We can sometimes combine different transformations to achieve a desired 
geometric effect : 

Example 1 1 . 23 

Find a conformal mapping that transforms the sector { z 0 < arg z < 1r /4} 
into the disc { w : lw - 11 < 2} . 

Solution 
First transform the sector into the upper half-plane { z : Im z > 0} using z H 
z4 • Then find a Mobius transformation mapping the half-plane to the disc. This 
is not unique, but one way is to map 0 (on the half-plane) to -1  (on the circle) , 
and to map the inverse points i and -i relative to the half-plane to the inverse 
points 1 and oo relative to the circle . We obtain the Mobius transformation 
z H (3z - i)/(z + i) . The required conformal mapping is 

Example 1 1 . 24 

3z4 - i z H z4 + i . 

Find a conformal mapping that transforms the vertical strip 

S = {z : -1 $ Re z $ 1} 

into the disc D = {z l z l $ 1} .  

0 
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Solution 
The mapping z f-t iz transforms S into the horizontal strip 

S1 = {z : - 1  � Im z � 1} . 

Then the mapping z f-t ez transforms S1 to S2 = {z : - 1  � arg z � 1} .  Next , 
the mapping z f-t z"l2 transforms S2 to the half-plane S3 = {z : Re z ;:::: 0}. 
Finally, the Mobius transformation z f-t ( -z + 1)/{z + 1) maps S3 to the disc 
D. The composition of these four mappings is 

-eizn:/2 + 1 z f-t . /2 . 
eun: + 1 

This map is holomorphic unless eizn:/2+ 1  = 0, that is, unless z = 4n+2 (n E Z) , 
and this cannot happen within the strip S. Its derivative is easily seen to be 

-irrein:z/2 

(eizn:/2 + 1)2 ' 

and this is non-zero throughout the strip S. D 

Finally, we mention a class of transformations which give rise to curves 
known as Joukowski's4 aerofoils . Their importance lay in the fact that they 
transformed circles into shapes that approximated to the profile of an aeroplane 
wing, and facilitated the study of the air flow round the wing. We shall look 
only at the simplest of this class of transformations. 

The general Joukowski transformation is given by the formula 

w - ka = ( z - a ) k 
w + ka z + a  

We shall consider only the simplest case, when a =  1 and k = 2 :  

and this simplifies to 
: � � = ( : � �r . 

1 
w = z + - .  z 

{ 1 1 . 10) 

The more complicated formula { 1 1 . 10) demonstrates that the Joukowski trans­
formation is a composition h- 1 o g o f, where 

z - 1  z - 2 f : z f-t -- , g : z f-t z2 , h : z f-t -- , 
z + 1  z + 1  

4 Nikolai Egorovich Joukowski (Zhukovski1} , 1847-1921 .  
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for ( 1 1 . 10) can be written as 

h(w) = g (f(z) ) . 

Observe that both f and g- 1 are Mobius transformations. Accordingly, the 
Joukowski transformation transforms a circle first into another circle, then by 
squaring into a limac;on, and finally, by the Mobius transformation h- I ,  into 
the aerofoil shape. The diagram below shows what happens to the circle with 
centre ( - 1/4) + ( 1/2)i passing through the point 1 .  

· · · · · · · · · · · · · · �· · 

For more information on special transformations, see [5] . 

EXERCISES 
1 1 . 10 Find the image of the first quadrant 

Q = {z :  Re z � O , Im z � O} 

under the mappings ( z - 1 ) 2 
F1 : z �  --z + 1 

1 1 . 1 1  Find a conformal mapping that transforms 

E = { z : Re z � 0 ,  Im z � 0 ,  i z i � 1}  

into {w : !w l ::; 1 } . 

1 1 . 12 Find a conformal mapping that transforms 

Q = {z : Re z < rr/2 , Im z > 0} 

to the half-plane {z : Re z > 0} . 





1 2  
Final Remarks 

Introduction 

The purpose of this very brief final chapter is to make the point that complex 
analysis is a living topic. The first section describes the Riemann Hypothe­
sis, perhaps the most remarkable unsolved problem in mathematics. Because 
it requires a great deal of mathematical background even to understand the 
conjecture, it is not as famous as the Goldbach Conjecture (every even number 
greater than 2 is the sum of two prime numbers) or the Prime Pairs Conjecture 
(there are infinitely many pairs (p, q) of prime numbers with q = p + 2) but 
it is hugely more important than either of these, for a successful proof would 
have many, many consequences in analysis and number theory. 

The second and final section deals with iteration of complex functions, a 
topic that has given rise to arguably the most powerful visual images of twen­
tieth century mathematics, and has demonstrated that fractal sets, far from 
being an isolated curiosity, occur as answers to simple and natural questions in 
analysis. 

12.1 Riemann's Zeta Function 

It is well known that , for real values of s ,  the series 
1 1 1 + - + - + · · ·  28 38 
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is convergent if and only if s > 1. If we allow s = a + iT to be complex, then 

and so the series is (absolutely) convergent if a > 1. We define Riemann's 
Zeta Function ( by 

00 
((s) = L n-8 (Re s > 1 ) . ( 12 . 1 )  

n= l  

An immediate connection with number theory is revealed by the following 
theorem, pue to Euler, in which P denotes the set {2, 3, 5 , . . .  } of all prime 
numbers. 

Theorem 12. 1 

Proof 

Observe first that 

all terms 1fn8 , where n is even, being omitted. Next, ( 1 ) (  1 ) 1 1 1 
�" ( s ) 1 - - 1 - - = 1 + - + - + - + · · · .. 28 38 58 78 1 1B , 

where now we are leaving out 1/n8 for all multiples of 2 or 3. If Pk is the kth 
prime, we see that 

where Dk is the set of natural numbers not divisible by any of the primes 
2, 3, . . . 1 Pk ·  Hence 
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and this tends to 0 as k -+  oo. Hence 

as required. 

({s) IT (1 - 1
. ) = 1 ,  

pEP p 
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0 

We have already (see Remark 9. 17) come across the gamma function 

r(s) = 100 x•- 1 e-"' dx (s > 0) , { 12 .2) 

and here too we can allow s to be complex and regard the function as defined 
whenever Re s > 0. It is easily proved that 

r(s) = (s - 1)r(s - 1) (Re s > 1 ) , { 12.3) 

and we can use this functional equation backwards to define r( s) for Re s < 0 :  
i f Re(s + n) E {0 , 1 ) ,  then 

r r(s + n) (s) = s(s + 1 )  . . .  (s + n - 1) "  
This fails if s is 0 or a negative integer, and in fact it can be shown that r is 
a meromorphic function with simple poles at 0, -1 , -2 . . . . 

Substituting x = nu in the integral { 12.2) gives 

n-• r(s) = 100 e-nuus- 1 du ' 

and summing from 1 to oo gives 

((s)r(s) = f: [ roo e-nuu•- 1 du] = 100 (e-'U + e-2u + . . · )u8- 1 du 
n=1 Jo o 

= 1oo e-uus- 1 du . 
o 1 - e-u 

{The change in the order of integration and summation can be justified, but I 
am deliberately omitting formal details in this chapter. )  It follows that 

1 1oo u•- 1 
((s) = r(s) 0 eu - 1 du (Re s > 1) . 

A more difficult formula, which I shall not prove (see [14] ) ,  gives 

({s) = ir{1 - s) [ ( -z)•- 1 
dz , 2rr Jc e" - 1  { 12 .4) 
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where C is a (limiting) contour beginning and ending at +oo on the :z:-axis, 
encircling the origin once in a positive direction, but slender enough to exclude 
the poles ±2irr, ±4irr, . . .  of the integrand. 

y 

We interpret (-z ) 8- 1 in the usual way as e(s- 1) log (-z) , noting that the cut for 
log(-z ) lies along the positive :z:-axis . 

The formula ( 12.4) makes sense for all 8 in C, except possibly for the poles 
2, 3, 4, . . .  of F( 1 - 8) , but we already know that ((8) is defined at these points. 
In fact we now have ((8) defined as a meromorphic function over the whole of 
C, with a single simple pole at 8 = 1 .  

By developing these ideas a little further (again see [14] ) one obtains a 
functional equation for (, somewhat more complicated than Equation ( 12.3) 
for the gamma-function: 

((8) = 28- 1 [F(8 )t 1 sec(rr8/2)((1 - 8 ) .  

At each negative integer [F(8)] - 1 has a zero of order 1 .  If the integer is odd, then 
this is cancelled by the pole of order 1 for sec(rr8/2) ,  but if 8 = -2, -4, . . .  we 
have ( ( 8 ) = 0. In fact those are the only zeros of ( in the region { 8 : Re 8 < 0} . 

From (12 .1 ) it is not hard to deduce that there are no zeros of ( in the 
region { 8 : Re 8 > 1 } ,  and so we have the conclusion that the remaining zeros 
of ( lie in the strip { 8 : 0 :::; Re 8 :::; 1 } .  Riemann conjectured: 
All the zeros of ( in the strip { 8 : 0 :::; Re 8 :::; 1 } lie on the line 
{8 : Re s = ! } ,  
and this has become known as the Riemann Hypothesis . 

It is something of a puzzle that (at the time of writing) this is still unproved, 
for complex analysis is replete with powerful results and techniques (a few of 
which appear in this book) . The late twentieth century saw the solution of 
several of the classical unsolved problems, notably the Four Colour Theorem 
and the Fermat Theorem, but the Riemann Hypothesis has so far resisted all 
attempts. As early as 1914 Hardy1 [8] proved that ( has infinitely many zeros 
on the line Re s = ! ,  and nobody seriously believes that Riemann's guess is 
incorrect . 

1 Godfrey Harold Hardy, 1877-1947. 
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A much weaker version of the Hypothesis is that there are no zeros of ( on 
the line Re s = 1 ,  and it 'was by proving this result that Hadamard2 and de la 
Vallee Poussin3 were able to establish the Prime Number Theorem: if 1r(x) is 
defined as I {P E P : p � x} l , then 

X 7r(x) "' -1 - .  og x 

A precise error term in this formula would follow from the full Riemann Hy­
pothesis. 

There is an extensive literature on consequences of the Riemann Hypothesis , 
which is not as silly as it might seem at first sight. Titchmarsh4 , in his book 
The zeta-function of Riemann [15) , at the beginning of the final "Consequences" 
chapter, puts the case very well: 

If the Riemann Hypothesis is true, it will presumably be proved 
some day. These theorems will then take their place as an essential 
part of the theory. If it is false, we may perhaps hope in this way 
sooner or later to arrive at a contradiction. Actually the theory,· as far 
as it goes, is perfectly coherent , and shews no sign of breaking down. 

As the spelling "shews" might suggest , Titchmarsh was writing in 1930, but 
his summary is just as true in 2003. 

The classic texts by Titchmarsh [ 14, 15) and Whittaker and Watson [16] 
are an excellent source of further information. 

1 2 . 2  Complex Iteration 

The first hint that simple and natural questions in complex analysis might 
have unexpectedly complicated answers came in a question posed by Cayley5 in 
1879. Let us first remind ourselves ofNewton's6 method for finding approximate 
solutions to equations . Let f be a real function. If x0 is chosen appropriately 
and if, for all n 2:: 0, 

f(xn ) 
Xn+l = Xn - f' (xn ) , 

( 12 .5 ) 

then the sequence (xn ) tends to a root of the equation f(x) = 0. The term 
"appropriately" is deliberately vague, for f ( x ) = 0 may have several roots, 

2 Jacques Salomon Hadamard, 1865-1963. 
3 Charles Jean Gustave Nicolas Baron de la Vallee Poussin, 1866-1962. 
4 Edward Charles Titchmarsh, 1899-1963. 
5 Arthur Cayley, 1821-1895. 
6 Isaac Newton, 1643-1727. 
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and an inappropriate choice may well lead to a divergent sequence (xn ) · For 
example, if f(x) = xj (x2 + 1 ) ,  then the only root of f(x) = 0 is 0, but any 
choice of xo for which Jxo l > 1 leads to a divergent sequence (xn ) · 

The formula { 12 .5) makes sense if we interpret it for a complex function: 
we rewrite it {for psychological rather than logical reasons) as 

f(zn ) Zn+l = Zn - f' (zn ) , { 12 .6) 

where z0 is an arbitrary starting point . If f(z) = 0 has roots o1 , o2 , . . . , Om , 
then there are basins of attraction B1 , B2 , . . .  , Bm in the complex plane 
defined by 

B; = {zo E C :  lim Zn = o; } {i = 1 , 2 ,  . . .  , m) . n-+oo 
For a linear function z - k there is just one basin, namely C itself, and for the 
quadratic function z2 - 1 ,  with two zeros 1 and -1 ,  there are two basins 

B1 = {z E C : Re z > 0} and B-1 = {z E C : Re z < 0} . 

This much is straightforward and unsurprising. When it came to the cubic func­
tion z3 - 1 , Cayley remarked that "it appears to present considerable difficulty" . 
It does indeed, for the basin of attraction of the root 1 looks like this: 

Cayley, of course, had no access to a computer, and could not possibly have 
guessed that the answer would be so complicated. 

The process described by {12 .6) can be defined in a different way. Given the 
function f we can define 

f(z) F(z) = z - f' (z) 
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and write 
z1 = F(zo ) ,  z2 = F(F(zo ) ) , . . . . 

The functions F o F, F o F o F, . . . are written F2 , F3 , • . •  , and are called 
iterates of F. The basin of attraction of a root a of f(z) = 0 is then the set 

Ba. = {z E C : lim Fn (z) = a} . 
n -+ oo  

It is this process of iteration that gives rise to Julia7 sets. n 
Let g be a polynomial function, and, for n = 1 ,  2, . . . , let gn = � 

be the nth iterate of g. The filled in Julia set F of g is defined by 

F = {z E C : gn (z) f+ oo as n ---+ oo} , 

and the boundary {)F of F is called the Julia set of g. 
Consider the simplest possible quadratic function g : z H z2 , where gn ( z) = 

z2n .  Here it is clear that 

F = {z : l z l  5 1 } , 8F = {z : l z l  = 1 } , 

an unexciting conclusion, but it makes the point that not all Julia sets are 
"funny" . The situation changes dramatically if we consider the quadratic func­
tion fc : z H z2 + c, with c =f. 0. If c = (0 .6)i the filled in Julia set looks like 
this : 

7 Gaston Maurice Julia, 1893-1978. 
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If c = -0.2 + (0.75)i it looks like this: 

The Mandelbrot8 set , depicted below, is defined as 

It seems appropriate to end this book with a picture that is the most strik­
ing of all the images of late twentieth century mathematics. This has been a 
flimsy account of an important area. Much solid and fascinating mathematics 
is involved in a proper study, but this is well beyond the scope of an introduc­
tory book. For a mathematical account of fractal sets, including.. Ju_lia sets and 
the Mandelbrot set , see [7] . For a more visual account, with lots of excellent 
pictures, see [12] . 

8 Benoit Mandelbrot, 1924-. 



1 3 
Solutions to Exercises 

Chapter 1 

1 . 1 . Let A be bounded below by b. Then -A = {x E R : -x E A} is bounded 
above by -b, and so has a least upper bound c. Then -c is the greatest 
lower bound of A. 

1.2 . The result certainly holds for n = 1 . Suppose that it holds for n - 1. Then 
Qn = (3/2) (3n- l + 1) - 1 = ( 1/2)(3n + 3 - 2) = (1/2) (3n + 1 ) .  

1 .3 . It i s  useful to  note first that 1 and 8 are the roots o f  the equation x2 -

x - 1  = 0. Thus 
,2 = / + 1 ,  82 = 8 + 1 . ( 13 . 1 )  

Since ( 1/v'5) (r - 8) = 1 and ( 1/.;5) (,2 - 82 ) = ( 1/v'5) (r + 1 - 8 - 1 )  = 1 ,  
the result holds for n = 1 and n = 2. Let n 2: 3 and suppose that the 
result holds for all k < n. Then fn = ( 1/v'5) [rn- l _ 8n- l +rn-2 - 8n-2] = 
( 1/J5) [rn-2 (r + 1) - 8n-2 (8 + 1 ) ]  = ( 1/v'5) [rn - 8n] , by ( 13 . 1 ) .  

1 .4 . From elementary trigonometry we have 2 sin(7r/4) cos(?r/4) = sin(?r/2) = 
1 . Also, sin( ( 1r /2) - e) = sin( 1r /2) cos ( -e) + cos ( 1r /2 ) sin( -e) = cos e, and 
so sin (n/4) = cos (n/4) . Thus 2 cos2 (n/4) = 1 ,  and so cos (n/4 ) , being 
positive, is equal to 1/ J2. 

1 .5 . a) We easily deduce that cos 2e = 2 cos2 e - 1 and sin 2e = 2 sin e cos e . 
Then cos 3e = cos 2e cos e-sin 2e sin e = ( 2 cos2 e - 1)  cos e- 2 cos e ( l ­
cos2 e) = 4 cos3 e-3 cos e. Put e = 1r /6 ; then 4 cos3 ( 1r /6) - 3  cos( 1r /6) = 
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cos{'rr/2) = 0, and so cos(n"/6) ,  being positive, is equal to V3/2. It 
follows that sin(1rj6) = J1 - cos2 (1rj6) = 1/2. 

b) These follow immediately from sin( (7r/2) - 0) = cos O. 
1 .6 .  We know that cos( u + v) = cos u cos v - sin u sin v and easily deduce that 

"cos(u - v) = cos u cos v + sin u sin v . Hence cos(u + v) + cos(u - v) = 
2 cos u cos v and cos( u + v) - cos( u - v) = 2 sin u sin( -v) . The result follows 
if we let u = (x + y)/2 and v = (x - y)/2. 

1 .7. We verify that a1 = 2° cos O = 1 ,  a2 = 21 cos(7r/3) = 1 .  Suppose that 
n � 3 and that ak = 2k- 1 cos( (k - 1 )7r/3) for all k < n. Then 

2 4 2n- 1 [ (n-2)7r (n-3)7r J an = an- 1 - an-2 = cos 3 - cos 3 
= 2n-1 [cos (n�2l.,. + cos nn (since cos(O - 1r) = - cos O) 
= 2n 

COS 
(n�1)1r 

COS j = 2n- 1 COS 
(n�1 )1r . 

Chapter 2 
2 . 1 .  a) M (a , b)M(c, d )  = M(ac - bd, ad + be) . 

b) This is routine. 
c) M(O, 1 )M(O, 1 )  = M(O.O - 1 . 1 ,  0 . 1 - 1 .0) = M( -1 ,  0) . 
d) 

M(a, b) = ( �b ! ) = ( : � )  + b ( �1 � ) = a + bi . 

2 .2 . X = 1 ± A = 1 ± 2i . 

2 .3 . Let z = x + iy . Then iz = ix - y and so Re(iz) = -y = - Im z , Im(iz) = 
x = Re z. 

2.4 . a) (3 + 2i)/ ( 1  + i) = [ (3 + 2i) ( 1 - i) ]/2 = � (5 - i) .  
b )  ( 1  + i )/(3 - i) = [ ( 1 + i) (3 + i)J /10 = 1

10 ( 2  + 4i) = � ( 1 + 2i) .  
c )  ( z  + 2) (z  + 1 ) = [ (z + 2 ) ( z  + 1 ) ]/ [(z + 1 ) (i + 1 ) ]  = [(x2 + y2 + 3x + 

2) - yi] f (x2 + y2 + 2x + 1) . 

2 .5 .  a) i z l = J2, arg z = -1i/4; b) i z l = 3, arg z = -71'"/2: c) i z l = 5 , 
arg z = tan- 1 ( 4/3) ; d) i z l = J5; arg z = 7r + tan- 1 ( -2) .  

2.6 . Let c = rei9 ,  d = pei¢ , with (} = arg c, ¢ = arg d. Then c/ d = ( r / p )ei (B-¢) . 
So, taking account of the potential ambiguity in arg, we have arg (c/d) = 

(} - ¢. 

2.7. 1 + i = J2ei.,.f4 ; so ( 1  + i) 16 = 28e4i.,. = 28 = 256. 
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2.8 . 2 + 2iv'3 = 4eill'/3 ; so (2 + 2iv'3)9 = 218e3i11' = -218 . 
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2 .9 . i4 = 1 ; so i4q = 1 for every q in Z. Thus i4q+l = i, i4q+2 = i2 = - 1 ,  
i4q+3 = i3 = -i. 

2 . 10. ���O in = (1 - i101 ) / ( 1 - i) = (1 - i)/ (1 - i) = 1 . 

2 . 1 1 .  When n = 1 the right hand side is ( 1 - 2z + z2 )/ ( 1 - z)2 = 1 ,  and so the 
result is true when n = 1 . Suppose that it holds for n = k. Then 

1 2 (k 1) k 1 - (k + 1)zk + kzk+1 
(k 1 ) k + z +  . . .  + z = + + z ( 1 - z)2 

_ 1 - (k + 1)zk + kzk+1 + (k + 1)zk - 2(k + 1)zk+1 + (k + 1) zk+2 
- ( 1 - z2 ) 
_ 1 - (k + 2)zk+1 + (k + 1)zk+2 
- ( 1 - z)2 

and so the result holds by induction for all n. The sum to infinity follows 
easily. 

2 . 12 . If a is positive and 0 < r < 1 ,  then a+ar+ · · · arn- 1 < a/( 1-r) .  Put a =  1 
and r = l z2 /z1 l  to obtain 1 + l z2/zd + · · · + l z2/z1 l n- 1 < 1/ [1 - lz2/z1 1 ] .  
The left hand side is greater than n times its smallest term, so greater 
than nl z2/ z1 ln- 1 . Hence nl z2/ z1 l n- 1 < 1/ [1 - lz2 /z1 1 ]  = l z1 l / ( l z1 l - l z2 1 ) .  

2 . 13 . l z1 +z2 l 2 + l z1 -z2 l 2 = Z1Z1 +z1z2+Z2Z1 +z2z2 +Z1Z1 - Z1Z2 - Z2Zl +z2.Z2 = 
2(z1z1 + z2z2 ) = 2( l z1 l 2 + l z2 l 2 ) .  Hence, putting z1 = c, z2 = v'c2 - cP ,  
we have [ l c + v'c2 - d2 1 + l c - v'c2 - d2 1 ] 2 = [ l z1 + z2 l + l z1 - z2 l l 2 = 
l z1 + z2 l 2 + l z1 - z2 l 2 + 2 l (zl + z2 ) (z1 - z2 ) l = 2 ( l z1 l 2 + l z2 l 2 ) + 2 l z� - zi l = 
2 l c l 2 +2 l c2 -d2 1+ 2 l dl 2 = l c+dl 2 + lc-dl 2+2 l c+dl l c-dl = [ lc+dl + lc-dl ] 2 . 
The result follows if we take square roots . 

2 . 14. ei8 + e3i8 + . . .  + e(2n+l )i8 = ei8 [e (2n+2)i8 _ 1] / [e2i8 _ 1] = [e(2n+2)i8 _ 
1] / [ei8 - e-i8 ] = [e(2n+2)i8 - 1] /2i sin 0 = (1/2 sin 0) [-i (cos(2n + 2)0 + 
i sin(2n + 2)0) + i] , of which the real part is [sin(2n + 2)0] / [2 sin 0] .  

2 . 15 . Since anrn +an-nn-1 + · · · + an + ao = 0 ,  the complex conjugate is also 
equal to 0; that is, since the coefficients ai are all real, an.:Yn +an_ 1.:yn- 1 + 
· · · + a1,:Y + a0 = 0. Thus 1 = pei8 and .:y = pe-i8 are both roots and so 
P(z) is divisible by (z - pei8 ) (z - pe-i8 ) = z2 - 2p cos 0 + p2 . 

2 .16 .  a) By the standard formula, z = H3 - i ± J(3 - i)2 - 4(4 - 3i)) = 
H3 - i ± v'-8 + 6i) = H3 - i ± ( 1  + 3i) )  = 2 + i or 1 - 2i .  

b) Similarly, z = � [(3 + i) ± J(3 + i)2 - 8 - 4i] = H3 + i ± J2i) = 
� [3 + i ± ( 1  + i)] = 2 + i or 1 .  

2 . 17. a) {z : l2z + 31 :S 1} is the circular disc with centre - � and radius � · 
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b) l z l 2 � l 2z + 1 12 if and only ih2 +y2 � {2a:+ 1)2 + {2y)2 , that is, if and 
only if 3a:2 + 3y2 + 4x + 1 � 0, that is, if and only if (a: + � ) 2 + y2 � � · 
Thus the set is the exterior of the circular disc { z : I z + � I < n. 

2 .18 .  The roots o f  z5  = 1 are 1 ,  e±2i11'/5 , e±4i11'/5 , and so z5 - 1 = (z - 1 ) [z2 -
· 2z cos{21!"/5) + 1] [z2 - 2z cos{41l"/5) + 1] . Since we also have z5 - 1 = 
(z - 1) (z4 + z3 + z2 + z + 1 ) ,  we deduce that [z2 - 2z cos{211' /5) + 1] [z2 -
2z cos(411'/5) + 1] = z4 + z3 + z2 + z + 1 .  Equating coefficients of z3 
gives cos{211'/5) + cos(411'/5) = - � , and equating coefficients of z2 gives 
cos{211'/5) cos{411'/5) = - � . Hence cos{211'/5) and cos{411'/5) are the roots 
of the equation a:2 + �a:- � = 0. The roots of this equation are � (  - 1± v'5) 
and, since cos{211'/5) is positive and cos{411'/5) is negative, we must have 
cos{211'/5) = � (v'5 - 1) ,  cos(11'/5) = - cos{411'/5) = ! (J5 + 1 ) .  

Chapter 3 
3 .1 .  Let c be a point in C not lying in the real interval [a , b] . Let 8 = 

min { l c - z l  : z E [a, b] } .  Then 8 > 0, and the neighbourhood N(c, 8 /2) 
lies wholly outside [a, b] . Thus [a, b] is closed. On the other hand, {a, b) is 
not open, since for every c in (a, b) there is no neighbourhood N(c, 8) of 
c lying wholly inside {a, b) . It is not closed either, for a � (a, b) , yet every 
neighbourhood N(a, 8) of a intersects {a, b) . 

3 .2 .  Let z E A; thus l z l  = r , where 1 < r < 2. If 8 = min {r - 1 , 2 - r} ,  then 
N(z , 8) � A. Hence A is open. The closure of A is {z : 1 :$ z :$ 2} ,  and 
8A = �t(O, 1 )  U �t(O, 2) .  

3 .3 .  If f =  g + h, with lg(z) l :$ Klz l 2 , l h(z) l :$ Llz l 3 for all sufficiently small z, 
it follows {since l z l 3 :$ l z l 2 for all l z l  :$ 1 ) ,  that l f(z) l :$ lg(z) l + l h(z) l :$ 
(K + L) l z l 2 for all sufficiently small z. Thus O{z2) + O{z3) = O{z2 ) as 
z --+  0. 

3.4. 

If f =  g + h, with lg(z) l :$ Klz l 2 , l h(z) l :$ Llz l 3 for all sufficiently large z, 
it follows {since l z l 3 > l z l 2 for all l z l  > 1 ) ,  that lf{z) l :$ lg(z) l + l h{z) l :$ 
(K + L) l z l 3 for all sufficiently large z. Thus O(z2 ) + O(z3 ) = O(z3 ) as 
z --+  oo .  

! [(1 + z)n - {1 + nz)] = t (n) zr-l --+ 0 as z --+  0. z r=2 r 
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3 .5 .  
3z2 + 7z + 5 

= (3 + � + �) (1 + _!_) -2 
(z + 1 )2 z z2 z2 

as z -t oo . 

= ( 3 + � + :2 ) ( 1 - � + O(z-2 )) (by Example 3. 1 1 )  

1 = 3 + - + O(z-2 ) z 

3 .6 . For all z such that l z l ::; 1 , Jp(z) l ::; l ao I +  Ja1 l  + · · · + Jan I ·  So p(z) = 0(1 )  
as z -t 0. Also, for all l z l 2: 1 

Jp(z) l = J z l n I (an + an
z
- 1 + . .  · + :�) I ::=; J z l n ( J an l + J an- 1 1 + " · + Jao l ) , 

and so p(z) = O(zn ) as n -t oo . 

Chapter 4 

4 . 1 . a) f(z) = i(x2 - y2 + 2ixy) + 2(x + iy) = (2x - 2xy) + i(x2 - y2 + 2y) ; 
so u = 2x - 2xy, v = x2 - y2 + 2y. Thus {)uj{)x = {)uj{)y = 2 - 2y, 
{)vj{)x = -{}uj{)y = 2x . 

b) Multiply numerator and denominator by the conjugate of the denom­
inator to make the denominator real: f(z) = (z + i ) (2Z + 3i) / (2z -
3i) (2Z+3i) = (2zz+3iz+2iz- 3)/ (4zz+6i(z - z) +9) = (2(x2 +y2 ) +  
3i(x + iy) + 2i(x - iy) - 3) / (4(x2 - y2 ) - 12y + 9) . Hence u = (2x2 + 
2y2 - y - 3)/ (4x2 + 4y2 - 12y + 9) ,  v = 5x/ (4x2 + 4y2 - 12y + 9) .  Then 
verify that {)uj{)x = {)vj{)y = (60x - 40xy)j (4x2 + 4y2 - 12y + 9) 2 , 
{)vj{)x = -{}uj{)y = (20y2 - 20x2 - 60y + 45)/ (4x2 + 4y2 - 12y + 9) 2 • 

4 .2 . Since a2 + b2 < R2 and c2 + d2 < R2 , it follows that ( a2 + d2 ) + (b2 + c2 ) < 
2R2 • Hence at least one of a2 + d2 and b2 + c2 is less than R2 • 

4.3 . Suppose first that f is differentiable at c. For all z ::f. c, let A(z) = (f (z) ­
f (c) ) /(z - c) . Certainly f (z) = f(c) + A(z) (z - c) . Then limz--+c A(z) = 

f' (c) , and so A is continuous if we define A( c) = f' (c) . 
Conversely, suppose that A exists, and is continuous at c. Then, for all 
z ::/:- c, 

A(z) = 
f(z) - f(c) . z - c  

Since A is continuous at c, the limit 

lim .:..._! ("---'z )'------'f:......:(�c) 
z --+ c  Z - C 
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exists. Thus f is differentiable at c. 

4.4. 

4 .5 . ez = e"' eiY = e"'e-iy = ez .  Hence 

and 
sin z = ( 1l2i) (eiz - e-iz ) = (- 1l2i) (e-iz - eiz )  = sin z ,  

4 .6 . cosh z cosh w + sinh z sinh w = H(ez + e-z ) (ew + e-w ) + (ez - e-z ) (ew ­
e-w )] = � [ez+w +e-z+w +ez-w +e-z-w +ez+w - e-z+w -ez-w +e-z-w ] = 

� (ez+w +e- (z+w) ) = cosh(z+w) .  Similarly sinh z cosh w+cosh z sinh w = 

H(ez - e-z ) (ew +e-w ) + (ez +e-z ) (ew - e-w )] = Hez+w - e-z+w +ez-w ­
e-z-w+ez+w +e-z+w _ez-w _e-z-w] = Hez+w _e- (z+w) )  = sinh(z+w) . 

4.7 . F' (z) = 2 cosh z sinh z - 2 sinh z cosh z = 0 for all z. Hence, by Theorem 
4.9, F(z) is constant throughout C. Since F(O) = 1, F(z) = 1 for all z . 

4 .8 . cos(iz) = � (ei(iz) + e-i(iz) ) = � (e-z + ez ) = cosh z ; sin(iz) = � (ei(iz ) ­
e-i(iz) ) = (-iH (e-z - ez ) = � (ez - e-z ) = i sinh z. Hence cos z = 

cos(x + iy) = cos x cos(iy) - sin x sin(iy) = cos x cosh y - i sin x sinh y. So 
u = cos x cosh y, v = - sin x sinh y, and 8ul 8x = 8v I 8y = - sin x cosh y, 
8v I 8x = -8ul 8y = - cos x sinh y. 
Similarly, sin z = sin(x + iy) = sin x cos iy + cos x sin iy = sin x cosh y + 
i cos x sinh y. Thus u = sin x cosh y, v = cos x sinh y, and 8ul8x = 

8v I 8y = cos x cosh y, 8v I 8x = -8ul 8y = - sin x sinh y. 
For the second part , use the identities sin2 x + cos2 x = 1 and cosh2 x -
sinh2 x = 1 to show that I sin z l 2 = sin2 x cosh2 y + cos2 x sinh2 y = 

sin2 x(sinh2 y + 1) + (1 - sin2 x) sinh2 y = sin2 x + sinh2 y. Similarly, 
I cos z l 2 = cos2 x(1 + sinh2 y) + ( 1 - cos2 x) sinh2 y = cos2 x + sinh2 y. 

4.9 . Since cos(iy) = cosh y and sin(iy) = i sinh y, we have that I cos(iy) l = 

� (eY + e-Y ) > �eY . Also I sin(iy) l = � l eY - e-Y I . If y 2:: 0 then e-Y :::; 
1 :::; eY ,  and so l sin(iy) l 2:: HeY - 1) ; if y :::; 0 then eY :::; 1 :::; e-Y ,  and so 
I sin(iy) l 2:: � (e-Y - 1) .  Combining the two inequalities gives I sin(iy) l 2:: 
� (e iY I  - 1) for all real y. Both cos and sin are unbounded in C. 

4 .10 . cos 11' = -1 ,  while sin 11' = 0. Hence cos 211' = cos2 11' - sin2 11' = 1 ,  while 
sin 211' = 2 sin 11' cos 11' = 0. It now follows that sin( z + 11') = sin z cos 11' + 
cos z sin 11' = - sin z and cos(z + 11') = cos z cos 11' - sin z sin 11' = - cos z . 
From these formulae it follows (and can be proved formally by induction) 
that sin(z + n11') = (-1 )n sin z and cos(z + n11') = (- 1 )n cos z . 
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4 . 1 1 .  cosh(z + 27ri) = cos i(z + 27ri) = cos (iz - 27r) = cos iz = cosh z , sinh(z + 
27ri) = -i sin i (z  + 27ri) = -i sin(iz - 27r) = -i sin iz = sinh z .  

4 . 12 .  First , ez2 = e"'2 -y2+2xyi = e"'2 -y2 e2"'Yi = e"'2 -y2 (cos(2xy) + i sin(2xy) ) . 
So u = e"'2 -y2 cos(2xy) , v = e"'2 -y2 sin (2xy) . .  As a check, observe 
that fJujfJx = fJvjfJy = e"'2 -y2 (2x cos(2xy) - 2y sin (2xy) ) , fJvjfJx 
-fJujfJy = e"'2 -y2 (2x sin(2xy) + 2y cos(2xy) ) . 
Next , 

ee"' = eez cos y+iez sin y = ( eez cos y )  ( eiez sin y )  
= eez cos y (cos( e "'  sin y) + i sin( e "'  sin y) )  . 

Thus u = eez cos Y cos( e"' sin y) ,  v = eez cos Y sin( e"' sin y) .  The verification 
of the Cauchy-Riemann equations is a pleasant exercise in partial differ­
entiation. 

4 . 13 . l sin(x + iy) l = � l eix-y _ e-ix+y 1 2:: � l l eix e-Y I - I e- i"' eY I I  = � (eY - e-Y ) = 
sinh y. 

4 . 14 .  Since the series converges, there exists K > 0 such that 
00 I L ( l/n! ) l :::; K .  

n=2 
Hence, for all l z l :::; 1 ,  

Again, 
cos z - (1 - (z2 /2))  z z3 

z3 
= 4! - 6 ! + . . .  

' 
and this tends to 0 as z -+ 0 .  

4 . 15 . As a multifunction, zi = ei Log z = { ei (log l z l +i arg z+2mri) : n E Z} = 
{ei log l z l e- arg z-2mr : n E Z} . For z = -i we have log l z l  = 0 and 
arg z = -7!' /2 .  So ( -i) i = { eC"/2) - 2mr : n E Z} . 

4 . 16 .  w E  Sin- 1 z {=} t (eiw - e-iw ) = z {=} e2iw - 2izeiw - 1 = 0 {=} 
eiw = iz ± Vf=Z2 {=} w E -i Log (iz ± Vf=Z2") . If z = 1/v'2 
then Sin- 1 z = -i Log( � ± )2-) = -i (Log (ei"/4 ) U Log (ei (1r-1r/4) = 
{n'll' + ( - l )n'll'/4 : n E Z} . 

4 . 17 .  w E Tan- 1 z  {=} sin wf cos w = z  {=} (e2iw _ 1 ) / (e2iw + 1 ) = iz {=} 
e2iw (l - iz) = 1 + iz {=} w E  ( 1/2i) Log (1  + iz) / ( 1 - iz)) . 
Putting z = ei0 gives ( 1 +iz) / ( 1 - iz) = [ ( 1 +iz) ( 1 +iz)] / [ ( 1 - iz) ( 1 +iz)] = 
( 1  + 2i Re z - zz) / ( 1  + 2  Im z + zz) = i cos B/ ( 1  + sin O) ,  a complex number 
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with argument Tr/2 (since cos 0/(1 + sin O) is positive in (-7r/2, 7r/2) ) .  
Hence Tan - l (ei11 ) = { ( 1/2i) [log ( cos (} /(1 +sin 0)) +(2n+% )1ri)] : n E Z} , 
of which the real part is {n + !1r : n E Z}. 

4 .18 . ( -1) -i = exp ( -i Log( -1 ) ) , of which the principal value is 

exp ( ( -i) (i1r)) = exp( 1r) . 

The logarithm of this is 1r. 
4. 19. The function sin z/ cos z has singularities where cos z = 0, that is , at 

the points (2n + 1)7r/2. Now cos (w + (2n + 1)7r/2) = cos w cos(2n + 
1)7r /2 - sin w sin(2n+ 1)7r /2 = (-1 )n+l ein w, and sin (w + (2n+ 1)7r /2) = 
sin w cos(2n+ l)1r /2 + cos w sin(2n+ 1)7r /2 = ( -1)n cos w. Hence, putting 
w = z - (2n + 1)7r/2, we see that limz-+ (2n+ l )11-;2 (z - (2n+ 1)7r/2) tan z = 
limw-+0 w(- cos w / sin w) = -1 .  So the singularities are all simple poles. 

4.20. sin z = 0 if and only if z = n1r. Now, sin(w+ n1r) = ( -1)n sinw, and so, if 
n =/; 0, limz-+n'll" (z - n1r) (l/ z sin z) = limw-+0 ( wf(w + mr ) (  - 1)n sin w) = 

(- 1)n jn1r. If n = 0, then limz-+0 z2 (1/z sin z) = 1 .  There are simple poles 
at z = n1r (n = ±1 , ±2, . . .  ) ,  and a double pole at z = 0. 

4.21. Let r(z) = p(z)/ (z - c)kq(z) , where p(c) and q(c) are non-zero. Then 
r' (z) = [(z - c)kq(z)p' (z) - ((z - c)kq' (z) + k(z - c)k- 1q(z))p(z)] j [(z ­
c)kq(z)j 2 = {(z - c) (q(z)p'z) - q' (z)p(z)) - kq(z)p(z)] j (z - c)k+l (q(z)t 
Then (z - c)kr' (z) = -+  oo as z -+ c, and limz-+c (z - c)k+ 1r' (z) = 
-kp(c)fq(c) . Thus c is a pole of order k + 1 .  

Chapter 5 

5 . 1 .  Let S be the open disc N(O, 1 ) ,  so that S is bounded but not closed. 
If f(z) = 1/ (1 - z) ,  then f is continuous but not bounded in S. Next, 
let S = C, so that f is closed but not bounded. If f (z) = z, then f is 
continuous but not bounded. 

5 .2 . The length is j01 b' (t) l dt = f01 l d - ci dt = l d - c! . 
5 .3 . a) The curve is an ellipse: 
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1 .0 

y · ·  · ·  ·o.b · ·  · · · · · --co· · ·  

b) The curve i s part of a hyperbola: 

4 .0 

2.b 

· · O.b 

c) The curve is one branch of a rectangular hyperbola: 

5 .4. The curve is a spiral: 

4.0 

3.0 

2 .0 

• 1 .0 

· · · · · o.o · · · · · · · · ·1 :o· · · · · · · · 1r · · · · · 3:o· · · · · · · · ·4 :o· · · · · · · ·  

233 
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6.0 

4 .0 

· · · · · · · · ·2:o· · · · · · · · ·4:o· · · · ·  · · · ·6: · · 

-� 0 

-6i.o 

Writing '"Y(t) = teit ,  we have '"Y' (t) = ( 1 + it)eit and so h.l (t) l = .J1 + t2 • 
Hence 

A('"Y * ) = 12" Ji+t2 dt = [�t.J1 + t2 + � sinh- 1 t) J :" 
= 7rV1 + 411"2 + � sinh- 1 211" .  

5 .5 . Writing '"Y(t) = et+it ,  we have '"Y' (t) = ( 1 + i)et+it and so I'"Y' (t) J = .J2et . 
Hence A('"Y * )  = J: .J2et dt = .J2(eb - ea ) , which tends to .J2eb as a --+ 
- oo .  

5 .6 . We use Theorem 5. 19 , with F(() = -1/(n(n ) . Thus J.., (d(/(n+1 ) = 
[ - 1/ (n(n )J :=:-h = ( 1/n) [1/ (z - a - h)n - 1/(z - a)n] .  

5 .7. a) J.,J (z) dz = J01 t2 (2t + i) dt = [(t4/2) + i (t3j3)] 5 = ( 1/6) (3 + 2i) .  
b )  Here we can use Theorem 5. 19, noting that z = 0 when t = 0 and 

z = -1 when t = 11": so J.., f(z) dz = [z3 /3] ;1 = -2/3 . 
c) This is not a simple curve, since, for example, -y(27r) = '"Y(47r) . So, 

from the definition, f.., f(z) dz = J06" e-it . ieit dt = 611"i .  
d) Since the curve is piecewise smooth, we may use Theorem 5. 19, with 

F(z) = sin z. Thus J.., cos z dz = sin(7r+i7r) - sin(-7r - i7T) = 2 sin(7T+ 
i1r) = 2 (sin 11" cosh 11" + i cos 11" sinh 7r) = -2i sinh 11". 

5.8. l z4 1  = ( lz l 2 ) 2 = [( 1 - t)2 + t2j2 = (2t2 - 2t + 1)2 = 4[(t - � )2 + � ] 2 ;?: � ­
Since '"Y *  has length .J2, it follows by Theorem 5.24 that II I  � 4.J2. 
We evaluate I using Theorem 5. 19, with F(z) = - 1/(3z3 ) .  Thus I = 
[ - 1/3z3] :  = - l + i ,  and so III = .J2/3. 

5.9. The result follows from the fact that, on the curve -y• , l z3 - 4z + 1 1 � 
l z l 3 + l z l· + 1 = R3 + 4R + 1 ,  l z2 + 5 1 ;?: l z l 2 - 5 = R2 - 5 ,  and l z3 - 3 1 ;?: 
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5. 10. 

l z l 3 - 3 = R3 - 3. Thus lf (z) l :5 (R3 + 4R + 1)/ [(R2 - 5) (R3 - 3). 
Since A('y* ) = 1rR, we deduce from Theorem 5.24 that I J"Y f(z) dz l  :5 
[1rR(R3 + 4R + 1) ]/ ((R2 - 5) (R3 - 3)] . 

I sin(u + ivW = I  sin u cosh v + i cos u sinh v l 2 
= sin2 u cosh2 v + cos2 u sinh2 v 

1 1 :5 cosh2 v + sinh2 v = 4 (ev + e-v )2 + 4 (ev - e-v )2 
1 = - (e2v + e-2v ) = cosh 2v . 2 

5 . 1 1 .  Although the conditions for Theorem 5 .19 are satisfied, we cannot write 
down a function F with the property that F' (z) = sin(z2 ) .  But this 
matters not at all, since all we are looking for is an estimate. First , it is 
clear that the length of "'* is 6a. Next , from the previous example, 

I sin(z2 ) 1  = I  sin((x2 - y2 ) + 2ixy] l :5 cosh(4xy) . 

The largest value of cosh( 4xy) is obtained when l4xy l is as large as pos­
sible , and this occurs at the corners (±a, ±a) . Hence, by Theorem 5.24, 
I J"Y sin(z2 ) dz l  :5 6a cosh(4a2 ) .  

Chapter 6 

6. 1 .  By Theorem 6.7, the integral round "' is the same as the integral round 
the unit circle , and we know this integral from Theorem 5. 13 .  If "Y(t) = 
a cos t + ib sin t ( 0 :5 t :5 271') , then 

2 . - 1 � d - 12,. -a sin t + ib cos t  d 11'� - Z - · t 
"Y z 0 a cos t + ib sin t 

= 12,. (-a sin t + ib cos t)(a cos t - ib sin t) dt 
o a2 cos2 t + b2 sin2 t 

= 12,. (b2 - a2 ) sin t cos t + iab( cos2 t + sin2 t) dt .  
o a2 cos2 t + b2 sin2 t 

Equating imaginary parts gives 

1211' ___ d_t ----;:-0 a2 cos2 t + b2 sin2 t = ab · 
271' 
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6.2 . By Theorem 6.7, the integral round the contour shown in Exercise 5 . 1 1  
is equal to  the integral along the straight line from (-a , a) to  (a ,  a) .  The 
length of this line is 2a, and so 

6.3 . 

�� sin(z2 ) dz l :5 2a cosh(4a2 ) .  

0 = 1 e" dz = 12"' er (cos 9+i sin 9) irei9 d(} 
�t(O ,r) 0 

= 12"' irer cos 9 ei( 9+r sin 9) d(} 

= ir 12"' er co• 9 [cos(O + r sin 0) + i sin(O + r sin O)] dO .  

Dividing by ir and taking real parts gives the required result . 

Chapter 7 
7 .1 . a) From (7.5) , J�<(O , l ) (ekz /zn+l ) dz = (211'i/n! )f (n) (O) ,  where f(z) = 

ekz , and this is equal to 21l'ikn /n! . 
b) Siuce 1/(z2 - 2z+2) = (i/2) [ ( 1/ [z - (1 -i)] ) - (1/ [z -.( 1+i) ] ) ] , we can 

split the integral in two and obtain the value -11'[(1 - i)3 - ( 1  + i)3] = 
41l'i. 

c) The integral is equal to - (1/2) J"'(o ,2) e" / [z - (11'i/2)] dz , and this is 
equal to -1t'ie"'i/2 = 1!' .  

7.2. J�<(0 ,2) [zm / ( 1 - z)n] dz = ( -1 )n J�<(0 ,2) [zm /(z - 1)n] dz = ( - 1)n [211'i/(n -

1 ) !]m(m - 1) . . .. (m - n + 2) = 21l'i (n'.: 1) . This is equal to zero if 
m < n - 2. 

7.3 . 

/'(a) = _1_ 1 f(z) dz = _1_ {2"' f(a + rei9 ) irei9 d(} 21l'i �<(a,r) (z - a)2 21l'i Jo r2e2i9 
1 12"' . . = - f(a + re'9 )e-'9 d(} .  2r7!' 0 

Suppose that Re[f(a + rei9 )] = F and Im[f(a + rei9 ) ] = G. Thus 
f' (a) = J +  iK, where J = (1/2r11') J:"' [F cos O + G sin O] d(} = Fe +  G8 
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(by splitting the integral into two and using an obvious notation) , and 
K = ( 1/2nr) J:-'' [-F sin O + G cos O] = -F8 + Gc . That is, 

J' (a) = Fe +  Gs + i (-Fs + Gc) . ( 13.2) 

Now, the integral L = (1/2T7l') J:11' f(a + rei9 )ei9 dO is equal to 
( 1/2r211'i) r ( ) f(z) dz , and this equals 0, since f is holomorphic. That J 1t a,r 
is, 

-1- 1271' 
[ F cos 0 - G sin OJ dO = -1

1 2r11' {211' 
[ F sin 0 + G cos OJ = 0 . 2r7!' o Jo 

In the notation of ( 13.2) , we have 

and from ( 13 .2) and ( 13 .3) we deduce that 

1 1271' . . 
!' (a) = 2(Fc - iGc ) = - Re [f (a + re'9 ) ] e-'9d0 . 

1l'T 0 

( 13.3) 

7.4. a) Write g(z) = (R2 - aa)f (z) / (R2 - za) . Since l za l < R2 , the denomi-
nator is non-zero inside and on the contour. Hence g is holomorphic, 
and (1/211'i) J,.(o,R) [g(z)/(z - a)] = g(a) = !(a) . 

b) Hence, writing z = Reit/> and a = rei9 ,  we see that 

7.5 . 1/ ( [z - (11'/6) ] 2 [z + (11'/6) ] ) = Aj [z - (11'/6) ] + B/ ( [z - (11'/6) ] 2 ) + Cj [z + 
(11'/6)] , where A = -9/11'2 , B = 3/11' and C = 9/11'2 .  Hence I = 
( -9/11'2 ) J,.(o,4) sin2 z dz/ [z - ( 11' /6)] + (3/11') J,.(o ,4) sin2 z dz / [z - ( 7!' /6)] 2 + 
(9/11'2 ) J,.(o,4) sin

2 z dzj [z + (11'/6)] (-9/11'2 )211'i sin2 (11'/6) + 
(3/11')27ri [2 sin(11'/6) cos(11'/6)] + (9/11'2 )211'i sin2 (-11'/6) = 3iv'3. 

7.6 . The continuous function f is bounded on 'Y" : say 1 / (z) l :::; M. For all z in 
I ( 'Y) there exists N ( z, 8) wholly contained in C \ 'Y" . Thus I z - w I > 8 for 
every point w on 'Y" . If h is such that l h l < 8/2 ,  then l z - w - h i  > 8/2 
for every point w on 'Y" . 
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Note now that 

Hence 

1 1 1 ( 1 1 ) 
h [g(z + h) - g(z)] = h "Y

f(w) w - z - h - w - z dw 

1 f(w) dw -
"'! (w - z) (w - z - h) · 

I � [g(z + h) - g(z)] - � (!�w;) 2 dw l 
= l� f(w) ( (w - z) (� - z - h) - (w � z)2 ) dw l 
= l h l l1 f(w) dw l < l h i 2MA(-y* )  

"'! (w - z)2 (w - z - h) - cP ' 

which tends to 0 as h -+ 0. Hence the derivative of g exists and equals 
J-y [f(w)j(w - z)2 ] dw. 

7.7. By the Fundamental Theorem of Algebra, p(x) factorises as 

Suppose that the roots are ordered so that a:1 , . . .  , O:k (k � 0) are real, 
and a:k+ t .  . . .  , a:n E C \ R As observed in Exercise 2 . 18, the remaining 
factors occur in conjugate pairs x - J.L, x - jl , and so l = n - k is even. 
The two factors combine to give a real quadratic factor x2 - 2 Re J.L + IJ.L I 2 • 
If n is odd, then k = n - l must also be odd, and so is at least 1 .  

7.8. x6 + 1 = (x - e,..i/6 ) (x - e-,..i/6 ) (x - e3,..i/6 ) (x - e-3,..i/6 ) (x - e5,..i/6 ) (x ­
e_5,..i/6 ) = (x2 - 2x cos(rr/6) + 1 ) (x2 + 1 ) (x2 - 2x cos(5rr/6) + 1) = (x2 + 
1�2 - xv'a + 1 ) (x2 + xv'a + 1 ) .  Here k = 0. 
x4 -- 3x3 + 4x2 - 6x + 4 = (x - 1 ) (x - 2) (x2 + 2) . 
x4 + 3x3 - 3x2 - 7x + 6 = (x - 1)2 (x + 2) (x + 3) .  Here l = 0. 

7 .9 . If f is even, then 0 = f(z) - !( -z) = (ao + a1z + a2z2 + · · · ) - (ao -
a1 z + a2z2 - • • · ) = 2(a1z + a3z3 + · · · ) . This is the unique Taylor series 
for the zero function, and so coincides with the obvious Taylor series 
0 + Oz + Oz2 + · · ·. Hence a2n+l = 0 for all n � 0. The odd function is 
dealt with in the same way. 

7.10 . 

[ (z - c)2 (z - c)3 ] ez = ecez-c = ec 1 + (z - c) + + + · · · 2 ! 3 ! 
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cos z = cos [(z - c) + c] = cos(z - c) cos c - sin(z - c) sin e 
oo {- 1)n oo ( - 1)n = cos c "'"""' -- (z - c)2n - sin c "'"""' (z - c)2n+l . � (2n) ! � (2n + 1) ! 

7. 11 .  a) From (7.7) , an = ( 1/27ri) J .. (o ,r) [/(z)/zn+l ] dz; hence 
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l an l :::; ( 1/211") .  211"r .  M(r)/rn+l = M(r)/rn . ( 13 .4) 

b) Since 1 /(z) l :::; M for some M, l an l :::; M/rn for all r. Letting r � oo ,  
we see that an = 0 for all n 2: 1 .  Thus f is  constant . 

c) From ( 13.4) we have l aN I :::; KrN-n for all r. Letting r � oo ,  we see 
that an = 0 for all n > N. Thus f ( z) is a polynomial of degree at 
most N. 

7.12. By Leibniz's formula, 

Cn = �! h{n) (O) = t /
(
::):�) · g<r;�O) = t an-rbr . 

7.13 .  The series for sin and cos give the identity 

From the previous example, it follows, by equating coefficients of z2n+l , 
that 

(- 1)n a2n- 1 a2n-3 ( )n a1 
(2n + 1) ! = a2n+l - 2! + � - . . .  + - 1  (2n) ! · 

Putting n = 0 gives a1 = 1 .  Putting n = 1 gives a3 - (al /2) = - 1/6 , and 
so a3 = 1/3. Putting n = 2 gives as - (a3/2) + (al /24) = 1/ 120 , and a 
routine calculation gives as = 2/15. 

7 .14. From the definitions, tanh z = -i tan(iz) = -i(a1 (iz)+a3 (iz)3+as (iz)s+ 
· · ·) = a1z - a3z3 + aszs - · · · . In general, b2n+1 = ( -1)na2n+l · 

Chapter 8 

8 .1 .  1/ sin z = z- 1 [1 - �z2 + 1�0 z4 +o(zs )J - 1 = z- 1 [1 + { !z2 - 1�0 z4 +o(zs ) ) + 
{!z2 - 1�0 z4 + o(zs ) ) 2 + o(zs )] = z-1 [1 + �z2 + (/5 - 1�0 )z4 + o(zs )] = 
z- 1 + �z + 3�0 z3 + o(z4 ) .  
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8.2 . 

8 .3. 

8 .4 . 

8 .5 . 

8 .6 . 

Complex Ana lysis 

( 1 - cos z) - 1 = [ � z2 - 2
1
4 z4 + 7�o z6o(z7 ) ] - 1 = 2z-2 [1 - {2 z2 + 3�o z4 + 

o(z5 ) J- 1 = 2z-2 [1 + U2 z2 - 3�o z4 + o(z5 ) ) + U2 z2 - 3�0 z4 + o(z5 ) ) 2 + 
o(z5 )] = 2z-2 [1 - {2 z2 + ( 1!4 - 3�0 )z4 +o(z5 ) ] = 2z-2 + ! + 1�0 z2 + o(z3 ) .  
e1fze2z = [ 1  +(1/ z )+( 1/2 ! ) ( 1 /  z ) 2+( 1/3 ! ) ( 1/ z )3+ · · ·] [1+2z+(1/2 ! ) (2z ) 2+ 
(1/3 ! ) (2z)3 + · · - ] . The coefficient of z- 1 is 1 + (1/2 ! )2 + (1/3 ! ) (22 /2 ! ) + 
( 1/4! ) (23 /3 ! ) + · · · = L�=O (2n / [n! (n + 1) !] ) .  
a) From Exercise 8 . 1 ,  1/(z4 sin z) = z-5 + !z-3 + 3�0 z- 1 + o( 1 ) ,  and so 

res(!, 0) = 3�0 . b) From Exercise 8 .2 , 1/ [z3 ( 1 - cos z)] = 2z-5 + !z-3 + 1�0 z- 1 + o( 1 ) ,  
and so res(!, 0) = 1�0 . 

a) Let ord(f, c) = m, ord(g, c) = n, so that f(z) = (z - c)m f* (z ) ,  
g (z) = (z - c)ng* (z ) ,  wherl:l f* and g* are differentiable and non-zero 
at c. Hence (/ ·g) = (z-c)m+n (f* ·g* ) (z) , where f* ·g* is differentiable 
and non-zero at c. Thus ord(f · g, c) = m + n = ord(f, c) + ord(g, c) . 

b) With the same notation, ( 1/f) (z) = (z - c) -m ( 1/f* ) (c) . Since 1/f* 
is differentiable and non-zero at c, it follows that ord(1/ f c) = - m  = 
-ord(!, c) . 

c) Suppose that m < n. Then (! + g) (z) = (z - c)mh(z ) ,  where h(z) = 
f* (z) + (z - c)n-mg* (z) . Since h is differentiable at c, and since 
h(c) = f* (c) =f. 0, it follows that ord(! + g) =  m = ordf. 

a) Since ord(1/ sin z, 0) = ord(1/ z, 0) = -1 ,  it follows from (a) above 
that ord(1/ z sin2 z, 0) = -3 . That is, the function has a triple pole 
at 0 . 

b) From ord( cot z, 0) = -1, ord( cos z, 0) = 0, ord(sin 2z , 0) = 1 ,  we 
deduce that ord ( [(cot z + cos z)/ sin 2z] , O) = -2 . 

c) Clearly ord(z2 (z - 1 ) ,  0 ) = 2 . Since log(l + z) = z - �z2 + · · · and 
1-cos z = �z2 - 2

1
4 z4+ · · · , we have that ord ( ( 1-cos z) log( 1+z) ,  0) = 

3. Hence ord (z2 (z - 1 )/ [( 1 - cos z) log(1 + z) ] , 0) = 2 - 3 = -1 .  
8 .7 . Suppose that the Laurent series of f at zero is f(z) = · · · + a_3z-3 + 

a_2z-2 + a- 1 z- 1 + ao + a1z + · · · . Then f(-z) = · · · - a-3z-3 + a-2z-2 -
a_ 1 z- 1 + ao - a1 z + · · · ,  and so from f(z) = f ( -z) we deduce that 
0 = · · · + a_3z-3 + a_ 1 z- 1 + a1z + · · · .  By the uniqueness theorem this 
must coincide with the obvious Laurent series 2.:::=-oo Ozn for the zero 
function. Hence an = 0 for all odd n. In particular, the residue a_ 1 is 
zero. 

8 .8 . z - sin z = (z3 /6) - (z5 /120) + · · · = ( 1/6)z3 [1 - (z2 /20) + O(z4 ) ] . Hence 
1/(z -sin z) = (6/z3 ) [1 - (z2 /20) +0(z4 )] - 1 = (6jz3 ) [1 + (z2 /20) +0(z4 )] . 
Hence res( (z - sin z) - 1 , 0) = 3/10. 
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8.9 . The function has a double pole at -1 ,  and f(z) = (z + 1 ) -2g(z) , where 
g(z) = 1/(z2 - z + 1 ) 2 • Then g' (z) = -2(2z - 1)/ (z2 - z + 1)3 ,  and so 
res(/, -1)  = g' (-1 )  = 6/27 = 2/9. 
Alternatively, writing z3 + 1 = [ (z + 1 ) - 1]3 + 1 = (z + 1 )3 - 3 (z + 1)2 + 
3(z + 1 ) ,  we see that f(z) = ( 1/9) (z + 1 ) -2 [1 - (z + 1 )  + ( 1/3) (z + 1)2J -2 = 

( 1/9) (z + 1 ) -2 ( 1  + 2(z + 1 )  + O((z + 1 )2 ) The residue is the coefficient of 
(z + 1 ) - 1 , namely 2/9. 

8 . 10. (1 + z6)z-3 ( 1 - 2z) - 1 ( 1/2) ( 1 - �z) - 1 = �z-3 ( 1  + z6 ) [ 1  + 2z + 4z2 + 
O(z3 )] [1 + �z  + �z2 + O(z3 )] = �z-3 [1 + �z + �1 z2 + O(z3 )] . Hence the 
residue is 21/8 . 

8 . 1 1 .  From Example 7 .16 we know that cot 11'z = ( 1/11'z) - (11'z)/3 + O (z3 ) .  
Hence cot 11'zjz2 = ( 1/71'z3) - (11'/3z) + O(z) , and so the residue i s  -71'/3. 

8 .12 .  By the periodic properties of the circular functions, cot 11' (z - n) = cot 11'Z 

and cosec 11'(z - n) = (- 1 )n cosec 71'z . Hence (z - n) cot 11'z = cos 11'(z ­
n) [ (z-n)/ sin 11'(z-n)] ---+ 1/71' as z ---+ n, and (z-n) cosec 11'Z = ( -1)n [(z­
n)/ sin 11'(z - n)] ---+ ( - 1)n /71' as z ---+ n. 
If f has no zeros on the x-axis, 11'/(z) cot 11'z has a simple pole at each 
integer n, and the residue is 11'/(n) limz--+n (z - n) cot 11'z) = f(n) . The 
other result follows in the same way. 

8 . 13 .  a) There is a triple pole at z = - 1/2. We find the Laurent series at 
1/2 ,  noting first that sin 11'Z = sin[11'(z + � ) - �11'] = - cos[11'(z + � )] = 

- 1 + �11'2 (z + � )2 + O( (z + � )4 ) .  Hence sin 71'z/(2z + 1 )3 = l (z + 
� ) -3 [- 1  + �11'2 (z + � )2 + O( (z + � )4 ) ] , and so the residue at - 1/2 is 
71'2 /16 .  By the Residue Theorem, the value of the integral is 11'3ij8 . 

b) There is a triple pole at 0, and 1/ z2 tan z = ( 1/ z2 ) [1 + lz + O (z3) ] . 
The residue at 0 is 1/3, and so the integral has value 271'i/3 . 

Chapter 9 
9 . 1 .  Inside the contour a(O ,  R) , z2 / ( 1+z4 ) has simple poles at ei1rl4 and e31ri/4 , 

with residues 1/4ei1r/4 = ( 1  - i)/4../2 and 1/4e3i1r/4 = ( -1  - i)/4../2, 
respectively. Since the conditions of Theorem 9 . 1  are satisfied, 

i: [x2/ ( 1  + x4 )] dx = [ (211'i) /4v'2] (-2i) = 11'jJ2 . 

Hence 
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9.2 . Inside a(O, R) there are simple poles at i and 2i, with residues - 11(6i ) ,  
(-4)1 [ (-3) (4i)] = 1l3i, respectively. Hence 

I: [x2 l [(x2 + 1 ) (x2 + 4) ] ] dx = 27ri [- 11(6i) + 1l (3i)J = 1rl3 .  

9.3. Inside a(O, R) there are simple poles at ei1r/6 ,  i and e5i1r/6 ,  with residues 
(calculated with the aid of Theorem 8 .15) ( -�-i)l12 , -il6 , ( �-i)l12 , 
respectively. Hence f�oo [1l (x6 + 1)] dx = (27ri} (-il3) = 27rl3. Since the 
function is even, it follows that J000 [ 1 I ( x6 + 1) ] dx = 1r I 3. 

9 .4. Inside a(O, R) there is a triple pole at z = i ,  with residue 

1 [ d2 ( 1 ) ] 6 3i 
2 dz2 (z + i)3 z=i 

= (2i)5 = - 16 · 

Hence f�oo [1l (x2 + 1)3J dx = 27ri (-3il16] = 37rl8. 

9.5. There is a pole of order n at z = i .  The residue is 
1 [ �-1 ( 1 ) ] 

(n - 1) !  dzn- 1 (z + i)n z=i 
= 1 [ (-n) (-n - 1) . . .  (-n - n + 2) ] 

(n - 1) ! (z + i)2n- 1  z=i 
= ( - 1 )n- 1n(n + 1) . . .  {2n - 2) (  - 1)ni = _ _ i _ (2n - 2) 

22n- 1 (n - 1) ! 22n- 1 n - 1 ' 

and so 100 1 d 1r (2n - 2) 
-oo (x2 + 1)n X = 22n-2 n - 1 . 

9.6. Since z2 + z + 1 = (z - e21r/3 ) (z - e-21ri/3 ) ,  the function has a double pole 
inside a(O, R) at e21ri/3 , with residue 

[� Cz - e!21ri/3 )2
) L=e2,.;13 = - (2i sin{�7rl3) )3 = -

3� · 
So J::a [ 1l(x2 + x + 1)2] dx = 47rl3�. 

9.7. Consider the function f(z) = eiz l(z2 + 1 ) ,  and use the contour a(O, R) , 
with R > 1 . The function has a simple pole at i, with residue e-1  l2i. 
The modulus of the contribution of the circular arc is 111r e-R sin ll+iR cos lliReill I 7rR 

----::::-::---c::-:-::---- df) < --
0 R2e2ill + 1 - R2 - 1 

since sin O is non-negative for f) in [0 , 1r] .  This tends to 0 as R --+ oo .  
Letting R --+ oo we see that f�oo [ei"' l (x2 + 1 ) ] dx = 27rie- 1 l (2i) = 
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rrle. Taking real parts gives f�oo [cos xl (x2 + 1)] dx = rrle, and so 
J000 [cos xI { x2 + 1) ]  dx = 1r I { 2e) , since the integrand is an even function. 

9.8 . Integrate e2iz l(z2 + 1) round the contour u{O, R) . There is one simple 
pole i, with residue e-2 l {2i) . On the semicircular arc, 

I r1r e-2R sin 9+2iR cos 9iRei9 dO I < � Jo R2e2i9 + 1 - R2 - 1 ' 

which tends to 0 as R � oo. Hence J� [e2iz dxl(x2 + 1) ]  = 2rril {2ie2 ) = 
1r I e2 • Taking real parts, and using the even function property gives 
J000 [cos 2xl(x2 + 1) ] dx = 1r l{2e2 ) .  Finally, J000 [sin2 xl(x2 + 1] dx = 
� J000 [1l {x2 + 1) ] dx - � f000 [cos 2xl(x2 + 1) ] dx = (rr 14) { 1 - e-2 ) .  

9.9. The function f(z) = eiz l [(z2 +c2) {z2 +�)] has poles at ci, di in the upper 
half-plane, with residues e-c l [-2ic(c2 - d2 )] , e-d l [2id{c2 - �)] .  In the 
upper half-pmne, with z = x + iy, i zf(z) l � e-Y l[ { l z l 2 - c2 ) { 1 z l 2 - d2 )] , 
and so tends to 0 as l z l � oo. Hence, by Theorem 9. 1 , f�oo f(z) dz = 
[rrl (c2 - d2)] [(e-dld) - (e-clc)] . 

9. 10. The function f(z) = eiz l (z2 + c2 )2  has a double pole at ci, with residue 
g' (ic) , where g(z) = eiz l(z + ic) 2 •  A routine calculation gives g' (ic) = 
e-c (c + 1 )1 {4ic2 ) .  As in the previous exercise, the conditions of Theorem 
9 . 1 are satisfied. Hence f�oo f(z) dz = rr{c + 1)e-c l (2c3 ) .  

9 . 1 1 .  Integrate eisz l(k2 + z2 ) round the semicircular contour u{O, R) . For the 
contribution of the curved part, 

I r1r eis (R cos 9+iR sin 9) iRei9 dO I rrR 
}0 k2 + R2e2i9 � R2 _ k2 ' 

since sin O � 0 in [0 , rr] ,  and this tends to 0 as R � oo. The integrand has 
a pole ki within u(O, R) , with residue e-ks l2k i. Hence 

Then equate real parts. 
9. 12. Substituting z = ei9 gives I =  {1li) J .. (o , l ) [ 11{  -az2 + {1 + a2 )z - a)] dz = 

(1li) J,.(o, l ) (1l [(z - a) { 1 - az)] ) dz. If l a l < 1 there is a pole inside ��:{0 , 1 )  
at a ,  with residue 11 (1 - a2 ) ,  and so I =  2rrl{1 - a2 ) 
If l a l  > 1 the pole inside ��:(0, 1) is at 1la , and the residue is limz-+ lfa [z ­

{ 1la)] / [(z - a) (az - 1) ] = 1l{a2 - 1 ) .  Hence I =  2rrl(a2 - 1 ) . )  
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9 . 13 . On substituting z = ei9 we transform the given integral to 

1 1 (z2 + z-2 ) 2 1 1 1 (z4 + 1 ) 2  I = 4 �<(0 , 1 ) ( 1 - pz) ( 1 - pz- 1 ) iz dz = 
4i .. (o , 1 ) z4 ( 1 - pz) (z - p) dz · 

Within the contour the integrand has a simple pole at p and a pole of 
order 4 at 0. The residue at p is (p4 + 1 ) 2 j(p4 ( 1  - p2 )] . Near 0 we have 
the Laurent series 

1 ( 4 s 2 2 ( 1 z z2 ) - 1 + 2z + z ) ( 1  + pz + p z + · · · ) - - ) ( 1  + - + - + · · · , z4 P p p2 

and the coefficient of z- 1 is ( 1 ) ( 3 1 1 ) 1 ( 6 4 2 ) 1 - p8 - - p + p + - + - = - - p  + p  + p  + 1  = - . p p p3 p4 p4 ( 1  - p2 ) 

So 

9. 14. The substitution z = ei9 transforms the integral to 

1 1 (z2 - 1)2 dz 1 1 (z2 - 1 ) 2  dz -
2i ,. (o , 1 ) z2 (bz2 + 2az + b) 

= -
2bi ,.(o , 1 ) (z - a) (z - /3) ' 

where a = (-a +  ../a2 - b2 )jb and /3 = (-a - ../a2 - b2 )/b are the roots 
of the equation bz2 + 2az + b = 0 . Note that a/3 = 1. Since J/3 1  = (a + 
../a2 - b2 )jb > ajb > 1 ,  it follows that J a j  < 1 ,  and so the only relevant 
poles are a simple pole at a and a double pole at 0. The residue at a is 
(a2 - 1 ) 2  / [a2 (a - /3)] . Now, (a2 - 1)/a2 = [a - (1/aW = (a - /3) 2 , and 
so it follows that the residue at a is a - /3 = 2../ a2 - b2  /b .  Near 0 the 
integrand has Laurent series 

and it is clear that the coefficient of z- 1 is -2ajb. Hence 

I = � ( 2a - 2../a2 - b2 ) = 2rr (a - Ja2 - b2 ) b b b b2 
• 
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9 . 15 .  I =  J:11' [e3i8 l(cosh a - cos O) ] dB = 2i f,. {o , 1 ) [z3 l (z2 - 2z cosh a + 1) ] dz = 
2i J .. (o , 1 ) (z3 l [ (z - e" ) (z - e-") J )  dz . Since a >  0 we have 0 < e-a  < 1 < 
e" . So the integrand has a simple pole within K(O, 1 ) at e-a . The residue 
is e-3" 1 (e-a - e" )  = - ( 112)e- 3"l sinh a . Hence 

I =  27l'i . 2i . ( - 112)e-3" I sinh a =  21!'e-3" I sinh a .  

Taking real and imaginary parts gives this as the value of the required 
integral, while J:11' [sin 3BI (cosh a - cos O)] dB = 0. 
If cosh a = 514 then sinh a = (cosh2 a - 1 ) 1 12 = 314, and e-a = cosh a ­
sinh a = 112 . Hence J:11' [cos 3BI (5 - 4 cos B) ] dB = (114) (211') ( 118) (413) = 
11'112 . 

9 . 16 . Within K(O, 1 ) there is a pole (of order n+ 1 ) at 0. The Laurent expansion 
is ( 1lzn+ 1 ) ( 1  + z + . .  · + (znln!) + . .  · ) , and the coefficient of z- 1 is lin ! .  
Hence J .. (o , 1 ) [ezlzn+ 1 ] dz = 21l'iln! . The integral i s equal to 

1211' [ecos 8+i sin 8iei8 le (n+l )i8 ] dB = i 1211' ecos 8ei (sin 8-n8) dB 

= i 1211' ecos e ( cos(sin B - nO) + i sin(sin B - nO) )  dB . 

Hence, equating imaginary parts, we have J0271' ecos 9 cos( nO - sin B) dB = 
21l'ln! .  

9 . 17. The integrand has a pole at ia, with residue eima .  Hence the integral 
has the value 211'i (cos ma + i sinma) = 211'(- sinma + i cos ma) . If we 
substitute z = ei9 , the integral becomes 

{211' em{cos 8+i sin 9l iei9 dB = 
. {211' em{cos 9+i sin 9l iei9 (e-i9 + ia) dB 

}0 ei9 - ia 2 }0 1 - 2a sin B + a2 

= i {211' em cos 9 [eim sin 9 + iaei {m sin 9+9) ] dB 
lo 1 - 2a sin 0 + a2 

= {211' em cos e [ieim sin 9 _ aei(m sin 9+9) ] dB . lo 1 - 2a sin 0 + a2 
The real and imaginary parts are (respectively) 

[271' em co• 9 [- sin(m sin B) - a cos(m sin B + B)] dB 
lo 1 - 2a sin B + a2 ' 

[271' em co• 8 [cos (m sin B) - a sin(m sin B + B)] dB 
lo 1 - 2a sin B + a2 ' 

and the required results follow immediately. 
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9 . 18 .  In the upper half plane, f(z) = 1/(z2 - 2z + 2) has just one simple pole, 
at 1 + i . From 1 / (z) l < 1/( l z l 2 - 2 l z l - 2) , we deduce that 1 / (z) l -+ 0 as 
lz l  -+ oo .  Hence Jordan's Lemma applies. The residue of g(z) = f (z)ei1rz 
at 1 + i is ei1r(Hi) / [ ( 1 + i) - ( 1 - i) ] = -e-1r /2i, and so, equating real and 
imaginary parts, we have 100 cos 1rx dx _ -1r 

�----==-------=- - -7r e , _00 x2 - 2x + 2 
100 sin 1rx dx 

= 0 . _00 x2 - 2x + 2 

9 . 19 .  The function f(z) = z3 / ( 1+z2 )2 has a double pole in the upper half plane 
at i . From 1 / (z) l � l z l 3  / ( l z l 2 - 1 )2 we deduce that 1 / (z) l -+ 0 as l z l -+ oo .  
The residue of g (z) = f(z)eiz at i i s h' (i) , where h (z) = z3eiz / (z + i) 2 • 
Since h' (z) = iz2 (z2 + 3)eiz /(z + i) 3 , we have res(g, i) = 1/4e. By Jor­
dan's Lemma, f�oo [x3ei"' / ( 1 + x2 )2] dx = 7ri/ (2e ) ,  and equating imagi­
nary parts gives the desired result . 

9 .20. We use the contour from the proof of Theorem 9 .8 ,  with a semicircular in­
dent of radius r so as to avoid 0. The function f(z) = (z2 - a2 ) / [z(z2 +a2 )] 
satisfies the conditions of Jordan's Lemma. The residues of g(z) = [ (z2 -
a2 )eiz] / [z(z2 + a2 )] at the simple poles 0 and ia are - 1  and e-a , respec­
tively. If we denote the integral of g(z) round the indent (in the positive di­
rection) by In we conclude that r�: g(x) dx - Ir + Ir

oo 
g(x) dx = 27rie-a . 

By Lemma 9 .12 ,  limr-+0 Ir = 1ri. Hence f�oo g(x) dx = 7ri (2e-a + 1 ) ,  and 
the required result follows by taking imaginary parts. 

9 .21 .  Here the function f (z) = 1/ [z ( 1 - z2 )] has three poles, all on the real axis . 
We use the contour of Theorem 9 .8 ,  indented at - 1 ,  0 and 1 with semi­
circles L1 , I0 anrl h of radius r, and, denoting ei1rz / [z ( 1 - z2 ) ] by g(z) , 
deduce that J�!-r g(x) dx-L1 + J�;+r g (x) dx-Io+ t-r g (x) dx-L1 + 
J�!-r g(x) dx - h + J1':r g (x) ,dx = 0 . (The negative signs arise because 
the three semicircular indents are traversed in the negative direction. )  
Thus f�oo g(x) dx = limr-+o (J- 1 + Io + II ) .  The residues of g (z )  at -1 ,  
0 and 1 are � , 1 and � , respectively, and so i t  follows from Lemma 9 . 12  
that f�oo g(x) dx = 21ri . The result i s  now obtained by taking imaginary 
parts and by noting that the integrand is an even function. 

9.22 .  The function eaz / cosh z has infinitely many simple poles at z = (n + 
� )1ri (n E Z) . Only one of these, namely �1ri, lies inside our contour, 
and the residue there is 

ia1r /2 e _ · ia1rj2 = - -ze . sinh( i1r /2) i sin( 1r /2) 
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Hence 

Then 

21re'a""/2 = -- dx + i dy 
. jv ea"' 11< ea(v+iy) 

-u cosh x 0 cosh(v + iy) jv ea(z+1ri) 11< ea( -u+iy) 
- dx - i dy 

-u cosh (x + 1ri) 0 cosh( -u + iy) 
= 11 + 12 - 13 - 14 (say) . 

I ea(v+iy) I I 2eav eiay I 2eav 
cosh( v + iy) = l ev+iy + e- (v+iy) I :::; ev - e-v ' 

and so 12 tends to 0 as v ----+ oo, since a < 1 . Similarly, 

I ea( -u+iy) I I 2e-aueiay I 2e-au 
cosh( -u + iy) = e-u+iy + eu-iy :::; eu - e-u ' 
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and so 14 ----+ 0 as u ----+ oo, since a > -1 . Also, since cosh(x + 
1ri) = - cosh x,  13 = -ei1ra h .  Hence, letting u, v ----+ oo ,  we have 
f�oo [ea"' j cosh x] dx = 27reia7r/2 j( 1  + ei1ra ) = 27r/(ei7ra/2 + e-i1raf2 ) = 
1rj cos (7ra/2) . 

9 .23. The function f(z) is holomorphic. On the arc a from R to Rei1r!4 , 
l f (z) l = R4n+3 1 exp(Rei8 ) 1  = R4n+3e-R cos 8 :::; R4n+3e-Rfv'2, and so 
I fa f(z) dz l :::; �1rR4n+4e-Rfv'2, which tends to 0 as R ----+ oo .  Hence, 
parametrising the line from 0 to Rei1r/4 by z = ( 1  + i)t (0 :::; t :::; R/.fi) , 
we deduce that 

1R 
x4n+3e-"' dx - 1R/v'2 

(1 + i)4n+3t4n+3e-t ( l+i) ( 1 + i) dt 

tends to 0 as R ----+ oo. Thus, since ( 1  + i)4n+4 = (- 1 )n+1 22n+2 , we 
deduce that ( 4n + 3) ! = ( - 1)n+1 22n+2 J000 t4n+3e-t (cos t + i sin t) dt , and 
equating real parts gives the desired result . 

9 .24. Let 1 be the semicircular contour a(O, R) , indented at the origin by a 
semicircle of radius r .  The function f(z) = (eiaz - eibz ) jz2 is holomor­
phic inside and on the contour. On the outer semicircle n, l eiaz l  = 
e-aR sin 8 :::; 1 , l eibz l  = e-bR sin 8 :::; 1 , and so l f (z) l :::; 2/R2 . Hence 
I J n f ( z) dz I :::; 21r / R, which tends to 0 as R ----+ oo. Calculating the 
Laurent series of f(z) at 0, we have f(z) = ( 1/z2 ) [( 1  + iaz - a2z2 + 
O(z3 ) )  - ( 1  + ibz - b2z2 + O(z3 ) ) ]  = i (a - b)z- 1 - (a2 - b2 ) + O(z) . 
Thus f has a simple pole at 0, with residue i (a - b) . Denoting the in­
ner semicircle (in the positive direction) by w, we know from Lemma 
9 . 12 that limr--70 fw f(z) dz = 1r(b - a) . Thus, letting R ----+ oo ,  we have r:: [ (eiaz - eib"' )/x2] dx - L f(z) dz + fr00 [ (eiaz - eib"' ) jx2] dx. Letting 
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r � 0 then gives f�oo [ (eiax - eibx ) jx2] dx = 1r(b - a) . The proof is com­
pleted by equating real parts. 
Since sin2 x = ! (  1 - cos 2x) = � (cos Ox - cos 2x) , it follows from the above 
that f�oo [ (sin x) /x] 2 dx = �7r(2 - 0) = 1r. Hence J000 [ (sin x) /x] 2 dx = 
�7r . ) 

9 .25 . Since the contour does not cross the cut ( - oo ,  0] , we may assume that 
log z means the principal logarithm throughout . Since a - e-iz = 0 if and 
only if z = i log a, the integrand has just one pole, at i log a. This does 
not lie inside the contour, since 0 < a < 1 implies that log a is negative. 
Hence the integral round the contour has the value 0 . 
The contribution from the segment from 1r to 1r + iR is 

{R (1r + iy)i dy = {R (i1r - y) dy 
}0 a - e-i (,.+iy) }0 a +  eY ' 

and the section from -7r + iR to -1r contributes 

_ {R ( -7r + iy )i dy 
= 

{R ( i1r + y) dy 
Jo a - e-i ( -11"+iy) Jo a +  eY 

Combining the two while letting R � oo gives a contribution of 
100 dy 100 du 27ri -- = 27ri ( ) (where u = eY ) 0 a +  eY 1 u a +  u 

27ri = - log(1 + a) .  a 

The section from 1r + iR to -1r + iR contributes 
_ _ !

,. 
(x + iR) dx J - ' ( + 'R) ' _,. a - e- •  x • 

( 13 .5) 

and IJ I :::; 21r(1r + R)j (eR - a) . This tends to 0 as R � oo. Finally, the 
section from -1r to 1r contributes 

!,. 
x(a - eix ) dx = !,. x(a - cos x - i sin x) dx 

_,. (a - e-ix ) (a - eix ) _,. 1 - 2a cos x + a2 
From (13 .5 ) ,  and by taking imaginary parts , we deduce that 

_ !,. 
x sin x dx ·+ 21r log(1 + a) =  0 ,  

_ ,.  1 - 2a cos x +  a2 a 

and the required result follows since x sin x / ( 1 + 2a cos x + a 2 )  is an even 
function. 
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9.26. The function 7r cosec 1rzj(z2 + a2 ) has poles at ±ai (and at every n) .  
At each of the poles ±ai the residue is ( -7r cosech 1ra) / (2a) . Hence 
I::;:'=_00 [(- 1)n/(n2 + a2 ) ] = 1r/(a sinh 1ra) . That is, 

1 oo ( - 1 )n+l 7r 
a2 - 2 L n2 + a2 - a sinh 1ra ' n=l 

and so I::;:'=1 [( -1 )n+l /(n2 + a2 )] = (1/2a2 ) - 1r /(2a sinh 1ra) . 
9.27. The function f(z) = 1r cot 1rzj(z+a)2 has a double pole at -a . The residue 

is h' (-a) ,  where h(z) = 7r cot 1rz. Since h' (z) = -7r2 cosec2 1rz, we have 
res(!, -a) = -1r2 cosec2 1ra. Hence, by Theorem 9 .24, I:::'=-oo 1/(n + 
a)2 = 1r2 cosec2 1ra. 
With a =  � ' we have I::;:'=_00 [1/(2n + 1 )2] = i L::'=-oo [lf (n + � ) 2] = 
i1r2 . With a =  � , we have L�00 [1/ (3n + 1) 2 ] = � L�00 [1/(n + � )2] = 

� (47r2/3) = t-,1r2 . With a = i ,  we have 
00 

1 
00 1 1 1 L [ 1/(4n + 1) 2] = 16 L [1/(n + 4 )2] = 16 (27r2 ) = 87r2 . 

-oo -oo 

9.28. The function 7r COt 7ra/(z4 - a4 ) has simple poles at a, -a, ia and -ia. 
At a and -a the residue is 1r cot 1raj( 4a3 ) ;  at ia and -ia the residue is 
7r coth 7ra/4a3 • Hence I::;:'=_00 [1/ (n4 - a4 ) ] = - (7r/2a3 ) (cot 7ra+coth7ra) . . 
That is, (- 1/a4) + 2 I::;:'=1 [1/ (n4 - a4 )] = - (7r/2a3 ) (cot 7ra + coth 1ra) , 
and so I::;:'=1 [1/(n4 - a4) ] = (1/2a4 ) - (7r/4a3 ) (cot 7ra + coth 1ra) . 

Chapter 10 
10. 1 .  The equation f(z) = 0 has no roots on the positive x-axis, since x � 0 

implies that x8 + 3x3 + 7x + 5 > 5. It has no roots on the y-axis either, 
since f(iy) = (y8 + 5) +i(7y- 3y3 ) ,  and y8 + 5  > 0 for all real y. For R > 0 
we consider the contour "( consisting of 71 , the line segment from 0 to R, 
"(2 , the circular arc from R to iR, and 73 , the line segment from iR to 0. 
Clearly Ll-y1 (arg f) = 0. On "(3 we have arg f = tan- 1 [(7R - 3R2 )/ (R8 + 
5) ] . The quantity (7R - 3R2 )/ (R8 + 5) stays finite throughout , is 0 when 
R = 0 and tends to 0 as R -+  oo. Hence Ll-y3 (arg f) -+ 0. As for 72 , by 
choosing R sufficiently large we may use Rouche's Theorem to deduce 
that Ll-y2 ( arg f) = Ll-y2 ( arg z8 ) = 47r. Hence there are two roots in the 
first quadrant. 
We can establish that the roots are distinct by observing that there are 
no roots of f(z) = 0 on the line {rei""/4 : r > 0} .  For f(rei.,./4 ) = r8 + 
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5 +  (1/v'2) (7r - 3r3 ) + (ir /v'2) (3r2 + 7) , and the real and imaginary parts 
can never be zero together. Then use two separate contours, 0 to R to 
Rei1rf4 to 0, and 0 to Rei1rl4 to iR to 0, and show that there is one zero 
inside each. 

10.2 . On the circle ��:(0, 1 ) ,  we have i azn l = a and lez l = ecos B :S e . Thus i azn l > 
i ez I on ��:(0, 1 ) .  The function azn - ez has no roots on ��:(0, 1 )  and no poles. 
By Rouche's Theorem, Ll��:(O, l ) ( arg(azn - ez ) )  = Ll��:(O, l ) ( arg(azn) )  = 
2mr, and so there are n roots of ez = azn inside ��:(0, 1 ) .  

10.3 . On the circle ��:(0, 3/2) , l z5 l = 243/32 and l 15z+ 1 1  2:: 15 l z l - 1  = 21 .5 ;  thus 
l 15z+ 1 1 > l z l 5 •  Hence there is no zero of the polynomial on the circle, and, 
by Rouche's Theorem, Ll��:(o ,3/2) ( arg(z5 + 15z+ 1 ) )  = Ll��:(0,3/2) ( arg( 15z+ 
1 ) )  = 2rr. Thus there is one zero in N(O, 3/2) .  
On the circle ��:(0 , 2) , l z5 1  = 32 and l 15z + 1 1  :S 15 l z l  + 1 = 31 . Hence there 
is no zero of the polynomial on the circle, and, by Rouche's Theorem, 
Ll��:(o ,2) ( arg(z5 + 15z + 1)) = Ll��:(o ,2 ) ( arg(z5 ) )  = 10rr. Thus there are five 
zeros in N(O, 2 ) .  We deduce that in the annulus {z : 3/2 < l z l  < 2} there 
are four zeros . 

10.4. Writing f(z) = z5 + 7z + 12, observe that f( - 1) = 4 > 0 and f( -2) = 
-34 < 0. Hence there is a real root between -2 and -1 . Since f' (z) = 
5z4 + 7 > 0 for all z, there are no other real roots. There are no roots 
on the y-axis , since f(iy) = i (y5 + 7) + 12 cannot be zero. If l z l  = 1 ,  
then 1 / (z) l 2:: l 7z + 12 1 - l z5 l  2:: 12 - 7 lz l - lz5 l = 4 ,  and so there are no. 
roots on the circle ��:(0, 1 ) .  Also, l z5 + 7z i :S 8 < 12 ; so Ll��:(O , l ) (arg f) = 
Ll��:(O , l ) ( arg(12) ) = 0. Hence there are no roots in N(O, 1 ) .  
I f  l z l  = 2, then l f (z) l 2:: l z5 l - i 7z + 12 1 2:: l z5 l - 7 l z l - 12 2:: 13 .  Hence 
there are no roots on ��:(0, 2 ) .  On ��:(0, 2 ) ,  l 7z + 12 1  :S 26 < l z5 1 .  Hence, in 
each of the sectors 0 < () < 2rr /5, 2rr /5 < () < 4rr /5, 4rr /5 < () < 6rr /5, 
6rr/5 < () < 8rr/5 and 8rr/5 < () < 2rr, Ll(arg f) = Ll { arg (z5 ) )  = 2rr. 
The root in the third of those sectors is the real negative root already 
discovered, and the others are (respectively) in the first , second, third 
and fourth quadrants. All roots are in the annulus {z : 1 < I < 1 2 } .  

10.5 . Let R > 1 .  On the circle ��:(0, R) , l zn l = Rn = [1 + (R - 1)]n > 1 + n(R -
1 )+ �n(n- 1 ) (R- 1)2 by the Binomial Theorem. Also l nz- 1 1  :S nR+ l .  So 
we certainly have l zn l > l nz-1 1  if 1+n(R- 1)+ �n(n-1 ) (R-1) 2  2:: nR+1 ,  
that is, i f  -n + �n(n - 1 ) (R - 1)2 ;:::: 0, that is , i f  R ;:::: 1 + [2/(n - 1)pl2 • 
For any such R, Ll��:(o ,R) ( arg(zn + nz - 1))  = Ll��:(O,R) ( arg (zn ) )  = 2nrr, 
and so there are n zeros of zn + nz - 1 in N(O, R) . 

10.6 . Suppose that f has no zeros in N(O, R) . Then 1/ f is holomorphic in 
N(O, R) . Then 1 ( 1/f) (z) l < 1/M on the circle ��:(O, R) , and 1 ( 1 /f) (O) I > 
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M. Since I is not constant , this contradicts the Maximum Modulus The­
orem. Hence there is at least one zero in N(O, R) . 
Let l(z) = ao + a1z + · · · + anzn be a polynomial of degree n 2: 1 .  Let 
M > l ao I ·  Since l l (z) l -t oo as l z l -t oo, we can find a circle �t(O, R) 
on which l l (z) l > M. Hence there is at least one root of l(z) = 0 in 
N(O, R) . To show that there are n roots, use an inductive argument , as 
in Theorem 7 . 1 1 .  

10.7. Let l(z) = w = u + iv. Since l ew I =  e" , the existence of  a maximum of 
Re I on the boundary would imply the existence of a maximum of l e' l , 
and this is not possible , by the Maximum Modulus Theorem. If Re I had 
a minimum value on the boundary, then l e-/ 1 would have a maximum 
value, and so this too is impossible. 

Chapter 1 1  
11 . 1 .  ( i )  For the first hyperbola, 2x - 2y(dyjdx) = 0, and so dyjdx = xjy. 

For the second hyperbola 2y+2x(dyjdx) = 0, and so dyjdx = -yjx. 
The two tangent vectors are perpendicular. 

(ii) The two parabolas meet where u = k2 - l2 and v2 = (2kl) 2 . For 
the first parabola, dujdv = -v/ (2k2 , and for the second parabola 
dujdv = vj(2l2 • The product of the gradients of the two tangent 
vectors is - (v/2kl)2 = -1 . 

11 .2. Observe that g = I o h, where h(z) = z. The function h preserves 
magnitudes of angles while reversing the sense, while I preserves both 
the magnitude and the sense. Hence g preserves magnitudes of angles, 
while reversing the sense. 

1 1 .3 . a) Verify that 82uj8x2 = -82uj8y2 = 0. From the Cauchy-Riemann 
equations, 8vj8y = 8uj8x = 1 + 2y, and so v = y + y2 + l(x) .  
Hence l' (x) = 8vj8x = -8uj8y = -2x, and so we may take v = 

y + y2 - x2 • Observe that l(z) = x + 2xy + i (y + y2 - x2 ) = (x + 
iy) - i ( (x2 - y2 ) + i(2xy) ) = z - iz2 • 

b) 82uj8x2 = ex cos y, 82uj8y2 = -ex cos y, and so u is harmonic. 
From the Cauchy-Riemann equations, 8v I 8y = 8uj 8x = ex cos y, 
and so v = ex sin y + l(x) . Hence ex sin y + f' (x) = 8vj8x = 

-8uj8y = ex sin x, and so we may take v = ex sin y. Observe that 
I ( z) = ex (cos y + i sin y) = ex eiy = ex+iy = ez . 

c) The calculations are more difficult here, but it is routine to verify 
that 82uj8x2 = -82uj8y2 = (6x2y - 2y3 )/ (x2 + y2 )3 • From the 
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Cauchy-Riemann equations, 8vj8y = 8uj8x = 1 - 2xyj(x2 + y2 )2 , 
and so v = y-xj(x2+y2 )+ J(x) . Hence (y2 -x2 )j (x2 +y2 )2 + f' (x) = 
8vj8x = -8uj8y = (y2 - x2 )/ (x2 + y2 )2 , and so we may take 
v = y - xj(x2 +y2 ) . Observe that f(z) = x+iy- i(x-iy)j(x2 +y2 ) = 
z - ijz. 

1 1 .4 . Choose v so that f = u + iv is holomorphic. Then g : z H e-f (z) is 
holomorphic, and lg(z) l = e-u(x ,y) . Then 

1 1 .5 . 

e-m = sup { lg(z) l  : z E I('y) U -y* } . 

By the Maximum Modulus Theorem (Theorem 10 .8 ) ,  lg(z) l < e-m for 
all z in I('y) . Hence u(x, y) > m for all (x, y) in I('y) . 

) F(  ) = z - 1 b) F( ) = z - i ) F( ) = ( - 1  + 2i)z + 1 a z ( 1  ') , z 1 , c z 1 . + t z z - z +  
1 1 .6 . By Remark 1 1 .3, the local magnification is IF' (C) I = l (ad- bc)j (c( +d)2 1 . 
1 1 .7 . a) The answer is not unique. Suppose first that F maps 1 (on the 

boundary of the disc D1 to -1  (on the boundary of the disc D2 . 
Then map the inverse points -1 ,  oo to inverse points oo ,  -2 (in 
that order , so that the interior point 0 of the first disc maps to the 
exterior point oo of the second disc) . This gives 

2z F(z) = 
z + 1 . 

[Check the answer: lw + 2 1  2:: 1 if and only if l z  + 1 1 :S: 2 .] 
b) Again the answer is not unique. We choose boundary points and 

map 1 to 3i. Then we choose inverse points -1  and oo and map 
those to inverse points (reflections) 6i and 0 (in that order, so as 
to map the interior of the disc to the half-plane above the line) . We 
obtain 

F(z) = � .  z + 3  
[Again we can check: l z  + 1 1  = 2 if and only if l (w - 6i)/w l  = 1 ,  that 
is, if and only if w lies on the perpendicular bisector of the the line 
segment connecting 0 and 6i .] 

1 1 .8 . The transformation F must map the point 1 on D1 to the point 0 on 
D2 . The points 0 and oo are inverse with respect to Db while the points 
1/2 and -1 are inverse with respect to D2 . Since F(O) = 1/2, we must 
have F(oo) = -1 .  The Mobius transformation is completely determined 
by the images of 1, 0 and oo: 

F(z) = -z + 1 . 
z + 2  
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11 .9. 
1 + i ( l_tiz ) . . 

(F o F)(z) = •+z = � + � + � - z
. = 1 

i + ( l_±iz ) - 1  + �z + 1 + �z z 
>±Z 

Hence F3 (z) = F2 (F(z)) = (i+z)/ ( 1+iz) , and F4 (z) = F2 (F2 (z) ) = z. 
Since z is real, 

lw l 2 = ww = (1 + iz) ( 1 - iz)) = 1 + z2 = 1 (i + z ) (-i + z) 1 + z2 
and so w = F(z) lies on the circle {w : lw l  = 1 } .  From F(-1 )  = - 1 ,  
F(1 )  = 1 and F(O) = -i, we deduce that the image of the line segment 
from - 1 to 1 is the semicircle { ei9 : -11' ::; 0 ::; 0} .  The image under F2 
is the union ( - oo ,  -1] U [ 1 ,  oo) of intervals on the real line, and the image 
under F3 is the upper semicircle { ei9 : 0 ::; 0 ::; 11'} .  

1 1 . 10 . Observe first that Re z 2:: 0 i f  and only i f  l (z - 1 ) / ( z  + 1 ) 1  ::; 1 .  So 
the image under z H (z - 1 ) / ( z  + 1) o f  the right half-plane i s  the disc 
{ w : lw l · ::;  1 }. By contrast , the real axis maps to itself, and, for all real 
p, q, 

p + qi - 1 - ( (p - 1) + qi) ( (p + 1 )  - qi) - (p2 - 1 + q2 ) + 2qi 
p + qi + 1 - (p + 1 ) 2  + q2 - (p + 1 ) 2 + q2 

has positive imaginary part if and only if q > 0. Thus the positive half­
plane maps to itself, and so the first quadrant maps to the semicircle 
{ w : I w I ::; 1 , Im w > 0} .  The square function maps this semicircle to 
the complete closed disc N(O, 1 ) .  So the image of Q under z H [ (z -
1 ) (z + 1) ] 2 is N (O, 1 ) .  
As for z H (z2 - 1 )/ (z2 + 1 ) ,  the square function maps Q to the upper 
half-plane {w : Imw 2:: 0} , which then maps to itself by w H (w -
1)/ (w + 1 ) .  

1 1 . 1 1 .  First , z H z4 maps E to E '  = {z : l z l  ;:::: 1 } .  A suitable mapping is 
z H 1/z4 . 

1 1 . 12 .  First map Q to the first quadrant Q' = {z : Re z > 0 ,  lm z > 0} using 
z H (11'/2) - z. Then multiply by e-i1r/4 to transform Q' into Q" = 
{z : - (11'/4) < arg z < (11'/4) } .  Then square to obtain the half-plane 
{ z : Re z > 0} .  So a suitable mapping is 

( 11' ) 2 . /2 ( 
11' ) 2 z H 2 - z e-'"' = -i 2 - z 
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