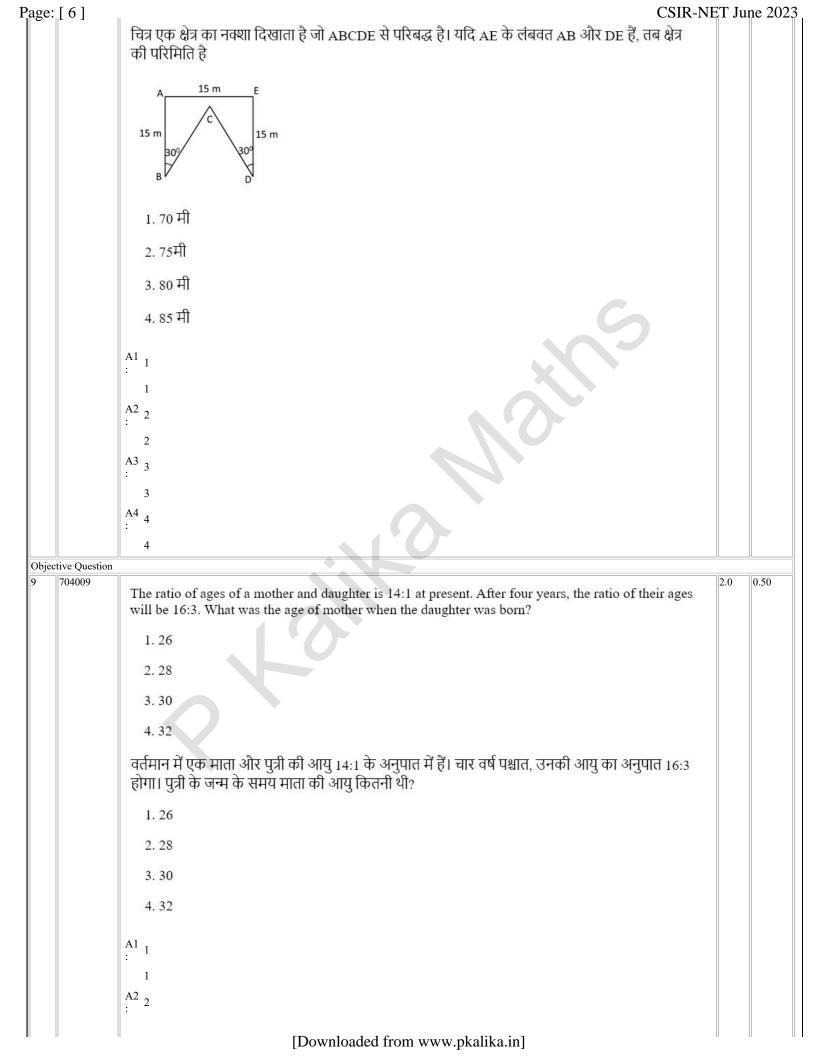
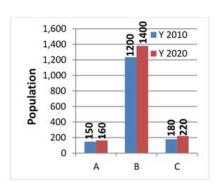
PREVIEW QUESTION BANK(Dual)

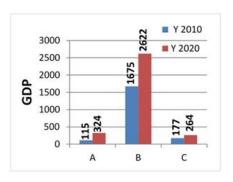
Module Name : MATHEMATICAL SCIENCES Exam Date : 07-Jun-2023 Batch : 15:00-18:00


Sr. Client Quest No. ID	Question Body and Alternatives	Marks	Negativ Marks
bjective Question			
704001	A and B have in their collection, coins of Re. 1, Rs. 2, Rs. 5 and Rs. 10 in the ratio 3:2:2:1 and 4:3:2:1, respectively. The total number of coins with each of them is equal. If the value of coins with A is Rs. 270/-, what is the value of the coins (in Rs) with B? 1. 213 2. 240 3. 275 4. 282 Read a super su	2.0	0.50
	4		
bjective Question 704002	If the speed of a train is increased by 20%, its travel time between two stations reduces by 2 hrs. If its speed is decreased by 20%, the travel time increases by 3 hrs. What is the normal duration of travel (in hrs)? 1. 11.5 2. 12.0 3. 13.2 4. 14.0	2.0	0.50
	[Downloaded from www.pkalika.in]		

Page:	[2]	CSIR-I	NET Jun	e 202
		यदि एक रेलगाड़ी की गति 20% बढ़ा दी जाये तो दो स्टेशनों के बीच इसकी यात्रा का समय 2 घंटे घट जाता है। यदि इसकी गति 20% कम कर दी जाये तो यात्रा का समय 3 घंटे बढ़ जाता है। यात्रा में सामान्यतः कितना समय (घंटों में) लगता है?		
		1. 11.5		
		2. 12.0		
		3. 13.2		
		4. 14.0		
		A1 : 1		
		1		
		A2 2		
		2		
		A3 3 :		
		3		
		A4 4		
		4		
Objec	704003		2.0	0.50
3	704003	Person A tells the truth 30% of the times and B tells the truth 40% of the times, independently. What is the minimum probability that they would contradict each other?	2.0	0.30
		1. 0.18		
		2. 0.42		
		3. 0.46		
		4. 0.50		
		एक व्यक्ति A, 30% बार सच बोलता है और स्वतंत्र रूप से व्यक्ति B, 40% बार सच बोलता है। वे दोनों एकदूसरे का खंडन करेंगे, इसकी न्यूनतम प्रायिकता कितनी है?		
		1. 0.18		
		2. 0.42		
		3. 0.46		
		4. 0.50		
		A1 1		
		: *		
		1 A2 2		
		A3 3		
		A4 4		
		:		
		п		

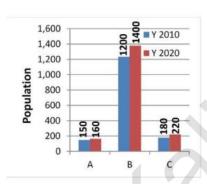
Page: [3] Objective Question	CSIR-	NET Ju	ne 202
4 704004		2.0	0.50
704004	The standard deviation of data $x_1, x_2, x_3,, x_n$ is σ ($\sigma > 0$). Then the standard deviation of data $3x_1+2, 3x_2+2, 3x_3+2,, 3x_n+2$ is	2.0	0.50
	1. 3σ		
	2. σ		
	$3. 3\sigma + 2$		
	4.9σ		
	डाटा $x_1,x_2,x_3,,x_n$ का मानक विचलन σ (σ >0)। तब डाटा $3x_1+2,3x_2+2,3x_3+2,,3x_n+2$ का मानक विचलन है		
	1. 3σ		
	2. σ		
	$3. 3\sigma + 2$		
	4. 9σ		
	A1 :		
	1 A2 2		
	A3 3		
	3		
	A4 4 :		
	4		
Objective Question 5 704005		2.0	0.50
704003	A device needs 4 batteries to run. Each battery runs for 2 days. If there are a total of 6 batteries available, what is the maximum number of days for which the device can be run by strategically replacing the batteries till all the batteries are completely drained of power?	2.0	0.30
	1. 2		
	2.3		
	3. 4		
	4. 5		
	एक उपकरण के चालन में 4 बैटरियां आवश्यक हैं। प्रत्येक बैटरी 2 दिन चलती है। 6 बैटरियों को रणनीतिक रूप से बदल कर उपकरण को अधिकतम कितने दिनों के लिए चलाया जा सकता है जब तक कि उनकी शक्ति पूर्णतः समाप्त न हो जाये?		
	1. 2		
	2. 3		
	3. 4		
	4. 5		
	[Downloaded from www.pkalika.in]		
	[20 moude from mm/hamami]		

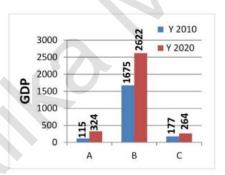

Page: [4]		R-NET Ju	ne 2023
	A1 1		
	A2 2		
	2		
	A3 3		
	$\begin{bmatrix} 3 \\ A4 \\ A \end{bmatrix}$		
	A 4		
	4		
Objective Question	n		
6 704006	The difference of the squares of two distinct two-digit numbers with one being obtained by reversing the digits of the other is always divisible by	2.0	0.50
	1.4		
	2. 6		
	3. 10		
	4. 11		
	दो पृथक दो-अंकों की संख्याओं के वर्गों का अंतर, जिनमें से एक संख्या दूसरी संख्या के अंकों को उलट कर बनायी गयी हो, जिससे हमेशा विभाज्य है, वह है	[
	1. 4		
	2. 6		
	3. 10		
	4. 11		
	A1 1 : 1		
	A2 2 : 2 2		
	A3 3		
	3		
	A4 4 :		
	4		
Objective Questio	n	2.0	0.50
704007	A person takes loan of Rs. 1,50,000 at a compound interest rate of 10% per annum. If the loan is repaid at the end of the 3rd year, what is the total interest paid?	2.0	0.50
	1. 45000		
	2. 82600		
	3. 94600		
	4. 49650		


Page: [5]	CSIR-N	ET Jui	ne 2023
	एक व्यक्ति 1,50,000 रु का ऋण चक्रवृद्धि ब्याज दर 10% प्रतिवर्ष पर लेता है। यदि ऋण को तीसरे) वर्ष की समाप्ति पर चुका दिया जाये तो कुल कितना ब्याज अदा किया जायेगा?		
	समाप्ति पर चुका दिया जाये तो कुल किंतना ब्याज अदा किया जायेगा?		
	1. 45000		
	2. 82600		
	3. 94600		
	S (2000MA) (4530-4600M		
	4. 49650		
	A1 1		
	1		
	2		
	A3 3		
	3		
	A4 4		
	4		
Objective Question		2.0	0.50
8 704008	The figure shows map of a field bounded by ABCDE. If AB and DE are perpendicular to AE, then the perimeter of the field is	2.0	0.50
	A 15 m E		
	15 m 30° D 15 m		
	1. 70 m		
	2. 75 m		
	3. 80 m		
	4. 85 m		
	[Downloaded from www.pkalika.in]		
	[Downfoaucu from www.pkanka.m]		

Page: [7] CSIR-NET		NET Ju	ine 202
	A3 3		
	•		
	3 A4 4		
	:·· 4		
01: 1: 0	4		
Objective Quality 10 70401		2.0	0.50
	Five identical incompressible spheres of radius 1 unit are stacked in a pyramidal form as shown in the figure. The height of the structure is		
	Top view		
	$1. \ 2+\sqrt{2}$		
	$2.\ 2+\sqrt{3}$		
	3. $2 + 2\sqrt{2/3}$		
	4. 3		
	इकाई त्रिज्या के पांच एकसमान असंपीड्य गोलों का एक ढेर पिरामिड के रूप में चित्र में दर्शाये अनुसार बनाया गया है। इस संरचना की ऊंचाई है		
	88 :110		
	Top view		
	शीर्ष दृश्य		
	$1. 2 + \sqrt{2}$		
	$2.\ 2+\sqrt{3}$		
	3. $2+2\sqrt{2/3}$		
	4. 3		
	A1 1		
	1		
	A2 2		
	A3 3		
	A4 ₄		
	:		
Objective Qu			

The populations and gross domestic products (GDP) in billion USD of three countries A, B and C in the years 2010 and 2020 are shown in the two figures below.

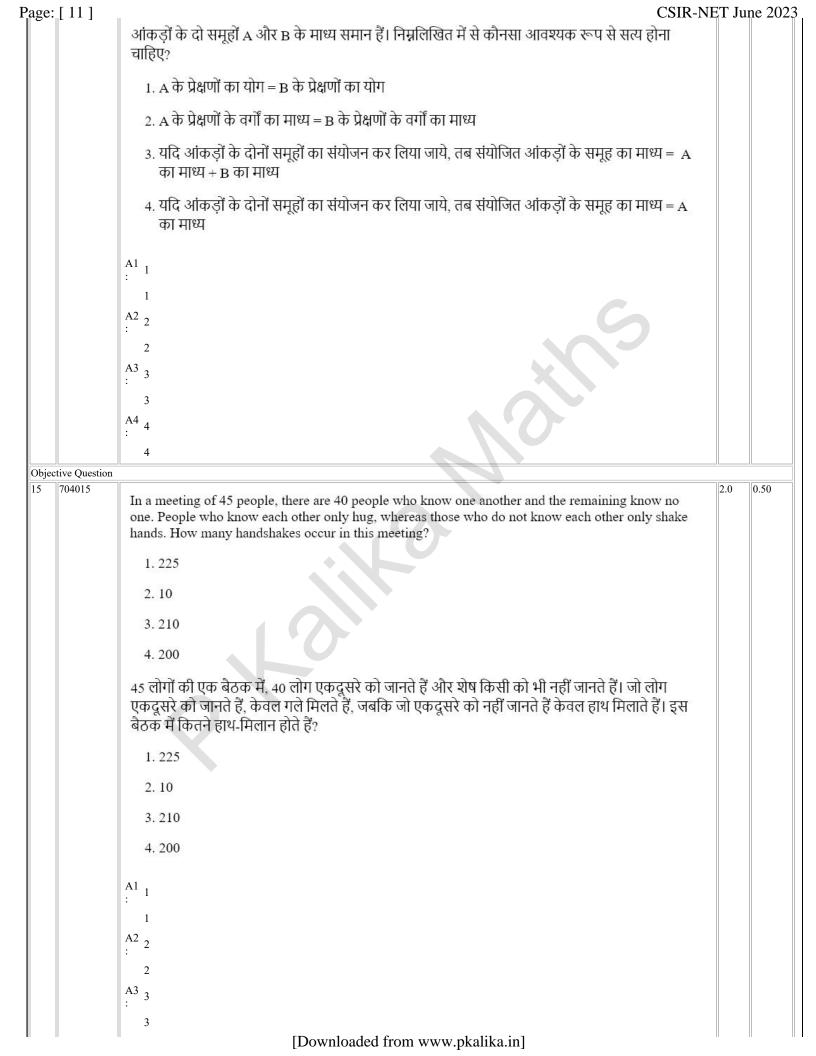


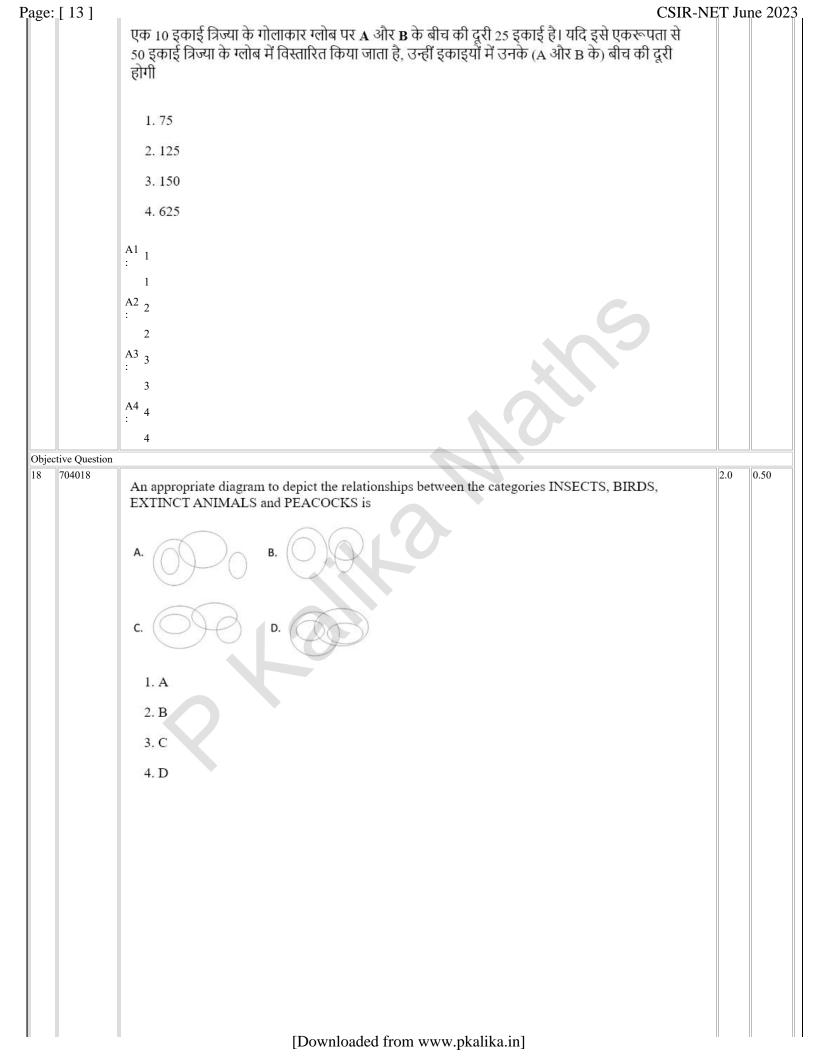


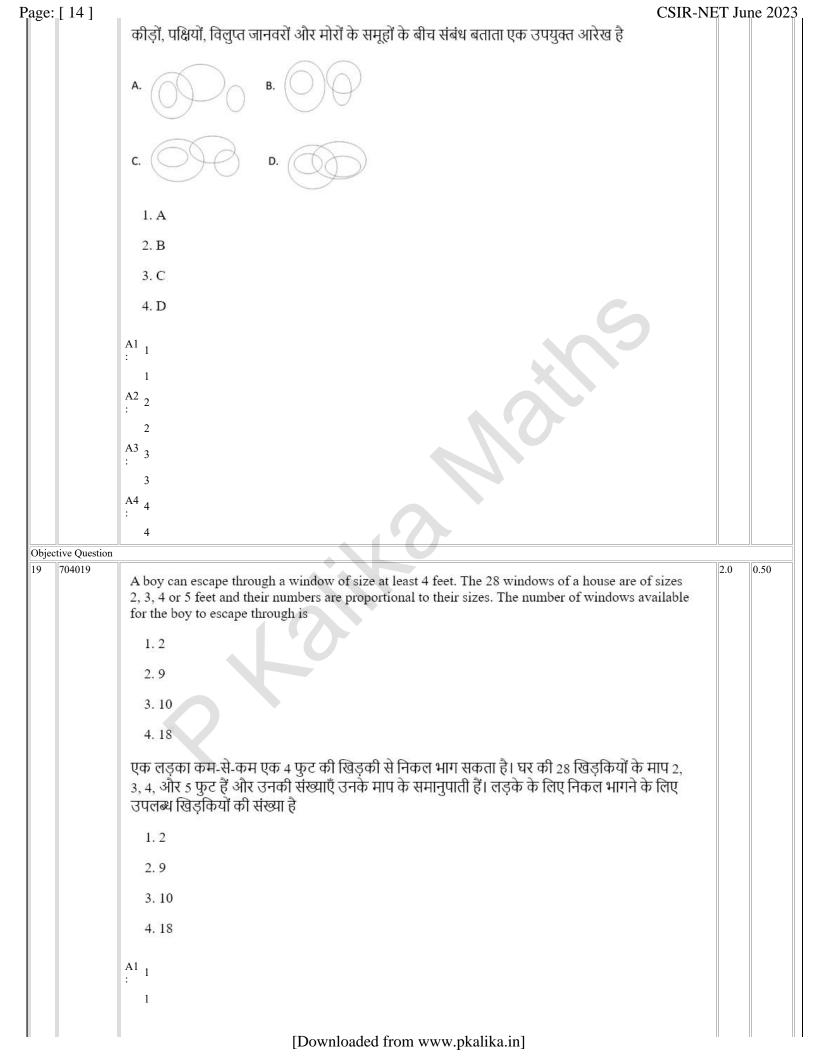
In terms of increase in per capita GDP from 2010-2020, their ranking from high to low is

- 1. A, B, C
- 2. B, A, C
- 3. B, C, A
- 4. C, A, B.

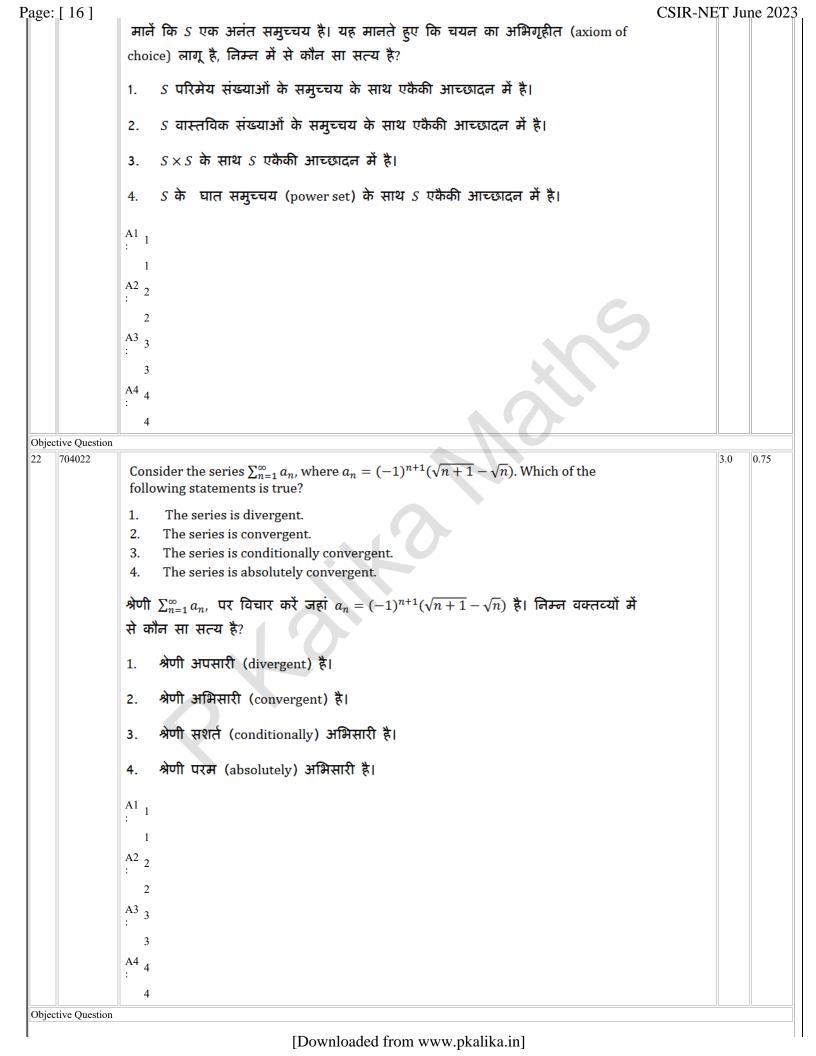
वर्षों 2010 और 2020 में तीन देशों A, B, और C की जनसँख्या और, अरब अमेरिकी डॉलर में सकल घरेलू उत्पाद (GDP) को दो चित्रों में नीचे दिया गया है।

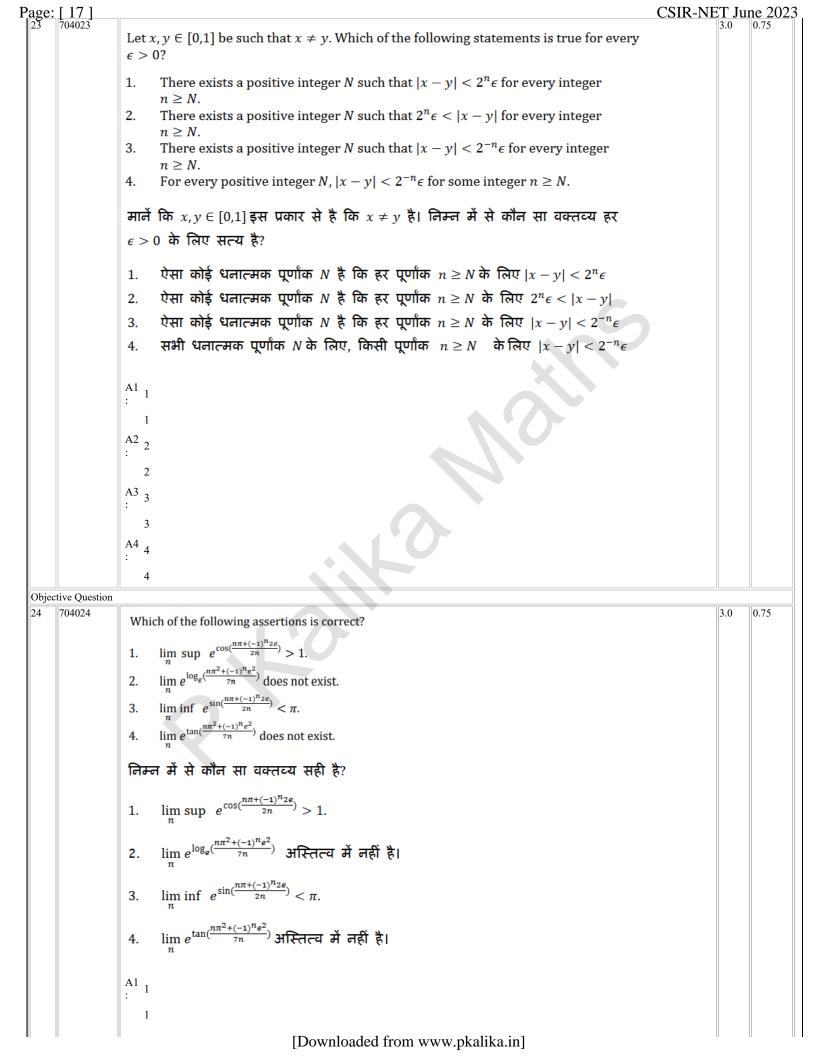


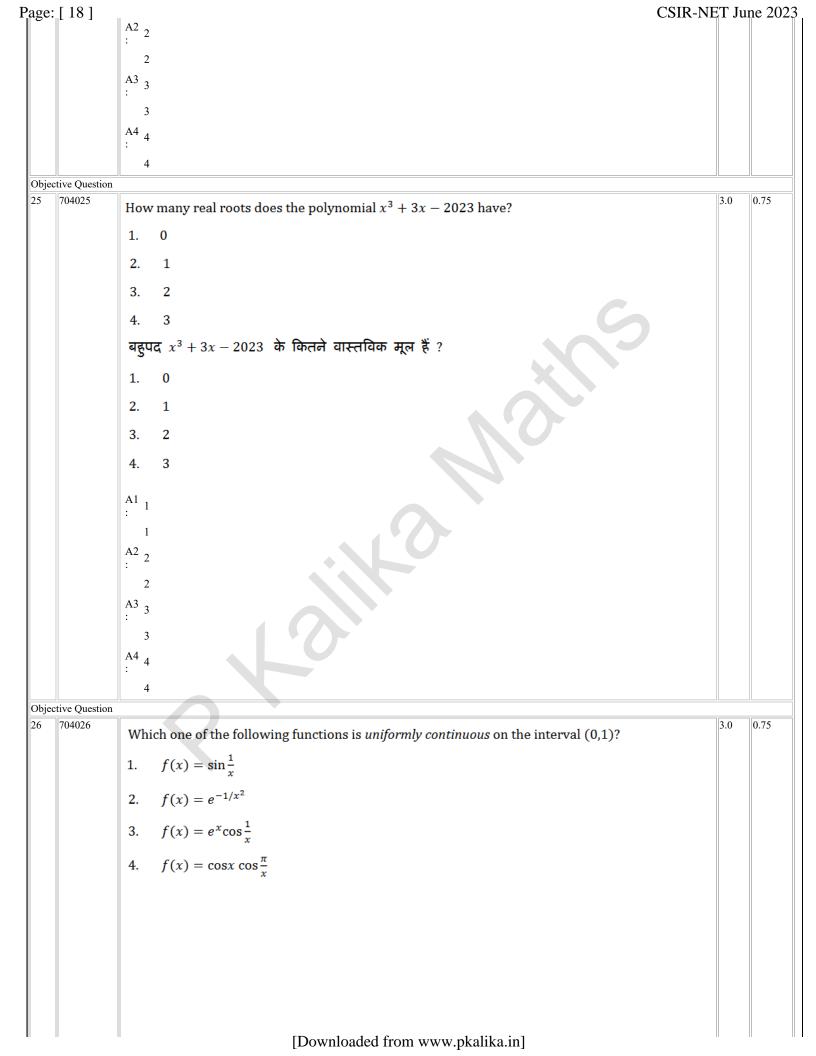

2010 से 2020 में प्रति व्यक्ति जीडीपी में वृद्धि के रूप में, उनकी उच्च से निम्न श्रेणी है


- 1. A, B, C
- 2. B, A, C
- 3. B, C, A
- 4. C, A, B.
- A1
- 1
- A2 2
- 2
- A3
- 3
- A4 .
- -

ra	ge:)biect	[10] ive Question	CSIR-N	EI JU	ne 202.
	_	704013	Consider the following paragraph:	2.0	0.50
			THE ABILITY TO REASON ACCURATELY IS VERY IMPORTANT, AS IS THE ABILITY TO COUNT. AS AN EXERCISE IN BOTH, LET US COUNT HOW MANY TIMES THE LETTER "E" OCCURS IN THIS PARAGRAPH. THE CORRECT COUNT IS		
			Which option when put in the blank in the above paragraph will make the final sentence accurate?		
			1. SIXTEEN		
			2. SEVENTEEN		
			3. EIGHTEEN		
			4. NINETEEN		
			निम्नलिखित अनुच्छेद पर गौर करें:		
			THE ABILITY TO REASON ACCURATELY IS VERY IMPORTANT, AS IS THE ABILITY TO COUNT. AS AN EXERCISE IN BOTH, LET US COUNT HOW MANY TIMES THE LETTER "E" OCCURS IN THIS PARAGRAPH. THE CORRECT COUNT IS उपर्युक्त अनुच्छेद के रिक्त स्थान में किस विकल्प का रखना अंतिम वाक्य को एकदम सही बना देगा?		
			1. SIXTEEN		
			2. SEVENTEEN		
			3. EIGHTEEN		
			4. NINETEEN		
			Al 1		
			1		
			A2 ₂ :		
			A3 3		
			3		
			A4 4 :		
	Object	ive Question	4		
11=		704014	Two datasets A and B have the same mean. Which of the following MUST be true?	2.0	0.50
			1. Sum of the observations in A = Sum of the observations in B.		
			2. Mean of the squares of the observations in A = Mean of the squares of the observations in B.		
			3. If the two datasets are combined, then the mean of the combined dataset = mean of A + mean of B.		
			4. If the two datasets are combined, then the mean of the combined dataset = mean of A.		




ige: [12]		NET Ju	ne 202
	A4 4 :		
	4		
Objective Question	n		
704016	In a group of 7 people, 4 have exactly one sibling and 3 have exactly two siblings. Two people selected at random from the group, what is the probability that they are NOT siblings?	2.0	0.50
	1. 5/21		
	2. 16/21		
	3. 3/7		
	4. 4/7		
	एक समूह जिसमें 7 लोग हैं, 4 के ठीक एक सहोदर है और 3 के ठीक दो सहोदर हैं। समूह से याद्टच्छिक रूप से चियत दो लोगों की क्या प्रायिकता है कि वे सहोदर नहीं हैं?		
	1. 5/21		
	2. 16/21		
	3. 3/7		
	4. 4/7		
	A1 1		
	1		
	A2 2		
	2 A3 3		
	A4 4		
	4		
Objective Question 7 704017	n .	2.0	0.50
704017	On a spherical globe of radius 10 units, the distance between A and B is 25 units. If it is uniformly expanded to a globe of radius 50 units, the distance between them in the same units would be	2.0	0.50
	1. 75		
	2. 125		
	3. 150		
	4. 625		



ge: [15]	CSIR-I	NET Ju	ne 20
	A2 2		
	A3 3		
	3		
	A4 4		
	: 4		
	4		
bjective Questio	n e e e e e e e e e e e e e e e e e e e		
704020	In an examination containing 10 questions, each correct answer is awarded 2 marks, each incorrect answer is awarded -1 and each unattempted question is awarded zero. Which of the following CANNOT be a possible score in the examination?	2.0	0.50
	1. –9		
	27		
	3. 17		
	4. 19		
	एक 10 प्रश्नों की परीक्षा में प्रत्येक सही उत्तर के लिए 2 अंक दिए जाते हैं, प्रत्येक ग़लत उत्तर के लिए —1 अंक दिया जाता है, और प्रत्येक छोड़े गए प्रश्न के लिए शून्य दिया जाता है। परीक्षा में निम्नलिखित में से कौनसा संभावित प्राप्तांक नहीं हो सकता है?		
	19		
	2. –7		
	3. 17		
	4. 19		
	A1 :		
	1 A2 ₂		
	2		
	A3 3		
	3 A4 ₄		
	4		
jective Questio	n		
704021	Suppose S is an infinite set. Assuming that the axiom of choice holds, which of the	3.0	0.75
	following is true? 1. S is in bijection with the set of rational numbers.		
	2. <i>S</i> is in bijection with the set of real numbers.		
	3. S is in bijection with $S \times S$.		
	4. <i>S</i> is in bijection with the power set of <i>S</i> .		

3.0

0.75

0.75

अंतराल (0,1) पर निम्न फलनों में से कौन सा एक-समानतः संतत है?

- $f(x) = \sin\frac{1}{x}$
- $2. \qquad f(x) = e^{-1/x^2}$
- $3. \qquad f(x) = e^x \cos \frac{1}{x}$
- $f(x) = \cos x \cos \frac{\pi}{x}$
- A1 ₁

- A3 ₃
- 3

Objective Question 704027

Let $l \geq 1$ be a positive integer. What is the dimension of the \mathbb{R} -vector space of all polynomials in two variables over $\mathbb R$ having a total degree of at most l?

- 2. l(l-1)
- l(l+1)/23.

मार्ने कि $l \geq 1$ एक धनात्मक पूर्णांक है। $\mathbb R$ पर कुल अधिकतम l घात (degree) वाले सभी द्विचर बहुपदों की ℝ-सदिश समष्टि की विमा क्या है?

- 1.
- 2.
- 3.

- A2 2
- 2
- Α3

Objective Question

704028

- (l+1)(l+2)/2
- l+1
- l(l-1)
- l(l+1)/2
- (l+1)(l+2)/2
- A1 ₁

- 3

Let T be a linear operator on \mathbb{R}^3 . Let $f(X) \in \mathbb{R}[X]$ denote its characteristic polynomial. Consider the following statements.

- (a). Suppose T is non-zero and 0 is an eigen value of T. If we write f(X) = Xg(X) in $\mathbb{R}[X]$, then the linear operator g(T) is zero.
- (b). Suppose 0 is an eigenvalue of T with at least two linearly independent eigen vectors. If we write f(X) = Xg(X) in $\mathbb{R}[X]$, then the linear operator g(T) is zero.

Which of the following is true?

- 1. Both (a) and (b) are true.
- 2. Both (a) and (b) are false.
- 3. (a) is true and (b) is false.
- 4. (a) is false and (b) is true.

मार्ने कि \mathbb{R}^3 पर T रैखिक संकारक (linear operator) है। मार्ने कि $f(X) \in \mathbb{R}[X]$ इसका अभिलक्षणिक बहुपद है। निम्न वक्तव्यों पर विचार करें

- (a). माने कि T शून्येतर है तथा T का एक अभिलक्षणिक मान (eigen value) 0 है। यदि हम $\mathbb{R}[X]$ में f(X) = Xg(X) लिखें, तो रैखिक संकारक g(T) शून्य है।
- (b). मार्ने कि T का एक अभिलक्षणिक मान 0 है, जिसके कम से कम दो रैखित: स्वतंत्र (linearly independent) अभिलक्षणिक सिंदश हैं। यदि हम $\mathbb{R}[X]$ में f(X) = Xg(X) लिखें तो रैखिक संकारक g(T) शून्य है।

निम्न में से कौन सा सत्य है?

- 1. (a) तथा (b) दोनों सत्य है।
- 2. (a) तथा (b) दोनों असत्य है।
- 3. (a) सत्य है तथा (b) असत्य है।
- 4. (a) असत्य है तथा (b) सत्य है।

A1

1

A2 2

2

A3 3

3

A4 _

:

Objective Question

704029

3.0

Let A be a 3×3 matrix with real entries. Which of the following assertions is **FALSE**?

- 1. A must have a real eigenvalue.
- 2. If the determinant of A is 0, then 0 is an eigenvalue of A.
- 3. If the determinant of *A* is negative and 3 is an eigenvalue of *A*, then *A* must have three real eigenvalues.
- 4. If the determinant of A is positive and 3 is an eigenvalue of A, then A must have three real eigenvalues.

A को वास्तविक प्रविष्टियों वाली 3×3 आव्यूह मार्ने। निम्न में से कौन सा वक्तव्य असत्य है ?

- 1. A का कोई वास्तविक अभिलक्षणिक मान होना ही चाहिए।
- 2. यदि A का सारणिक 0 है, तब A का एक अभिलक्षणिक मान 0 है।
- 3. यदि A का सारणिक ऋणात्मक है तथा A का एक अभिलक्षणिक मान 3 है, तब A के तीन वास्तविक अभिलक्षणिक मान होंगें ही।
- 4. यदि A का सारणिक धनात्मक है, तथा A का एक अभिलक्षणिक मान 3 है, तब A के तीन वास्तविक अभिलक्षणिक मान होंगें ही।

Objective Question

30 704030

Let *A* be a 3 \times 3 real matrix whose characteristic polynomial p(T) is divisible by T^2 . Which of the following statements is true?

- 1. The eigenspace of A for the eigenvalue 0 is two-dimensional.
- 2. All the eigenvalues of A are real.
- 3. $A^3 = 0$.
- 4. *A* is diagonalizable.

मानें कि A एक 3×3 वास्तविक प्रविष्टियों वाला आव्यूह है जिसका अभिलक्षणिक बहुपद p(T) है जो T^2 से भाज्य है। निम्न वक्तव्यों में से कौन सा सत्य है?

- 1. अभिलक्षणिक मान 0 के लिए A की अभिलक्षणिक समष्टि द्वि-विमीय है।
- A के सभी अभिलक्षणिक मान वास्तविक हैं।
- 3. $A^3 = 0$.
- 4. A विकर्णनीय (diagonalizable) है।

A1 :

[Downloaded from www.pkalika.in]

nge: [22]		CSIR-NET	ΓJun	e 20
	A2 2			
	2			
	A3 3			
	: 3			
	A4 ₄			
Objective Question	4			
704031	Let $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$ denote vectors in \mathbb{R}^n for a fixed $n\geq 2$. Which of the following defines an inner product on \mathbb{R}^n ?		3.0	0.75
	1. $\langle x, y \rangle = \sum_{i,j=1}^{n} x_i y_j$			
	2. $\langle x, y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$			
	3. $\langle x, y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$			
	4. $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$			
	मार्ने कि किसी निश्चित $n\geq 2$ के लिए \mathbb{R}^n में $x=(x_1,\cdots,x_n)$ तथा $y=(y_1,\cdots,y_n)$ दो			
	सिंदशों को निरूपित करते हैं। निम्न में से कौन सा \mathbb{R}^n पर आंतरिक गुणन (inner product) परिभाषित करता है?			
	1. $\langle x, y \rangle = \sum_{i,j=1}^{n} x_i y_j$			
	2. $\langle x, y \rangle = \sum_{i,j=1}^{n} (x_i^2 + y_j^2)$			
	3. $\langle x, y \rangle = \sum_{j=1}^{n} j^3 x_j y_j$			
	4. $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_{n-j+1}$			
	A1 1			
	A2 ₂			
	2 A3 ₃			
	A3 3 : 3 3			
	A4 ₄ :			
	4			
Objective Question				
2 704032		3	3.0	0.75
	[Downloaded from www pkalika in]			

Consider the quadratic form Q(x, y, z) associated to the matrix

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

Let

$$S = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \mid Q(a, b, c) = 0 \right\}.$$

Which of the following statements is FALSE?

- 1. The intersection of S with the xy-plane is a line.
- 2. The intersection of S with the xz-plane is an ellipse.
- 3. S is the union of two planes.
- 4. Q is a degenerate quadratic form.

निम्न आव्यूह से सहचारी द्विघात रूप (quadratic form) Q(x,y,z) पर विचार करें

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

मार्ने कि

$$S = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \mid Q(a, b, c) = 0 \right\}.$$

निम्न वक्तव्यों में से कौन सा असत्य है?

- 1. S का xy समतल के साथ सर्वनिष्ठ एक रेखा है।
- S का xz- समतल के साथ सर्वनिष्ठ एक दीर्घवृत है।
- 3. S दो समतलों का सम्मिलन है।
- 4. *Q* एक अपभ्रष्ट द्विघात रूप है।

A1

1

A2 2

2

A3 3

3

Α4

.

Objective Question

33 704033

Let
$$f(z) = \exp(z + \frac{1}{z})$$
, $z \in \mathbb{C} \setminus \{0\}$. The residue of f at $z = 0$ is

- $1. \qquad \sum_{l=0}^{\infty} \frac{1}{(l+1)!}$
- $2. \qquad \sum_{l=0}^{\infty} \frac{1}{l!(l+1)}$
- 3. $\sum_{l=0}^{\infty} \frac{1}{l!(l+1)!}$
- $4. \qquad \sum_{l=0}^{\infty} \frac{1}{(l^2+l)!}$

Consider the function f defined by $f(z) = \frac{1}{1-z-z^2}$ for $z \in \mathbb{C}$ such that $1-z-z^2 \neq 0$.

Which of the following statements is true?

- 1. f is an entire function.
- 2. f has a simple pole at z = 0.
- 3. f has a Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where coefficients a_n are recursively defined as follows: $a_0 = 1$, $a_1 = 0$ and $a_{n+2} = a_n + a_{n+1}$ for $n \ge 0$.
- 4. f has a Taylor series expansion $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$, where coefficients a_n are recursively defined as follows: $a_0=1, a_1=1$ and $a_{n+2}=a_n+a_{n+1}$ for $n\geq 0$.

ऐसे $z \in \mathbb{C}$ कि $1-z-z^2 \neq 0$ हो, के लिए $f(z) = \frac{1}{1-z-z^2}$ द्वारा परिभाषित फलन f पर विचार करें। निम्न वक्तव्यों में से कौन सा सत्य है?

- 1. f सर्वत्र वैश्लेषिक फलन है।
- 2. f का z=0 पर एकघात अनंतक (simple pole) है।
- 3. f का टेलर श्रेणी विस्तार $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$ है, जहां गुणांकों $a_n,\ n\geq 0$ को $a_0=1,a_1=0$ तथा $a_{n+2}=a_n+a_{n+1}$ की तरह पुनरावर्ती रूप में परिभाषित किया है।
- 4. f का टेलर श्रेणी विस्तार $f(z)=\sum_{n=0}^{\infty}a_n\,z^n$ है, जहां गुणांकों $a_n,\ n\geq 0$ को $a_0=1,a_1=1$ तथा $a_{n+2}=a_n+a_{n+1}$ की तरह पुनरावर्ती रूप में परिभाषित किया है।

A1 1 : 1 A2 2 : 2

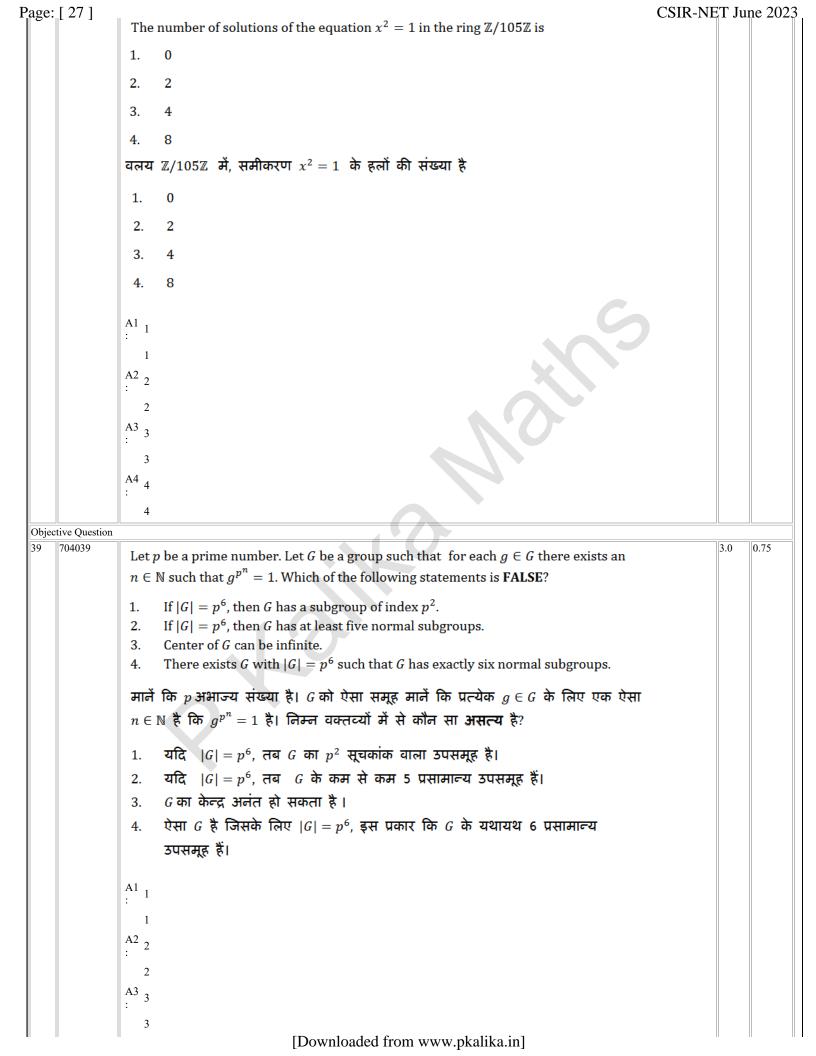
A3 : 3

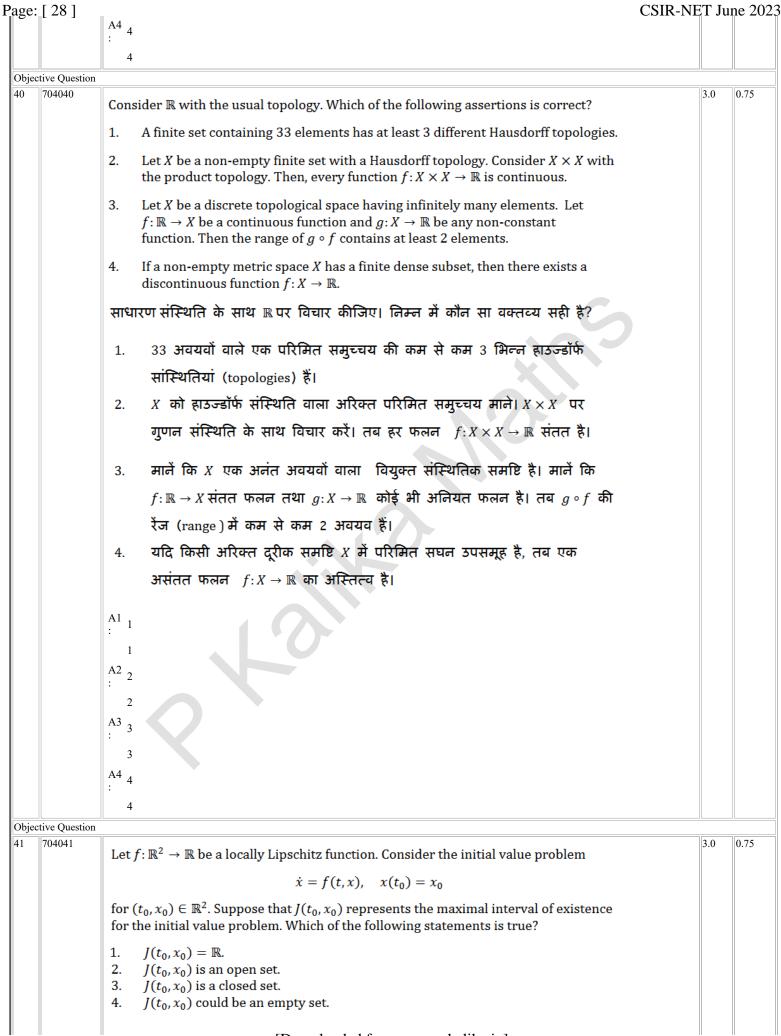
A4 ₄

1

Objective Question

36 704036


Let $\mathcal C$ be the positively oriented circle in the complex plane of radius 3 centered at the origin. What is the value of the integral


$$\int_C \frac{dz}{z^2 (e^z - e^{-z})}?$$

- 1. $i\pi/12$
- 2. $-i\pi/12$
- 3. $i\pi/6$
- 4. $-i\pi/6$

3.0

0.75

0.75

माने कि $f: \mathbb{R}^2 \to \mathbb{R}$ स्थानीयतः लिपशिट्ज फलन है। निम्न प्रारंभिक मान समस्या पर विचार करें

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$

जो $(t_0,x_0)\in\mathbb{R}^2$ के लिए है। मार्ने कि $J(t_0,x_0)$ प्रारंभिक मान समस्या के लिए अधिकतम अस्तित्व अंतराल है। निम्न वक्तर्व्यों में से कौन सा सत्य है?

- 1. $J(t_0, x_0) = \mathbb{R}.$
- 2. $J(t_0, x_0)$ एक विवृत्त समुच्चय है।
- 3. $J(t_0, x_0)$ एक संवृत्त समुच्चय है।
- 4. $J(t_0, x_0)$ रिक्त समुच्चय हो सकता है।

 $\begin{array}{cc} A1 \\ \vdots \end{array} 1$

A2 2

: 4

.

A3 :

3

A4 4

Objective Question

42 704042

Suppose x(t) is the solution of the following initial value problem in \mathbb{R}^2

$$\dot{x} = Ax$$
, $x(0) = x_0$, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

Which of the following statements is true?

- 1. x(t) is a bounded solution for some $x_0 \neq 0$.
- 2. $e^{-6t}|x(t)| \to 0$ as $t \to \infty$, for all $x_0 \ne 0$.
- 3. $e^{-t}|x(t)| \to \infty$ as $t \to \infty$, for all $x_0 \ne 0$.
- 4. $e^{-10t}|x(t)| \to 0$ as $t \to \infty$, for all $x_0 \ne 0$.

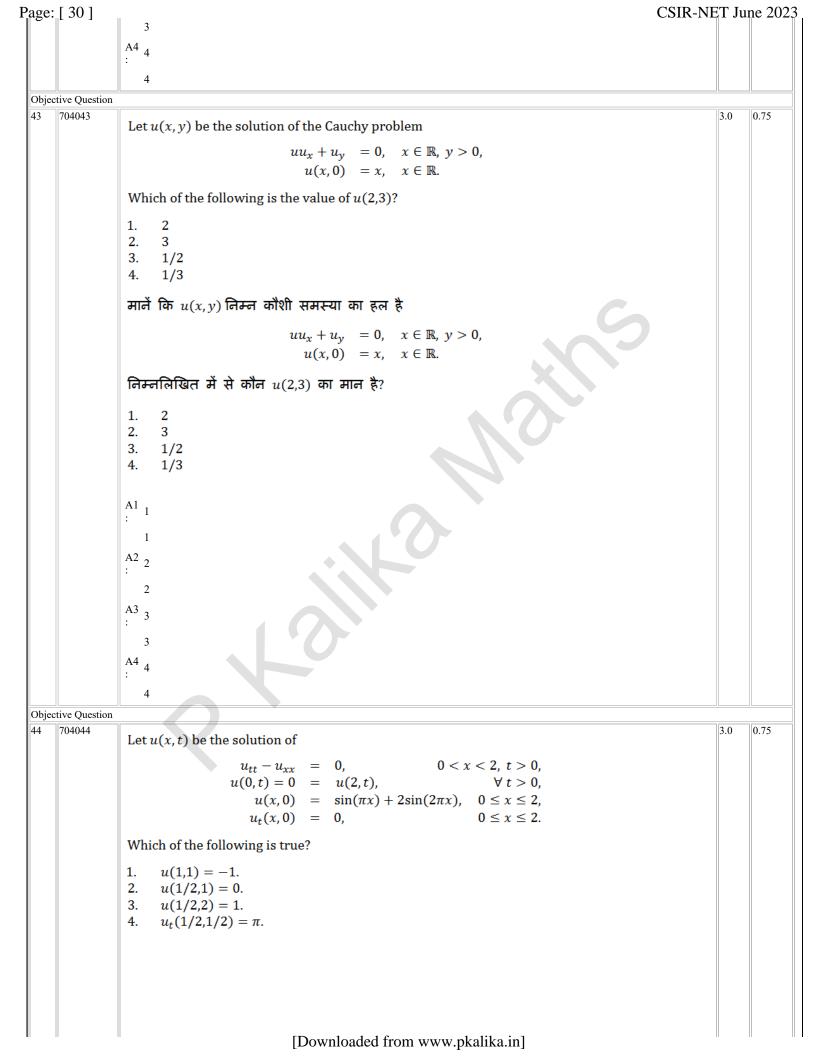
मानें कि \mathbb{R}^2 में $\chi(t)$ निम्न प्रारंभिक मान समस्या का हल है

$$\dot{x} = Ax$$
, $x(0) = x_0$, जहां $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.

निम्न में से कौन सा वक्तव्य सत्य है ?

- 1. कुछ $x_0 \neq 0$ के लिए, x(t) परिबद्ध हल है
- 2. सब $x_0 \neq 0$ के लिए, $e^{-6t}|x(t)| \rightarrow 0$ जैसे-जैसे $t \rightarrow \infty$
- 3. सब $x_0 \neq 0$ के लिए , $e^{-t}|x(t)| \rightarrow \infty$ जैसे-जैसे $t \rightarrow \infty$
- 4. सब $x_0 \neq 0$ के लिए, $e^{-10t}|x(t)| \rightarrow 0$ जैसे-जैसे $t \rightarrow \infty$

A1 : 1


1

A2 2

,

A3 3

[Downloaded from www.pkalika.in]

मानें कि u(x,t) निम्न का हल है:

$$u_{tt} - u_{xx} = 0,$$
 $0 < x < 2, t > 0,$
 $u(0,t) = 0 = u(2,t),$ $\forall t > 0,$
 $u(x,0) = \sin(\pi x) + 2\sin(2\pi x),$ $0 \le x \le 2,$
 $u_t(x,0) = 0,$ $0 \le x \le 2.$

निम्न में से कौन सा सत्य है?

- 1. u(1,1) = -1.
- 2. u(1/2,1) = 0.
- 3. u(1/2,2) = 1.
- 4. $u_t(1/2,1/2) = \pi$.

A1 :

1

A2 2

2

A3 ₃

. .

3

A4 :

Objective Question

45 704045

Which of the following values of a, b, c and d will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3?

1.
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2.
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3.
$$a = 1, b = 1, c = -\frac{1}{3}, d = \frac{1}{3}$$

4.
$$a = 1, b = -1, c = \frac{1}{3}, d = -\frac{1}{3}$$

a,b,c तथा d के निम्नलिखित में से कौन से मान निम्न क्षेत्रकलन सूत्र देंगे

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(1) + cf'(-1) + df'(1)$$

जिसकी परिशुद्धता की कोटि 3 है?

1.
$$a = 1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

2.
$$a = -1, b = 1, c = \frac{1}{3}, d = -\frac{1}{3}$$

3.
$$a = 1, b = 1, c = -\frac{1}{3}, d = \frac{1}{3}$$

4.
$$a = 1, b = -1, c = \frac{1}{3}, d = -\frac{1}{3}$$

A1 :

1

A2 2

A3 ₃

3

A4 :

Objective Question

Consider the variational problem (P)

$$J(y(x)) = \int_0^1 [(y')^2 - y|y| \ y' + xy] \ dx, \quad y(0) = 0, \ y(1) = 0.$$

Which of the following statements is correct?

- 1. (P) has no stationary function (extremal).
- 2. $y \equiv 0$ is the only stationary function (extremal) for (*P*).
- 3. (P) has a unique stationary function (extremal) y not identically equal to 0.
- 4. (P) has infinitely many stationary functions (extremal).

निम्न विचरण समस्या (P) पर विचार करें

$$J(y(x)) = \int_0^1 [(y')^2 - y|y| \ y' + xy] \ dx, \quad y(0) = 0, \ y(1) = 0.$$

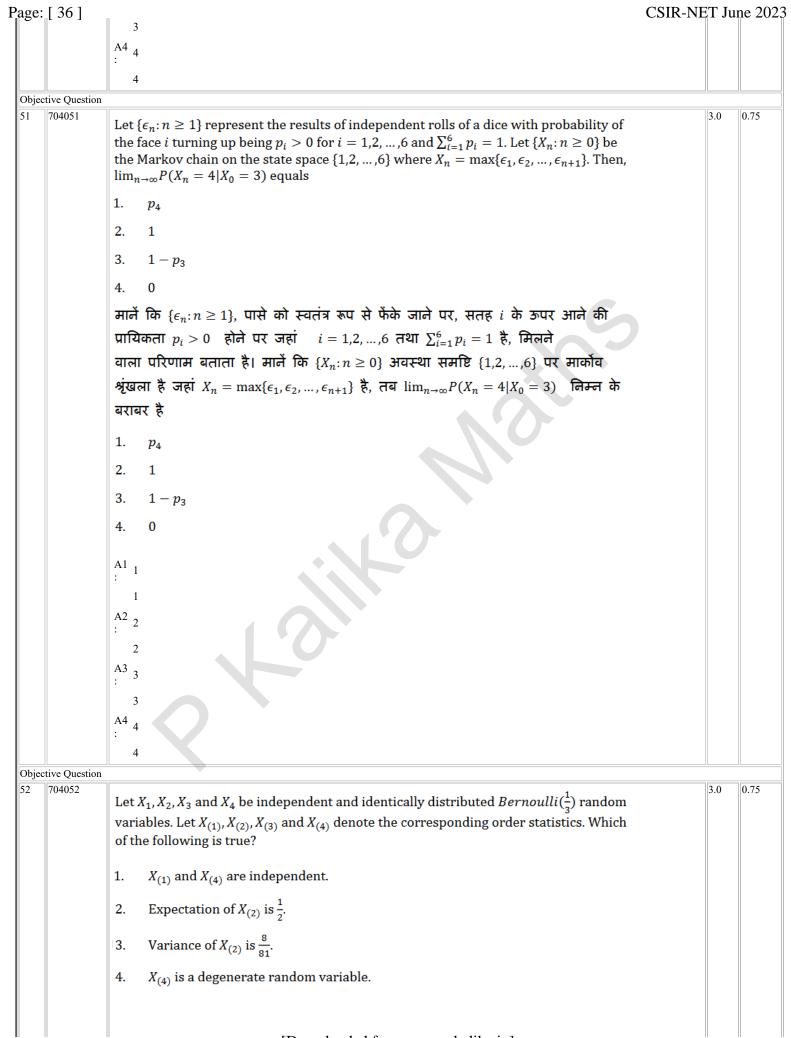
निम्न वक्तव्यों में से कौन सा सही है ?

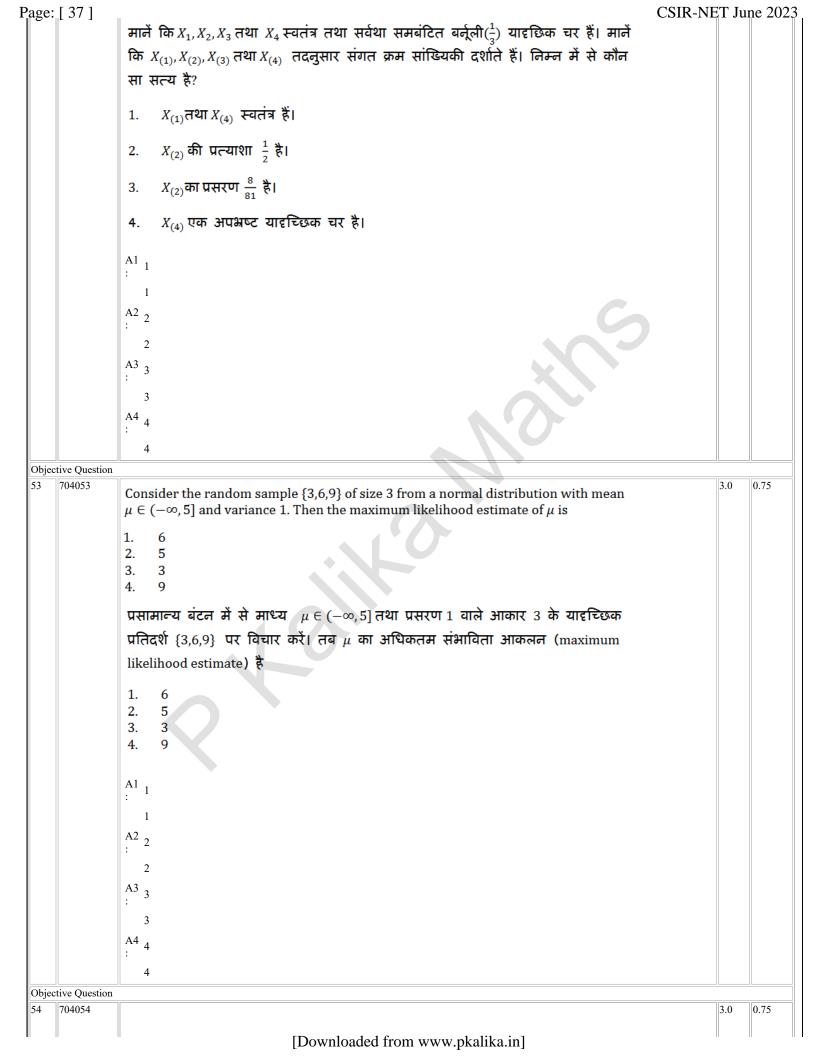
- 1. (P) का कोई स्तब्ध फलन (चरम) नहीं है।
- (P) के लिए y ≡ 0 एक मात्र स्तब्ध फलन (चरम) है।
- 3. (P) के लिए एक अद्वितीय स्तब्ध फलन (चरम) y है जो 0 के सर्वथासम नहीं है।
- 4. (P) के अनंततः बह् स्तब्ध फलन (चरम) हैं।

A1 :

1

A2 2

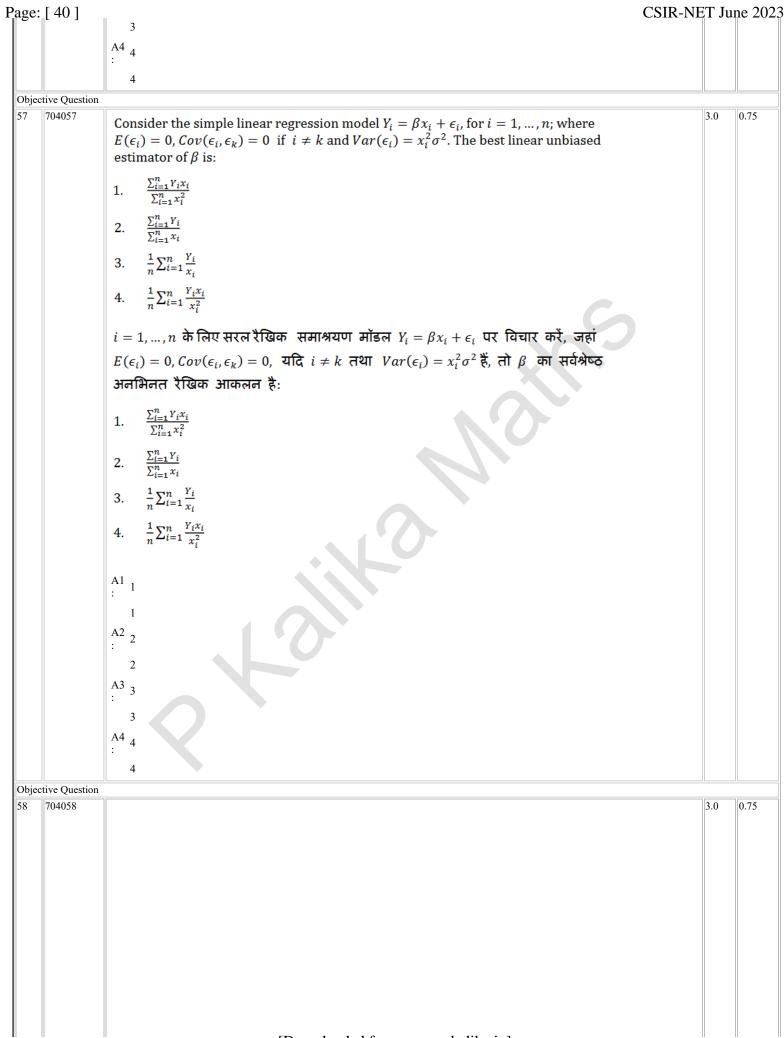

2


[Downloaded from www.pkalika.in]

A1 ₁

Page: [34]		CSIR-NET Ju	ne 202
Page: [34]	A2 2 : 2	CSIR-NET Ju	ne 202
	4		
Objective Questio	 n		_
48 704048	Consider the constants a and b such that the following generalized coordinate transformation from (p,q) to (P,Q) is canonical	3.0	0.75
	$Q = pq^{(a+1)}, P = q^b.$		
	What are the values of a and b ?		
	1. $a = -1, b = 0$ 2. $a = -1, b = 1$ 3. $a = 1, b = 0$ 4. $a = 1, b = -1$		
	नियतांकों a तथा b पर इस प्रकार विचार कीजिए कि (p,q) से (P,Q) पर निम्न प्रसामान्यीकृत निर्देशांक रूपांतरण विहित है		
	प्रसामान्याकृत । नदशाक रूपातरण । याहत ह $Q=pq^{(a+1)}, P=q^b.$		
	a तथा b के मान क्या हैं?		
	1. $a = -1, b = 0$ 2. $a = -1, b = 1$ 3. $a = 1, b = 0$ 4. $a = 1, b = -1$		
	A1 1 1		
	A3 3 3 3 A4 4		
	: 4		
01: :: 6 :	4		
Objective Questio 49 704049		3.0	0.75
	If $f(x)$ is a probability density on the real line, then which of the following is NOT a valid probability density? 1. $f(x+1)$		
	2. $f(2x)$ 3. $2f(2x-1)$ 4. $3x^2f(x^3)$		

age: [35]		CSIR-NET June 2023
	यदि वास्तविक रेखा पर $f(x)$ कोई प्रायिकता घनत्व है तो निम्न में से कौन सा वैध प्रायिकता घनत्व नहीं है?	
	1. $f(x+1)$ 2. $f(2x)$ 3. $2f(2x-1)$ 4. $3x^2f(x^3)$	
	A1 1: 1	
	A2 2 : 2	
	A3 3 : 3 3	
	A4 4 : 4 4	
Objective Question 50 704050		3.0 0.75
	Which of the following is a valid cumulative distribution function? 1. $F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+x^2} & \text{if } x < 0, \\ \frac{2}{2+x^2} & \text{if } x < 0, \end{cases}$ 2. $F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2+x^2}{3+2} & \text{if } x < 0, \end{cases}$ 3. $F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{2\cos(x)+x^2}{4+x^2} & \text{if } x \geq 0 \end{cases}$ 4. $F(x) = \begin{cases} \frac{1}{2+x^2} & \text{if } x < 0, \\ \frac{1+x^2}{4+x^2} & \text{if } x \geq 0 \end{cases}$ Figure 4 th and the moneth of the distribution of	
	A3 3 :	
II	[Downloaded from www.pkalika.in]	11 11



CSIR-NET June 2023

Page: [38]

ge: [39]		CSIR-NET Ju	ine 20
	Al 1		
	A2 2		
	$\begin{bmatrix} 2 \\ A3 \\ 3 \end{bmatrix}$		
	3 A4 _A		
	: 4		
1: :: 0 ::	4		
bjective Question 704056	I + V V I V V I - + I	3.0	0.75
	Let $X_1,, X_7$ and $Y_1,, Y_9$ be two random samples drawn independently from two populations with continuous CDFs F and G respectively. Consider the Wald-		
	Wolfowitz run test in the context of the following two sample testing problems:		
	H_0 : $F(x) = G(x) \forall x \text{vs.} H_1$: $F(x) \neq G(x)$ for some x . If the random variable R denotes		
	the total number of runs in the combined ordered arrangement of the two given		
	samples, then which of the following is true?		
	1. $P_{H_0}(R=6) = \frac{28}{286}, P_{H_0}(R=9) = \frac{28}{143}$		
	2. $P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}.$		
	3. $P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{28}{143}.$		
	4. $P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}.$		
	मार्ने कि X_1,\ldots,X_7 तथा Y_1,\ldots,Y_9 क्रमशः संतत CDFs वाली दो समष्टियां F तथा G से		
	स्वतंत्र रूप से निकाले गए दो याद्दिछक प्रतिदर्श हैं। निम्न दो प्रतिदर्श परीक्षण समस्या		
	के संदर्भ में वाल्ड-वुल्फोवित्स रन परीक्षण पर विचार करें : H_0 : $F(x) = G(x) \forall x \text{ vs.}$		
	$H_1: F(x) \neq G(x)$, किसी x के लिए। यदि यादृच्छिक चर R दिये गये दो प्रतिदर्शों के		
	संयुक्त क्रमिक विन्यास के कुल रन (runs) की संख्या हो तो निम्न में से कौन सा सत्य		
	募 ?		
	1. $P_{H_0}(R=6) = \frac{28}{286'} P_{H_0}(R=9) = \frac{28}{143}$.		
	2. $P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{15}{286}.$		
	3. $P_{H_0}(R=6) = \frac{21}{286}, P_{H_0}(R=9) = \frac{28}{143}.$		
	4. $P_{H_0}(R=6) = \frac{21}{286'} P_{H_0}(R=9) = \frac{15}{286}$.		
	A1 ₁		
	: 		
	$A2_2$		
	$\begin{bmatrix} 2 \\ A3 \\ 3 \end{bmatrix}$		
	MJ 2	ll ll	

0.75

Suppose $\mathbf{X} = (X_1, X_2, X_3, X_4)^T$ has a multivariate normal $N_4(\mathbf{0}, I_2 \otimes \Sigma)$, where I_2 is the 2×2 identity matrix, \otimes is the Kronecker product, and $\Sigma = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Define

 $Z=egin{pmatrix} X_1 & X_2 \ X_3 & X_4 \end{pmatrix}$ and $Q=((Q_{ij}))=Z^TZ$. Suppose χ^2_n denotes a chi-square random variate with n degrees of freedom, and $W_m(n,\Sigma)$ denotes a Wishart distribution of order m with parameters n and Σ . The distribution of $(Q_{11}+Q_{12}+Q_{21}+Q_{22})$ is

- 1. $W_1(2,2)$
- 2. $W_1(1,2)$
- 3. $W_1(2,1)$
- 4. $2 \chi_4^2$

मानें कि $\mathbf{X}=(X_1,X_2,X_3,X_4)^T$ का बहुचर प्रसामान्य $N_4(\mathbf{0},I_2\otimes \Sigma)$ है, जहां I_2 तत्समक 2×2 आव्यूह है, \otimes क्रोनेकर गुणनफल है, तथा $\Sigma=\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$ है। परिभाषित करें कि $Z=\begin{pmatrix}X_1&X_2\\X_3&X_4\end{pmatrix}$ तथा $Q=\begin{pmatrix}(Q_{ij})\end{pmatrix}=Z^TZ$ है। मानें कि χ_n^2 स्वातंत्र्य कोटि n वाला काई-वर्ग याद्दिछक विचर, तथा $W_m(n,\Sigma)$ प्राचलों n एवं Σ के साथ m कोटि का विशार्ट बंटन है। $Q_{11}+Q_{12}+Q_{21}+Q_{22}$ का बंटन है

- 1. $W_1(2,2)$
- 2. $W_1(1,2)$
- 3. $W_1(2,1)$
- 4. $2 \chi_4^2$

A1

.

A2 2

2

A3 3

3

A4 2

-

Objective Question

59 704059

Let $X = (X_1, X_2)^T$ follow a bivariate normal distribution with mean vector $(0,0)^T$ and covariance matrix Σ such that

$$\Sigma = \begin{bmatrix} 5 & -3 \\ -3 & 10 \end{bmatrix}.$$

The mean vector and covariance matrix of $Y = (X_1, 5 - 2X_2)^T$ are

1.
$$\binom{0}{5}$$
, $\begin{bmatrix} 5 & -3 \\ -3 & 40 \end{bmatrix}$.

2.
$$\binom{0}{5}$$
, $\begin{bmatrix} 5 & -6 \\ -6 & 20 \end{bmatrix}$.

3.
$$\binom{0}{5}$$
, $\binom{3}{3}$, $\binom{3}{20}$.

4.
$$\binom{0}{5}$$
, $\binom{5}{6}$, $\binom{40}{10}$.

0.75

मानें कि $X=(X_1,X_2)^T$ द्विचर प्रसामान्य बंटन का पालन करता है जबकि माध्य सिंदश $(0,0)^T$ तथा सह प्रसरण आव्यूह Σ इस प्रकार है कि

$$\Sigma = \begin{bmatrix} 5 & -3 \\ -3 & 10 \end{bmatrix}.$$

 $Y = (X_1, 5 - 2X_2)^T$ के माध्य सिंदश तथा सह-प्रसरण आव्यूह हैं

- 1. $\binom{0}{5}$, $\begin{bmatrix} 5 & -3 \\ -3 & 40 \end{bmatrix}$. 2. $\binom{0}{5}$, $\begin{bmatrix} 5 & -6 \\ -6 & 20 \end{bmatrix}$. 3. $\binom{0}{5}$, $\begin{bmatrix} 5 & 3 \\ 3 & 20 \end{bmatrix}$. 4. $\binom{0}{5}$, $\begin{bmatrix} 5 & 6 \\ 6 & 40 \end{bmatrix}$.

Objective Question

704060

Consider the linear programming problem

 $\text{maximize } x + 3y, \quad \text{subject to } A \binom{x}{y} \le b,$

where
$$A = \begin{pmatrix} -1 & -1 \\ 0 & 1 \\ -1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 and $b = \begin{pmatrix} -1 \\ 5 \\ 5 \\ 14 \\ 0 \end{pmatrix}$. Which of the following statements is true?

- The objective function attains its maximum at $\binom{0}{5}$ in the feasible region. 1.
- The objective function attains its maximum at $\binom{-2}{3}$ in the feasible region. 2.
- The objective function attains its maximum at $\binom{1}{0}$ in the feasible region. 3.
- The objective function does not attain its maximum at $\binom{14}{0}$ in the feasible region.

रैखिक प्रोगामन समरस्या पर विचार करें

$$x + 3y$$
 को अधिकतमीकृत करें यदि $A \begin{pmatrix} x \\ y \end{pmatrix} \leq b$,

जहां
$$A=egin{pmatrix} -1 & -1 \\ 0 & 1 \\ -1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 तथा $b=egin{pmatrix} -1 \\ 5 \\ 5 \\ 14 \\ 0 \end{pmatrix}$ हैं।

निम्न वक्तव्यों में से कौन सा सत्य है?

- उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{0}{5}$ पर मिलता है।
- उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{-2}{3}$ पर मिलता है।
- उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{1}{0}$ पर मिलता है।
- उद्देश्य फलन का सुसंगत क्षेत्र में उच्चतम $\binom{14}{0}$ पर नहीं है।

A1 ₁

Multiple Response 704061

Let $\{x_n\}$ be a sequence of positive real numbers. If $\sigma_n = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$, then which of the following are true? (Here lim sup denotes the limit supremum of a sequence.)

- If $\limsup \{x_n\} = \ell$ and $\{x_n\}$ is decreasing, then $\limsup \{\sigma_n\} = \ell$.
- $\limsup \{x_n\} = \ell$ if and only if $\limsup \{\sigma_n\} = \ell$.
- If $\lim \sup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$, then $\sum_n x_n$ is convergent.
- If $\lim \sup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$, then $\sum_n x_n$ is divergent.

4.75 0.00

0.00

मार्ने कि $\{x_n\}$ धनात्मक वास्तविक संख्याओं का एक अनुक्रम है।

यदि $\sigma_n=rac{1}{n}(x_1+x_2+\cdots x_n)$ तब निम्न में से कौन से सत्य हैं ? (यहां \limsup अनुक्रम के सीमा उच्चक को दर्शाता है)

- 1. यदि $\limsup\{x_n\}=\ell$ है तथा $\{x_n\}$ घट रहा है, तब $\limsup\{\sigma_n\}=\ell$ है।
- 2. $\limsup \{x_n\} = \ell$ है यदि और केवल यदि $\limsup \{\sigma_n\} = \ell$ है।
- 3. यदि $\limsup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$ है, तब $\sum_n x_n$ अभिसारी है।
- 4. यदि $\limsup \left\{ n \left(\frac{x_n}{x_{(n+1)}} 1 \right) \right\} < 1$ है, तब $\sum_n x_n$ अपसारी है।

A1 . 1

1

A2 2

.

A3 :

3

: -

Multiple Response

62 704062

Under which of the following conditions is the sequence $\{x_n\}$ of real numbers convergent?

- 1. The subsequences $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ and $\{x_{3n}\}$ are convergent and have the same limit.
- 2. The subsequences $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ and $\{x_{3n}\}$ are convergent.
- 3. The subsequences $\{x_{kn}\}_n$ are convergent for every $k \geq 2$.
- 4. $\lim_{n} |x_{(n+1)} x_n| = 0.$

निम्न में से किन परिस्थितियों में वास्तिवक संख्याओं का अनुक्रम $\{x_n\}$ अभिसारी है?

- 1. 5 पानुक्रम $\{x_{(2n+1)}\}$, $\{x_{2n}\}$ तथा $\{x_{3n}\}$ अभिसारी हैं तथा उनकी एक ही सीमा है।
- 2. उपानुक्रम $\{x_{(2n+1)}\}, \{x_{2n}\}$ तथा $\{x_{3n}\}$ अभिसारी हैं।
- 3. हर $k\geq 2$ के लिए उपानुक्रम $\{x_{kn}\}_n$ अभिसारी हैं।
- 4. $\lim_{n} |x_{(n+1)} x_n| = 0.$

A1 :

1

A2 2

.

A3 3

ge: _[[45]		CSIR-NET Ju	ine 2
	$\begin{vmatrix} 3 \\ A4 \\ 4 \end{vmatrix}$		
	: ⁴		
1: 1 P	4		
704063	Which of the following are true?	4.75	0.00
	1. For $n \ge 1$, the sequence of functions $f_n: (0,1) \to (0,1)$ defined by $f_n(x) = x^n$ is uniformly convergent.		
	2. For $n \ge 1$, the sequence of functions $f_n: (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{\log(n+1)}$ is uniformly convergent.		
	3. For $n \ge 1$, the sequence of functions $f_n: (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+x^n}$ is uniformly convergent.		
	4. For $n \ge 1$, the sequence of functions $f_n: (0,1) \to (0,1)$ defined by $f_n(x) = \frac{x^n}{1+nx^n}$ is not uniformly convergent.		
	निम्न में से कौन से सत्य हैं?		
	$1. n \geq 1$ के लिए, $f_n(x) = x^n$ द्वारा परिभाषित फलनों $f_n \colon (0,1) o (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
	2. $n \geq 1$, के लिए, $f_n(x) = \frac{x^n}{\log(n+1)}$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
	$n \geq 1$ के लिए, $f_n(x) = \frac{x^n}{1+x^n}$ द्वारा परिभाषित फलनों $f_n \colon (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी है।		
	4. $n \ge 1$ के लिए, $f_n(x) = \frac{x^n}{1 + nx^n}$ द्वारा परिभाषित फलनों $f_n: (0,1) \to (0,1)$ का अनुक्रम एक-समानतः अभिसारी नहीं है।		
	A1 1		
	A2 2 : 2 A3 3		
	3 A4 4		
	4		
ltiple Respons		4.75	0.00
/04004	Define a function $f: \mathbb{R} \to \mathbb{R}$ by	4./3	0.00
	$f(x) = \begin{cases} \sin(\pi/x) & \text{when } x \neq 0, \\ 0 & \text{when } x = 0. \end{cases}$		
	On which of the following subsets of $\mathbb R$, the restriction of f is a continuous function?		
	1. [-1,1]		
	2. (0,1)		
	3. $\{0\} \cup \{(1/n): n \in \mathbb{N}\}$ 4. $\{1/2^n: n \in \mathbb{N}\}$		
	[Downloaded from www.pkalika.in]		

[Downloaded from www.pkalika.in]

A2 2

A4 4

Multiple Response

2 A3 ₃

age: [47] 704066 Consider the following statements: (a). Let f be a continuous function on [1, ∞) taking non-negative values such that $\int_{1}^{\infty} f(x) dx \text{ converges. Then } \sum_{n \geq 1} f(n) \text{ converges.}$ (b). Let f be a function on [1, ∞) taking non-negative values such that $\int_{1}^{\infty} f(x) dx \text{ converges. Then } \lim_{m \to \infty} f(x) = 0.$ (c). Let f be a continuous, decreasing function on [1, ∞) taking non-negative values such that $\int_{1}^{\infty} f(x) dx \text{ does not converge. Then } \sum_{n \geq 1} f(n) \text{ does not converge.}$ Which of the following options are true? 1. (a), (b) and (c) all are true. 2. Both (a) and (b) are false. 3. (c) is true. 4. (b) is true. िलम्ल वक्तव्यों पर विचार करें: (a). मार्ले कि फलल f, जो [1,∞) पर संतत है एवं जिसके ऋणेतर (non-negative) माल हैं, इस प्रकार है कि ∫₁∞ f(x) dx अभिसारी है। तब ∑₂₁ f(n) अभिसरण करता है। (b). मार्ले कि [1,∞) पर फलल f, जिसके ऋणेतर माल हैं, इस प्रकार है कि ∫₁∞ f(x) dx	4.75	ne 202
\(\int_{1}^{\infty} f(x) \text{dx converges. Then } \sum_{n≥1} f(n) \) converges.\(\text{(n) converges.} \) (b). Let \(f \) be a function on \([1, \infty) \) taking non-negative values such that \(\int_{1}^{\infty} f(x) \text{dx} \) converges. Then \(\lim_{x \to \infty} f(x) = 0. \) (c). Let \(f \) be a continuous, decreasing function on \([1, \infty) \) taking non-negative values such that \(\int_{1}^{\infty} f(x) \text{dx} \) does not converge. Then \(\sum_{n≥1} f(n) \) does not converge. Which of the following options are true? 1. (a), (b) and (c) all are true. 2. Both (a) and (b) are false. 3. (c) is true. 4. (b) is true. िलम्ल वक्तव्यों पर विचार करें: (a). मार्ले कि फलल \(f, \) जो \([1, \infty) \) पर संतत है एवं जिसके ऋणेतर (non-negative) माल हैं, इस प्रकार है कि \(\int_{1}^{\infty} f(x) \text{dx} \) अभिसारी है। तब \(\sum_{n≥1} f(n) \) अभिसरण करता है।		0.00
converges. Then $\lim_{x\to\infty} f(x) = 0$. (c). Let f be a continuous, decreasing function on $[1,\infty)$ taking non-negative values such that $\int_1^\infty f(x) dx$ does not converge. Then $\sum_{n\geq 1} f(n)$ does not converge. Which of the following options are true? 1. (a), (b) and (c) all are true. 2. Both (a) and (b) are false. 3. (c) is true. 4. (b) is true. Given: Gi		
such that $\int_{1}^{\infty} f(x) dx$ does not converge. Then $\sum_{n\geq 1} f(n)$ does not converge. Which of the following options are true? 1. (a), (b) and (c) all are true. 2. Both (a) and (b) are false. 3. (c) is true. 4. (b) is true. िनम्न वक्तव्यों पर विचार करें: (a). मार्ने कि फलन f , जो $[1, \infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_{1}^{\infty} f(x) dx$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
 (a), (b) and (c) all are true. Both (a) and (b) are false. (c) is true. (b) is true. (b) is true. (a). मानें कि फलन f, जो [1,∞) पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि ∫₁∞ f (x)dx अभिसारी है। तब ∑n≥1 f (n) अभिसरण करता है। 		
 Both (a) and (b) are false. (c) is true. (b) is true. (e) is true. (f) is true. (g) is true. (h) is true. (a) मानें कि फलन f, जो [1,∞) पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि ∫₁[∞] f (x) dx अभिसारी है। तब ∑_{n≥1} f (n) अभिसरण करता है। 		
3. (c) is true. 4. (b) is true. िनम्न वक्तव्यों पर विचार करें: (a). मार्ने कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_1^\infty f(x) \mathrm{d}x$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
4. (b) is true. निम्न वक्तव्यों पर विचार करें: (a). मानें कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_1^\infty f(x) \mathrm{d}x$ अभिसारी है। तब $\sum_{n \geq 1} f(n)$ अभिसरण करता है।		
निम्न वक्तव्यों पर विचार करें: (a). मानें कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
(a). मार्ने कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
(a). मानें कि फलन f , जो $[1,\infty)$ पर संतत है एवं जिसके ऋणेतर (non-negative) मान हैं, इस प्रकार है कि $\int_1^\infty f(x) \mathrm{d}x$ अभिसारी है। तब $\sum_{n \geq 1} f(n)$ अभिसरण करता है।		
मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$ अभिसारी है। तब $\sum_{n\geq 1} f(n)$ अभिसरण करता है।		
(b). मानें कि $[1,\infty)$ पर फलन f . जिसके ऋणेतर मान हैं. इस प्रकार है कि $\int_{0}^{\infty} f(x) dx$		
\mathbf{J}_{1}		
अभिसारी है। तब $\lim_{x\to\infty}f(x)=0$ है।		
(c). मार्ने कि फलन f , जो $[1,\infty)$ पर संतत ह्रासमान (decreasing) है और जिसके		
ऋणेतर मान हैं, इस प्रकार है कि $\int_1^\infty f(x)\mathrm{d}x$ अभिसारी नहीं है। तब $\sum_{n>1} f(n)$ अभिसारी नहीं है।		
निम्न विकल्पों में से कौन से सत्य हैं?		
1. (a), (b) तथा (c) सब सत्य हैं।		
2. (a) तथा (b) दोनों असत्य हैं। 3. (c) सत्य है।		
3. (c) सत्य है। 4. (b) सत्य है।		
A1 1		
A2 2		
A3 3		
3		
$\begin{vmatrix} A4 & 4 \\ \vdots & A \end{vmatrix}$		
	4.75	0.00

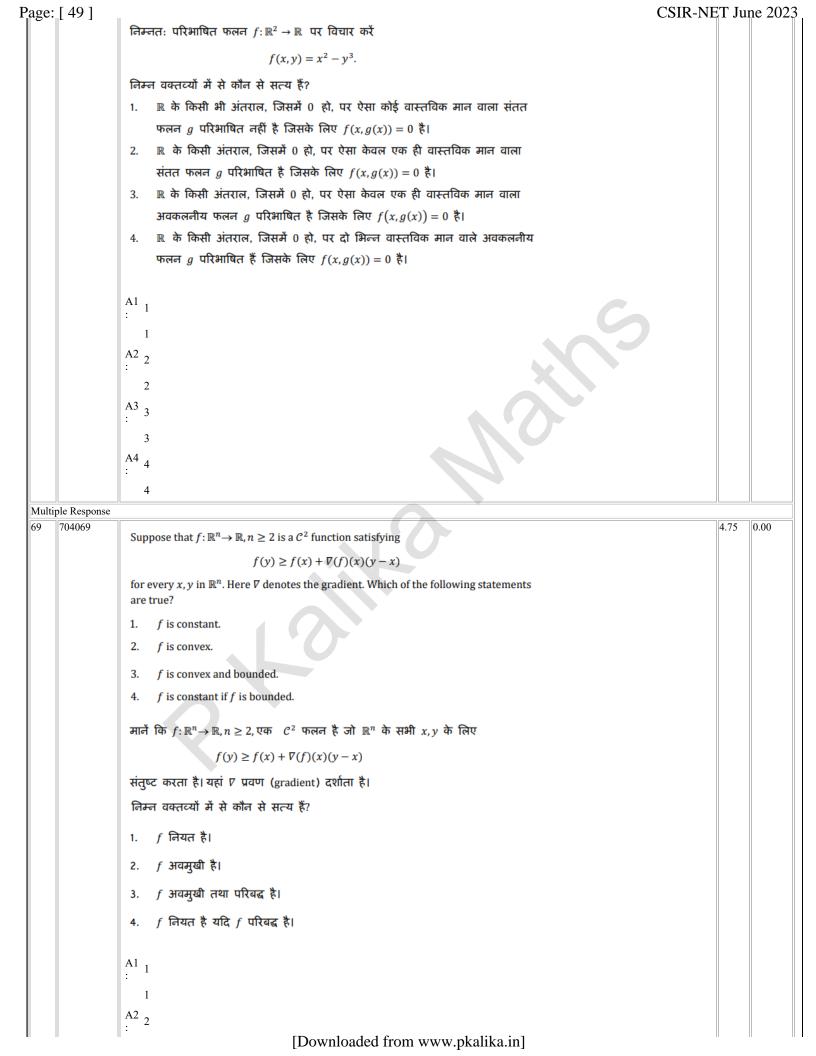
4.75

Let μ denote the Lebesgue measure on $\mathbb R$ and μ^* be the associated Lebesgue outer measure. Let A be a non-empty subset of [0,1]. Which of the following statements are true?

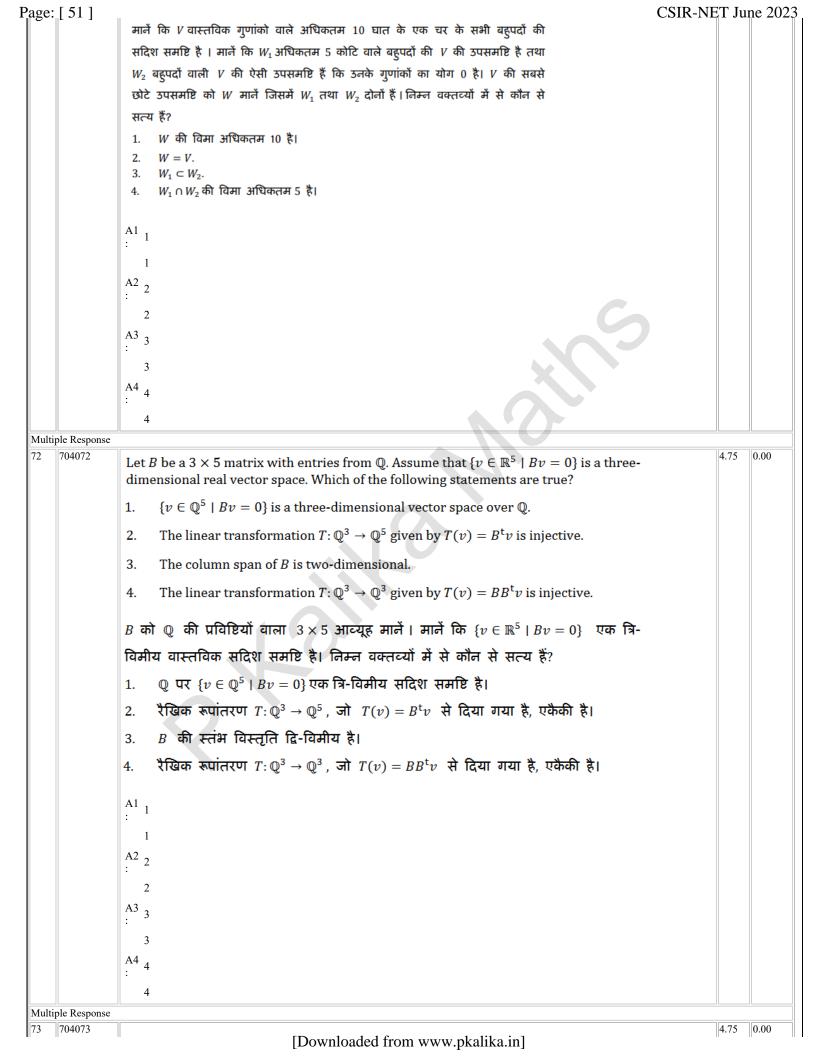
- If both interior and closure of A have the same outer measure, then A is Lebesgue measurable.
- 2. If *A* is open, then *A* is Lebesgue measurable and $\mu(A) > 0$.
- 3. If *A* is not Lebesgue measurable, then the set of irrationals in *A* must have positive outer measure.
- 4. If $\mu^*(A) = 0$, then *A* has empty interior.

 μ को $\mathbb R$ पर लेबेग (Lebesgue) माप मार्ने तथा μ^* को सहचारी लेबेग बाह्य माप। मार्ने कि [0,1] का एक अरिक्त समुच्चय A है। निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. यदि A के अंत: (interior) तथा संवरक (closure) दोनों के एक ही बाह्य माप हैं, तो A लेबेग मेय है।
- 2. यदि A विवृत्त (open) है, तब A लेबेग मेय है तथा $\mu(A) > 0$ है।
- 3. यदि A लेबेग मेय नहीं है, तब A में अपरिमेय संख्याओं के समुच्चय का बाह्य माप धनात्मक ही होगा।
- यदि μ*(A) = 0, तब A का अंत: रिक्त होगा।


Multiple Response

68 704068


Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x^2 - y^3.$$

- 1. There is no continuous real-valued function g defined on any interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 2. There is exactly one continuous real-valued function g defined on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 3. There is exactly one differentiable real-valued function g defined on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.
- 4. There are two distinct differentiable real-valued functions g on an interval of \mathbb{R} containing 0 such that f(x, g(x)) = 0.

age: [50]		CSIR-NET Ju	ine 20
	A3 ₂		
	A3 3 :		
	3		
	A4 4		
	4		
Multiple Respor	ise		
70 704070	Which of the following statements are true for an arbitrary normed linear space U ?	4.75	0.00
	1. Every bounded linear functional from U to \mathbb{R} is continuous.		
	2. U is isomorphic to its double-dual U^{**} .		
	3. For every $x \in U$, we have $ x = \sup_{\ f\ \le 1} f(x) $, where f denotes elements of		
	U^* .		
	4. The closed unit ball in U is compact.		
	निम्न वक्तव्यों में से कौन से स्वेच्छ (arbitrary) मानकित रैखिक समष्टि U के लिए सत्य		
	₹?		
	1. <i>U</i> से ℝ तक, हर परिबद्ध रैखिक फलनक संतत है ।		
	2. <i>U</i> अपने द्विक-द्वैत (double-dual) <i>U</i> ** के तुल्याकारी (isomorphic) है।		
	3. हर $x \in U$ के लिए, $ x = \sup_{\ f\ \le 1} f(x) $ है, जहां f से आशय U^* के अवयवों से है।		
	4. U में संवृत (closed) एकक गोलक संहत (compact) है।		
	A1		
	Al :		
	1		
	A2 2		
	A3 3		
	A4 .: 4		
	4		
Multiple Respor	se		
71 704071	Let V be the vector space of all polynomials in one variable of degree at most 10 with	4.75	0.00
	real coefficients. Let W_1 be the subspace of V consisting of polynomials of degree at		
	most 5 and let W_2 be the subspace of V consisting of polynomials such that the sum of		
	their coefficients is 0. Let W be the smallest subspace of V containing both W_1 and W_2 . Which of the following statements are true?		
	1. The dimension of <i>W</i> is at most 10.		
	2. W = V.		
	3. $W_1 \subset W_2$.		
	4. The dimension of $W_1 \cap W_2$ is at most 5.		

Let V be a finite dimensional real vector space and T_1, T_2 be two nilpotent operators on V. Let $W_1 = \{v \in V: T_1(v) = 0\}$ and $W_2 = \{v \in V: T_2(v) = 0\}$. Which of the following statements are **FALSE**?

- 1. If T_1 and T_2 are similar, then W_1 and W_2 are isomorphic vector spaces.
- 2. If W_1 and W_2 are isomorphic vector spaces, then T_1 and T_2 have the same minimal polynomial.
- 3. If $W_1 = W_2 = V$, then T_1 and T_2 are similar.
- 4. If W_1 and W_2 are isomorphic, then T_1 and T_2 have the same characteristic polynomial.

मानें कि V कोई परिमित विमीय वास्तविक सिदश समिष्ट है तथा V पर T_1,T_2 दो शून्यभावी संकारक (nilpotent operators) हैं। मानें कि $W_1=\{v\in V: T_1(v)=0\}$ तथा $W_2=\{v\in V: T_2(v)=0\}$ हैं। निम्न वक्तव्यों में से कौन सा असत्य है?

- 1. यदि T_1 तथा T_2 समरूप (similar) हैं, तो W_1 तथा W_2 तुल्याकारी सदिष्ट समष्टियां हैं।
- 2. यदि W_1 तथा W_2 तुल्याकारी सदिश समष्टियां हैं, तो T_1 तथा T_2 के एक ही अल्पिष्ठ बहुपद हैं।
- 3. यदि $W_1=W_2=V$ है, तब T_1 तथा T_2 समरूप (similar) हैं ।
- 4. यदि W_1 तथा W_2 तुल्याकारी हैं, तब T_1 तथा T_2 के एक ही अभिलक्षणिक बहुपद हैं।

A1 1 : 1 A2 2 : 2 A3 3 : 3 A4 4

Multiple Response

74 704074

Let V be the real vector space of real polynomials in one variable with degree less than or equal to 10 (including the zero polynomial). Let $T:V\to V$ be the linear map defined by T(p)=p', where p' denotes the derivative of p. Which of the following statements are correct?

- 1. rank(T) = 10.
- 2. determinant (T) = 0.
- 3. trace(T) = 0.
- 4. All the eigenvalues of *T* are equal to 0.

4.75 0.00

कोटि 10 या उससे कम कोटि (शून्य बहुपद को सिम्मिलित करते हुए) वाले वास्तविक एक चरीय बहुपदों की वास्तविक सिदश समिष्ट को V मार्ने। $T:V\to V$ को T(p)=p', द्वारा पिरिभाषित रेखीय फलनक मार्ने, जहां p' से आशय p का अवकलन है । निम्न वक्तव्यों में से कौन से सही हैं?

- 1. rank(T) = 10.
- 2. determinant (T) = 0.
- 3. trace(T) = 0.
- 4. T के सभी अभिलक्षणिक मान 0 के बराबर है।

A1 :

. _ .

A2 :

2

A3 :

3

4

Multiple Response

75 Suppose A is a 5×5 block diagonal real matrix with diagonal blocks

 $\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix}, \qquad \begin{pmatrix} e & 1 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix}.$

0.00

4.75

Which of the following statements are true?

- 1. The algebraic multiplicity of e in A is 5.
- 2. A is not diagonalisable.
- 3. The geometric multiplicity of e in A is 3.
- 4. The geometric multiplicity of *e* in *A* is 2.

मानें कि A एक 5×5 ब्लॉक विकर्ण आव्यूह है जिसके विकर्ण ब्लॉक

$$\begin{pmatrix} e & 1 \\ 0 & e \end{pmatrix}, \qquad \begin{pmatrix} e & 1 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix} \stackrel{*}{\xi} I$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- A में e की बीजगणितीय बहुकता 5 है।
- A विकर्णनीय नहीं है।
- 3. A में e की ज्यामितीय बहुकता 3 है।
- A में e की ज्यामितीय बहुकता 2 है।

A1 :

42...

A2 :

ige: [54	CS CS	IR-NET Ju	ine 20
	$\begin{bmatrix} 2 \\ A3 \end{bmatrix}$		
	A3 3 :		
	3		
	A4 4		
	4		
Iultiple Resp	onse		
6 704076	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation satisfying $T^3 - 3T^2 = -2I$, where $I: \mathbb{R}^3 \to \mathbb{R}^3$ is the identity transformation . Which of the following statements are true?	4.75	0.00
	1. \mathbb{R}^3 must admit a basis \mathcal{B}_1 such that the matrix of T with respect to \mathcal{B}_1 is symmetric.		
	2. \mathbb{R}^3 must admit a basis \mathcal{B}_2 such that the matrix of T with respect to \mathcal{B}_2 is upper triangular.		
	3. \mathbb{R}^3 must contain a non-zero vector v such that $Tv = v$.		
	4. \mathbb{R}^3 must contain two linearly independent vectors v_1 , v_2 such that $Tv_1=v_1$ and $Tv_2=v_2$.		
	मानें कि $T: \mathbb{R}^3 \to \mathbb{R}^3$ एक रैंखिक रूपांतरण है जो $T^3 - 3T^2 = -2I$ को संतुष्ट करता है,		
	जहां $I: \mathbb{R}^3 \to \mathbb{R}^3$ तत्समक रूपांतरण है। निम्न में से कौन से वक्तव्य सत्य हैं?		
	$1.$ \mathbb{R}^3 के लिए ऐसा आधार \mathcal{B}_1 होना ही चाहिए कि \mathcal{B}_1 के सापेक्ष T का आव्यूह समित हो।		
	2. \mathbb{R}^3 के लिए एक ऐसा आधार \mathcal{B}_2 होना ही चाहिए कि		
	\mathcal{B}_2 के सापेक्ष T का आव्यूह उपरि त्रिभुजीय हो ।		
	3. \mathbb{R}^3 में ऐसा शून्येत्तर सिंदश v होना ही चाहिए कि $Tv=v$ हो।		
	4. \mathbb{R}^3 मे दो रैखिकतः स्वतंत्र सिदश v_1,v_2 ऐसे होने ही चाहिए कि $Tv_1=v_1$ तथा		
	$Tv_2 = v_2 \in \mathbb{N}$ $\begin{bmatrix} A1 \\ 1 \\ A2 \\ 2 \end{bmatrix}$		
	A4		
	4		
Iultiple Resp		4.75	0.00
II.			

0.00

Let V be an inner product space and let $v_1, v_2, v_3 \in V$ be an orthogonal set of vectors. Which of the following statements are true?

- 1. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ can be extended to a basis of V.
- 2. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ can be extended to an orthogonal basis of V.
- 3. The vectors $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $2v_1 + v_2 + 3v_3$ can be extended to a basis of V.
- 4. The vectors $v_1 + v_2 + 2v_3$, $2v_1 + v_2 + v_3$, $2v_1 + v_2 + 3v_3$ can be extended to a basis of V.

मार्ने कि V आंतर गुणन समष्टि है तथा $v_1, v_2, v_3 \in V$ सिंदशों का एक लांबिक समुच्चय है। निम्न वक्तर्व्यों में से कौन से सत्य हैं?

- 1. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है ।
- 2. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $v_2 + 3v_3$ को V के एक लांबिक आधार तक विस्तारित किया जा सकता है ।
- 3. सिंदिश $v_1 + v_2 + 2v_3$, $v_2 + v_3$, $2v_1 + v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है ।
- 4. सिंदश $v_1 + v_2 + 2v_3$, $2v_1 + v_2 + v_3$, $2v_1 + v_2 + 3v_3$ को V के एक आधार तक विस्तारित किया जा सकता है।

A1 1: 1 A2 2: 2 A3 3: 3

Multiple Response

78 704078

Consider the following quadratic forms over \mathbb{R}

- (a) $6X^2 13XY + 6Y^2$,
- (b) $X^2 XY + 2Y^2$.
- (c) $X^2 XY 2Y^2$.

- 1. Quadratic forms (a) and (b) are equivalent.
- 2. Quadratic forms (a) and (c) are equivalent.
- 3. Quadratic form (*b*) is positive definite.
- 4. Quadratic form (*c*) is positive definite.

ℝ पर निम्न द्विघात रूपों पर विचार करें

- (a) $6X^2 13XY + 6Y^2$,
- (b) $X^2 XY + 2Y^2$,
- (c) $X^2 XY 2Y^2$.

निम्न वक्तव्यों में से कौन से सत्य हैं?

- द्विघात रूप (a) तथा (b) तुल्य है।
- 2. द्विघात रूप (a) तथा (c) तुल्य है।
- 3. द्विघात रूप (b) धनात्मक निश्चत है।
- 4. द्विघात रूप (c) धनात्मक निश्चत है।

A1 :

A2 2

.

A3 :

3

A4 :

Multiple Response

79 704079

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ be the open unit disc and $\mathcal C$ the positively oriented boundary $\{|z|=1\}$. Fix a finite set $\{z_1,z_2,...,z_n\}\subseteq\mathbb{D}$ of distinct points and consider the polynomial

$$g(z) = (z - z_1)(z - z_2) \cdots (z - z_n)$$

of degree n. Let f be a holomorphic function in an open neighbourhood of $\overline{\mathbb{D}}$ and define

$$P(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} f(\zeta) \frac{g(\zeta) - g(z)}{(\zeta - z)g(\zeta)} \ d\zeta.$$

Which of the following statements are true?

- 1. P is a polynomial of degree n
- 2. P is a polynomial of degree n-1
- 3. *P* is a rational function on \mathbb{C} with poles at $z_1, z_2, ..., z_n$
- 4. $P(z_i) = f(z_i)$ for i = 1, 2, ..., n.

4.75

0.00

मानें कि $\mathbb{D} = \{z \in \mathbb{C}: |z| < 1\}$ एक विवृत्त एकक डिस्क है तथा C धनात्मकत: अभिविन्यस्त सीमा $\{|z|=1\}$ है । भिन्न बिंदुओं का परिमित समुच्चय $\{z_1,z_2,...,z_n\}\subseteq \mathbb{D}$ तय करें तथा कोटि n के निम्न बहुपद पर विचार करें

$$g(z) = (z - z_1)(z - z_2) \cdots (z - z_n).$$

मानें कि $\overline{\mathbb{D}}$ के विविक्त परिवेश में कोई पूर्ण सममितक (holomorphic) f है तथा परिभाषित करें

$$P(z) = \frac{1}{2\pi i} \int_{\zeta} f(\zeta) \frac{g(\zeta) - g(z)}{(\zeta - z)g(\zeta)} d\zeta.$$

निम्न वक्तव्यों में से कौन से सत्य हैं ?

- P एक बहुपद है जिसकी कोटि n है।
- P एक बहुपद है जिसकी कोटि n-1 है।
- P एक परिमेय फलन है जो $\mathbb C$ पर है तथा उसके ध्रुव $z_1,z_2,...,z_n$ हैं।
- j = 1, 2, ..., n के लिए $P(z_i) = f(z_i)$ हैं।

A3

3

Multiple Response

704080

Let $D = \{z \in \mathbb{C}: |z| < 1\}$. Consider the following statements.

- (a). $f: D \to D$ be a holomorphic function. Suppose α, β are distinct complex numbers in D such that $f(\alpha) = \alpha$ and $f(\beta) = \beta$. Then f(z) = z for all $z \in D$.
- (b). There does not exist a bijective holomorphic function from *D* to the set of all complex numbers whose imaginary part is positive.
- (c). $f: D \to D$ be a holomorphic function. Suppose $\alpha \in D$ be such that $f(\alpha) = \alpha$ and $f'(\alpha) = 1$. Then f(z) = z for all $z \in D$.

Which of the following options are true?

- (a), (b) and (c) are all true.
- 2. (a) is true.
- Both (a) and (b) are false.
- Both (a) and (c) are true.

मार्ने कि $D=\{z\in\mathbb{C}\colon |z|<1\}$ है। निम्न वक्तव्यों पर विचार करें

- (a). $f:D\to D$ एक वैश्लेषिक फलन (holomorphic function) मानें। α,β को D में भिन्न सम्मिश्र संख्यायें ऐसे मानें कि $f(\alpha)=\alpha$ तथा $f(\beta)=\beta$ है। तब सभी $z\in D$ के लिए f(z)=z है।
- (b). D से सभी सम्मिश्र संख्यायें, जिनके अधिकल्पित भाग धनात्मक हैं, के समुच्चय पर कोई एकाकी आच्छादी वैश्लेषिक फलन (holomorphic function) नहीं है।
- (c). $f:D\to D$ को वैश्लेषिक फलन (holomorphic function) मार्ने। मार्ने कि $\alpha\in D$ ऐसा है कि $f(\alpha)=\alpha$ तथा $f'(\alpha)=1$ हैं, तब सब $z\in D$ के लिए f(z)=z होता है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. (a), (b) तथा (c) सब सत्य हैं।
- 2. (a) सत्य है।
- 3. (a) तथा (b) दोनों असत्य हैं।
- 4. (a) तथा (c) दोनों सत्य हैं।

A1 : 1

A2 :

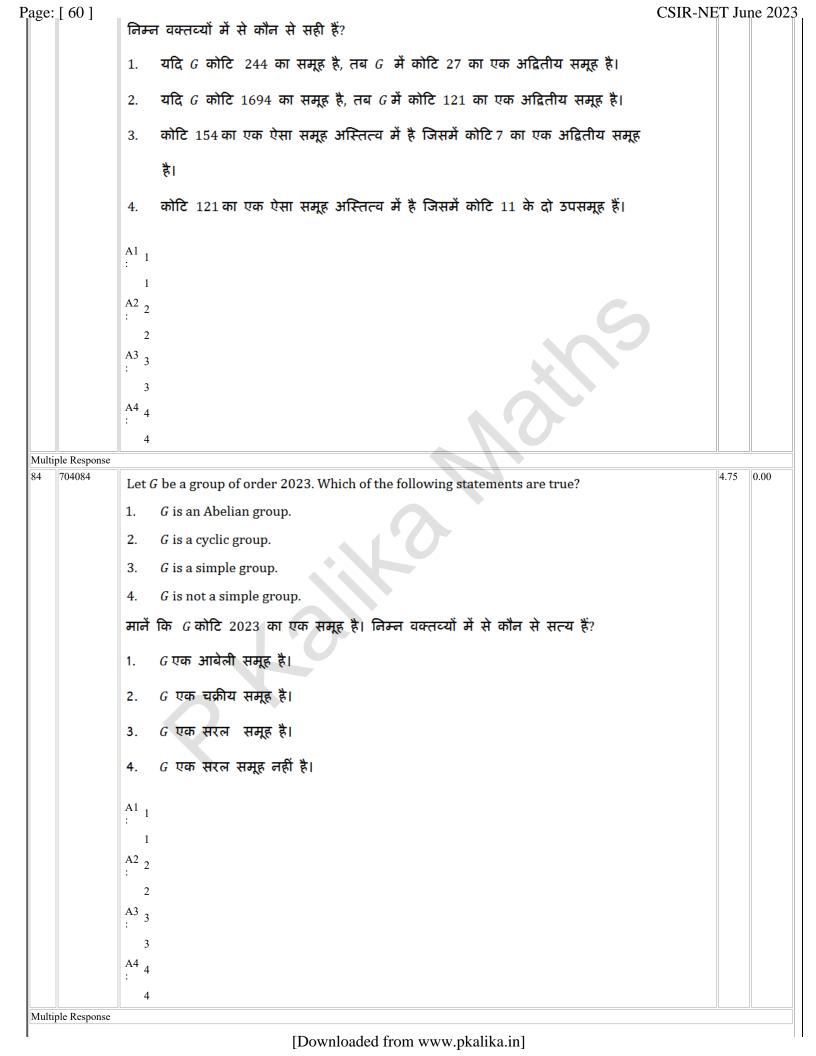
3

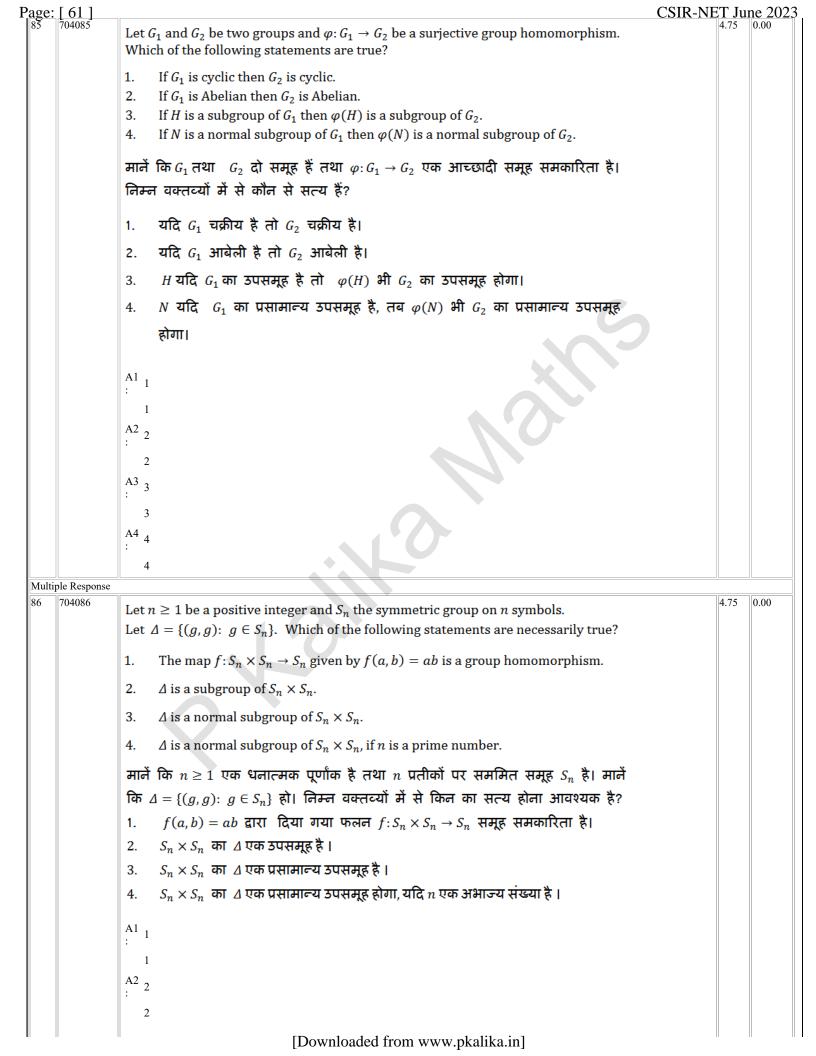
A4 :

•

Multiple Response

81 704081


Let $f:\{z:|z|<1\}\to\{z:|z|\leq 1/2\}$ be a holomorphic function such that f(0)=0. Which of the following statements are true?


- 1. $|f(z)| \le |z|$ for all z in $\{z: |z| < 1\}$.
- 2. $|f(z)| \le \left|\frac{z}{z}\right|$ for all z in $\{z: |z| < 1\}$
- 3. $|f(z)| \le 1/2$ for all z in $\{z: |z| < 1\}$
- 4. It is possible that f(1/2) = 1/2.

मार्ने कि $f:\{z:|z|<1\}\to\{z:|z|\leq 1/2\}$ एक वैश्लेषिक फलन (holomorphic function) इस प्रकार है कि f(0)=0 है। निम्न वक्तर्व्यों में से कौन सा सत्य है?

- 1. $\{z: |z| < 1\}$ के सब z के लिए $|f(z)| \le |z|$ है।
- 2. $\{z:|z|<1\}$ के सब z के लिए $|f(z)|\leq \left|\frac{z}{2}\right|$ है।
- 3. $\{z: |z| < 1\}$ के सब z के लिए $|f(z)| \le 1/2$ है।
- 4. यह संभव है कि f(1/2) = 1/2 हो।

age: [59]		CSIR-NET .	June 20
Multiple Response 704082	A1 1	A.75	
Multiple Response 83 704083	Which of the following statements are correct? 1. If G is a group of order 244, then G contains a unique subgroup of order 27. 2. If G is a group of order 1694, then G contains a unique subgroup of order 121. 3. There exists a group of order 154 which contains a unique subgroup of order 7. 4. There exists a group of order 121 which contains two subgroups of order 11.	4.75	5 0.00

ige: [62]		IR-NET Ju	ine 2
	$\begin{bmatrix} A3 \\ \vdots \end{bmatrix}$ 3		
	3		
	A4 ₄		
Multiple Respons	se		
7 704087	Which of the following are maximal ideals of $\mathbb{Z}[X]$?	4.75	0.00
	1. Ideal generated by 2 and $(1 + X^2)$		
	2. Ideal generated by 2 and $(1 + X + X^2)$		
	3. Ideal generated by 3 and $(1 + X^2)$		
	4. Ideal generated by 3 and $(1 + X + X^2)$		
	निम्न में से कौन से $\mathbb{Z}[X]$ की विशिष्ठ गुणजावली (maximal idal) हैं?		
	$1. 2$ तथा $(1 + X^2)$ द्वारा जिनत गुणजावली		
	2. 2 तथा $(1+X+X^2)$ द्वारा जिनत गुणजावली		
	 3. 3 तथा (1+X²) द्वारा जिनत गुणजावली 		
	4. 3 तथा (1 + X + X²) द्वारा जिनत गुणजावली		
	A1 1		
	$\begin{vmatrix} A2 \\ \vdots \end{vmatrix}$ 2		
	2		
	A3 3		
	3		
	A4 ₄		
	4		
Multiple Respons			
704088	Let E be a finite algebraic Galois extension of F with Galois group G . Which of the following statements are true?	4.75	0.00
	1. There is an intermediate field K with $K \neq F$ and $K \neq E$ such that K is a Galois extension of F .		
	2. If every proper intermediate field K is a Galois extension of F then G is Abelian.		
	3. If E has exactly three intermediate fields including F and E then G is Abelian.		
	4. If $[E:F] = 99$ then every intermediate field is a Galois extension of F		
	E को F का गाल्वा समूह G के साथ परिमित बीजगणतीय गाल्वा विस्तार मानें। निम्न		
	वक्तव्यों में से कौन से सत्य हैं?		
	1. कोई एक ऐसा माध्यमिक क्षेत्र K है जिसके लिए $K \neq F$ तथा $K \neq E$ है एवं वह F		
	का गाल्वा विस्तार है।		
	2. हर उचित माध्यमिक क्षेत्र K यदि F का गाल्वा विस्तार है तो G आबेली है।		
	3. यदि F तथा E को मिलाकर E के यथायथ तीन माध्यमिक क्षेत्र हों तब G आबेली है।		
	4. यदि $[E:F]=99$ है तब हर माध्यमिक क्षेत्र F का गाल्वा विस्तार है।		
	[Downloaded from www.pkalika.in]	II	П

Page:	[63]	CS	IR-NET Ju	ne 2023
		A1 1		
		$A2_2$		
		A3 3		
		•		
		$\begin{bmatrix} 3 \\ A4 \end{bmatrix}$		
		A4		
3.5.1.	. 1 . D	4		
Mult 89	iple Response		4.75	0.00
		Which of the following statements are correct?		
		1. The set of open right half-planes is a basis for the usual (Euclidean) topology on \mathbb{R}^2 .		
		 The set of lines parallel to Y-axis is a basis for the dictionary order topology on 		
		$\mathbb{R}^2.$		
		3. The set of open rectangles is a basis for the usual (Euclidean) topology on \mathbb{R}^2 .		
		4. The set of line segments (without end points) parallel to <i>Y</i> -axis is a basis for the		
		dictionary order topology on \mathbb{R}^2 .		
		निम्न कथनों में से कौन से सत्य हैं ?		
		1. विवृत दक्षिण अर्ध तलों का समुच्चय \mathbb{R}^2 पर साधारण (यूक्लिडीय) संस्थिति के		
		लिए एक आधार है।		
		2. Y -अक्ष के समांतर रेखाओं का समुच्चय \mathbb{R}^2 पर डिक्शनरी ऑर्डर संस्थिति के लिए		
		एक आधार है।		
		$3.$ विवृत्त आयतों का समुच्चय \mathbb{R}^2 पर साधारण (यूक्लिडीय) संस्थिति के लिए एक		
		आधार है।		
		4. Y -अक्ष के समांतर रेखा खंडो का समुच्चय (बिना अंत्य बिंदुओं के) \mathbb{R}^2 पर		
		डिक्शनरी ऑर्डर संस्थिति के लिए एक आधार है।		
		$\begin{vmatrix} A_1 \\ \vdots \end{vmatrix}$		
		1		
		A2 ₂		
		2		
		$\begin{bmatrix} A3 \\ \cdot \end{bmatrix}$		
		3		
		A4 4		
		: 		
Mult	iple Response			
90	704090		4.75	0.00

0.00

Let $X=\prod_{n=1}^{\infty}[0,1]$, that is, the space of sequences $\{x_n\}_{n\geq 1}$ with $x_n\in[0,1], n\geq 1$. Define the metric $d\colon X\times X\to[0,\infty)$ by

$$d(\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1}) = \sup_{n\geq 1} \frac{|x_n - y_n|}{2^n}.$$

Which of the following statements are true?

- 1. The metric topology on X is finer than the product topology on X.
- 2. The metric topology on X is coarser than the product topology on X.
- 3. The metric topology on X is same as the product topology on X.
- 4. The metric topology on X and the product topology on X are not comparable.

मानें कि $X=\prod_{n=1}^\infty[0,1]$, अर्थात अनुक्रमों $\{x_n\}_{n\geq 1}$ जहां $x_n\in[0,1], n\geq 1$, की समष्टि है। दूरीक $d\colon X\times X\to[0,\infty)$ निम्न द्वारा परिभाषित करें

$$d(\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1}) = \sup_{n\geq 1} \frac{|x_n - y_n|}{2^n}.$$

निम्न वक्यव्यों में से कौन से सत्य हैं?

- X पर दूरीक संस्थिति, X पर गुणन संस्थिति से सूक्ष्तमतर है।
- 2. X पर दूरीक संस्थिति, X पर गुणन संस्थिति की तुलना में अधिक स्थूल है।
- 3. X पर दूरीक संस्थिति, X पर गुणन संस्थिति के बराबर है।
- 4. X पर दूरीक संस्थिति, X पर गुणन संस्थिति के तुल्य नहीं है।

A1 :

A2 ,

.

A3 :

. .

A4 :

Multiple Response

91 704091

Let $f \in \mathcal{C}^1(\mathbb{R})$ be bounded. Let us consider the initial-value problem

$$(P) \quad \begin{cases} x'(t) = & f(x(t)), \ t > 0, \\ x(0) = & 0. \end{cases}$$

- 1. (P) has solution(s) defined for all t > 0.
- 2. (P) has a unique solution.
- 3. (P) has infinitely many solutions.
- 4. The solution(s) of (P) is/are Lipschitz.

0.00

मानें कि $f \in \mathcal{C}^1(\mathbb{R})$ परिबद्ध है। निम्न प्रारंभिक मान समस्या पर विचार करें

(P)
$$\begin{cases} x'(t) = f(x(t)), t > 0, \\ x(0) = 0. \end{cases}$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. (P) का सभी t>0 के लिए हल परिभाषित हैं।
- 2. (P) का अद्वितीय हल है।
- (P) के अनंत हल हैं।
- 4. (P) का/ के हल लिपशिट्ज है/हैं।

A1 : 1

. .

A2 2

2

 $^{A3}_{3}$

3

A4

Multiple Response

92 704092

Consider the following initial value problem (IVP),

$$\frac{du}{dt}=t^2u^{\frac{1}{5}},\quad u(0)=0.$$

Which of the following statements are correct?

- 1. The function $g(t, u) = t^2 u^{\frac{1}{5}}$ does not satisfy the Lipschitz's condition with respect to u in any neighbourhood of u = 0.
- 2. There is no solution for the IVP.
- There exist more than one solution for the IVP.
- 4. The function $g(t,u)=t^2u^{\frac{1}{5}}$ satisfies the Lipschitz's condition with respect to u in some neighbourhood of u=0 and hence there exists a unique solution for the IVP

निम्न प्रारंभिक मान समस्या पर विचार करें

$$\frac{du}{dt} = t^2 u^{\frac{1}{5}}, \quad u(0) = 0.$$

निम्न वक्तव्यों में से कौन से सही हैं ?

- 1. u=0 के किसी भी प्रतिवेश में u के सापेक्ष फलन $g(t,u)=t^2u^{\frac{1}{5}}$ लिपशिट्ज प्रतिबंध को संतुष्ट नहीं करता।
- 2. प्रांरभिक मान समस्या का कोई हल नहीं है।
- 3. प्रारंभिक मान समस्या के लिए एक से अधिक हल हैं।
- 4. u=0 के किसी प्रतिवेश में u के सापेक्ष फलन $g(t,u)=t^2u^{\frac{1}{5}}$ लिपशिट्ज प्रतिबंध को संतुष्ट करता है तथा इसलिए प्रारंभिक मान समस्या के लिए एक अद्वितीय हल है।

Page	e: [66]		CSIR-NET J	une 2023
		1		
		A2 2		
		A3 3		
\	#: 1 P	4		
93	tiple Response 704093	Let us consider the following two initial value problems	4.75	0.00
		$(P) \begin{cases} x'(t) = \sqrt{x(t)}, t > 0, \\ x(0) = 0, \end{cases}$		
		and		
		$(Q) \begin{cases} y'(t) = -\sqrt{y(t)}, t > 0, \\ y(0) = 0. \end{cases}$		
		Which of the following statements are true?		
		1. (P) has a unique solution in $[0, \infty)$.		
		2. (Q) has a unique solution in $[0, \infty)$.		
		 3. (P) has infinitely many solutions in [0, ∞). 4. (Q) has infinitely many solutions in [0, ∞). 		
		निम्न दो प्रारंभिक मान समस्याओं पर विचार करें		
		$(P) \begin{cases} x'(t) = \sqrt{x(t)}, t > 0, \\ x(0) = 0, \end{cases}$		
		तथा		
		$(v'(t) = -\sqrt{v(t)}, t > 0)$		
		$(Q) \begin{cases} y'(t) = -\sqrt{y(t)}, t > 0, \\ y(0) = 0. \end{cases}$		
		निम्न वक्तव्यों में से कौन से सत्य हैं?		
		 (P) का [0,∞) में अद्वितीय हल है। 		
		 (Q) का [0,∞) में अद्वितीय हल है। 		
		 (P) के [0,∞) में अनंत हल हैं। 		
		 (Q) के [0,∞) में अनंत हल हैं। 		
		1. (Q) 4. [0, 1-) of older (A)		
		A1 1		
		1		
		A2 2		
		A3 3		
		-		
		[Downloaded from www.pkalika.in]		

Let u = u(x, y) be the solution to the following Cauchy problem

$$u_x+u_y=e^u\quad\text{for }(x,y)\in\mathbb{R}\times\left(0,\frac{1}{e}\right)\quad\text{and}\quad u(x,0)=1\quad\text{for }x\in\mathbb{R}.$$

Which of the following statements are true?

1.
$$u(\frac{1}{2e}, \frac{1}{2e}) = 1$$

2.
$$u_x(\frac{1}{2e},\frac{1}{2e})=0$$

3.
$$u_y(\frac{1}{4e}, \frac{1}{4e}) = \log 4$$

4.
$$u_y(0, \frac{1}{4e}) = \frac{4e}{3}$$

मानें कि u=u(x,y) निम्न कौशी समस्या का हल है:

$$(x,y)\in\mathbb{R} imes\left(0,rac{1}{e}
ight)$$
 के लिए $u_x+u_y=e^u$ तथा $x\in\mathbb{R}$ के लिए $u(x,0)=1$ है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$u(\frac{1}{2e}, \frac{1}{2e}) = 1$$

2.
$$u_x(\frac{1}{2e}, \frac{1}{2e}) = 0$$

3.
$$u_y(\frac{1}{4e}, \frac{1}{4e}) = \log 4$$

4.
$$u_y(0, \frac{1}{4e}) = \frac{4e}{3}$$

A1 :

. .

: 2

.

A3 3

3

A4 2

Multiple Response

96 704096

Consider the following two sequences $\{a_n\}$ and $\{b_n\}$ given by

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n},$$
 $b_n = \frac{1}{n}.$

- 1. $\{a_n\}$ converges to log 2, and has the same convergence rate as the sequence $\{b_n\}$.
- 2. $\{a_n\}$ converges to log 4, and has the same convergence rate as the sequence $\{b_n\}$.
- 3. $\{a_n\}$ converges to log 2, but does not have the same convergence rate as the sequence $\{b_n\}$.
- 4. $\{a_n\}$ does not converge.

निम्न द्वारा दिये गए दो अनुक्रमों $\{a_n\}$ तथा $\{b_n\}$ पर विचार करें

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n},$$

 $b_n = \frac{1}{n}.$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. $\{a_n\}$ अभिसरित हो जाता है $\log 2$ में, तथा उतनी ही अभिसरण दर से जितनी अनुक्रम $\{b_n\}$ की है ।
- {a_n} अभिसरित हो जाता है log 4 में, तथा उतनी ही अभिसरण दर से जितनी अनुक्रम {b_n} की है।
- 3. $\{a_n\}$ अभिसरित हो जाता है $\log 2$ में, लेकिन अभिसरण दर अनुक्रम $\{b_n\}$ जितनी नहीं है।
- 4. $\{a_n\}$ अभिसरित नहीं होता है।

A1 : 1
A2 : 2

A3 :

3 A4 :

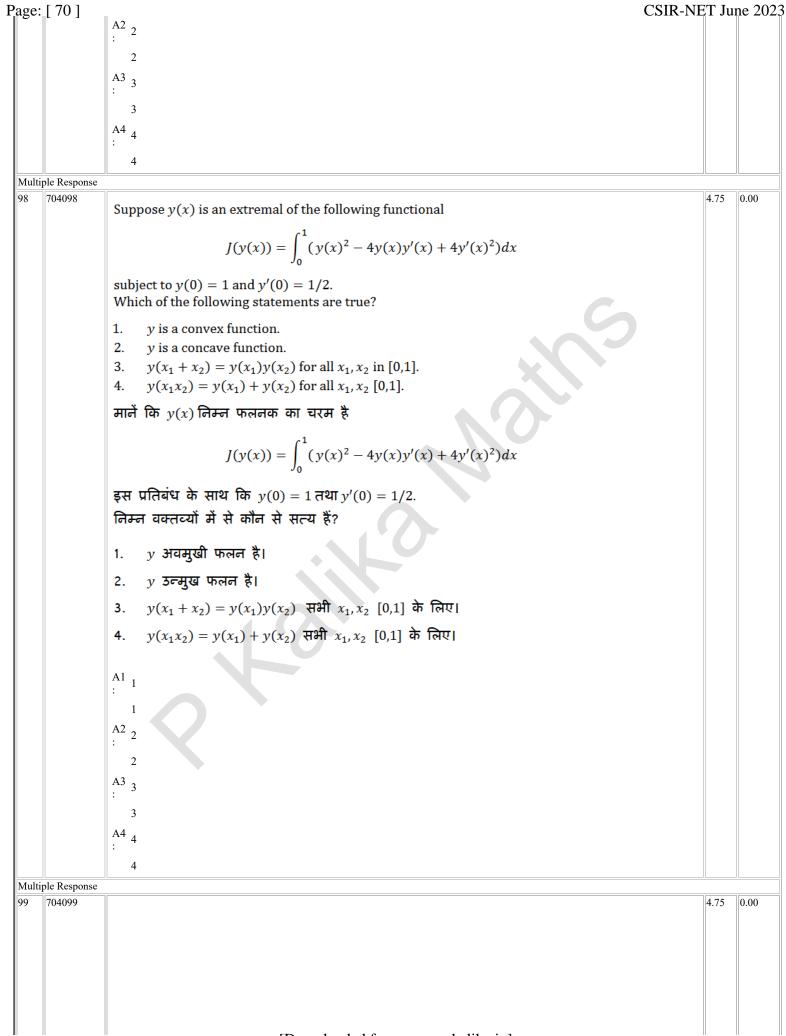
Multiple Response

97 704097

Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \frac{1}{4} + x - x^2$. Given $a \in \mathbb{R}$, let us define the sequence $\{x_n\}$ by $x_0 = a$ and $x_n = f(x_{n-1})$ for $n \ge 1$.

Which of the following statements are true?

- 1. If a = 0, then the sequence $\{x_n\}$ converges to $\frac{1}{3}$.
- 2. If a = 0, then the sequence $\{x_n\}$ converges to $-\frac{1}{2}$
- 3. The sequence $\{x_n\}$ converges for every $a \in \left(-\frac{1}{2}, \frac{3}{2}\right)$, and it converges to $\frac{1}{2}$.
- 4. If a = 0, then the sequence $\{x_n\}$ does not converge.


 $f:\mathbb{R}\to\mathbb{R}$ को $f(x)=rac{1}{4}+x-x^2$ द्वारा परिभाषित करें। किसी भी $a\in\mathbb{R}$ के लिए अनुक्रम $\{x_n\}$ को ऐसे परिभाषित करें कि $x_0=a$ तथा $n\geq 1$ के लिए $x_n=f(x_{n-1})$ है।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. यदि a=0 है, तब अनुक्रम $\{x_n\}$ का अभिसरण $\frac{1}{2}$ में होता है।
- 2. यदि a=0 है, तब अनुक्रम $\{x_n\}$ का अभिसरण $-\frac{1}{2}$ में होता है ।
- 3. सभी $a \in \left(-\frac{1}{2}, \frac{3}{2}\right)$ के लिए अनुक्रम $\{x_n\}$ का अभिसरण होता है तथा यह $\frac{1}{2}$ में अभिसरित होता है।
- 4. यदि a=0 है, तब अनुक्रम $\{x_n\}$ अभिसरित नहीं होता है।

A1 : 1

1

Let y(x) and z(x) be the stationary functions (extremals) of the variational problem

$$J(y(x), z(x)) = \int_0^1 [(y')^2 + (z')^2 + y'z'] dx$$

subject to y(0) = 1, y(1) = 0, z(0) = -1, z(1) = 2.

Which of the following statements are correct?

- 1. z(x) + 3y(x) = 2 for $x \in [0,1]$.
- 2. 3z(x) + y(x) = 2 for $x \in [0,1]$.
- 3. y(x) + z(x) = 2x for $x \in [0,1]$.
- 4. y(x) + z(x) = x for $x \in [0,1]$.

मार्ने कि y(x) तथा z(x) निम्न विचरणात्मक समस्या के स्तब्ध फलन (चरम) हैं

$$J(y(x), z(x)) = \int_0^1 [(y')^2 + (z')^2 + y'z'] dx$$

इस प्रतिबंध के साथ कि y(0) = 1, y(1) = 0, z(0) = -1, z(1) = 2 हैं।

निम्न वक्तव्यों में से कौन से सही हैं?

- 1. $x \in [0,1]$ के लिए z(x) + 3y(x) = 2
- 2. $x \in [0,1]$ के लिए 3z(x) + y(x) = 2
- 3. $x \in [0,1]$ के लिए y(x) + z(x) = 2x
- 4. $x \in [0,1]$ के लिए y(x) + z(x) = x
- A1 :
- 1
- A2 2
- 2
- A3 :
- 3
- A4

Multiple Response
100 | 704100

Let $\lambda_1 < \lambda_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \, \varphi(t) \, dt;$$

and let $\mu_1 < \mu_2$ be two real characteristic numbers for the following homogeneous integral equation:

$$\psi(x) = \mu \int_0^{\pi} \cos(x+t) \, \psi(t) \, \mathrm{d}t.$$

Which of the following statements are true?

- 1. $\mu_1 < \lambda_1 < \lambda_2 < \mu_2$
- $2. \qquad \lambda_1 < \mu_1 < \mu_2 < \lambda_2$
- 3. $|\mu_1 \lambda_1| = |\mu_2 \lambda_2|$
- 4. $|\mu_1 \lambda_1| = 2|\mu_2 \lambda_2|$

4.75

मार्ने कि $\lambda_1 < \lambda_2$ निम्नलिखित समघात समाकल समीकरण के लिए दो अभिलक्षणिक संख्यार्ये हैं

$$\varphi(x) = \lambda \int_0^{2\pi} \sin(x+t) \, \varphi(t) \, \mathrm{d}t;$$

तथा मानें कि $\mu_1 < \mu_2$ निम्नलिखित समघात समाकल समीकरण के लिए दो वास्तिवक अभिलक्षणिक संख्यायें हैं

$$\psi(x) = \mu \int_0^{\pi} \cos(x+t) \, \psi(t) \, \mathrm{d}t.$$

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. $\mu_1 < \lambda_1 < \lambda_2 < \mu_2$
- 2. $\lambda_1 < \mu_1 < \mu_2 < \lambda_2$
- 3. $|\mu_1 \lambda_1| = |\mu_2 \lambda_2|$
- 4. $|\mu_1 \lambda_1| = 2|\mu_2 \lambda_2|$

A1 : 1

.

A2 2

2

A3 3

. .

:

Multiple Response

101 704101

Let $K \in C([0,1] \times [0,1])$ satisfy |K(x,y)| < 1 for all $x,y \in [0,1]$. For every $g \in C[0,1]$, let us consider the integral equation

$$(P_g)$$
 $f(x) + \int_0^1 K(x, y) f(y) dy = g(x)$, for all $x \in [0,1]$.

Which of the following statements are true?

- 1. there exists a $g \in C[0,1]$ for which (P_g) has no solution in C[0,1].
- 2. (P_g) has a solution in C[0,1] for infinitely many $g \in C[0,1]$.
- 3. the solution of (P_g) in C[0,1] is unique if $g \in C^1[0,1]$.
- 4. there exists a $g \in C[0,1]$ for which (P_g) has infinitely many solutions in C[0,1].

मानें कि $K \in C([0,1] \times [0,1])$ सब $x,y \in [0,1]$ के लिए |K(x,y)| < 1 को संतुष्ट करता है। प्रत्येक $g \in C[0,1]$ के लिए, निम्न समाकल समीकरण पर विचार करें

$$(P_g)$$
 $f(x) + \int_0^1 K(x, y) f(y) dy = g(x)$, सभी $x \in [0,1]$ के लिए।

निम्न वक्तव्यों में से कौन से सत्य हैं?

- 1. ऐसे $g \in C[0,1]$ का अस्तित्व है जिसके लिए C[0,1] में (P_g) का कोई हल नहीं है।
- 2. अनंततः बह् $g \in C[0,1]$ के लिए (P_q) का C[0,1] में हल है।
- 3. यदि $g \in C^1[0,1]$ है, तब (P_q) का C[0,1] में हल अद्वितीय है।
- 4. ऐसा $g \in C[0,1]$ का अस्तित्व है जिसके लिए C[0,1] में (P_g) के अनंत हल हैं।

Page:	[73]		CSIR-NET J	June	e 202
		A1 1			
		· 1			
		$\begin{bmatrix} A2 & 2 \end{bmatrix}$			
		·			
		A3 ₃			
		3			
		\parallel A4 $_A$			
		4			
Multi 102	iple Response		4.75	; (0.00
102	704102	A point particle having unit mass is moving in x , y plane having the Lagrangian as follows	4.73	, (7.00
		$L = \dot{x}\dot{y} - 2x^2 - 2y^2.$			
		What are the possible values of p_r (conjugate momentum to radial coordinate in plane polar coordinate)?			
		1. \dot{r}			
		2. $\dot{r}\sin 2\theta + r\dot{\theta}\cos 2\theta$			
		3. $\dot{r}\sin\theta + r\dot{\theta}\cos\theta$			
		4. $2\dot{r}\sin\theta + r\dot{\theta}\cos\theta$			
		इकाई द्रव्यमान वाले, x-y तल में गतिमान एक बिंदु कण का लग्रांजी (Lagrangian)			
		निम्नवत है			
		$L = \dot{x}\dot{y} - 2x^2 - 2y^2.$			
		p_r (समतल धुवी निर्देशांक में संयुग्मी संवेग से त्रिज्य निर्देशांक) के सम्भव मान क्या हैं?			
		1.			
		2. $\dot{r}\sin 2\theta + r\dot{\theta}\cos 2\theta$			
		3. $\dot{r}\sin\theta + r\dot{\theta}\cos\theta$			
		4. $2\dot{r}\sin\theta + r\dot{\theta}\cos\theta$			
		Al 1			
		A2 2			
		2			
		3			
		4			
	iple Response				
103	704103	Suppose $X_1, X_2,$ are independent and identically distributed $N(0,1)$ random variables and $Y_n = X_1^4 + X_2^4 + \cdots + X_n^4$. Which of the following probabilities converge to $\frac{1}{2}$ as $n \to \infty$?	4.75	5 0	0.00
		1. $\mathbb{P}\{Y_n \in [0,2n]\}$			
		2. $\mathbb{P}\{Y_n \in [0, 2n]\}$			
		3. $\mathbb{P}\{Y_n \in [2n, 4n]\}$			
		$4. \qquad \mathbb{P}\{Y_n \in [3n, 5n]\}$			
# I	11	Downloaded from www. pkelike in	II.	- 11	

[Downloaded from www.pkalika.in]

ge: [74]		CSIR-NET J	ine 20
	मानें कि X_1, X_2, \dots स्वतंत्र तथा सर्वथा समतः बंटित $N(0,1)$ याद्दच्छिक चर हैं एवं		
	$Y_n = X_1^4 + X_2^4 + \dots + X_n^4$ है। निम्न में से कौन सी प्रायिकतायें $n \to \infty$ के साथ $\frac{1}{2}$ को		
	अभिसरित होती हैं?		
	1. $\mathbb{P}\{Y_n \in [0,2n]\}$		
	2. $\mathbb{P}\{Y_n \in [n, 3n]\}$		
	$3. \qquad \mathbb{P}\{Y_n \in [2n, 4n]\}$		
	$4. \qquad \mathbb{P}\{Y_n \in [3n, 5n]\}$		
	A1 1		
	·		
	$\begin{bmatrix} 1 \\ A2 \\ 2 \end{bmatrix}$		
	·		
	2		
	A3 3		
	3		
	A4 4 :		
	4		
altiple Response		4.75	0.00
704104	Let A, B be two events in a discrete probability space with $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$. Which of the following are necessarily true?	4.73	0.00
	1. If $\mathbb{P}(A \mid B) = 0$ then $\mathbb{P}(B \mid A) = 0$. 2. If $\mathbb{P}(A \mid B) = 1$ then $\mathbb{P}(B \mid A) = 1$.		
	3. If $\mathbb{P}(A \mid B) > \mathbb{P}(A)$ then $\mathbb{P}(B \mid A) > \mathbb{P}(B)$.		
	4. If $\mathbb{P}(A \mid B) > \mathbb{P}(B)$ then $\mathbb{P}(B \mid A) > \mathbb{P}(A)$.		
	मानें कि A,B वियुक्त प्रायिकता समिष्ट में से दो घटनायें हैं जहां $\mathbb{P}(A)>0$ तथा		
	$\mathbb{P}(B)>0$ हैं। निम्न में से कौन से सही होने आवश्यक हैं?		
	1. यदि $\mathbb{P}(A \mid B) = 0$ है तब $\mathbb{P}(B \mid A) = 0$ है।		
	2. यदि $\mathbb{P}(A \mid B) = 1$ है तब $\mathbb{P}(B \mid A) = 1$ है।		
	3. यदि $\mathbb{P}(A \mid B) > \mathbb{P}(A)$ है तब $\mathbb{P}(B \mid A) > \mathbb{P}(B)$ है।		
	4. यदि $\mathbb{P}(A \mid B) > \mathbb{P}(B)$ है तब $\mathbb{P}(B \mid A) > \mathbb{P}(A)$ है।		
	A1 1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	·		
	2		
	A3 3 :		
	3		
	A4 4 :		
	4		
altiple Response 704105		4.75	0.00
707103		4./3	0.00
	[Downloaded from www.pkalika.in]	II	

0.00

4.75

Let $n \geq 2$ be a positive integer. Consider a Markov chain on the state space $\{1,2,\cdots,n\}$ with a given transition probability matrix P. Let I_n denote the identity matrix of order n. Which of the following statements are necessarily true?

- 1. At least one state is recurrent.
- 2. At least one state is transient.
- 3. $-\frac{1}{3}I_n + \frac{4}{3}P$ is also a transition probability matrix of some Markov chain.
- 4. 5 is an eigenvalue of $I_n + 3P + P^2$.

मानें कि $n \geq 2$ एक धनात्मक पूर्णांक संख्या है। अवस्था समिष्ट $\{1,2,\cdots,n\}$ पर दिये गये संक्रमण प्रायिकता आव्यूह P वाली मार्कोव श्रृंखला पर विचार करें। मानें कि I_n कोटि n का तत्समक आव्यूह दर्शाता है। निम्न वक्तव्यों में से कौन से सत्य होने आवश्यक हैं?

- 1. कम से कम एक अवस्था पूनरावर्ती है।
- 2. कम से कम एक अवस्था क्षणिक है।
- 3. $-\frac{1}{3}I_n + \frac{4}{3}P$ किसी मार्कीव श्रृंखला का संक्रमण पर्यिकता आव्यूह भी है।
- 4. $I_n + 3P + P^2$ का एक अभिलक्षणिक मान 5 है।

A1 :

A2 ₂

2

A3 3

A4

:

Multiple Response

106 704106

Let X_i , for $i=1,2,...,2n, n \ge 1$, be independent random variables each distributed as N(0,1). Which of the following statements are correct?

1.
$$(X_1 + \dots + X_n - X_{n+1} - \dots - X_{2n})/2n \sim N(0,2)$$

2.
$$(X_1 - X_2)^2 + (X_3 - X_4)^2 + \dots + (X_{2n-1} - X_{2n})^2 \sim 2\chi_n^2$$

3.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{2}{\sqrt{\pi}}$$

4.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{4}{\sqrt{\pi}}$$

मानें कि $i=1,2,\dots,2n,\,n\geq 1$ के लिए X_i स्वतंत्र याद्दच्छिक चर हैं जहां प्रत्येक N(0,1) के अनुसार बंटित है। निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$(X_1 + \cdots + X_n - X_{n+1} - \cdots - X_{2n})/2n \sim N(0,2)$$

2.
$$(X_1 - X_2)^2 + (X_3 - X_4)^2 + \dots + (X_{2n-1} - X_{2n})^2 \sim 2\chi_n^2$$

3.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{2}{\sqrt{\pi}}$$

4.
$$E[max(|X_1|,|X_{n+1}|)] = \frac{4}{\sqrt{\pi}}$$

A1 1

age: [76]		CSIR-NET Ju	une 202
	A2 2		
	2		
	A3 3		
	A4 4		
	4		
Multiple Response		4.75	0.00
	Let a continuous random variable X follow $Uniform(-1,1)$. Define $Y=X^2$. Which of the following are NOT true for X and Y ?		
	 They are independent and uncorrelated. They are independent but correlated. 		
	 They are independent but correlated. They are not independent but correlated. 		
	4. They are neither independent nor correlated.		
	मानें कि कोई संतत याद्दिछक चर X $Uniform(-1,1)$ का अनुसरण करता है।		
	परिभाषित करें $Y=X^2$. निम्न में से कौन से X तथा Y के लिए सत्य नहीं हैं?		
	1. वे स्वतंत्र तथा असहसंबंधित हैं।		
	2. वे स्वतंत्र हैं परन्तु सहसंबंधित नहीं हैं।		
	3. वे स्वतंत्र नहीं हैं परंतु सहसंबंधित हैं।		
	4. वे न तो स्वतंत्र हैं न सहसंबधित हैं।		
	Al 1		
	A2 2		
	2		
	A3 3		
	3		
	A4 4		
	4		
Multiple Response			
704108	Let X and Y be independent Poisson random variables with parameters 2 and 3,	4.75	0.00
	respectively. Which of the following statements are correct?		
	1. $Var(X X+Y=2) = \frac{12}{25}$		
	2. $E\left(\frac{2}{1+X} X+Y=2\right) = \frac{98}{3}$		
	3. $P(X^2 = 0 X + Y = 2) = e^{-2} + \frac{9}{25}(1 - e^{-2})$		
	4. $X Y=3 \sim Binomial(3,2)$		
	[Downloaded from www.pkalike in]		

4.75

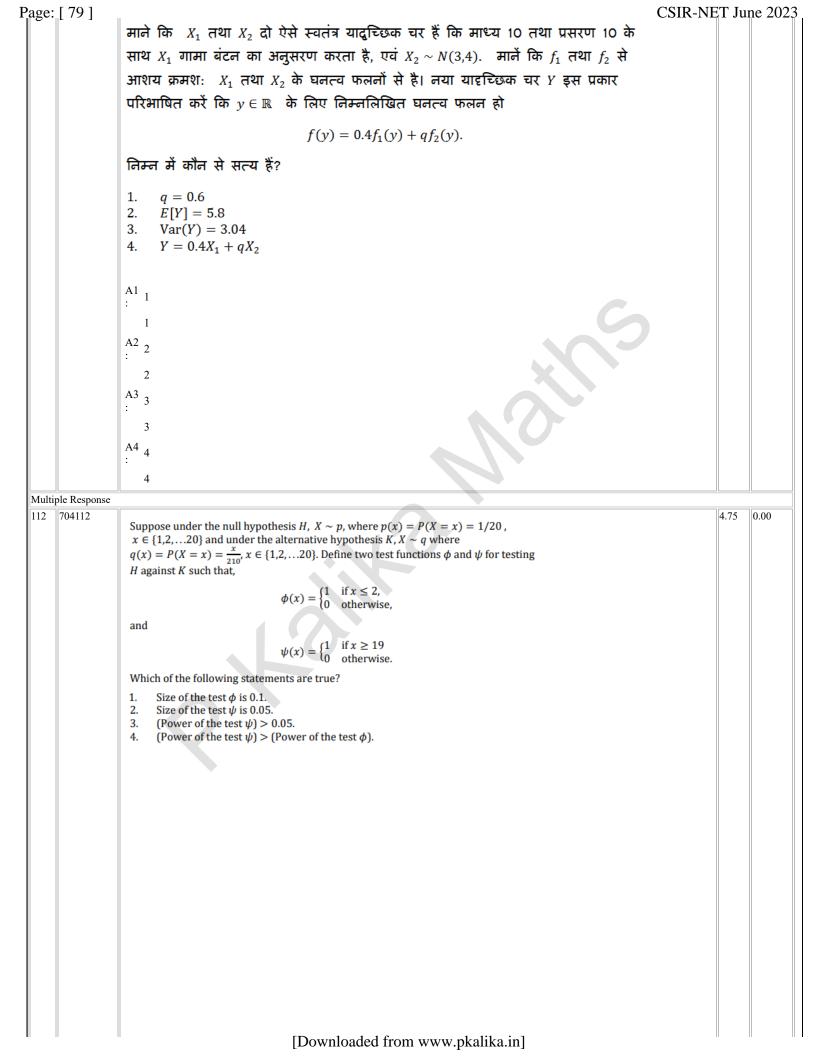
0.00

X तथा Y को क्रमशः 2 एवं 3 प्राचल वाला स्वतंत्र प्वासों याद्दच्छिक चर मानें। निम्न वक्तव्यों में से कौन से सही हैं?

- 1. $Var(X|X+Y=2) = \frac{12}{25}$
- 2. $E\left(\frac{2}{1+X}|X+Y=2\right) = \frac{98}{3}$
- 3. $P(X^2 = 0|X + Y = 2) = e^{-2} + \frac{9}{25}(1 e^{-2})$
- 4. $X|Y=3 \sim Binomial(3,2)$
- A1 : 1
 - 1
- A2 :
- 2
- A3 3
- 3
- A4 :
- Multiple Response

109 704109

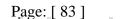
Let $\{X_i\colon 1\leq i\leq 2n\}$ be independently and identically distributed normal random variables with mean μ and variance 1, and independent of a standard Cauchy random variable W. Which of the following statistics are consistent for μ ?


- $1. \qquad n^{-1} \sum_{i=1}^n X_i,$
- 2. $n^{-1} \sum_{i=1}^{2n} X_i$
- 3. $n^{-1} \sum_{i=1}^{n} X_{2i-1}$,
- 4. $n^{-1}(\sum_{i=1}^{n} X_i + W)$.

मानें कि $\{X_i\colon 1\leq i\leq 2n\}$ माध्य μ तथा प्रसरण 1 वाले स्वतंत्र एवं सर्वथा समतः बंदित प्रसामान्य याद्दिछक चर हैं, एवं एक मानक कौशी याद्दिछक चर W से स्वतंत्र है। निम्न सांख्यिकी में से कौन से μ के लिए अविरोधी हैं?

- $1. \qquad n^{-1} \sum_{i=1}^n X_i,$
- 2. $n^{-1} \sum_{i=1}^{2n} X_i$,
- 3. $n^{-1} \sum_{i=1}^{n} X_{2i-1}$,
- 4. $n^{-1}(\sum_{i=1}^{n} X_i + W)$.
- A1 1
 -]
- A2 2
 - 2
- A3 3
- •

[Downloaded from www.pkalika.in]


	A4 A	R-NET Ju	
	4		
Multiple Response		4.75	0.00
704110	Which of the following statements are true?	7.73	0.00
	1. Maximum likelihood estimator may not be unique.		
	2. A complete statistic is always sufficient.		
	3. A sufficient statistic may not be complete.		
	4. Any function of a sufficient statistic is always sufficient.		
	निम्न वक्तव्यों में से कौन से सत्य हैं?		
	1. हो सकता है कि अधिकतम संभाविता आकलक अद्वितीय न हो		
	2. एक पूर्ण प्रतिदर्शज सदा पर्याप्त है		
	3. हो सकता है कि एक पर्याप्त प्रतिदर्शज पूर्ण न हो		
	4. पर्याप्त प्रतिदर्शज का कोई भी फलन सदा पर्याप्त है		
	A1 1		
	1		
	A2 2		
	2		
	A3 3		
	: 3		
	3		
	A4 4		
	4		
Multiple Response			
704111		4.75	0.00
	Let X_1 and X_2 be two independent random variables such that X_1 follows a gamma distribution with mean 10 and variance 10, and $X_2 \sim N(3.4)$. Let f_2 and f_3 denote the		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true?		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. q = 0.6$ $2. E[Y] = 5.8$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. q = 0.6$ $2. E[Y] = 5.8$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		
	distribution with mean 10 and variance 10, and $X_2 \sim N(3,4)$. Let f_1 and f_2 denote the density functions of X_1 and X_2 , respectively. Define a new random variable Y so that for $y \in \mathbb{R}$, it has density function $f(y) = 0.4f_1(y) + qf_2(y) .$ Which of the following are true? $1. \qquad q = 0.6$ $2. \qquad E[Y] = 5.8$ $3. \qquad \text{Var}(Y) = 3.04$		

[Downloaded from www.pkalika.in]

A2 2

ige: _[[81]	CSI CSI	R-NET Ju	ine 2
	$\begin{bmatrix} 2 \\ A3 \\ 3 \end{bmatrix}$		
	·		
	3 A4 4		
	: 4		
	4		
ultiple Response	e	4.75	0.00
	Let $(X_1, Y_1), \dots, (X_4, Y_4)$ be a random sample from a continuous bivariate distribution function $F_{X,Y}$ with marginal distributions of X and Y being F_X and F_Y respectively. In order to test the null hypothesis H_0 : ' X and Y are independent' against the alternative H_1 : ' X and Y are positively associated', consider the Kendall sample correlation statistic $K = \sum_{i=1}^3 \sum_{j=i+1}^4 \psi\left((X_i, Y_i), (X_j, Y_j)\right),$ where	1.73	0.00
	$\psi((a,b),(c,d)) = \begin{cases} 1, & \text{if } (d-b)(c-a) > 0, \\ -1, & \text{if } (d-b)(c-a) < 0. \end{cases}$		
	Assuming no ties, which of the following are true?		
	1. The test that rejects H_0 for $K \ge 4$ has size 1/4.		
	2. The test that rejects H_0 for $K \ge 4$ has size 1/6.		
	3. $P_{H_0}(K=4) = 3/24$.		
	4. $P_{H_0}(K=6) = 1/12$.		
	मानें कि $(X_1,Y_1),,(X_4,Y_4)$ संतत द्विचर बंटन फलन $F_{X,Y}$ के याद्दिछक प्रतिदर्श हैं		
	जहां X तथा Y के क्रमशः F_X एवं F_Y सीमांत बंटन हैं। निराकरणीय परिकल्पना H_0 : ' X		
	तथा Y स्वतंत्र हैं' को विकल्प H_1 : ' X तथा Y घनात्मक रूप से सहचारी हैं' के विरूद		
	परीक्षित करने के लिए केंडाल प्रतिदर्श सहसंबंध प्रतिदर्शज पर विचार करें		
	$K = \sum_{i=1}^{3} \sum_{j=i+1}^{4} \psi((X_i, Y_i), (X_j, Y_j)),$		
	जहां		
	$\psi((a,b),(c,d)) = egin{cases} 1, & ext{ & } \mathrm{ull} \;\; (d-b)(c-a) > 0, \ -1, & ext{ & } \mathrm{ull} \;\; (d-b)(c-a) < 0. \end{cases}$		
	मानें कि कोई ties नहीं है, तब निम्न में से कौन से सत्य हैं?		
	1. उस परिक्षण का आमाप जो H_0 को $K\geq 4$ पर नकारता है $1/4$ है।		
	2. उस परीक्षण का आमाप जो H_0 को $K\geq 4$ पर नकारता है, $1/6$ है।		
	3. $P_{H_0}(K=4) = 3/24$.		
	4. $P_{H_0}(K=6)=1/12.$		
	A1 1		
	1 A2 2		
	A3 3		
	3		
	A4 4		
	[Downloaded from www.pkalika.in]		

CSIR-NET June 2023

4.75

0.00

बहु रैखिक समाश्रयणी निदर्श (model) $Y=X\,eta+\epsilon$ पर विचार करें,जहां Y एक n imes 1पर्यवेक्षित दत्त सदिश (data vector) है जिसके लिए n>5 है; X जात नियतांको वाला $n \times 5$ आव्यूह है जिसके लिए rank(X) = 5 है; $\beta = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)^T$ तथा $\epsilon=(\epsilon_1,...,\epsilon_n)^T$, जहां $\epsilon_i,\ i=1,...,n$, स्वतंत्रतः बंटित N(0,1) यादच्छिक चर हैं। रैखिक परिकल्पना H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = c$, (एक ज्ञात नियतांक) के विकल्प H_1 : H_0 सत्य नहीं है, पर विचार करें। निम्न वक्तव्यों में से कौन से वक्तव्य सत्य हैं?

- H_0 के अन्तर्गत वर्ग अवशिष्ठों का योग (sum of squares residuals) स्वातंत्र्य कोटि (n-5) के साथ केन्द्रीय χ^2 बंटन का अनुसरण करता है।
- 2. H_0 के अन्तर्गत वर्ग अवशिष्ठों का योग स्वातंत्रय कोटि (n-1) के साथ केन्द्रीय χ^2 बंटन का अनुसरण करता है।
- 3. परीक्षण प्रतिदर्शज स्वातंत्र्य कोटि (5, n-1) के साथ केन्द्रीय F बंटन का अनुसरण करता है।
- 4. परीक्षण प्रतिदर्शज स्वातंत्र्य कोटि (4, n-5) के साथ केन्द्रीय F बंटन का अनुसरण करता है।

A1 ₁

A2 2

A3 3

3

A4 4

Multiple Response

117 704117

Suppose that $\mathbf{X_1},\dots,\mathbf{X_n},\mathbf{X_{n+1}}$ is a random sample of size $\mathbf{n}+1$, where p>2 and $\mathbf{n}>p+3$, from a multivariate normal population, $N_p(\mathbf{\mu},\mathbf{\Sigma})$; $\mathbf{\mu}\in\mathcal{R}^p$ and $\mathbf{\Sigma}>0$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $(n-1)S = \sum_{i=1}^n (X_i - \bar{X}_n) (X_i - \bar{X}_n)^T$. Which of the following are correct?

$$1. \qquad (\bar{X}_n - X_{n+1})^T S^{-1} (\bar{X}_n - X_{n+1}) \sim \frac{p(n^2 - 1)}{n(n - p)} \ F_{p, n - p}$$

2.
$$E(\bar{\mathbf{X}}_{\mathbf{n}}^{\mathsf{T}} \mathbf{S} \bar{\mathbf{X}}_{\mathbf{n}}) = trace\left(\frac{\Sigma^{2}}{\mathbf{n}}\right) + \mu^{\mathsf{T}} \mathbf{\Sigma} \mu$$

3.
$$E(S^{-1}) = \frac{n-1}{n-p-2} \Sigma^{-1}$$

4.
$$(\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1})^{T} \Sigma^{-1} (\bar{\mathbf{X}}_{n} - \mathbf{X}_{n+1}) \sim \frac{n+1}{n} \chi_{p}^{2}$$

मानें कि $X_1,...,X_n,X_{n+1}$ बह्चर प्रसामान्य समष्टि, $N_p(\mu,\Sigma);\ \mu\in\mathcal{R}^p$ तथा $\Sigma>0$ से लिया आमाप $\mathbf{n}+1$ का यादच्छिक प्रतिदर्श है, जहां p>2 तथा $\mathbf{n}>p+3$ हैं। मानें कि $ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i$ तथा $(n-1)S = \sum_{i=1}^n (X_i - ar{X}_n) \, (X_i - ar{X}_n)^T$ हैं। निम्न में से कौन से सही

1.
$$(\bar{X}_n - X_{n+1})^T S^{-1} (\bar{X}_n - X_{n+1}) \sim \frac{p(n^2 - 1)}{n(n-p)} F_{p,n-p}$$

2.
$$E(\bar{\mathbf{X}}_n^T \mathbf{S} \bar{\mathbf{X}}_n) = trace\left(\frac{\mathbf{\Sigma}^2}{n}\right) + \boldsymbol{\mu}^T \boldsymbol{\Sigma} \boldsymbol{\mu}$$

3. $E(\mathbf{S}^{-1}) = \frac{n-1}{n-p-2} \boldsymbol{\Sigma}^{-1}$

3.
$$E(S^{-1}) = \frac{n-1}{n-p-2}\Sigma^{-1}$$

4.
$$(\bar{X}_n - X_{n+1})^T \Sigma^{-1} (\bar{X}_n - X_{n+1}) \sim \frac{n+1}{n} \chi_p^2$$

ige: [84]		CSIR-NET Jui	ne 201
_ -	A2 2		
	A3 3		
	: 3		
	3		
	A4 4		
4 1/: 1 D	4		
Multiple Resp		4.75	0.00
	Let $Y_i = \alpha + \beta x_i + \varepsilon_i$, $i = 1, 2, 3$, where x_i 's are fixed covariates, α and β are unknown parameters and ε_i 's are independently and identically distributed normal random variables with mean 0 and variance $\sigma^2 > 0$. Given the following observations,		
	$x_i \mid 1 \mid 2 \mid 3$		
	$y_i = 2.1 = 3.9 = 6$		
	which of the following statements are true?		
	1. Maximum likelihood estimate of α is 0.1.		
	2. Least square estimate of α is 0.1.		
	3. Best linear unbiased estimate of α is 0.1.		
	4. Maximum likelihood estimate of $\frac{\beta}{\sigma}$ is 19.5.		
	मार्ने कि $Y_i = \alpha + \beta x_i + \varepsilon_i$, $i = 1, 2, 3$, जहां x_i नियत सह-प्रसर हैं, α तथा β अज्ञात		
	प्राचल हैं तथा ε_i माध्य 0 तथा प्रसरण $\sigma^2 > 0$ वाले स्वतंत्रतः तथा सर्वथासमतः बंटित		
	प्रसामान्य याद्दिछत चर हैं। यदि पर्यवेक्षण निम्न हों,		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	तो निम्न वक्तव्यों में से कौन से सत्य हैं?		
	1. α का अधिकतम संभाविता आकलन 0.1 है।		
	2. α का न्यूनतम वर्ग आकलन 0.1 है।		
	3. α का सर्वश्रेष्ठ रैखिक अनिभनत आकलन 0.1 है।		
	4. $\frac{\beta}{\alpha}$ का अधिकतम संभाविता आकलन 19.5 है।		
	A1 1 1 1 1		
	A2 2		
	A3 3		
	3		
	A.4		
	: 4		
	4		
lultiple Resp	onse		
704119		4.75	0.00

A cumulative hazard function H(t) of a non-negative continuous random variable satisfies which of the following conditions?

- 1. $\lim_{t\to\infty}H(t)=\infty.$
- 2. H(0) = 0.
- 3. H(1) = 1.
- 4. H(t) is a nondecreasing function of t.

ऋणेतर संतत याद्दिछक चर का संचयी संकट फलन H(t) निम्न में से कौन सी शर्तें पूरी करता है?

- 1. $\lim_{t\to\infty}H(t)=\infty.$
- 2. H(0) = 0.
- 3. H(1) = 1.
- 4. H(t) है t का फलन, जो ह्रासमान नहीं है।

A1 1

1

A2 2

2 A3 2

•

A4

_

Multiple Response

120 704120

Suppose that cars arrive at a petrol pump following a Poisson distribution at the rate of 10 per hour. The time to perform the refilling is exponentially distributed and the single available staff takes an average of 4 minutes to refill each car. Further assume that the cars leave immediately after refilling. Let α denote the probability of finding 3 or more cars waiting to refill and let β denote the mean number of cars in the queue. Which of the following statements are correct?

$$1. \qquad \alpha = \frac{8}{27}$$

- 2. $\beta = 1$
- $\beta \alpha = \frac{46}{27}$
- 4. $\alpha\beta=3$

मानें कि किसी पेट्रोल पंप पर कारें प्वासों बंटन का अनुसरण करते हुए 10 प्रति घंटा की दर से आती हैं। (पेट्रोल) भरने में लगने वाला समय चर घातांकी रूप में बंदित है तथा उपलब्ध अकेला कर्मचारी हर कार को भरने में औसतन 4 मिनट लेता है। यह भी मानें कि भर जाने पर कारें तत्काल चली जाती हैं। मानें कि 3 या 3 से अधिक कारों के प्रतीक्षारत होने की प्रायिकता α तथा पंक्ति में लगी कारों की माध्य संख्या β है। निम्न वक्तव्यों में से कौन से सत्य हैं?

1.
$$\alpha = \frac{8}{27}$$

2.
$$\beta = 1$$

$$\beta - \alpha = \frac{46}{27}$$

4.
$$\alpha\beta = 3$$

A1 . 1

A2 2

A 3

3

A4 /

NATIONAL TESTING AGENCY UGC CSIR NET June 23 - Final Provisional Answer Keys

Exam Date: 07-06-2023 Shift: 15:00-18:00

Subject: MAT - MATHEMATICAL SCIENCES

Subject :	MAI	- MATHEMATICAL SCIE	NCES		
Question	Key	Question	Key	Question	Key
ID	_	ID	_	ID	=
704001	2	704051	4	704101	2,3
704002	2	704052 704053	3 2	704102	2
704003				704103	2,4
704004	1 2	704054	1	704104	1,3
704005		704055	3	704105	1,4
704006	4	704056	3	704106	2,3
704007	4	704057	3	704107	1,2,3
704008	2	704058	1	704108	1
704009	1	704059	4	704109	1,3,4
704010	1	704060	4	704110	1,3
704011	3	704061	1,4	704111	1,2
704012 704013	1	704062	1,2	704112 704113	1,3,4
	4	704063	2	704113	1,4
704014	4	704064	2,3,4		2,3
704015 704016	3	704065 704066	1,2,3,4	704115 704116	1,2,3
	2		2,3		2,4
704017	2	704067	1,2,3,4	704117	1,2,3,4
704018	3	704068	2	704118	1,2,3,4
704019	4	704069	2,4	704119	1,2,4
704020	4	704070	1,3	704120	1,3
704021	3	704071	2,4		
704022	2,3	704072	1,3		
704023	1 3	704073	2		
704024		704074	1,2,3,4		
704025 704026	2 2	704075 704076	1,2,3		
	4		1,2		
704027 704028		704077	Dropped		
704028	4	704078 704079	2,3 4		
	4				
704030	2	704080 704081	2,4 1,2,3		
704031					
704032 704033	2	704082 704083	3 2,3,4		
704033	3 1	704084	2,3,4 1,4		
704034	4	704084	1,4		
704035	4	704086	1,2,3,4		
704037	1	704087	2,3		
704037	4	704088	3,4		
704038	4	704089	3,4		
704039	2	704099	1,2,3		
704040	2	704090	1,2,3		
704041	4	704091	1,2,4		
704042	3	704093	2,3		
704043	3	704094	2,3,4		
704044	3 1	704094	2,3,4 2,4		
704045	3	704095	2, 4 1		
704046	3 1	704097	1,3		
704047	4	704097	1,3 1,3		
704046	2	704098	1,3 1,3		
704049	1	704100	1,3 1,3		
104050	1	704100	١,٥		