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Part A

1. True. Take δ = ε. Then ‖(x1, x2 · · ·xn)− (y1, y2 · · · yn)‖2 < δ implies that |xi − yi| < ε
for all i = 1, 2 · · ·n, and hence Max{|xi|} < ε. So f is uniformly continuous.

2. True. If not, there exists an ε0 > 0, such that for all k, there there exists an nk > k
satisfying |xk−x| ≥ ε0. The subsequence xnk

does not have any subsequence converging
to x.

3. False. Consider f(x) = 1
x
. Then { 1

n
} is Cauchy but {n} is not Cauchy.

4. Trues. Since fn converges to f uniformly, f is also continuous. So f(xn) converges to
f(x). Now given ε > 0

|fn(xn)− f(x)| ≤ sup
x∈R

|fn(x)− f(x)|+ |f(xn)− f(x)|.

5. True. If K is unbounded then the function f(x) = ‖x‖ for x ∈ Rn is continuous and
unbounded. On the other hand if K is not closed, that is there exists a sequence
{xn} ⊆ K such that xn 7→ x and x ∈ K, then the function f(x) = 1

‖x−xn‖ is continuous
and unbounded.

6. True. It suffices to show that X := R2 \A is path-connected. Let x, y ∈ X. There are
uncountably many lines passing through either of the points x or y; only countably
many can go though a point in A; so there are lines lx though x and ly through y such
that lx ⊆ X and ly ⊆ X and lx ∩ ly 6= ∅.

7. False, as for any z ∈ C, there exists a w such that z2 + w2 = 1

8. True, as the zeros of f − g are isolated.

9. True. 121 is a prime power: 121 = 112.

10. True. The minimal polynomial A is (t− π)(t− 22
7
). It has distinct roots since π 6= 22

7
.

11. False: take the subgroup 5Z ⊂ Z, which is of index 5. (Z being the group of integers).

12. True: any group can be embedded in Sn for some n (by Cayley’s theorem) and we
embed Sn in an alternating group as follows: i : Sn ⊂ An+2 defined as follows: — if
σ ∈ Sn is even define i(σ) = σ, — if σ is odd define i(σ) = σ.(n + 1, n + 2) and hence
in both case i(σ) is even.

13. False: S3 is a group of order 6 which is non-abelian.
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14. False: there are two non-isomorphic groups of order 4 and these are abelian, one is
cyclic and the other a direct product of Z2 with itself.

15. False. For any x 6= y the interval (x, y) is connected and hence its image under the
continuous function f . If f(x) 6= f(y) then the interval contains irrational points and
contained in the image of f , since any connected subset of R is an interval,
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Part B

Each question carries 10 marks. Try to answer 5 questions.

1. Let f(t) = (f1, f2(t), f3(t)) then f ′(t) = (f ′
1, f

′
2(t), f

′
3(t)). ‖f(t)‖ = 1 implies that

f1(t)
2 + f2(t)

2 + f3(t)
2 = 1

for all t ∈ R. Differentiating we get

2f1(t)f
′
1(t) + 2f2(t)f

′
2(t) + 2f3(t)f

′
3(t) = 0

and hence 〈f(t), f ′(t)〉 = 0.

2. Since addition is continuous, B is open implies a+B is open for any fixed a ∈ A. Now

A + B =
⋃

a∈A

(a + B) .

Since arbitrary union of open sets is open A + B is open. Note that it is enough if
either A or B is open.

For closed sets this is not true. Take A = {(a, 0) : a ∈ R} and B = {(b, 1
b
) : b ∈ R\{0}}.

Then both A, B ⊆ R2 are closed. But A + B = {(a + b, 1
b
) : a ∈ R, b ∈ R \ {0}}. The

sequence {(0, 1
n
)} = {(n− n, 1

n
} ⊆ A + B but the limit (0, 0) /∈ A + B.

3. We assume X and Y to be metric spaces. Let U ⊆ Z be open, then (g ◦ f)−1(U) =
f−1(g−1(U) is open since g ◦ f is continuous. Since X is compact and f is continuous,
f is an open map ((i.e) f takes open sets to open sets. This is because continuous
functions takes compact subsets to compact subsets, so when the space is compact, it
takes closed sets to closed sets.) Now since f is onto, we have g−1(U) = f(f−1(g−1(U))
and is open. Hence g is also continuous.

4. It is clear that B is a symmetric matrix and thus B can be written as B = QΛQt

where Λ is a diagonal matrix and Q is an orthogonal matrix (with Q−1 = Qt). Now it
can be seen that and Bj = QΛjQt, Ck = QDkQ

t where

Dk = I +
k∑

j=1

Λj.

Since Λ is a diagonal matrix, say

Λ = diag(λ1, λ2, . . . λn)

it follows that
Dk = diag(φk(λ1), φk(λ2), . . . φk(λn))

where φk(x) = 1 + x + . . . xk. Since B = AAt, it follows that the eigenvalues λj of B
are non negative and thus α = maxi λi.

Since φk(x) converges if and only if |x| < 1 it follows that Dk (and hence Ck) converges
if and only if α < 1.
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5. Without loss of generality, assume that z = 1 is a pole. Take z = r real and let
r → 1−. Now |f(z)| ≤ ∑ |an|rn and since an can be made arbitrarily small for all large
n, conclude that f(r) = ◦(1 − r)−1 as r → 1−. This contradicts that z = 1 is a pole.
The statement is false if (an) is only bounded, take an = 1 for all n, for instance.

6. Apply Schwarz’s lemma to conclude that any automorphism f of the unit ball is neces-
sarily of the form f(z) = c z−a

1−az
where |c| = 1. Since origin is mapped to itself, conclude

that the map is a rotation.

7. (i) Note that number of elements in G is (p− 1)2p(p + 1). Hence any subgroup of G
having exactly p elements is a Sylow-p subgroup of G.

Now let H = {
(

1 x
0 1

)
|x ∈ Fp}. Since |H| = p, H is a Sylow-p subgroup of G.

Let N be the group of all upper triangular matrices in G. Clearly H is a normal
subgroup of G.

If

(
a b
c d

)
∈ NG(H), the normalizer of H in G, then

(
a b
c d

)(
1 1
0 1

)
=

(
1 y
0 1

)(
a b
c d

)
, for some y ∈ Fp.

Comparing the (2,2) entry both sides, we get c = 0. So

(
a b
c d

)
∈ N . This proves

(i).

(ii) Let S denote the set of all one-dimensional subspaces of F2
p. Then |S| = p + 1.

Consider the action of G on S given by left multiplication: A ∈ G,

(
a
b

)
∈ S, then

A ·
(

a
b

)
is defined to be the matrix multiplication A

(
a
b

)
∈ S.

This action of G on S is transitive. Moreover, the stabilizer of the one-dimensional sub-

space spanned by

(
1
0

)
is N . Indeed, clearly N stabilizes

(
1
0

)
. If

(
a b
c d

)(
1
0

)
=(

y
0

)
, then a = y and c = 0. So

(
a b
c d

)
∈ N .

Hence we conclude that |G/N | = |S| = p + 1.

8. Let α =
√

2e
2πi
3 and β = −α2

2
. Then β = −e

4πi
3 = −eπie

πi
3 = e

πi
3 . So β3 = −1 and β

satisfies the polynomial Y 3 + 1. Hence the minimal polynomial of β is Y 2 − Y + 1.

Thus α satisfies the equation (−α2

2
)
2

+ α2

2
+ 1 = 0. So α is a root of the polynomial

W 4

4
+ W 2

2
+ 1.
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Note that the degree of the minimal polynomial of α can not be smaller than 4. Indeed,
2 divides the degree and α does not satisfy a quadratic equation.

Clearing the denominators we conclude that the minimal polynomial of α is X4+2X2+
4.

9. Embed G inside a suitable symmetric group; represent the symmetric group as the set
of permutation matrices.

10. Let n = dimF R and αi, 1 ≤ i ≤ n be an F -basis of R. Let β 6= 0 ∈ R. Consider
the vectors αiβ, 1 ≤ i ≤ n. They must be linearly independent; for, otherwise, there
will be a nonzero element γ ∈ R such that βγ = 0. Hence they form an F -basis of R.
Therefore there exists γ ∈ R such that βγ = 1.
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