Unit 1: Real Number System

- 1. Let $A_1, A_2,, A_n$ be sets, where n is a fixed natural number. Consider the following statements:
 - (1) if $A = \bigcap_{i=1}^{n} A_i$ is countable infinite, then \exists at least

one A_i for i = 1, 2, ..., n which is countable

- (2) if $A = A_1 \times A_2 \times \times A_n$ is countably infinite then each A_i for i = 1, 2,, n is countable
- (a) 1 is correct and 2 is incorrect
- (b) 2 is correct and 1 is incorrect
- (c) Both are correct
- (d) Neither 1 nor 2 are correct
- 2. Which set is/are uncountable?
 - (a) The set of all polynomials with real coefficients
 - (b) The set of all subset of a countably infinite set.
 - (c) The set A-B where A is uncountable but B is countable
 - (d) The set of all finite subsets of $\,\mathbb{N}\,$
- 3. Consider the following statements.
 - (1) Every infinite set is equivalent to one of its proper subset
 - (2) If a set is equivalent to one of its proper subset then it is infinite set. Then
 - (a) 1 is correct and 2 is incorrect
 - (b) 2 is correct and 1 is incorrect
 - (c) Both are correct
 - (d) Both are incorrect
- 4. If there are injective maps

$$f: A \rightarrow C \& g: C \rightarrow A$$
. Then

- (a) A & C both are uncountable
- (b) A & C both are countable
- (c) A & C both are finite sets.
- (d) A & C have the same cardinality.
- 5. If there is no one-one map from set of natural number $\,\mathbb{N}\,$ to A where A be any set then
 - (a) A is finite set
- (b) A is infinite set
- (c) A is similar to N (d) None of these
- 6. Let A & B are infinite sets. Let f is a map from A to B such that the collection of pre images of any non-empty subset of B is non empty. Then Choose the incorrect?
 - (a) If A is countable then B is countable
 - (b) Such map f is always onto

DPP1:- Countable & Uncountable

- (c) A & B are similar
- (d) B may be countable even if A is not countable
- 7. Let A be the set of lines passing through the origin and slope is integral multiple of $\frac{\pi}{12}$ Then
 - (a) A is similar to \mathbb{R}
 - (b) A is countable infinite
 - (c) A is similar to the set of months in a year
 - (d) A is similar to the power set of $\mathbb R$
- 8. Let A an infinite set of disjoint open sub intervals of
 - (0,1). Let B be the power set of A. Then
 - (a) A & B are cardinally equal
 - (b) A is similar to (0,1)
 - (c) B is similar to (0,1)
 - (d) A & B both are uncountable
- 9. Consider the set $S = \{x + iy : x \text{ and } y \text{ are real and } \}$

$$x, y \in (0,1)$$
. Then

- (a) S is uncountable and unbounded
- (b) S is countable and bounded
- (c) S is countable and unbounded
- (d) S is uncountable and bounded
- 10. If $f: A \rightarrow B$ one-one map and A is countable.

Then which is correct

- (a) B is countable
- (b) B is uncountable
- (c) There exist a subset of B which is countable
- (d) None of these
- 11. If f be a function with domain A and range B then which of following is correct.
 - (a) B countable $\Rightarrow A$ countable
 - (b) A countable \Rightarrow B countable
 - (c) A uncountable $\Rightarrow B$ uncountable
 - (d) All of the above
- 12. Which of the following is correct?
 - (a) The set of rational number in any interval of finite length is countable
 - (b) The set of irrational number in any interval of finite length is countable
 - (c) Every subset of uncountable set is uncountable
 - (d) All of the above

13. Select the correct statements

- 1. Every countable set is similar to $\mathbb N$
- The set of all disjoint intervals is not similar to the set of real numbers
- 3. The power set of $\mathbb N$ is similar to the set of real numbers Code:
- (a) 1 and 2 only
- (b) 2 and 3
- (c) 1 and 3
- (d) All of these
- 14. If S be a countable subset and T be an uncountable subset of $\mathbb R$. Which of the following is/are true?
 - (a) $S \cup T$ is uncountable
 - (b) $S \cap T$ is at most countable.
 - (c) S-T is at most countable.
 - (d) T S is uncountable.
- 15. Let F be the set of all the functions $f: N \to \{0,1\}$ then cardinality of f
 - (a) always finite
- (b) countable infinite
- (c) uncountable
- (d) none of these
- 16. Which of the following sets are uncountable?
 - (a) Set of all constant sequences over N
 - (b) Set of all sequences over $\{6,7\}$
 - (c) Set of all roots of any real polynomial $p \in \mathbb{R}[x]$.
 - (d) None of these
- 17. Let $X_1 = (0,1) \cap \mathbb{Q}$ and

$$\boldsymbol{X}_2 = \left\{ \frac{p}{q} \in \boldsymbol{X}_1 : q = 2^i, i \in \mathbb{N} \right\} \text{ then.}$$

- (a) X_1 is countable but $\begin{bmatrix} 0,1 \end{bmatrix} X_2$ is uncountable.
- (b) X_2 is countable but $\left[0,1\right]-X_1$ is uncountable.
- (c) X_1 is countable but X_2 is uncountable.
- (d) X_1 is uncountable but X_2 is countable.
- Set of all circles with centre at a rational coordinates and rational radii are
 - (a) Countable but infinite
 - (b) Uncountable
 - (c) Finite
 - (d) Can't be determined
- 19. Set $A,B \subset \mathbb{R}$ and $|A|=\lambda$ and $|B|=\mu$ then, which of the following are correct.
 - (a) If A, B are disjoint then $|A \cup B| = \lambda + \mu$
 - (b) $|A \cup B| = \lambda + \mu$ always

(c) There exist A, B such that $A \cap B \neq \phi$ but

$$|A \cup B| = \lambda + \mu$$

- (d) If A is countable $\Rightarrow A^c$ is countable
- 20. Let #(A) denotes the cardinality of A and if $f:A\to B$ be a function. Then which of following is/are correct?
 - (a) If #(A) is finite $\Rightarrow \#(f(A))$ is finite.
 - (b) If #(A) is uncountable $\Rightarrow \#(f(A))$ is uncountable
 - (c) If #(A) is uncountable $\Rightarrow \#(f(A))$ may be countably infinite.
 - (d) None of these
- 21. Let $\phi \neq A \subseteq \mathbb{R}$ and A[x] be set of all polynomial with coefficient from A.
 - (a) If A is finite $\Rightarrow A[x]$ finite.
 - (b) If A infinite $\Rightarrow A[x]$ infinite.
 - (c) If A infinite $\Rightarrow A[x]$ countable.
 - (d) If A[x] is countable $\Rightarrow A$ similar to \mathbb{N}
- 22. Which of the following is correct. Let A,B,C are any three set $f:A\to B,g:C\to A$ are function then
 - (a) If f is 1-1 & g is onto and C is countable $\Rightarrow A \& B$ both are countable.
 - (b) If f is 1-1 & range (g) is uncountable
 - \Rightarrow A & B uncountable
 - (c) If g is onto, and A is countable $\Rightarrow B \& C$ countable.
 - (d) If f is onto, g is 1-1 and A is countable $\Rightarrow B \& C$ countable
- 23. If A and B are non empty define

$$B^A = \{ f \mid f : A \rightarrow B \text{ functions} \}$$
 and

$$A^B = \big\{ f \, \big| \, f : B \longrightarrow A \text{ functions} \big\}, \text{ Then}$$

- (a) If $B^A \& A^B$ Countable A & B both countable.
- (b) If A^B Countable $\Rightarrow A$ finite & B countable.
- (c) If A countable & B finite $\Rightarrow A^B$ is countable.
- (d) If A finite & B countable \Rightarrow A^B is countable.
- 24. Let $A_{l} = \{f \mid f : A \rightarrow B, f \text{ is one-one function} \}$ and

$$A_2 = \bigl\{ f \, \big| \, f : A \mathop{\rightarrow} B, f \text{ is onto function} \bigr\}$$
 where $A \ \& A = \{ f \, \big| \, f : A \mathop{\rightarrow} B, f \text{ is onto function} \bigr\}$

B are non-empty sets. Then

- (a) If $A = \mathbb{N} \& B$ is finite $\Rightarrow A_1$ countable.
- (b) If A finite & $B = \mathbb{N} \Rightarrow A_1$ countable.
- (c) If $A = \mathbb{N} \& B$ is finite $\Rightarrow A$, countable.
- (d) If A is finite & $B = \mathbb{N} \Rightarrow A$, countable.
- 25. Which of the following sets are uncountable.
 - (a) $\mathbb{Q}^c \cap (a,b), \forall a,b \in \mathbb{R}$ where a < b
 - (b) Every subsets A of \mathbb{R} such that $A \cap \mathbb{Q} = \phi$
 - (c) $\mathbb{R} A$, where $A \cap \mathbb{Q}^c = \phi$
 - (d) If $A = \{a \mid P(a) \neq 0, \forall P(x) \in Q[x]\}$ then $A \cap Q^c$
- 26. Which of the following is\are correct?
 - (a) If range of function uncountable \Rightarrow domain of function uncountable.
 - (b) If set of function from $\mathbb{R} \to A$ is uncountable $\Rightarrow |A| \ge 2$
 - (c) Set of function from $A \rightarrow P(A)$ is uncountable if A is infinite
 - (d) Set of function from $P(A) \rightarrow A$ either finite or uncountable, where A non-empty
- 27. Let A be any infinite set, B is subset of A then
 - (a) A-B countable if A countable & B countable.
 - (b) A-B is uncountable if A uncountable & B countable.
 - (c) A-B is countably infinite & $A \neq B \Rightarrow A$ is countably infinite.
 - (d) A-B is countably infinite & B countable $\Rightarrow A$ countable.
- 28. Which of following statement is true?
 - A) \exists a set $A \subseteq \mathbb{R}$ such that power set of A is similar to \mathbb{N} .
 - B) All finite subset of \mathbb{N} is uncountable.
 - C) Collection of all infinite subset of $\mathbb N$ is uncountable.
 - D) Collection of all disjoint sets in $\mathbb R$ is uncountable.
- 29. $A = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}$ & B = (0,1), then which of the following is/are true?
 - A) \exists a bijection from A to B.
 - B) \exists only injection from A to B.

- C) \exists only surjection from A to B.
- D) None of these
- 30. which of the following statement is incorrect?
 - A) A set A is infinite iff A contains countable infinite set.
 - B) A set A is finite iff A is not similar to any of its proper subsets.
 - C) A set A is infinite iff A is similar to a proper subset of A.
 - D) None of these
- 31. Number of statements from following statements which are true?
 - 1) If B is an uncountable set and A is countable set then (B-A) is an uncountable set.
 - Family of all finite subsets of a countable set is countable.
 - The family of all subsets of countably infinite set is uncountable.
 - Set of all circles whose centres and radius are rational numbers is countable.
 - A) One B) Two C) Three D) Four
- 32. Let $C \subseteq [0,1]$ be uncountable and let A be the set of all values of $a \in (0,1)$ such that $C \cap [a,1]$ is uncountable. Define $\alpha = Sup \ A$. Is $C \cap [\alpha,1]$ also uncountable?
- 33. A function $f: \mathbb{R} \to \mathbb{R}$ is given. Whenever we choose real numbers a < b and set $\left\{ f\left(x\right) \colon a < x < b \right\}$ has a biggest element, we call this element local maximum of function f. Then the set of all local maximums of function f is countable or uncountable?
- 34. If $f:\mathbb{R}\to\mathbb{R}$ is a function, $S\subseteq\mathbb{R}$, S is countable and $T\subseteq\mathbb{R}$, T is uncountable set, then
 - (a) f(S) is countable if f is one-one.
 - (b) f(S) is countable if f is not one-one.
 - (c) f(T) is countable if f is one-one.
 - (d) f(T) is countable if f is not one-one.
- 35. If $P = \{f \mid f = [0,1] \to \mathbb{N} \text{ is a function} \}$. Define $w(f) = \inf \{f(x) \mid x \in [0,1]\} \sup \{f(x) \mid x \in [0,1]\}$ which of the following statement is true for the

sets
$$S_1 = \left\{ f \in P \middle| w(f) \ge 0 \right\}$$
,

$$S_2 = \{ f \in P | w(f) \le 0 \}, S_3 = \{ f \in P | w(f) = 0 \}$$

- (a) S_1, S_2 and S_3 are uncountable.
- (b) S_1 and S_2 are uncountable but S_3 is countable.
- (c) S_1 and S_3 are countable but S_2 is uncountable.
- (d) S_2 and S_3 are countable but S_1 is uncountable.
- 36. If X = set of all real numbers

 $Y = \text{set of all intervals in } \mathbb{R}$ with rational end points.

Z = set of all functions on [0,1]

W = set of all continuous functions on [0,1]

If $\left|A\right|$ denotes cardinality of A for any set A . Then which of the following is correct?

(a)
$$|X| = |Y| = |Z| = |W|$$

- (b) |Y| < |W| < |Z|
- (c) |Y| < |X| < |W| < |Z|
- (d) |X| < |W| < |Z|

ARCHIVES

- 37. Let X be a connected subset of real numbers. If every element of X is irrational, then the cardinality of X is . (Net Dec. 2011)
 - (a)Infinite
- (b) Countable infinite

(c) 2

- (d) 1
- 38. Let X denote the two-point set $\{0,1\}$ and write

$$\boldsymbol{X}_{j} = \left\{0,1\right\}$$
 for every $\; j = 1,2,3,....$ Let $Y = \prod^{\infty} \boldsymbol{X}_{j}$.

Which of the following is/are

- (a) Y is countable set
- (b) Card Y = card [0,1]

(c)
$$\bigcup_{n=1}^{\infty} \left(\prod_{j=1}^{n} X_{j} \right)$$
 is countable

(d) Y is uncountable

(NET JUNE 2011)

39. Let
$$A = \{x^2 : 0 < x < 1\}$$
 and $B = \{x^3 : 1 < x < 2\}$

which of the following statements is true.

- (a) There is a one to one, onto function from $\,A$ to $\,B\,$
- (b) There is no one to one, onto function from $\,A$ to $\,B$ taking rational to rationals.

- (c) There is no one to one function from A to B which is onto.
- (d) There is no onto function from A to B which is one to one. (NET JUNE 2011)
- 40. For each j = 1, 2, 3, ... let A_j be a finite set containing at least two distinct elements. Then
 - (a) $\bigcup_{j=1}^{\infty} A_j$ is countable set
 - (b) $\bigcup_{n=1}^{\infty} \prod_{i=1}^{n} A_{j}$ is uncountable
 - (c) $\prod_{i=1}^{\infty} A_i$ is uncountable
 - (d) $\bigcup_{i=1}^{\infty} A_{j}$ is uncountable (**NET JUNE 2012**)
- 41. Consider the two serts $A = \{1, 2, 3\}$ and

 $B = \{1, 2, 3, 4, 5\}$. choose the correct statement.

- (a) The total number of functions from A to B is 125
- (b) The total number of function from A to B is 243
- (c) The total number of one to one function from A to B is 60
- (d) The total number of one to one functions from A to B is 120 (Net June 2013)
- 42. Which of the following subsets of \mathbb{R}^2 are uncountable?
 - (a) $\{(a,b)\in\mathbb{R}^2 | a\leq b\}$
 - (b) $\{(a,b) \in \mathbb{R}^2 | a+b \in \mathbb{Q}\}$
 - (c) $\{(a,b) \in \mathbb{R}^2 | ab \in \mathbb{Z}\}$
- (d) $\{(a,b) \in \mathbb{R}^2 | a,b \in \mathbb{Q}\}$ (NET DEC. 2013)
- 43. Consider the following sets of function on ${\mathbb R}$

W= The set of constant function on \mathbb{R}

X= The set of polynomial function on ${\mathbb R}$

Y= The set of continuous function on \mathbb{R}

Z= The set of all function on $\mathbb R$

Which of these sets has the same cardinality as that of $\,\mathbb{R}\,$

- (a)Only W
- (b) Only W and X
- (c) Only W, X and Z
- (d) all of W,X,Y and Z

(Net June 2014)

44. The number of surjective maps from a set of 4

elements to set of 3 elements is.

(a)36

(b)64

(c)69

(d) 81 (Net Dec. 2014)

- 45. Which of the following sets of function are uncountable? ($\mathbb N$ stands for the set of natural numbers.) (**NET JUNE 2015**)
 - (a) $\{f \mid f : \mathbb{N} \rightarrow \{1,2\}\}$
 - (b) $\{f | f : \{1, 2\} \to \mathbb{N}\}$
 - (c) $\{f \mid f : \{1,2\} \rightarrow \mathbb{N}, f(1) \leq f(2)\}$
 - (d) $\{f \mid f : \mathbb{N} \to \{1, 2\}, f(1) \le f(2)\}$
- 46. Consider the sets of sequence

$$X = \{(x_n) : x_n \in \{0,1\}, n \in \mathbb{N}\}$$
 and

 $Y = \{(x_n) \in X : x_n = 1 \text{ for at most finitely many } n\}.$

Then

(NET JUNE 2016)

- (a) X is countable, Y is finite.
- (b) X is uncountable, Y is countable.
- (c) X is countable, Y is countable.
- (d) X is uncountable, Y is uncountable.
- 47. Let A be any set. Let P(A) be the power set of A, that is, the set of all subsets of $A; P(A) = \{B : B \subseteq A\}$. Then which of the

following is/are true about set P(A)?

- (a) $P(A) = \Phi$ for some A.
- (b) P(A) is a finite set for some A
- (c) P(A) is a countable set for some A.
- (d) P(A) is a uncountable set for some A

(NET JUNE 2016)

48. Let $p(x) = \alpha x^2 + \beta x + \gamma$ be a polynomial

$$S = \{(a,b,c) \in \mathbb{R}^3 : p(x) = a(x-x_0)^2 + b(x-x_0) + c$$

for all $x \in \mathbb{R}$ where $\alpha, \beta, \gamma \in \mathbb{R}$. Then the number of elements in S is.

- (a) 0
- (b) 1
- (c) strictly greater then 1 but finite
- (d) infinite

(NET JUNE 2017)

- 49. For a set X, let P(X) be the set of all subsets of X and let $\Omega(X)$ be the set of all function $f: X \to \{0,1\}$. Then.
 - (a) If X is finite then P(X) is finite
 - (b) If X and Y are finite sets and if there is a 1-1 correspondence between P(X) and P(Y) then there is a 1-1 correspondence between X and Y. (c) There is no 1-1 correspondence between X and
 - (d) There is a 1-1 correspondence between $\Omega(X)$ and P(X). (NET DEC 2017)
- 50. Let $S = \left\{ (x, y) | x^2 + y^2 = \frac{1}{n^2} \text{ where } n \in \mathbb{N} \text{ and } \right\}$

either $x \in \mathbb{Q}$ or $y \in \mathbb{Q}$ here \mathbb{Q} is set of rational numbers and \mathbb{N} is the set of positive integers. Which of the following is true?

- (a) S is a finite non empty set
- (b) S is countable
- (c) S is uncountable
- (d) S is empty

(NET JUNE 2018)

- 51. Which of the following sets are uncountable?
 - (a) The set of all function from \mathbb{R} to $\{0,1\}$
 - (b) The set of all function from \mathbb{N} to $\{0,1\}$
 - (c) The set of all finite subsets of $\mathbb N$
 - (d) The set of all subsets of N (NET JUNE 2018)
- 52. Let *S* be an infinite set. Which of the following statements are true?
 - (a) If there is an injection from S to $\,\mathbb{N}\,$, then $\,S$ is countable.
 - (b) If there is a surjection from S to $\mathbb N$ then S is countable.
 - (c) If there is an injection from $\mathbb N$ to S then S is countable.
 - (d) If there is a surjection from $\mathbb N$ to S, then S is countable. **(NET DEC 2018)**
- 53. Which of the following sets is uncountable?

(a)
$$\left\{ x \in \mathbb{R} \middle| \log(x) = \frac{p}{q} \text{ for some } p, q \in \mathbb{N} \right\}$$

(b)
$$\left\{ x \in \mathbb{R} \left| \left(\cos(x) \right)^n + \left(\sin(x) \right)^n = 1 \text{ for some } n \in \mathbb{N} \right\} \right\}$$

(c)
$$\left\{ x \in \mathbb{R} \middle| x = \log\left(\frac{p}{q}\right) \text{ for some } p, q \in \mathbb{N} \right\}$$

(d)
$$\left\{ x \in \mathbb{R} \left| \cos(x) = \frac{p}{q} \text{ for some } p, q \in \mathbb{N} \right. \right\}$$

(NET JUNE 2019)

- 54. Which of the following sets is countable?
 - (a) The set of all functions from $\mathbb Q$ to $\mathbb Q$
 - (b) The set of all functions from \mathbb{Q} to $\{0,1\}$
 - (c) The set of all functions from \mathbb{Q} to $\{0,1\}$ which vanish outside a finite set.
 - (d) The set of all subsets of \mathbb{N} (NET Dec. 2019)
- 55. Let S be the set of all sequence

 $\{a_1, a_2, \dots, a_n, \dots\}$ where each entry a_i is either 0

- or 1. Then S is countable (T/F) (TIFR 2012)
- 56. Which of the following sets are countable?
 - (a) The set of all algebraic numbers
 - (b) The set of all strictly increasing infinite sequences of positive integers
 - (c) The set of all infinite sequence of integers which are in arithmetic progression. (NBHM 2016)
- 57. Let A = the set of all sequences of real numbers B = the set of all sequences of positive real numbers, C = C[0,1] and $D = \mathbb{R}$ Which of the following statements are true?
 - (a) All the four sets have the same cardinality
 - (b) A and B have the same cardinality
 - (c) A, B and D have the same cardinality, which is different from that of C. (NBHM - 2013)
- 58. Determine if the following collections are countable or uncountable.
 - (a) The collection of all finite subsets of $\mathbb N$
 - (b) The collection of all infinite sequence of positive integers
 - (c) The collection of all roots of all polynomials in one variable, with integer coefficients.

(NBHM 2011)

59. Let X be a countably infinite subset of $\mathbb R$ and A be a countably infinite subsets of X. Then the set

$$X \setminus A = \left\{ x \in X \,\middle|\, x \notin A \right\}$$

(a) Is empty

- (b) Is a finite set
- (c) Can be a countably infinite set
- (d) Can be an uncountable set

(DU 2016)

- 60. An algebraic number is a root of a polynomial whose coefficients are rational. The set of algebraic numbers is
 - (a) finite
- (b) countably infinite
- (c) uncountable
- (d) none of these

(DU 2014)

61. Let A_n and B_n , $n \in \mathbb{N}$ be nonempty subsets of \mathbb{R} such that $A_1 \supseteq A_2 \supseteq$ and $B_1 \subseteq B_2 \subseteq B_3 \subseteq$ Let the cardinality of A_n be a_n and the cardinality of B_n be b_n . Then the cardinality of

(a)
$$\bigcup_{n=1}^{\infty} B_n$$
 is $\lim_{n\to\infty} b_n$

(a)
$$\bigcup_{n=1}^{\infty} B_n$$
 is $\lim_{n \to \infty} b_n$ (b) $\bigcup_{n=1}^{\infty} B_n$ is $\max_n b_n$ (c) $\bigcap_{n=1}^{\infty} A_n$ is $\lim_{n \to \infty} a_n$ (d) $\bigcap_{n=1}^{\infty} A_n$ is $\max_n a_n$

(c)
$$\bigcap_{n=1}^{\infty} A_n$$
 is $\lim_{n\to\infty} a_n$

(d)
$$\bigcap_{n=1}^{\infty} A_n$$
 is $\max_n a_n$

62. Let q > 1, be positive integer then the set

$$\left\{ \left(\cos\frac{\pi}{q} + i\sin\frac{\pi}{q}\right)^n : n = 0, 1, 2, 3, \dots \right\}$$
 where

$$i = \sqrt{-1}$$
 is.

- (a) A singleton
- (b) A finite set but not a singleton
- (c) A countable infinite set
- (d) Dense on the unit circle (IISC Phd 2006)
- 63. Which of the following is/are correct.
 - (a) (0,1) is similar to \mathbb{R}
 - (b) (0,1) is similar to \mathbb{R}^+
 - (c) (0,1) is similar to [0,1]
 - (d) [a,b] is similar to $(a,b) \forall a,b \in \mathbb{R}$ where a < b

64. Let
$$X = \{(x, y) | 0 \le x \le 1\}$$
 and

$$Y = \{(x, y) | 0 \le x < 1, y = 0\}$$
 then

- (a) X is similar to Y
- (b) Y is similar to \mathbb{R}
- (c) X is similar to \mathbb{R}
- (d) X is similar to $\mathbb{N} \times \mathbb{R}$
- 65. Let A be any set then.
 - (a) A is similar to $A \times A$ for any A