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MSC/PHD MATHEMATICS ANSWERS

PART A
(1) a, b
(2) a, b, d
(3) a
(4) ¢
(5) b, d
(6) ¢, d
(7) ¢, d
(8) a, ¢
(9) a
10) a, d
11) d
12) b
13) b, c
14) a, ¢, d
15) b, d
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Let H and X be the subgroups of G generated by the elements h and x, respectively. The given
equation implies that H acts on X by conjugation; in other words, we have a homomorphism
¢ : H — Aut(X), where Aut(X) is the group of automorphisms of X. This latter group has order
p — 1, whence ¢ is the trivial homomorphism. This means that hzh~! = 2. But we are given that
haxh~! = 20, Tt follows that 2 is the identity element, so p = 3.

(2) (a) Note that T7—1 = (T —1)(T3+T?+1)(T3+T+1). Consider the field K = Fo[T]/(T3+T+1).
It has a basis 1,T,T? over Fy. Multiplication by T on K is Fa-linear, so it can be represented
by a 3 x 3 matrix over Fy. In the above order of the basis vectors, it is

0 0 1
A=11 0 1
010

Note that A3 + A+ 13 =0, s0 A7 = I5.
(b) (i) No. For example 0z = 2 has a solution modulo 2 but does not have a real solution.

(ii) Yes. Suppose that the system does not have real solutions. Then rank(A) < rank([A|b]),
where [A|b] denotes the augmented matrix. Denote these two ranks by r and s respectively.
Then there is an s X s submatrix of [A|b] that is invertible; let its determinant (which is
an integer) be d. Then for every prime p > d, the corresponding s X s submatrix of [A|b]
has an invertible determinant modulo p, i.e., rank([A]b]) = s mod p for all large enough
primes p. On the other hand, rank of any integer matrix modulo a prime number can
only be at most its rank considered as a real matrix, so for all primes p, rank(A) < r
mod p for all primes p. Therefore for all sufficiently large primes p, rank(A) < rank([A|?]),
mod p contradicting the hypothesis that there is solution modulo every prime.

(3) Let A € M, (C). We want to show that for every € > 0, the e-ball around A contains a diagonalizable
matrix. First note that this is true for A if and only if it is true PAP~! for every invertible
P € M, (C); therefore we may assume that A is in its Jordan canonical form. For 1 < i < n, pick
0 < 6; < o, all distinct. Let B be the sum of A and the diagonal matrix with dy,...,d, on the
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diagonal. We claim that B is diagonalizable. Indeed, the eigen-values of B are a;; + d;,1 < i < n.
We may choose the §; to further satisfy that these are distinct, thus making B diagonalizable.

The integrand extended to a function on the complex plane has simple poles at £2¢, and —1+4i. We
shall compute the integral by contour integration. Let C),, be the contour given by the square with
vertices (—n,0), (n,0), (n,n), (n,—n), and denote by I,, the value of the contour integral about C,,
(traversed counterclockwise). On one hand, for n >> 0, I, = I,41 = 2mi{sum of the residues in C), }.
On the other hand, lim,, ., I,, converges to the value of the required integral on the real line as the
integrand goes to zero on the three sides of C), not on the real line, as n — oco.

By way of contradiction, suppose that there exists such an analytic function f. Then f has an
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expansion as a convergent power series around 0. It is of the form f(z) = > ", +——2". From

the given information, we can, however, conclude that f()(0) = 0 for all n > 0; therefore, f = 0,
contradiction.

The function satisfies the hypotheses of Lagrange’s Mean Value Theorem over [0,1] and [1,2], using
which we’ll prove that the difference quotient A(h) = [f(1 + k) — f(1)]/h has a limit as h — 0. Let
€ > 0 be given. Then, 30 > 0 such that |f’(z) — 2013| < e whenever 0 < 1 —z < §. For =1 < h <0,
the MVT says that 3¢ € (0,1) such that A(h) = f/(¢). But then |A(h) — 2013] < e whenever
0 < —h < 4. This says that limj,_,qg- A(h) = 2013. One similarly shows that lim;_,q+ A(h) = 2013.

(a) By way of contradiction, suppose that f and f~! are differentiable. Then DfoD(f~!): R? — R3
is D(idgs) = I3 at every point in R®. However, rank(Df) < 2 at every point in R2, contradiction.

(b) No. Consider f: R — R, t + e'. Then (Df)(z) = e” for all z € R. Therefore (D f)(x) induces
an isomorphism of of tangent spaces for all .

(a) For a prime p, set S(p) := {a € Z : a > 1 and there exist b € Z,b > a and n € Z such that p® |
f(p’n)}. By hypothesis S(p) is empty except for finitely many p, so for some p, S(p) is infinite.
Choose such a p. Then for all a € S(p), there exist b, n such that p® | f(p’n) so p® | £(0) since
f(0) = f(z) —xg(z) for some g(z) € Z[x]. Therefore f(0) = 0, a contradiction since ¢ | f(g) for
all primes q.

(b) Let F be a finite field; denote its group of units by F'*. Let n = |F*|. Let d > 0 be a divisor
of n. We want to show that there exists at most one subgroup of F* of order d. By way of
contradiction, suppose that there are two distinct subgroups G and H of F'* of order d. Note
that for all z € GUH, ¢ = 1, so in F, there at least d+ 1 elements that satisfy the polynomial
T4 -1 =0, a contradiction.

Suppose, by way of contradiction, that K admits a disconnection, that is open subsets U,V C R?
such that K CUUV, UNK #0, VNK #0, bt UNVNK = 0. Let K] = K; \ (UNV),
i > 1. If K] # 0 Vi, then by the Finite Intersection Property, N3, K| # (), contradicting the fact
that K C UUV. So, 3n such that K,, C U UV. Similarly, working with K| = K; \ (U UV) we can
show that Im such that UNV N K, = 0. If we set N = max{m,n}, then U,V form a disconnection
of K, contradicting the hypothesis that the K; are connected.

It suffices to show that A is bounded and closed. The projection maps (x,y) — x and (x,y) — y
are continuous. Therefore A is bounded. Since every continuous R-valued function on A attains
its maximum, it also attains its minimum. Let p be any limit point of A. The continuous function
A — R, g+ d(q,p), where d is the usual metric on R? attains its minimum, so p € A. Hence A is
closed.



