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Part B.

1. Since both cosz and 2 are even functions and since cos z < 1 it is enough
2
to show that f(z) = % — 1+ cosz > 0 for z > 0.

We consider only « > 0. Note f/(z) = x —sinz and f”(x) = 1 — cosx.
Since f” is positive we see f’ is increasing. Also f'(0) = 0 so that f’ is positive.
Hence f is increasing. Since f(0) = 0 we see f(x) is positive for all > 0.

2. Let € > 0 be given. Need to find § > 0 so that |f(z) — f(y)] < €
for x,y € [0,1] and |z — y| < &. Suppose there is no such §. Thus for each
integer n > 1, there are two points x, and y, in [0,1] with |z, — y| <
1/n but |f(zn) — f(yn)| > €. Since the interval [0,1] is closed and bounded
there is a subsequence {z,,} which converges to a point z € [0,1]. Since
|Tn,, — Yn| < 1/ng, we see yp, also converges to the same point z. For
each k& we have |f(xn,) — f(yn,)| > € where as by continuity of f we see

f('rnk) - f(ynk) — f(l‘) - f(JU) = 0.

3. Take any = € R. By hypothesis lima,(22)" = 0 and hence this is a
bounded sequence. Say |a,(2z)"| < ¢. Thus |ap,z™| < ¢/2™. Since Y (¢/2™) is
convergent we conclude that Y |a,z™| is convergent. Thus > a,z™ is absolutely
convergent and hence convergent.

4. (a) For every non-zero vector v we have v*(B—A)v > 0 and v*(C' — B)v >
0. Add and conclude that v*(C — A)v > 0.

(b) Since A is symmetric and strictly positive definite, it has diagonaliza-
tion, say A = P!DP where P is orthogonal and D is diagonal with strictly
positive entries. Let (8 be strictly larger than all diagonal entries of D. Then
BI — A= PYBI — D)P. Since I — D is diagonal with strictly positive entries
we conclude that A << 1. Similarly taking any number « > 0 strictly smaller
than all diagonal entries of D we conclude al << A.

5. The AM-GM inequality says a < vab < ‘%b < b. Using this, by induc-
tion we see a1 < ag < -+ < -+ < by < by. Thus {a,} is increasing and bounded
above (by any of the b;) so converges to, say, ¢. Similarly {b,} is decreasing and
bounded below (by any of the a;), so converges to say C. Clearly ¢ < C. Since

bpt1 = % we conclude, after taking limits, that C' = CEC showing ¢ = C.




6. Since terms are positve, we can interchange the order of summation
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7. Let € > 0 be given. Choose é; > 0 so that |f(x)— f(a)] < ¢/{2(1+|g(a)|)}
whenever |z — a| < ;. In particular for |z — a| < é; we have |f(z) < |f(a)| +
e/{2(1+|g(a)])} = C, say. Choose d2 > 0 so that |g(z) — g(a)| < e/{2(C +1)}.
Let 6 = min{dy,d2}. Now let |z — a| < 4. Then

[f(2)g(z) = f(a)g(a)] < |f(2)llg(x) = g(a) + [g(a)||f(z) = fla)] < e

8. Let L be the max value of f. Claim: If f(i,j) = L, then at its four
neighbours (¢ £1, 5) and (4, j £ 1) the value of f must equal L. Indeed if f value
is less than L at a neighbour, then the average would also be so.

Thus if f(i,j) = L then f value must be L at (i +1,7), (i £2,7) and finally
at (0,7) and then at (0,5 + 1), (0,5 & 2) and finally at (0,0). Now proceed to
any (k,!) in the same manner to show f takes the value L at all points.



