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(11) Write Dy, = (0,7 | 0" = e, 7% = e,7or L =07 1).

Let ® € Aut(Dsg,). Note that @ is determined by ® (o) and ®(7). Since ®(0)” = ®(0™) = e, we find
that ®(o) has order dividing n. Since ® is injective, ®(0?) # e for d < n. Hence, the order of ®(o) is exactly
n. Every element of Da, is either of the form 707 or o*. Note that 707 has order 2. Since n > 2, we find that
® (o) # 707 . Therefore, there is an index i such that ®(0’) = o?. The orderof o isn/ ged(n, ), and therefore,
iis coprime to 1. Thus, there are p(n) choices for @(o). The elements in Do, that have order 2 are all of the form
707, where j € {0,1,...,n — 1}, orif n is even, 0™/, Note that since ®(0) € (o), it follows that ® would
fail to be surjective if ®(7) = ¢™/2. Thus, ®(7) is an element of the form 707, with j € {0,1,...,n — 1}.
Hence | Aut(Da,)| < ne(n).

(12) (A)

ai+b  (ai+b)(—ci+d) ac+bd+ (ad—bc)i  ac+bd+i
ci+d 2+ d? B 2 +d? A4 d?
soitisin H. Given x + yi € H, choose a, b, d such that z = b/d, y = 1/d? and ad = 1. Now

r([o 8]) =eeu

(B) Let K be a compact subset of H. For each M € SL(2, R), choose a compact neighbourhood V (M) of
M. Since f is open and the sets f(V(M)), M € SL(2,R) cover K, a finitely many subcollection, say
F(V(My)), ..., f(V(M,)) will cover K. Let L = J;—, V(M;); it is a compact subset of SL(2,R).
Now f~1(K) C L - SO(2,R). Now consider the multiplication map SL(2,R) x SL(2,R) —
SL(2, R) which is continuous. Note that L - SO(2, R) is the image of the compact subset L x SO(2,R)
of SL(2,R) x SL(2,R). Hence L - SO(2, R) is compact, so the closed subset f 1 (K) is compact.

b

(13) (A) Y ,eqso={(g. H) €G xS | gHg™t = HY| = Y7, [Nil.

(B) Consider the action of G on S by conjugation. The orbit of H; is equal to { H1, H2, H3} by hypothesis.
So the action is transitive. Hence the order of each NN; is |G|/3. Note that s¢ = 3 where ¢ is the identity
element of G. So by the solution to (A), s = 0 for some g.

(14) (A) Foreachx € X, thesetY, := {f(x) : f € S}isanideal of Z. We are done if Y, # Z for some z € X.

If not, then Y, = Z forall z € X and hence for every € X, there exists f; € S such that f;(z) = 1.
Then

[[(f:—1r)=0€R.

reX
Expand this to write 1 as a polynomial expression in { f, | © € X}. Since every polynomial expression
in {fs | © € X} belongs to S and S is an additive subgroup of R, it follows that 1z € S. Thisisa
contradiction. Hence we have Y,, C Z forsome z € X.

(B) Assume that P is reducible in K[z]. Let g be an irreducible factor of P in K [z]. It suffices to show that
deg g = (deg P)/2. Let awaroot of g. Now
[K(a) : K][K : Q] = [K(a) : Q] = [K(a) : Q()][Q(e) : Q)
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so 2deg(g) = deg(P)[K(«) : Q()]. Since degg < deg P, it follows that [K(a) : Q(a)] < 20

[K(a) : Q(a)] = 1. Hence deg(g) = deg(P)/2.
(15) Write f(2) for the meromorphic function gg;

We first note that
Ala;)
B'(a)

= Res,, f(2).

Hence we need to show that

k
ZResai f(z)=0
i=1

Solution 1: Expand % as partial fractions

A(X a;
B(X

X -
i=1 ¢

) f—
)
We can assume that B is monic, i.e., B = Hle (X — «;). Hence
k
AX) =) o [J(X —ay).
i=1 i

from which it follows that the coeficient of X*~1in A(X) = Zle a;. Since deg A(X) < k — 1, it follows

that Zle a; = 0. On the other hand,
k

_ aj
a; = Resg, Z o
Jj=1
Hence
k k
ZResai flz) = Zai =0.
i=1 i=1
Solution 2:
For each real number R > max; |a;]|, define
I := f(z)dz,
Cr

where Cg is the circle of radius R with centre at 0, oriented counter-clockwise. Hence
k
Ip =2mi Z Resq, f(2).
i=1
On the other hand, since deg A(X) < deg B — 1, it follows that

2m
e < [ 1r@lds<
Cr

Hence
k
Z Res,, f(z) = 0.
i=1

m e
™ for some positive integers m, n. Then f(r) =

(16) (A) Letr < 7’ be rational numbers and write r — 7’
f(r+21)y=f@r+2)=-.- = f(r'). Therefore there exists c € R such that f(r) = cforallr € Q.

Now let 7 € R. Then there exists a sequence 7, € Q,k > 1 converging to 7. Since f is continuous,

f(r) =limy f(rr) = c. Hence f is a constant function.
(B) Leta = inf,, %=, Thenforanye > 0, thereexists N such thatay < N(a+e). Let 3 = max{ay,---an}.

Letn > N. Writen = Ng+ r with 0 < r < IN. By the sub-additivity of a,,
an < qay +a, < qay + 3

and hence
, N
_an_an /8<q (Oé+€)+é a—+e
n n n n n
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since % — lasn — 00, Hence
lim & = a.
n

(17*) Considertheset X = {(v1,v2) | v1, vz are linearly independent vectorsin V'}. Then | X | = (p"—1)(p" —p).
For a two-dimensional subspace W of V, define Xy := {(v1,v2) € X | v1, vy isabasis of W}. For each
two-dimensional subspace W of V', GLa(F),) acts transitively and without fixed points on Xy . Moreover X =
Uw Xw where W runs over all the two-dimensional subspaces of V. Hence the orbits of the action on X are
in bijective correspondence with the set of two-dimensional Fy,-subspaces of V. Hence the number of two-
dimensional F,,-subspaces of V" is

" =DE" —p)
P*=1)(p*—p)

(18*) Let s, t : N> — R be the restrictions of the first and second projections R? — R. We now show that the
R-subalgebra of R generated by s, ¢ is isomorphic to a polynomial ring in two variables. To do this, it suffices to
show that the natural map R[X, Y] — R, X +— s,Y — tisinjective. Let f(X,Y") be in the kernel of this
map, i, f(s,t) = 0. We want to show that f(X,Y) is the zero polynomial. By way of contradiction, assume
that it is non-zero. Write f(X,Y) = ZZ:O fx(X)Y for some suitable d. Foreach 0 < k < d, f3(X) has
only finitely many zeros. Hence there exists n € N such that f(n,Y) is a non-zero polynomial. Therefore there
exists m € Nsuch that f(n,m) # 0. Thus f(s, t) is non-zero at (n, m), a contradiction. Therefore f(X,Y")
is the zero polynomial.

(19*) We show that the set S is closed and bounded. First, we show that S is bounded. Let A € S, there exists a
non-zero vector v € R™ and a matrix A = (a; ;) € X such that Av = Av. Then, we find that

Nloil = 1D a0l < max{lai gl : 1< d,j < n} xmax{loy| | 1< j < n}.
j

Taking the maximum value of |v;|, we thus find from the above that
Al < max{l|a;;|:1<14,j <n}

Since X is a compact subset of M,, (R) ~ R™" it is bounded. Hence, there exists D > 0 such that max{|a, ;| :
1<i,j<n}<Dforall A € X. Thus, we have shown that S is bounded.

In order to show that S is closed, take a sequence A1, Ag, ..., A, ... in S which converges to A € C. We
show that A € S. For each \;, there is a non-zero vector v; and A; € X such that A;v; = A\;v;. Assume
without loss of generality that |v;| = 1 for all ¢. Since X is compact, there is a subsequence A,,; such that A,,,

converges to A € X. Since vy,, all have norm 1, it follows that after passing to a subsequence if necessary, we can
assume without loss of generality that v; converge to a vector v of norm 1. Thus, we find that Av = Awv. Since
A € X, itfollows that A € S. This shows that S'is closed. Being a closed and bounded subset of C, we find that

S is compact.

(20) (A) |y + (AD) )| =y — (v + v () < |yl + |y + D) e+ 4 < 3.
(B) If we compose the two functions, we get the identity map. More precisely, y = = + 22 = (y + ¥ (y)) +

(W+v®)?=w+vy) —vy) =y
(®)
d(Ar, Ag) = sup{|(y + 1 (¥))* — (y + Y2 (¥))*| s y € [—€, €]}
= sup{|(2y + ¥1(y) + ¥2(¥)) (V1 (y) — ¥2(y))| 1 y € [—€, €]}
< Ad(¥1,1h2)

(D) Letn, k be positive integers. Then

d(A"¢, A"Eg) < A(A™1p, AV RG) << AMd(9, AP) <
X" (d(, Ad) + d(Ag, A%¢) + d(A%¢, A%¢) + - + d(A" ¢, AP¢)) <

n

AL+ A+ + AT d(g, Ag) < AL+ A+ )d(¢, Ag) = %d@), Ag).

Hence this is a Cauchy sequence. Since X is complete, the sequence has a limit. (Proof that X is complete:
It suffices to show that X is closed in C*([—e¢, €]), since closed subsets of complete spaces are complete.
Consider the continuous function

F:CY([~¢¢€]) — C([—¢,€)) ¢ — id + ¢.



Composing this with the sup-norm function gives a continuous map G : C'([—¢,€e]) — R. Then
X =67'(0.3]))
(E) Let ¢ € X. Since A is continuous, we see that

A (nm A"QS) — lim A" = lim A" 6.
Hence take ¢ = lim,, A" ¢.



