MSC/PHD MATHEMATICS 2014 SOLUTIONS

Part A

4. B, C.
5. C, D.
6. B, C.

8. A, B, D.

10. 2.
Part B

(11) The set of rank 2 matrices in Msys(R) is open: Consider the map f : My, 3(R) — R’
given by sending a matrix to the triple of its 2 x 2 minors. This is a continuous map.
The set of rank 2 matrices is the inverse image of the set {(z1,zs,23) € R | z; #

0 for some 1 < ¢ < 3}. This set is open in R3, hence the set of rank 2 matrices is open
in M2><3(R>.

(12) (A) The kernel of ¢ is a proper ideal in F. Hence it is zero, as there are no nonzero
proper ideals in a field. Since ¢(1) = 1, using properties of a field homomorphism
we conclude that ¢(r) = r for every r € Q. Now if r € Q and =z € F, then
o(rz) = ¢(r)p(x) = ré(x). Thus ¢ is a homomorphism of vector spaces over Q.
Since ¢ is injective and dimension of F' over QQ is finite, it follows that ¢ is also
surjective. Thus ¢ is a field isomorphism.



(13)

(14)

(15)

(16)

(B) Consider the map ¢ : F* — F* defined by ¢(z) = 2% Then ¢ is a group
homomorphism and the set of squares in F'* is the image of ¢. The kernel of ¢
is the set of all x € F* such that 22 = 1. Since F is a field this equation has at
most 2 solutions. Further since the characteristic of I is different from 2, it has
exactly two solutions. Hence the kernel of ¢ contains two elements and we have
an isomorphism F* /ker(¢) = im(¢). Hence the cardinality of im(¢) is half of the
cardinality of F'*.

(a) For A € M, (C), det(A) is a polynomial in the entires of A, so all the multiple
partial derivatives exist and are continuous.

(b) Let A;; € M,,_1(C) be the matrix with ith row and jth column removed from A.
Then the total derivative d(det) is the matrix in M, (C) whose (i, j)-th entry is
(—1)’+7det(AU) .

(c) d(det)=0 if and only if det(A;;) = 0 for all ¢, j. This is equivalent to rank(A;;) <
n — 2 for all ¢, j. We prove that this is equivalent to rank(A) < n — 2.

Suppose rank(A) < n — 2. This means the rows (or columns) of A have at most
n — 2 linearly independent vectors. After removing a row and column there will
be at most n — 2 linearly independent vectors. Hence rank(A4;;) < n — 2 for all
i,7. Conversely if rank(A) > n — 2, the rows of A have at least n — 1 linearly
independent vectors. Choose n — 1 linearly independent row vectors and form
a matrix of size (n — 1) x n. Then n — 1 columns of this matrix are linearly
independent. So we can remove one column and the remaining (n — 1) x (n — 1)
matrix will still have (n — 1) linearly independent vectors. So there exits a pair
(i,7) such that rank(A4;;) =n — 1.

Hence d(det)(A)=0 if and only if rank(A) <n — 2.

Let Fy = {i | a; # 0} then Fy = U2 | F,,. Each F, is a finite set, otherwise

N
Sup{z a; : FF C R finite subset} > sup{z a; : F C F, finite subset} > - VN e N.

i€l el

We can not replace countability by finiteness, since any convergent series with infinitely
many non-zero entries will satisfy the condition. Take for example a; = Z% fori e N
and a; = 0 for i € R\ N.

Since the order of G is divisible by 2, G has an element x of order 2, by Cauchy’s
theorem. Since z # 1 and ¢(z) = 1, ¢ is not injective. As ¢ is a function from a finite
set to itself, it can not be surjective as well.

Let z, = 2min. Then |z,| — oo and e*» — 1. Suppose g(z) = f(e*) is a non-constant
polynomial. We have ¢g(27ni) = f(1) for all n € N. So g — f(1) has infinitely many
zeros and hence g = f(1). Thus f is equal to the constant f(1) on C\ {0}, which is
the range of the function e®. It follows by continuity that f is constant on all of C.
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(18%)

(19%)

(20%)

(A) O,(R) is compact : Consider the map f : M, x,(R) = M, x,(R) given by f(A) =
AA" —I,,. This map is continuous and O, (R) is closed since it is equal to f (0).
On(R) C M, x,(R) is bounded: the condition AA" = I, expressed in terms of the

d
The we get a’ +b° =1 =¢ +d , and ac+ bd = 0. This implies |a|, |b], ||, |d| < 1.
(B) Consider det : O,(R) — {1,—1}. This is continuous and surjective. This shows
that O, (R) is disconnected.

(C) O,(C) is not compact, since it is not bounded as a subset of M, y,(C). The
conditions expressed above for a,b,c,d when the entries are complex numbers
show this. For example, fixing a,|a] > 0, there are solutions for b such that
o’ +0b = 1. Similarly for ¢, d.

entries of A gives (for example when n = 2) the following: let A = ( Z b )

n

[/ is given entire. Expand it as a power series in a neighbourhood of 0. f =>""7 'r,.2".

We are given: f(a;) = > 0 rn.a} = b; for all j. Taking limits as j — oo on either

side and using uniform convergence, we see that f(0) = lim b;. But we are given
Jj—00

lim Z—i =0 for all k> 0. Taking k& = 0, we get lim b, = 0, hence 79 = f(0) = 0.

J—oo 45 J—o0
: n : ... b,
Now write f(z) = > .7 7.2 . Proceeding as before and using lim 4 = 0 for k =1,
j—o0 4

we get v = 0. Similarly r; = 0 for all j and hence f = 0 in a neighbourhood of 0.
Since f is entire, we get f = 0 everywhere and b,, = 0 for all n.

Following Cayley’s theorem, use the action of G on the set of left cosets G/H. This
gives a homomorphism f : G — S, where N = * = |G/H|.

Since |S,| = N! < 2n, it implies that |S2—N| < n = |G|. If f is injective, then by the
above inequality, f is actually an isomorphism. In this case, G is not simple because
Sy is not, as it has the alternating group Ay as a normal subgroup. On the other
hand, if f is not injective, it has a non-trivial kernel K C G. K is a proper nonzero
normal subgroup of GG, hence again G is not simple.

Let ¢ : R — R be a continuous function such that |¢(x)| — oo as |z| — oo. Then by
the formula for the limit of composition of two maps, one gets f o ¢ € Cy(R) for every

f € Co(R).

Suppose that f o ¢ is infinitely differentiable for every f in C§°(R). Let a € R. The
image ¢la — 1,a + 1] is a compact interval. Choose f € C§°(R) such that f = 1 on
¢la—1,a+1]. Then fop = ¢ on (a — 1,a + 1). Thus ¢ agrees with the infinitely
differentiable function f o ¢ on the neighbourhood (a — 1,a + 1) of a. Hence ¢ is
infinitely differentiable in a neighbourhood of a. As a is an arbitrary point of R, ¢ is
differentiable.



