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Part A
(1) A, B.
(2) A, C.
(3) A.
(4) D.
(5) A.
(6) C, D.
(7) A, C, D.
(8) B.
(9) A, D.

(10) 3.

Part B
(11) It is easily checked that δ is a metric. Let Ck be a sequence of compact subsets of X.

We must show that there is a convergent subsequence.
Given any ε > 0, using there exists an N = N(ε) such that the every Ck is covered by

(atmost) N(ε) many open balls of radius ε with centres in Ck. We do this first for X with
ε/2 balls and then take, for each such ball B, an ε-ball about a point in Ck in case the
intersection B∩Ck is non-empty. We let ε vary over 1/n, n ∈ N. This way we get a finite
set Fk,n ⊂ Ck of centres of balls used to cover Ck. We may assume that Fk,n ⊂ Fk,n+1

by including balls of radius (n+1) around points of Fk,n. The cardinality of Fk,n is at
most

∑
m≤nN(1/m) =: Nn which is independent of k.) Then δ(Fk,n, Ck) < 1/n. We

list the points of ∪n≥1Fk,n in a sequence: xk,1, xk,2, . . . , xk,j , . . . , viewed as kth row of a
matrix whose rows and columns are labelled by N. It is understood that in the above
sequence we list members of Fk,i before those of Fk,i+1 ∀i ≥ 1 for each k ≥ 1.

We consider the first column. Now xk,1, k ∈ N is a sequence of points in X which has
a convergent subsequence xkr,1 ∈ Ckr , r ∈ N . Set y1 to be the limit of this subsequence.
We will denote Ck1 as C1

1 .
We consider second column entries corresponding to the rows labelled by the sub-

sequence kr—that is the sequence xkr,2. This has a convergent subsequence, say with
limit y2. We will denote the first term of the corresponding subsequence by C2

2 .
Proceeding thus we obtain a sequence of points y1, . . . , yn, . . .. We let C be the closure

of {yk | k ≥ 1}. Then C is compact.
Our claim is that the ”diagonal” sequence Ck

k converges to C.
Let n > 0 be a positive integer. Given any m ∈ N we have δ(Cm, Fm,n) < 1/n

and so δ(xm,r, Fm,n) < 1/n for all r. So yr is at a distance at most 1/n from Fn :=
{y1, y2, . . . , ym | m ≤ Nn} where Nn =

∑
l≤nN(1/l). So it follows that δ(C,Fn) ≤ 1/n.

If Ck
k = Cr, (r = r(k) depends on k) for sufficiently large k we have δ(xr,j , yj) < 1/n

for j ≤ Nn. Hence we have δ(Fr,n, Fn) < 1/n. So

δ(Cr, C) ≤ δ(Cr, Fr,n) + δ(Fr,n, Fn) + δ(C,Fn) < 3/n.

(12) Let C be a component.Then C is open. If C is bounded, the value of |f | on its boundary
∂C is 1 ( by continuity, open mapping theorem and because ∂C is disjoint with C).
Hence same for 1/|f |. But this contradicts |f(z)| < 1 on C.
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(13) Let f : X −→ R be given by x 7→ 1
min{d(x,p)|p∈F} . It is continuous. The graph Γf :=

{(x, f(x)) | x ∈ X} is a closed subset of X × R, hence a complete metric space. X 7→
Γf , x 7→ (x, f(x)) is a homeomorphism.

(14) Note that f [0,∞) ⊂ [0,∞) as f ′ ≥ 0. Integrating f ′/f2 on [0, x] gives

1− 1/f(x) ≥ x
and hence f is unbounded in [0, 1).

(15) Let c1, . . . , cn ∈ C be such that
∑

i cie
aiz = 0. Differentiating this n − 1 times, we see

that
∑

i cia
j
ie

aiz = 0 for every 0 ≤ j ≤ n − 1. Substitute z = 0 to get
∑

i cia
j
i = 0 for

every 0 ≤ j ≤ n− 1. The Vandermonde matrix (aji )i,j is invertible, so ci = 0 for every i.
(16) contain m for any integer m with gcd(m, pn) = 1, so H = {jp | 0 ≤ j < p}.

(17∗) If M is diagonalizable, then we may assume that M is a diagonal matrix. Then P (M)
is a diagonal matrix. Such a matrix is nilpotent if and only if it is zero. Conversely, let
α1, . . . , αm be the distinct eigenvalues of M . Let P (X) =

∏m
i=1(X − αi). Let µ(X) be

the minimal polynomial of M . Since the roots of µ(X) are exactly α1, . . . , αm, there
exists a positive integer r such that (P (X))r is divisible by µ(X). Hence (P (M))r = 0.
Therefore P (M) = 0, i.e., P (X) = µ(X). Therefore M is diagonalizable.

(18∗) (1) True: In fact, X is path connected. We know the closed interval [0,1] is normal.
Given two points x, y ∈ X, consider the function f : {0, 1} −→ X defined by f(0) =
x, f(1) = y. Then f is continuous and extends to all of [0, 1], by the hypothesis on X.

(2) False: take a finite set of cardinality at least 2. Then it is compact and not
connected. So it can’t have universal extension property.

(3) Note that X ⊂ R2 is a retract: r : R2 −→ X given by f(x, y) = (x, sinx)
is a retraction. Since R2 has universal extension property, any map A −→ R2 can be
extended to all of Y (for any given pair of a normal space Y and a closed subset A ⊂ Y ).
If we are given a function f : A −→ X, composing with the inclusion X −→ R2, we
have an extension g : Y −→ R2. Composing this with r, we get the desired extension
Y −→ X.

Note that it is not required to know about the language of retracts for (3). They will
have to notice that a continuous map like r exists.

(19∗) If f(a) = f(b) = 0 for some a, b ∈ K, then so f(λa+ b) = 0 for every λ ∈ Fq. Hence the
set of zeros is an Fq-vector-space. It is n-dimensional since f is separable.

(20∗) First n(n+ 1) and n2 are of the same order (the ratio converges to one). So you can as
well take denominator as n(n+ 1). Thus need to show

a1 + 2a2 + 3a3 + · · ·+ nan
n(n+ 1)/2

→ a.

Imitate blindly Cesaro theorem. Given ε > 0, choose K so that |an − a| < ε/2 for
n ≥ K. Then choose N > K so that the finite sum

|a1 − a|+ 2|a2 − a|+ 3|a3 − a|+ · · ·+K|aK − a|
N(N + 1)/2

< ε/2.

If now n > N then

|bn − a| = |
a1 + 2a2 + 3a3 + · · ·+ nan

n(n+ 1)/2
− a|

(Use 1 + · · ·+ n = n(n+ 1)/2 to distribute a to each term in numerator.)

≤ |a1 − a|+ 2|a2 − a|+ 3|a3 − a|+ · · ·+ n|an − a|
n(n+ 1)/2

(split first K terms and the remaining.)

<
ε

2
+
ε

2
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