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Mechanically jointed
beams and columns

Objectives
To explain the computation and design of mechanically jointed beams and columns,
to provide analytical solutions, and to illustrate the use of computer programs.

Prerequisites

B2 Tension and compression
B3  Bending

B6  Columns

C1 Joints

Summary

An example of a beam made of two parts is illustrated, for which analytical
solutions for computing stresses and deformations are derived. The possibility of
using a computer program for the design of such beams is indicated. A design
example is provided.

Introduction

Cross-sections of beams or columns may be composed of several components,
connected by mechanical joints. Longitudinally the cross-sections are not jointed.
In the junction between the individual composites, the mechanical joints mainly

carry shear forces.

Thus a wide variety of cross-sections (see Figures 1 and 2) may be built. The
dowelled beam is known from ancient timber constructions. Adding additional
cross-section parts is a suitable way of strengthening an existing profile. These parts
may be of solid timber, glued laminated timber or wood-based materials.
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Figure 1 Typical cross-sections.

For columns, cross-sectional parts are often separated by gussets at a given distance.
Especially for beams the cross-section with two flanges connected by a web, which
carries the shear, is very common. The flanges may be of solid timber or glued
laminated timber, the web may be of planks, wood-based panels or lately steel. It
is also possible to build a composite structure from a concrete plate and a timber

tension flange.
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Figure 2 Cross-sections with two flanges and discrete or continuous connection.
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Semi-rigid joint

The connection of a number of cross-sections is made by mechanical fasteners such
as nails, bolts, dowels or nail plates (glued joints are regarded as rigid connections).
Each joint is stressed by shear forces causing a displacement. The relation between
the displacement of the cross-section parts u and the force is specified by the slip
modulus K. Figure 3 shows some common patterns of joints, the displacement u
and the shear force v.
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Figure 3 Displacement and shear force between the parts.

For the computation, and in order to develop application equations, it is necessary
to distribute the joints continuously along the beam. The effect of this is a
continuously acting shear force v, such that:

= k== v=ku (1)

If the distance between the fasteners is considerable or if the joints are concentrated
at very few points, the computational model of a continuous joint is no longer valid,
and a different mechanical model is required, for instance a frame model.

Computation methods

Beams

For beam design the following parameters are required: stresses ¢ and 7 in all parts,
forces in the joints and deflections. For mechanically jointed beams, the
bending-theory for beams is no longer applicable because of the slip in the joints.
However, the theory is applicable to individual components.

Analytical solutions are developed by use of differential equations of equilibrium
(Mohler, 1956; Heimeshoff, 1987) or energy considerations and specially developed
design programs are available, see for example Kneidl (1991). The development of
the differential equations is conveniently shown in a T-cross-section made of two

parts (Figure 4).
The solutions require that for every part simple bending-theory is valid and shear

displacement is omitted. The connection is regarded as continuous and the profile
and the joint stiffness are constant in the direction of the beam’s axis.
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Figure 4 Beam details and equilibrium of an incremental element.

System, cross-section, deformations, element dx.
The deformations are (see Figure 5):

u,, u, are the longitudinal displacement of the axis of cross-section 1 and 2,

w is the common bending deflection and

u is the relative displacement of the cross-section parts at the location of the joints.
h, h

u=u2—u1+w’(?1+?2)=u2—ul+w’a @

u is independent of the position of the joints. The critical dimension is the distance

a of the axes of the cross-sectional parts. The derived equations are not only valid

for cross-sectional parts located one upon another, as shown in the T-profile, they

also apply to cross-sectional parts located side by side. This is only true if shear

deformation is neglected.

U = uy-u;=w'(hi/2+h,/2)

Figure 5 Deformations.

Elasticity principles matching the simple bending theory:

N, =E AW, N, =EAu, (3)
M, =-E Lw’ M, =-E,I,w’ 4
Vi =-E LLw” V, =-E,Lw?” 4
v =ku =k (u,-u +wa (6)
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Figure 6 Stress distribution.

Equilibrium of the two elements in x and z direction: [p, = 0, (N, + N,)’ = 0]

N +v =0 (7) M/ =V, - v% (9a)

; h,
N, +v =0 (8) M  =V,-v - (9b)
Vi+V,) =p=V (9¢)

The sum of (9a) and (9b) is differentiated once with respect to x and V’ is replaced
by the term -p:

M +M,’+va+p=0 (10)

If the internal forces and moments are replaced using elasticity principles, the
following system of differential equations results:

E A u”’ +k@-u+wa=0 an
E,Ayu,” -k (uy-u; +w a)=0 (12)
(E,L+E, L)W’ -k(W,-vw,+w’ a)a=p (13)

In this way three equations of equilibrium (7), (8) and (10) are formulated for the
three deformations u,, u, and w.

The variation of the elastic energy is also determined from these equations:

1 2 2 2
H=—f[EA u'*+E,Au’)? +(E I, +E,L,)w"
o || Bty T Ay 1h By (14)

+k(uy - u, +w'a) -2pw|dx

Elastic foundation effect k,,, and the influence of second order theory effects could
be taken into account by adding the term k, w - N, w" to Equation (13).

For single span beams with a sinusoidal load distribution, a simple, analytical
solution can be given because the shape of the deformations in the direction of the
axes corresponds to cos- or sin-functions. Although the derivation is based on the
synusoidal load distribution, the solution is also applicable to most other load
distributions.

zx) (15)

=p, sin
P=py (1
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ECS: Part 1-1: 5.1.9, 5.1.10

U, = U,y COS (% x); U, = Uy COS (% x); w=w, sin(% x) (16a,b,c)

These terms, when placed in Equations (11), (12) and (13), give a system of
equations for the constants u,,, u,, and w:

U Uy Yo =Dy
"™ EA -k k kra =0
2 1 I
72 P14
k -—EA, -k -k—a =0
2 l
T T 4 kw2
k7a _kTG F(Elll-‘-EZIZ)_?aZ = -1

wmp L 1 L
0 F 4 2 P04
7 E A (ED)
E I, +E,I + 21118 w e (17a)
E A,
1+, y
24,
uyy =Wy~ R T Uy =~y _ obd, (17b,c)
I v,E A +E,A, 2 I v,E A +E,A,
2
= B4, 1 (18a,b)

k

and - R
1T Tk 1T k)
With these deformations and applying elastic principles, the stresses can be
computed. The stress in the axis of part 1 of the cross-section is (Figure 6):

o,=Eu’| (x=l/2)=—Elum£l (19)
Using the following terms
"1 1?
Wo=Po—, ; My =p,—;
n* (ED),, 72 (20ab.c.d)
M E A a o
ay=———— a =a-a,;
Y,E4, +E, A,
the stress is
_NiEa My 1)

0y

(ED),;
This type of the equation is equivalent to the equation for the stress in a simple
beam. In EC5, Annex B, further equations are given.

The bending stresses and the stresses in the axes of the members must verify the

condition of combined bending with axial tension or axial compression. If necessary
the stability condition must also be satisfied such that:

STEP/EUROFORTECH - an initiative under the EU Comett Programme B11/5



EC5: Part 1-1: 5.2.2

B11/6

Gm,d s kcrix fm,d (22)

k., takes account of the bending stress according to the lateral deformation resulting

from 2nd order theory effects. For this purpose the critical bending stress is
necessary. The bending stiffness of the beam about the weak axis and the torsion
stiffness are required.

Columns

The computation of mechanically jointed columns has to allow for buckling, and
the influence of 2nd order theory. It is clear that the effective bending stiffness
(El),. is the dominant factor for buckling. If the expression N, *+ w" is included in
the Equation of equilibrium (13) and if the determinant of the equilibrium equations
is set to zero, the buckling load is also obtained.

‘ITJ2
Fy= 2D, (23)

The axial stiffness of a composite column is
(EA), ;= (EA),, = > E4 24

since the joints are not considered to be stressed by the axial forces.

The slenderness of a mechanically jointed column can be computed in a similar
manner to a simple column.

. (EI)e,; Ay 1l (25a,b)
7\ (EA),, 4 i,

Each member of a composite column corresponds to the simple column, and for
each member of the cross-section the relative slenderness and the buckling factor
can be computed.

f;,O,k,i Fc,d

A=A, | ——— g, = E =0 . (26, 27)
rel ef Tt2 EOOS . ] (EA)ef 4 c,O,d,x

If, at the same time the column is stressed by bending, the bending stress must be
superimposed. Normally the design will be governed by compression in a single
member such that

%c0di , Imi <1 (28)

kc,i f;',O,d,i fm,d,i

The compression force and its corresponding deformation results in a transverse
force V,, which is dependent on the slenderness. To this, any transverse force due
to direct loading must be added.

In EC5, Annex C, equations are given to compute the effective slenderness of
columns with different cross-sections. For spaced columns with packs or gussets,
and for lattice columns, the effective bending stiffness can be computed using frame
programs. Here, the deflection w, in relation to a sinusoidal transverse load p, and
taking into account the yielding of the connection, results in an effective
bending-stiffness given by:

P 1*
(ED),, = 7" o (29)
0
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Design example
Figure 7 shows a beam made up of a single plywood flange and a timber web
jointed by nails. The design stresses and moduli are also given.

L 400 L

q~4,0kN/m 1 7
IITiTi] I S ] 30 mm
F d=30kN £ e @/ ° 160 mm

4" .80 m /!’ :]20\@

k=800 N/mm, s=40 mm

Figure 7 System, cross-section, design values.

EO,mean fc,a,k fc,o,d ft,o,d fm,d (N/mmz)
Design values 1 4500 19,5 12,0 8,0 12,0
2 11000 21,0 12,9 8,6 14,7

For both ultimate and serviceability limit states E,,,,, values are to be used. For
calculation of deflections the slip modulus K, will be used, for ultimate limit state

Ku = 2/3 Kver‘
Computation
ECS: Part 1-1: Annex B Values of cross-section:
(B2b) A, =400 - 30 = 12000 mm? A,  =19200 mm?
(B2c) L =400 - 3012 = 0,9 - 10° mm* I, = 41,0 - 10° mm*
(B2d) v, =1
(B2e) Y = (1 + m* - 4500 - 12000 - 40 / 800 - 3600*" = 0,33
_ 0,33 - 4500 - 12000 (30 + 160) _
a, = = 7,33 mm
2 (0,33 - 4500 - 12000 + 11000 - 19200)
a, = M - 7,33 = 87,7 mm
(B2f)
(B2a) (EJ),; = 4500 - 0,9 - 10° + 11000 - 41,0 - 10° + 0,33 - 4500 - 12000 -
87,7* + 11000 19200 - 7,33°
= 602 * 10° Nmm?*
Stresses in the middle of the span caused by a bending moment M, = 6,48 kNm
(B3a) o, = 0,33 - 4500 - 87,7 - 6,48 - 10°/ 602 - 10° = 1,40 N/mm?
c, = 1 -11000 - 7,33 - 6,48 - 10°/ 602 - 10° = 0,87 N/mm*
O 0,5 - 4500 - 30 - 6,48 - 10°/ 602 - 10° = 0,73 N/mm*
C,, = 0,5 - 11000 - 160 - 6,48 - 10°/ 602 - 10° = 9,47 N/mm*

Stresses caused by a compression force F, = 30 kN
o, = 30000 - 4500 / (4500 - 12000 + 11000 - 19200) = 0,51 N/mm?
6, =30000 - 11000 / (4500 - 12000 + 11000 -19200) = 1,25 N/mm*
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Figure 8 Stresses (rigid jointed k = oo, not jointed k = 0).

Maximum force F, in the joints for a shear force V, =4 - 3,6/2 = 7,2 kN.

F,

= 0,33 - 4500 - 12000 - 87,7 - 40 - 7200 / 601,8 - 10° = 741 N

Concluding summary

The basis for the computation of mechanically jointed beams and columns
is shown and the analytical solutions given in EC5, Annex B and C, are
shown for simply supported beams and columns with a span length 1.

For more complicated systems such as frames or beams and columns with
varying cross-sections, along the ma.n axis, it is necessary to use numerical
solutions offered by computer programs. The members must then be
modelled as bars and the joints as either bars or springs.
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