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Part B

T is not Hausdorff; it is the co-finite topology on C. For any polynomial f, f~1(A) is a
closed set for every finite set A, so f is continuous.
Y >0 @n2" is convergent on {z € C: |z| < 1}.

For each real number € > 0, there exists N, such that for all n > N, lan| < €. Then

we can write
elz|™
IF(2)] < Cet > ele]" =Cet —r
SR (1 —1z[)
for some C, € R that does not depend on z. Hence for z € C with |z| < 1, (1—|z|)|F(2)|
can be made to take values arbitrarily close to €, for any € > 0, by taking |z| — 1.
By way of contradiction assume that G = F. Let ¢ € C with || = 1 is a pole of G.
Let M be the order of the pole at (. Write
Y
G(z) G_OM +--+ =0 + G1(2)
where G1(z) is an analytic function. As z — ¢, (1 —|2|)|G(z)| = |(# — ()G(z)| exhibits
one of the following behaviours: if M > 1, then it approaches infinity; if M = 1 (which
implies that c_; # 0), it approaches c¢_; # 0. This is a contradiction.
Assume that {|n| : n € Z} is bounded. Let N be such that |n| < N for every n € Z. Let
z,y € R. Without loss of generality, |x| > |y|, and we want to show that |z + y| < |z|.
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for every n

Hence |z + y| < N%(n—i— 1)%|x\ for every n, so |x 4+ y| < |z|.
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Write a,, = Uol |f(x)|"dx] " Let M = sup{|f(x)| : 0 <z < 1}. Then a, < M for every

n, so limsupa, < M. Since [0, 1] is compact, for every e > 0, there exists an interval
I. C [0,1] of positive length such that M — e < |f(z)| < M for every x € I.. Then

“"Ef{J/!fwxn"dw]" > [(M = &) - length(L,)]* = (M — ¢)(length(Z)) .
Ie

Hence lim inf a,, > M — € for every € > 0; therefore liminfa,, > M, so lima, = M.
Without loss of generality, we may assume that V # 0. Let M, N € V be non-zero
elements. Let A be an eigenvalue of NM~!. Then det(AM — N) = det M det(\I,, —
NM~Y) = 0. However, (AM — N) € V,s0 AM — N = 0.
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If p? divides n, then there is a non-cyclic group Z/pZ x Z/pZ x Z./(n/p?)Z. There are
exactly pq such matrices, and they form a nonabelian group. If p1, ..., p, are the distinct
prime divisors of n, then ¢(n) = Hle(pi — 1), which is coprime to n, by above.

Let g € G be of order 2. Then the minimal polynomial of g divides X2 —1. If char F # 2,
then the minimal polynomial of ¢ is X 4+ 1 or X? — 1. In either case, g is diagonalizable
and the conjugacy class of g is determined by the number of —1s on the diagonal; there
must be at least one —1. Hence | X| = n. If char F = 2, then X% — 1 = (X — 1)2, which
must be the minimal polynomial of g. (It cannot be X —1.) Hence g is not diagonalizable,
and the conjugacy class of g is determined by the number of 2 x 2 Jordan blocks (with
eigenvalue 1). Hence | X| = [F].

Consider the sequences m and % Both converge to 0, but f (m) =1 and
f(-2) =0 for every n > 1, so f does not extend to Y. Let h: X — X1,t > (t,sin ).
It is a homeomorphism. Since X; C [0,1] x [—1,1], Y] is compact. Identifying X with
X1 using h, we get that Y7 is a compactification of X. Further, f = w9 o h, where m is
the projection Y7 — R on to the second component. Note that f extends to the map
7y (after identifying X with X; using h).

Let a,3a, B3,. .., B, be the roots of f, so f(0) = 3a2B3---B,. If f(0) = 1, then % =
a?pB3 - - B, satisfies a monic irreducible polynomial g € Z[X]. Since g is irreducible in
Q[X], g = (X — %), which is a contradiction. Hence f(0) # 1.

Note that K = Q(«, 3, 83, ..., f,) and that every field automorphism of K permutes

these generators of K. Hence there are at most n! distinct field automorphisms of K,
so o is of finite order, which we denote by m. Then a = 0™(a) = o(c™ !(a)) =
3(3m 1a) = 3ma), so a = 0.
Since [0, z] is compact and f is continuous, one can use max, so g is well-defined. Note
that f is uniformly continuous, so for every € > 0, there exists § > 0 such that for every
z,y with [zr—y| < |f(z)—f(y)| <e. Letu < v <wu+d. Then f(u)—e < f(x) < f(u)+e
for every x € [u,v], so g(v) < g(u)+e€. On the other hand g(v) > g(u), so |g(v)—g(v)| < e.
Hence g is continuous.



