NATIONAL BOARD FOR HIGHER MATHEMATICS

Research Scholarships Screening Test

Saturday, January 19, 2013

Time Allowed: 150 Minutes

Maximum Marks: 40

Please read, carefully, the instructions that follow.

INSTRUCTIONS TO CANDIDATES

- Please ensure that this booklet contains 11 numbered (and printed) pages. The back of each printed page is blank and can be used for rough work.
- There are **five** sections, containing **ten** questions each, entitled Algebra, Analysis, Topology, Applied Mathematics and Miscellaneous. Answer as many questions as possible. The assessment of the paper will be based on the best **four** sections. Each question carries one point and the maximum possible score is **forty**.
- Answer each question, as directed, in the space provided in the **answer booklet**, which is being supplied separately. This question paper is meant to be retained by you and so **do not** answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or one or more than one statement may qualify. Write **none** if none of the statements qualify, or list the labels of *all* the qualifying statements (amongst (a), (b), and (c)).
- Points will be awarded for questions involving more than one answer only if all the correct answers are given. There will be no partial credit.
- Calculators are **not allowed**.

Notation

- $\mathbb N$ denotes the set of natural numbers, $\mathbb Z$ the integers, $\mathbb Q$ the rationals, $\mathbb R$ the reals and $\mathbb C$ the field of complex numbers.
- \mathbb{R}^n (respectively, \mathbb{C}^n) denotes the *n*-dimensional Euclidean space over \mathbb{R} (respectively, over \mathbb{C}), and is assumed to be endowed with its 'usual' topology. $\mathbb{M}_n(\mathbb{R})$ (respectively, $\mathbb{M}_n(\mathbb{C})$) will denote the set of all $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}) and is identified with \mathbb{R}^{n^2} (respectively, \mathbb{C}^{n^2}) when considered as a topological space.
- The symbol]a, b[will stand for the open interval $\{x \in \mathbb{R} \mid a < x < b\}$ while [a, b] will stand for the corresponding closed interval; [a, b[and]a, b[will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively.
- The space of continuous real-valued functions on an interval [a, b] is denoted by $\mathcal{C}[a, b]$ and is endowed with its usual 'sup-norm' metric. The space of continuously differentiable real-valued functions on [a, b] is denoted by $\mathcal{C}^1[a, b]$.
- The derivative of a function f is denoted by f' and the second derivative by f''.
- The transpose of a vector $x \in \mathbb{R}^n$ (respectively, an $n \times n$ matrix A) will be denoted by x^T (respectively, A^T).
- The symbol I will denote the identity matrix of appropriate order.
- The determinant of a square matrix A will be denoted by det(A) and its trace by tr(A).
- $GL_n(\mathbb{R})$ (respectively, $GL_n(\mathbb{C})$) will denote the group of invertible $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}) with the group operation being matrix multiplication.
- Unless specified otherwise, all logarithms are to the base e.

Section 1: Algebra

- **1.1** Find the number of elements of order two in the symmetric group S_4 of all permutations of the four symbols $\{1, 2, 3, 4\}$.
- **1.2** Let G be the group of all invertible 2×2 upper triangular matrices (under matrix multiplication). Pick out the normal subgroups of G from the following:

a. $H = \{ A \in G : a_{12} = 0 \};$

b. $H = \{A \in G : a_{11} = 1\};$

c. $H = \{ A \in G : a_{11} = a_{22} \},\$

where

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right].$$

- **1.3** Let $G = GL_n(\mathbb{R})$ and let H be the (normal) subgroup of all matrices with positive determinant. Identify the quotient group G/H.
- 1.4 Which of the following rings are integral domains?
- a. $\mathbb{R}[x]$, the ring of all polynomials in one variable with real coefficients.
- b. $\mathbb{M}_n(\mathbb{R})$.
- c. The ring of complex analytic functions defined on the unit disc of the complex plane (with pointwise addition and multiplication as the ring operations).
- **1.5** Find the condition on the real numbers a, b and c such that the following system of equations has a solution:

1.6 Let \mathcal{P}_n denote the the vector space of all polynomials in one variable with real coefficients and of degree less than, or equal to, n, equipped with the standard basis $\{1, x, x^2, \dots, x^n\}$. Define $T : \mathcal{P}_2 \to \mathcal{P}_3$ by

$$T(p)(x) = \int_0^x p(t) dt + p'(x) + p(2).$$

Write down the matrix of this transformation with respect to the standard bases of \mathcal{P}_2 and \mathcal{P}_3 .

- ${f 1.7}$ Determine the dimension of the kernel of the linear transformation T defined in Question 1.6 above.
- **1.8** A symmetric matrix in $\mathbb{M}_n(\mathbb{R})$ is said to be non-negative definite if $x^T A x \geq 0$ for all (column) vectors $x \in \mathbb{R}^n$. Which of the following statements are true?
- a. If a real symmetric $n \times n$ matrix is non-negative definite, then all of its eigenvalues are non-negative.
- b. If a real symmetric $n \times n$ matrix has all its eigenvalues non-negative, then it is non-negative definite.

3

c. If $A \in \widetilde{\mathbb{M}_n}(\mathbb{R})$, then AA^T is non-negative definite.

1.9 Only one of the following matrices is non-negative definite. Find it.

$$\left[\begin{array}{cc} 5 & -3 \\ -3 & 5 \end{array}\right].$$

$$\left[\begin{array}{cc} 1 & -3 \\ -3 & 5 \end{array}\right].$$

$$\left[\begin{array}{cc} 1 & 3 \\ 3 & 5 \end{array}\right].$$

1.10 Let B be the real symmetric non-negative definite 2×2 matrix such that $B^2 = A$ where A is the non-negative definite matrix in Question 1.9 above. Write down the characteristic polynomial of B.

2.1 Evaluate:

$$\lim_{n\to\infty} \sin\left(\left(2n\pi + \frac{1}{2n\pi}\right)\sin\left(2n\pi + \frac{1}{2n\pi}\right)\right).$$

2.2 Evaluate:

$$\lim_{n \to \infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}.$$

2.3 Which of the following series are convergent?

$$\sum_{n=1}^{\infty} \frac{\frac{1}{2} + (-1)^n}{n}.$$

b.

$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}).$$

c.

$$\sum_{n=1}^{\infty} \frac{\sin(n^{\frac{3}{2}})}{n^{\frac{3}{2}}}.$$

2.4 Which of the following functions are uniformly continuous?

a.
$$f(x) = x \sin \frac{1}{x}$$
 on $]0, 1[$.

a.
$$f(x) = x \sin \frac{1}{x}$$
 on $]0,1[$.
b. $f(x) = \sin^2 x$ on $]0,\infty[$.

c.
$$f(x) = \sin(x \sin x)$$
 on $]0, \infty[$.

2.5 Find the points where the following function is differentiable:

$$f(x) = \begin{cases} \tan^{-1} x, & \text{if } |x| \le 1, \\ \frac{\pi x}{4|x|} + \frac{|x|-1}{2}, & \text{if } |x| > 1. \end{cases}$$

2.6 Which of the following sequences/series of functions are uniformly convergent on [0,1]?

a.
$$f_n(x) = (\cos(\pi n! x))^{2n}$$
.

b.

$$\sum_{m=1}^{\infty} \frac{\cos(m^6 x)}{m^3}.$$

c.
$$f_n(x) = n^2 x (1 - x^2)^n$$

2.7 Let $f \in \mathcal{C}^1[0,1]$. For a partition

$$(\mathcal{P}): 0 = x_0 < x_1 < x_2 < \dots < x_n = 1,$$

define

$$S(\mathcal{P}) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|.$$

Compute the supremum of $S(\mathcal{P})$ taken over all possible partitions \mathcal{P} .

2.8 Write down the Taylor series expansion about the origin in the region $\{|x|<1\}$ for the function

$$f(x) = x \tan^{-1}(x) - \frac{1}{2} \log(1 + x^2).$$

- **2.9** Write down all possible values of i^{-2i} .
- **2.10** What is the image of the set $\{z\in\mathbb{C}\ :\ z=x+iy, x\geq 0, y\geq 0\}$ under the mapping $z\mapsto z^2.$

Section 3: Topology

3.1 Let (X, d) be a metric space. For subsets A and B of X, define

$$d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}.$$

Which of the following statements are true?

- a. If $\overline{A} \cap \overline{B} = \emptyset$, then d(A, B) > 0.
- b. If d(A, B) > 0, then there exist open sets U and V such that $A \subset U, B \subset$ $V, U \cap V = \emptyset.$
- c. d(A,B)=0 if, and only if, there exists a sequence of points $\{x_n\}$ in A converging to a point in B.
- **3.2** Let X be a set and let (Y,τ) be a topological space. Let $g:X\to Y$ be a given map. Define

$$\tau' = \{ U \subset X : U = g^{-1}(V) \text{ for some } V \in \tau \}.$$

Which of the following statements are true?

- a. τ' defines a topology on X.
- b. τ' defines a topology on X only if g is onto.
- c. Let q be onto. Define the equivalence relation $x \sim y$ if, and only if, g(x) = g(y). Then the quotient space of X with respect to this relation, with the topology inherited from τ' , is homeomorphic to (Y,τ) .
- **3.3** Find pairs of homeomorphic sets from the following:

 $A = \{(x, y) \in \mathbb{R}^2 : xy = 0\};$

 $B = \{(x, y) \in \mathbb{R}^2 : x + y \ge 0, xy = 0\};$ $C = \{(x, y) \in \mathbb{R}^2 : xy = 1\};$

 $D = \{(x, y) \in \mathbb{R}^2 : x + y \ge 0, xy = 1\}.$

- **3.4** Let (X,τ) be a topological space. A map $f:X\to\mathbb{R}$ is said to be lower semi-continuous if for every $\alpha \in \mathbb{R}$, the set $f^{-1}(]-\infty,\alpha]$ is closed in X. It is said to be upper semi-continuous if, for every $\alpha \in \mathbb{R}$, the set $f^{-1}([\alpha, \infty[)$ is closed in X. Which of the following statements are true?
- a. If $\{f_n\}$ is a sequence of lower semi-continuous real valued functions on X, then $f = \sup_n f_n$ is also lower semi-continuous.
- b. Every continuous real valued function on X is lower semi-continuous.
- c. If a real valued function is both upper and lower semi-continuous, then it is continuous.
- **3.5** Let

$$S = \{ A \in \mathbb{M}_n(\mathbb{R}) : \operatorname{tr}(A) = 0 \}.$$

Which of the following statements are true?

- a. S is nowhere dense in $\mathbb{M}_n(\mathbb{R})$.
- b. S is connected in $\mathbb{M}_n(\mathbb{R})$.
- c. S is compact in $\mathbb{M}_n(\mathbb{R})$.

- **3.6** Let S be the set of all symmetric non-negative definite matrices (see Question 1.8) in $\mathbb{M}_n(\mathbb{R})$. Which of the following statements are true?
- a. S is closed in $\mathbb{M}_n(\mathbb{R})$.
- b. S is connected in $\mathbb{M}_n(\mathbb{R})$.
- c. S is compact in $\mathbb{M}_n(\mathbb{R})$.
- **3.7** Which of the following sets are compact in $\mathbb{M}_n(\mathbb{R})$?
- a. The set of all upper triangular matrices all of whose eigenvalues satisfy $|\lambda| \leq 2$.
- b. The set of all real symmetric matrices all of whose eigenvalues satisfy $|\lambda| \leq 2$.
- c. The set of all diagonalizable matrices all of whose eigenvalues satisfy $|\lambda| \leq 2$.
- 3.8 Let X be the set of all real sequences. Consider the subset

$$S = \left\{ x = (x_n) \in X : \begin{array}{l} x_n \in \mathbb{Q} & \text{for all } n, \\ x_n = 0, & \text{except for a finite number of } n \end{array} \right\}.$$

Which of the following statements are true?

a. S is dense in ℓ_1 , the space of absolutely summable sequences, provided with the metric

$$d_1(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|.$$

b. S is dense in ℓ_2 , the space of square summable sequences, provided with the metric

$$d_2(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^2\right)^{\frac{1}{2}}.$$

c. S is dense in ℓ_{∞} , the space of bounded sequences, provided with the metric

$$d_{\infty}(x,y) = \sup_{n} \{|x_n - y_n|\}.$$

- **3.9** Which of the following statements are true?
- a. There exists a continuous function $f:\{(x,y)\in\mathbb{R}^2: 2x^2+3y^2=1\}\to\mathbb{R}$ which is one-one.
- b. There exists a continuous function $f:]-1,1[\to]-1,1[$ which is one-one and onto.
- c. There exists a continuous function $f:\{(x,y)\in\mathbb{R}^2:y^2=4x\}\to\mathbb{R}$ which is one-one.
- **3.10** Which of the following statements are true?
- a. Let $f:]0, \infty[\rightarrow]0, \infty[$ be such that

$$|f(x) - f(y)| \le \frac{1}{2}|x - y|$$

for all x and y. Then f has a fixed point.

- b. Let $f: [-1,1] \to [-1,1]$ be continuous. Then f has a fixed point.
- c. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period T > 0. Then there exists a point $x_0 \in \mathbb{R}$ such that

$$f(x_0) = f\left(x_0 + \frac{T}{2}\right).$$

Section 4: Applied Mathematics

4.1 Find all the solutions $(\lambda, u), u \not\equiv 0$, of the problem:

$$u'' + \lambda u = 0$$
, in]0, 1[,
 $u(0) = 0 = u'(1)$.

4.2 Find the constant c such that the following problem has a solution:

$$\begin{array}{rcl} -u'' & = & c \text{ in }]a,b[,\\ u'(a) = -1 & , & u'(b) = 1. \end{array}$$

4.3 Evaluate:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(3x^2 + 2\sqrt{2}xy + 3y^2)} dxdy.$$

4.4 Find the stationary function y = y(x) of the integral

$$\int_0^4 [xy' - (y')^2] \ dx$$

satisfying the conditions y(0) = 0 and y(4) = 3.

- **4.5** Let L(y) denote the Laplace transform of a function y = y(x). If y and y' are bounded, express L(y'') in terms of L(y), y and y'.
- **4.6** Find the singular points of the differential equation

$$x^{3}(x-1)y'' - 2(x-1)y' + 3xy = 0$$

and state whether they are regular singular points or irregular singular points.

4.7 Let (λ_1, y_1) and (λ_2, y_2) be two solutions of the problem

$$(p(x)y'(x))' + \lambda q(x)y(x) = 0 \text{ in }]a, b[,$$

 $y(a) = 0 = y(b)$

where p and q are positive and continuous functions on]a,b[. If $\lambda_1 \neq \lambda_2$, evaluate

$$\int_a^b q(x)y_1(x)y_2(x) \ dx.$$

4.8 Solve:

$$xy'' - y' = 3x^2.$$

4.9 Let $f \in \mathcal{C}[a,b]$. Write down Simpson's rule to approximate

$$\int_a^b f(x) \ dx$$

using the points x = a, x = (a + b)/2 and x = b.

4.10 What is the highest value of n such that Simpson's rule (see Question 4.9 above) gives the exact value of the integral of f on [a, b] when f is a polynomial of degree less than, or equal to, n?

9

Section 5: Miscellaneous

- **5.1** Let m > n. In how many ways can we seat m men and n women in a row for a photograph if no two women are to be seated adjacent to each other?
- **5.2** Let $n \in \mathbb{N}$ be fixed. For $r \leq n$, let C_r denote the usual binomial coefficient $\binom{n}{r}$ which gives the number of ways of choosing r objects from a given set of n objects. Evaluate:

$$C_0 + 4C_1 + 7C_2 + \cdots + (3n+1)C_n$$
.

5.3 Let

A =the set of all sequences of real numbers,

B =the set of all sequences of positive real numbers,

 $C = \mathcal{C}[0,1]$ and $D = \mathbb{R}$.

Which of the following statements are true?

- a. All the four sets have the same cardinality.
- b. A and B have the same cardinality.
- c. A, B and D have the same cardinality, which is different from that of C.
- **5.4** For a positive integer n, define

$$\Lambda(n) \ = \ \left\{ \begin{array}{ll} \log p, & \text{if } n = p^r, \ p \ \text{ a prime and } r \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{array} \right.$$

Given a positive integer N, evaluate:

$$\sum_{d \mid N} \Lambda(d)$$

where the sum ranges over all divisors d of N.

5.5 Let a, b and c be real numbers. Evaluate:

$$\begin{vmatrix} b^{2}c^{2} & bc & b+c \\ c^{2}a^{2} & ca & c+a \\ a^{2}b^{2} & ab & a+b \end{vmatrix}.$$

5.6 Write down the equation (with leading coefficient equal to unity) whose roots are the squares of the roots of the equation

$$x^3 - 6x^2 + 10x - 3 = 0$$

- **5.7** Let A = (0,1) and B = (1,1) in the plane \mathbb{R}^2 . Determine the length of the shortest path from A to B consisting of the line segments AP, PQ and QB, where P varies on the x-axis between the points (0,0) and (1,0) and Q varies on the line $\{y=3\}$ between the points (0,3) and (1,3).
- **5.8** Let $x_0 = a, x_1 = b$. If

$$x_{n+2} = \frac{1}{3}(x_n + 2x_{n+1}), \ n \ge 0,$$

find $\lim_{n\to\infty} x_n$.

5.9 Which of the following statements are true?

a. If a, b and c are the sides of a triangle, then

$$\frac{ab + bc + ca}{a^2 + b^2 + c^2} \ge \frac{1}{2}.$$

b. If a, b and c are the sides of a triangle, then

$$\frac{ab+bc+ca}{a^2+b^2+c^2} \le 1.$$

c. Both statements above are true for all triples (a,b,c) of strictly positive real numbers.

5.10 Let $f \in \mathcal{C}[a,b]$. Assume that $\min_{x \in [a,b]} f(x) = m > 0$ and let $M = \max_{x \in [a,b]} f(x)$. Which of the following inequalities are true?

a.

$$\frac{1}{M} \int_{a}^{b} f(x) \ dx + m \int_{a}^{b} \frac{1}{f(x)} \ dx \ge 2\sqrt{\frac{m}{M}} (b - a).$$

b.

$$\int_{a}^{b} f(x) \ dx \int_{a}^{b} \frac{1}{f(x)} \ dx \ge (b-a)^{2}.$$

c.

$$\int_{a}^{b} f(x) \ dx \int_{a}^{b} \frac{1}{f(x)} \ dx \le (b-a)^{2}.$$