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Volume and stress distribution effects

Objectives

To explain volume and stress distribution effects as a consequence of the weakest
link theory for brittle materials. To describe the options of Eurocode 5 and CEN
supporting standards for deriving characteristic values and evaluating design
stresses.

Prerequisites

A7  Solid timber - Strength classes

A8  Glued laminated timber - Production and strength classes
B2  Tension and compression

B3  Bending Members

B4  Shear and torsion

Summary

The lecture begins with a presentation of the weakest link theory, for tension in
brittle materials, and explains volume effects. This theory is expanded to other
stress fields, with attention to bending, tension, shear and tension perpendicular to
grain. Research results are summarised. The options of EC5 for bending and tension
perpendicular to grain are explained. Some examples of calculations are given.

Theory

The weakest link theory has been developed by Pierce (1926), Tucker (1927) and
Weibull (1939) who studied brittle materials, including concrete. This theory says
that "when subjected to tension, a chain is as strong as its weakest link". To explain
this theory, consider a reference volume subjected to tension. The probability of

failure P, of this volume is defined by:

1
P, = F(o) = Probability (Strength<o) 0

where F is the cumulative distribution of the strength, as illustrated in Figure 1.
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Figure 1 Cumulative probability of failure for a reference volume.

Now consider a series assembly of N reference volumes. This system survives if
each of the members survives, i.e.:
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Py = Py (1) Py (2) ... Py (N) @)
=[1- P, (D] [1-P, 2)] ... [1-P, (V)]

where Py is the probability of survival of the system and Py(i) is the probability of
survival of an individual element i. From Equation (2) and assuming that reference
volumes have the same probability of failure and that the events of failure are
independent in all reference volumes, the probability of failure of the system can
be evaluated:

P, = 1-Pg = 1-[1-F(0)]" = 1-¢V 180-F o 1 -¢NF©) 3)
Now, assume that the lower tail of F has been fitted by a power model, i.e.
F(o) = a (o-0y) 4)
The probability of failure is then expressed by:

o -y (20 5)
P, (o) =1-¢ W' e (

This model is known as the 3 parameters Weibull model. It is also well known as
the 2 parameters Weibull model wlien 6, = 0. The parameters m and k can be
estimated from the mean of ¢ (E(G)) and the coefficient of variation of ¢ (CV(G))
by solving the following equations:

I‘(1+—2-)
(CV(0))* = = (6)
I‘2(1+;)
1
m = E(O)1 yk 7
I‘(1+;)

where I'(x) is the Gamma function.

The theory can be used to explain the size effect in tension. Consider a volume V,
which has a given probability of failure P(c,) at level 6, and a volume V, which
has a given probability of failure P(G,) at level G,. If the characteristic strengths of

these two volumes are compared, the following is obtained:
o (o] (o] v, 1
P. (o = P. (o =V vk o V. 2Nk = 2 - (_lyk (8)
P @) = Py(0) =V QD =¥, OB = 2= )

This equation is the basic explanation of size effect. In the case of stress fields
other than tension, these equations are modified to take into account the stress

variations:

o(x,y,z) = 0 w(x,y,2) )

where o is the maximum stress in volume V
w(x,y,2) 1s a spatial distribution function (dimension-free).

The Weibull model is then written:
Vi (10)
Pf (0) = 1-e m

where V* is defined by:
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For example, a simply supported beam with rectangular cross-section and loaded
at the midpoint by a concentrated force gives the following value for V*:

pr= Y (12)
2 (k+1)?

This method of calculating the stress distribution effect has been used by Larsen
(1986) and Colling (1986) to evaluate the volume and stress distribution effects on
the shear strength and tension perpendicular to grain for curved, tapered and
cambered beams. In Larsen’s paper, the term "distribution factor" (k,,) is used,
where:

1
ky = ( V)Z (13)

V*
The k,;, factor is used to calculate the design tension perpendicular to grain strength
for different load configurations:

A

* . 0 14

f;,90,d = kval kdu f;,90,d with kvol = (_VJ (14)

where f', o, refers to a reference volume V, under uniform stress.

In Colling (1986), the following notation is used:

yr o= Vfwde fwde =vakal (15)
i D

where A, and A, are called "fullness parameters".

Research results

A vast amount of data has been published to explain size effect for structural size
timber. These results are sometimes conflicting (Barrett and Lam, 1992; Madsen,
1992), and might be due to the following reasons:

- The size effect is justified by a brittle failure theory, which is applicable to
tension parallel and perpendicular to grain (Barrett, 1974; Colling, 1986), and
to shear (Foschi and Barrett, 1976; Foschi, 1985; Colling, 1986). But in the
case of compression, and particularly in bending which is a mixed mode of
failure between tension and compression, the use of this theory is debatable.

- The size effect is based on an equal probability of failure of the "reference
volumes". This assumption is not always verified for all the species,
especially for pines in which knots are not randomly located.

- For visually graded lumber, defect sizes increase with the size of the
member. This means that the material changes with the size, which can mask
a pure size effect. In particular, when size effect is investigated in a mixture
of grades, the effect of grading will have an influence on the size effect.

- When tests are conducted for constant span to depth ratios in bending, the
size effect is a combination of a depth effect and a length effect (Barrett and
Fewell, 1990). These effects cannot be identified separately.

The following tables summarize these results. They show some discrepancies, which
have been explained by Barrett and Lam (1992).
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In Table 1, different factors for bending size effects are recorded:

- a length factor S, (for beams tested at constant depths) which is calculated

from:

1
&=FF{%&
0, L, L,

(16)

- a depth factor S, (for beams tested at constant spans) which is calculated

from:
1

9% _ (M) _ ()
0, h, h,

({A47)

- a "size factor" S, (for beams tested at constant span to depth ratio, i.e. L, =
k h;), which, according to the combination of equations (16) and (17), is

calculated from:

02 ) L1 S, hl S,,_ hl Sy hl Sh_ hl S,,+S,_— hl Sg
o, L) \n) ) |h) ~|h a,

(18)

Author S Sy S

Barrett and Larsen, 1992 0,17 0,23 0,40
Madsen, 1992 0,20 0,0 0,20
Ehlbeck and Colling, 1990 0,15 0,15 0,30

Table 1 Size factors for bending.

Additional results are reported for glulam (Ehlbeck and Colling, 1990), but are
based on a sample size which was much smaller. The size effects for glulam are
lower than for solid timber, probably due to a lamination effect which increases the

strength.

In Table 3, load configuration factors for different bending cases are reported
according to Johnson (1953). These load configuration factors are derived according
to Equations (9), (10) and (11), and normalized to the reference four points bending

case.

Tension results are slightly different from those for bending. This might be due to

a pure brittle failure mechanism (see Table 2).

Author S, S, Sk
Barrett and Larsen, 1992 0,17 0,23 0,40
Madsen, 1992 0,20 0,10 0,30
Table 2 Size factors for tension.
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Load Configu-
ration Factor

CE:ﬁf) 0,87
% 1,00

Load Case

AIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl 1,04
ﬁ 1 ,22
! ' | 1,22

! l ¢ | 1,35

I 1,43

! !

Table 3 Load configuration factors.

For compression, the results of the different studies are in general agreement:

S, =0,10 S, =0,11 S, =0,21

For tension perpendicular to grain and for shear, a volume factor (S,) has been
derived by Colling (1986), who also derived load configuration factors for tension
perpendicular to grain

S, = 0,20

These results are subject to different opinions but show an evidence of size effects
for many stresses, together with a stress distribution effect which can be as
significant as the size effect itself. For code purposes, the approach has been
simplified, especially in the case of stress distribution effects.

Size and stress distribution effects related to ECS

The first application of size effects concerns the modification of characteristic
strengths given in prEN338 "Structural Timber - Strength classes". The
characteristic strengths in bending and in tension are given for a reference depth of
150 mm for solid timber and 600 mm for glulam. For depths less than these
reference values, these strengths are multiplied by a size factor, which has a fixed
upper limit. This means that size effect is only applied in one direction, as shown
in Figure 2.
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For solid timber :
150122

k, = min. (T)

1,3

(19)

where h is the beam depth in mm.

For glulam :
600\>?

k, = min. (TJ

1,15

(20)
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Figure 2 ECS5 size factor for solid timber in bending or tension (solid line), related to
theory (dashed line).

For tension perpendicular to grain and for shear, characteristic strengths are also
given for a reference volume. But, for simplicity, a size factor is only proposed for
tension perpendicular in glulam. The designer is then required to verify the
following equation:

v \02
0 21
Or00d < Jrg0a (7) .

where V, is a reference volume of 0,01 m®.

For double tapered, curved and pitched cambered beams, an additional requirement
is included to account of the stress distribution effects. The designer must verify the
following equation in the apex zone:

02
22
Oro0d < K [70) Jis0d )

where

k4 1s a stress distribution factor which has been fixed for special cases:
kg, = 1,4 for double tapered and curved beams
kg, = 1,7 for pitched cambered beams.

For simplicity, other aspects of size and stress distribution effects like compression
size effect and load configuration factors have not been taken into account.
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ECS: Part 1-1: 5.2.4

Calculation examples

Example 1: Bending Strength of a solid timber beam of cross-section 40x100 mm,
strength class C24.

C24 strength class provides f, , = 24 N/mm’

k, = (150 / 100)** = 1,08 < 1,3

fonx (modified) = 26 N/mm®

Example 2: Design of a double tapered beam. Verification of tensile stresses
perpendicular to grain.

Apex Zone

ap

Span: L=20m h=1m h,, =120 m b =150 mm
Glulam Strength Class: GL 36

GL 36 strength class provides f,qo, = 0,45 N/mm’

To calculate a design strength, take k,,,, = 0,8 and vy,, = 1,3
This implies f, o4 = 0,277 Nimm®

The volume of the apex zone is equal to: V = 0,2097 m’

Thus (Vy/V)** = 0,544

For a double tapered beam, k,;, = 1,4

The maximum design stress perpendicular to the grain is equal to :

6,904 (Max) = 0,277 . 0,544 . 1,4 = 0,21 N/imm?

Concluding summary
- Size and stress distribution effects are explained by Weibull theory.

- Research results show discrepancy, especially for depth effect in bending.

- ECS5 provides a simplistic approach to size and stress distribution effects to
aid the designer.
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