
MSC/PHD MATHEMATICS ANSWERS

Part A

(1) a, b
(2) a, b, d
(3) a
(4) c
(5) b, d
(6) c, d
(7) c, d
(8) a, c
(9) a

(10) a, d
(11) d
(12) b
(13) b, c
(14) a, c, d
(15) b, d

Part B

(1) Let H and X be the subgroups of G generated by the elements h and x, respectively. The given
equation implies that H acts on X by conjugation; in other words, we have a homomorphism
φ : H → Aut(X), where Aut(X) is the group of automorphisms of X. This latter group has order
p − 1, whence φ is the trivial homomorphism. This means that hxh−1 = x. But we are given that
hxh−1 = x10. It follows that x9 is the identity element, so p = 3.

(2) (a) Note that T 7−1 = (T −1)(T 3 +T 2 +1)(T 3 +T +1). Consider the field K = F2[T ]/(T 3 +T +1).
It has a basis 1, T, T 2 over F2. Multiplication by T on K is F2-linear, so it can be represented
by a 3× 3 matrix over F2. In the above order of the basis vectors, it is

A =

0 0 1
1 0 1
0 1 0

 .
Note that A3 +A+ I3 = 0, so A7 = I3.

(b) (i) No. For example 0x = 2 has a solution modulo 2 but does not have a real solution.
(ii) Yes. Suppose that the system does not have real solutions. Then rank(A) < rank([A|b]),

where [A|b] denotes the augmented matrix. Denote these two ranks by r and s respectively.
Then there is an s× s submatrix of [A|b] that is invertible; let its determinant (which is
an integer) be d. Then for every prime p > d, the corresponding s× s submatrix of [A|b]
has an invertible determinant modulo p, i.e., rank([A|b]) = s mod p for all large enough
primes p. On the other hand, rank of any integer matrix modulo a prime number can
only be at most its rank considered as a real matrix, so for all primes p, rank(A) ≤ r
mod p for all primes p. Therefore for all sufficiently large primes p, rank(A) < rank([A|b]),
mod p contradicting the hypothesis that there is solution modulo every prime.

(3) Let A ∈Mn(C). We want to show that for every ε > 0, the ε-ball around A contains a diagonalizable
matrix. First note that this is true for A if and only if it is true PAP−1 for every invertible
P ∈ Mn(C); therefore we may assume that A is in its Jordan canonical form. For 1 ≤ i ≤ n, pick
0 < δi <

ε
n , all distinct. Let B be the sum of A and the diagonal matrix with δ1, . . . , δn on the
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diagonal. We claim that B is diagonalizable. Indeed, the eigen-values of B are ai,i + δi, 1 ≤ i ≤ n.
We may choose the δi to further satisfy that these are distinct, thus making B diagonalizable.

(4) The integrand extended to a function on the complex plane has simple poles at ±2i, and −1± i. We
shall compute the integral by contour integration. Let Cn be the contour given by the square with
vertices (−n, 0), (n, 0), (n, n), (n,−n), and denote by In the value of the contour integral about Cn
(traversed counterclockwise). On one hand, for n� 0, In = In+1 = 2πi{sum of the residues in Cn}.
On the other hand, limn→∞ In converges to the value of the required integral on the real line as the
integrand goes to zero on the three sides of Cn not on the real line, as n→∞.

(5) By way of contradiction, suppose that there exists such an analytic function f . Then f has an

expansion as a convergent power series around 0. It is of the form f(z) =
∑∞
n=0

f(n)(0)
n! zn. From

the given information, we can, however, conclude that f (n)(0) = 0 for all n ≥ 0; therefore, f ≡ 0,
contradiction.

(6) The function satisfies the hypotheses of Lagrange’s Mean Value Theorem over [0,1] and [1,2], using
which we’ll prove that the difference quotient ∆(h) = [f(1 + h)− f(1)]/h has a limit as h→ 0. Let
ε > 0 be given. Then, ∃δ > 0 such that |f ′(x)− 2013| < ε whenever 0 < 1− x < δ. For −1 < h < 0,
the MVT says that ∃c ∈ (0, 1) such that ∆(h) = f ′(c). But then |∆(h) − 2013| < ε whenever
0 < −h < δ. This says that limh→0− ∆(h) = 2013. One similarly shows that limh→0+ ∆(h) = 2013.

(7) (a) By way of contradiction, suppose that f and f−1 are differentiable. ThenDf◦D(f−1) : R3 → R3

is D(idR3) = I3 at every point in R3. However, rank(Df) ≤ 2 at every point in R2, contradiction.
(b) No. Consider f : R→ R, t 7→ et. Then (Df)(x) = ex for all x ∈ R. Therefore (Df)(x) induces

an isomorphism of of tangent spaces for all x.
(8) (a) For a prime p, set S(p) := {a ∈ Z : a ≥ 1 and there exist b ∈ Z, b ≥ a and n ∈ Z such that pa |

f(pbn)}. By hypothesis S(p) is empty except for finitely many p, so for some p, S(p) is infinite.
Choose such a p. Then for all a ∈ S(p), there exist b, n such that pa | f(pbn) so pa | f(0) since
f(0) = f(x)− xg(x) for some g(x) ∈ Z[x]. Therefore f(0) = 0, a contradiction since q | f(q) for
all primes q.

(b) Let F be a finite field; denote its group of units by F×. Let n = |F×|. Let d > 0 be a divisor
of n. We want to show that there exists at most one subgroup of F× of order d. By way of
contradiction, suppose that there are two distinct subgroups G and H of F× of order d. Note
that for all x ∈ G∪H, xd = 1, so in F , there at least d+ 1 elements that satisfy the polynomial
T d − 1 = 0, a contradiction.

(9) Suppose, by way of contradiction, that K admits a disconnection, that is open subsets U, V ⊂ R2

such that K ⊂ U ∪ V , U ∩ K 6= ∅, V ∩ K 6= ∅, but U ∩ V ∩ K = ∅. Let K ′i = Ki \ (U ∩ V ),
i ≥ 1. If K ′i 6= ∅ ∀i, then by the Finite Intersection Property, ∩∞i=1K

′
i 6= ∅, contradicting the fact

that K ⊂ U ∪ V . So, ∃n such that Kn ⊂ U ∪ V . Similarly, working with K ′′i = Ki \ (U ∪ V ) we can
show that ∃m such that U ∩V ∩Km = ∅. If we set N = max{m,n}, then U, V form a disconnection
of KN , contradicting the hypothesis that the Ki are connected.

(10) It suffices to show that A is bounded and closed. The projection maps (x, y) 7→ x and (x, y) 7→ y
are continuous. Therefore A is bounded. Since every continuous R-valued function on A attains
its maximum, it also attains its minimum. Let p be any limit point of A. The continuous function
A → R, q 7→ d(q, p), where d is the usual metric on R2 attains its minimum, so p ∈ A. Hence A is
closed.
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