
Part A.
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Part B.

1. Since both cosx and x2 are even functions and since cosx ≤ 1 it is enough

to show that f(x) = x2

2 − 1 + cosx ≥ 0 for x ≥ 0.

We consider only x ≥ 0. Note f ′(x) = x − sinx and f ′′(x) = 1 − cosx.
Since f ′′ is positive we see f ′ is increasing. Also f ′(0) = 0 so that f ′ is positive.
Hence f is increasing. Since f(0) = 0 we see f(x) is positive for all x ≥ 0.

2. Let ε > 0 be given. Need to find δ > 0 so that |f(x) − f(y)| < ε
for x, y ∈ [0, 1] and |x − y| < δ. Suppose there is no such δ. Thus for each
integer n ≥ 1, there are two points xn and yn in [0, 1] with |xn − yn| <
1/n but |f(xn) − f(yn)| ≥ ε. Since the interval [0, 1] is closed and bounded
there is a subsequence {xnk

} which converges to a point x ∈ [0, 1]. Since
|xnk

− ynk
| ≤ 1/nk, we see ynk

also converges to the same point x. For
each k we have |f(xnk

) − f(ynk
)| ≥ ε where as by continuity of f we see

f(xnk
)− f(ynk

)→ f(x)− f(x) = 0.

3. Take any x ∈ R. By hypothesis lim an(2x)n = 0 and hence this is a
bounded sequence. Say |an(2x)n| ≤ c. Thus |anxn| ≤ c/2n. Since

∑
(c/2n) is

convergent we conclude that
∑
|anxn| is convergent. Thus

∑
anx

n is absolutely
convergent and hence convergent.

4. (a) For every non-zero vector v we have vt(B−A)v > 0 and vt(C−B)v >
0. Add and conclude that vt(C −A)v > 0.

(b) Since A is symmetric and strictly positive definite, it has diagonaliza-
tion, say A = P tDP where P is orthogonal and D is diagonal with strictly
positive entries. Let β be strictly larger than all diagonal entries of D. Then
βI −A = P t(βI −D)P . Since βI −D is diagonal with strictly positive entries
we conclude that A << βI. Similarly taking any number α > 0 strictly smaller
than all diagonal entries of D we conclude αI << A.

5. The AM-GM inequality says a <
√
ab < a+b

2 < b. Using this, by induc-
tion we see a1 < a2 < · · · < · · · < b2 < b1. Thus {an} is increasing and bounded
above (by any of the bi) so converges to, say, c. Similarly {bn} is decreasing and
bounded below (by any of the ai), so converges to say C. Clearly c ≤ C. Since
bn+1 = an+bn

2 we conclude, after taking limits, that C = c+C
2 showing c = C.
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6. Since terms are positve, we can interchange the order of summation

∞∑
k=0

∞∑
j=k+1

λj

j!
=

∞∑
j=1

j−1∑
k=0

λj

j!
=

∞∑
j=1

λj

j!
j =

∞∑
j=1

λj

(j − 1)!
= λ

∞∑
j=1

λj−1

(j − 1)!
= λeλ

7. Let ε > 0 be given. Choose δ1 > 0 so that |f(x)−f(a)| < ε/{2(1+|g(a)|)}
whenever |x − a| < δ1. In particular for |x − a| < δ1 we have |f(x) < |f(a)| +
ε/{2(1 + |g(a)|)} = C, say. Choose δ2 > 0 so that |g(x)− g(a)| < ε/{2(C + 1)}.
Let δ = min{δ1, δ2}. Now let |x− a| < δ. Then

|f(x)g(x)− f(a)g(a)| ≤ |f(x)||g(x)− g(a)|+ |g(a)||f(x)− f(a)| ≤ ε.

8. Let L be the max value of f . Claim: If f(i, j) = L, then at its four
neighbours (i±1, j) and (i, j±1) the value of f must equal L. Indeed if f value
is less than L at a neighbour, then the average would also be so.

Thus if f(i, j) = L then f value must be L at (i± 1, j), (i± 2, j) and finally
at (0, j) and then at (0, j ± 1), (0, j ± 2) and finally at (0, 0). Now proceed to
any (k, l) in the same manner to show f takes the value L at all points.
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