Oracle SQL Tutorial: Get Started Quickly

https://www.udemy.com/blog/oraclesql-tutorial/

This Oracle/SQL tutorial offers a quick way to learn how to use SQL to interact with an Oracle
database. Newcomers to programming often consider learning a new programming language to
be a difficult process. The best way to learn a new language is to start with the basics and then
move to more advanced topics. If you're interested in demystifying the concepts relating to
programming, an introductory course designed to teach non-programmers the basics is a good
place to start.

Let’s get started!

What is the Relationship Between Oracle and SQL?

To understand Oracle SQL, you first need to understand SQL. SQL is an acronym that stands for
Structured Query Language, which is a type of programming language. Like all programming
languages, SQL has two distinct characteristics: (1) it is comprised of a set of instructions and (2)
it is used to solve problems. The instructions you write in SQL are called statements.
Programming languages such as C++ and Java are considered general purposes languages
because they can solve a variety of different problems. SQL is designed to focus on one—
managing data that is stored in a relational database management system or RDMS.

There are numerous flavors of SQL that differ in how they implement the programming
language. The list includes DB2, MS SQL Server, MySQL, PostgreSQL, Informix, and of course
Oracle. Oracle was the first of these implementations to be offered for commercial purposes (it
was initially sold to government agencies). Today, Oracle SQL is considered the standard
implementation for interacting with RDBMS. Oracle 11g is the most recent version of Oracle
that was released in 2007. Once you learn the basics in this tutorial, you can then extend your
skills to include database administration. A comprehensive course in Oracle 11g, which includes
the basics for administering an Oracle 11g database, is an excellent choice.

Key Concepts

Before jumping into using the Oracle implementation of SQL, there are some important
concepts you should understand because you will undoubtedly come across them when using
the language. These concepts are common to other query languages, but some have specific
uses in Oracle.

Database — A collection of data that is organized in a specific order.

Table — An object that stores data or information in columns and rows organized in a database.

Datatype — The kind of data stored in a table or column. Oracle includes the following basic
datatypes: char, varchar, number, date, and long.

Schema — The structure of an entire database (tables and fields), and how they relate to one
another.

Command/Query — An operation that you perform on a database. The most basic operations
you can perform on an Oracle database include the following:

e SELECT — Retrieve data

e CREATE — Create a table

e INSERT — Add data

e UPDATE — Replace a row value with the value identified in the SQL expression
e DELETE — Remove rows from a table

e DROP - Remove a table

Query Statement — A series of elements that are executed against a database to perform a
specific command.

If you're interested in learning more about these concepts, you could do so in under a week by
taking a quick course in SQL.

Querying an Oracle Database with SQL

Learning a new programming language is a lot like learning a new spoken language. You first
have to learn the rules of the language. In programming terms, the rules are called syntax. It’s
important that you follow the rules to prevent errors during processing.

The most common SQL command is to query a database for specific data. You use the SELECT
statement to do this:

SELECT * FROM Customers;
This is what you need to know about this statement:

e SELECT is the operation that instructs SQL that we want to extract data from the
database.

e The asterisk is a shortcut for referring to all columns in the table. If you want to query a
single column, you would use the name of the column instead of an asterisk.

e FROM Customers indicates where SQL should get the data.

e The semicolon at the end of the statement signals SQL the conclusion of the statement.

e SQL reserved words such as SELECT and FROM are not case sensitive, but common
practice is to use all capital letters for readability.

SQL commands have specific purposes, but they have a similar structure. Here are more
examples:

Example Query 1: CREATE

CREATE TABLE Movies
(
MovielD int,
Title varchar(255)
Genre varchar(255)
Rating varchar(255)
);
This is what you need to know about this query:
e CREATE TABLE Movies is the operation that indicates the name of the new table we
want created.

e The information between the open and close parentheses identifies the columns in the
new table and their datatypes.

Example Query 2: INSERT

INSERT INTO Movies (MovielD, Title, Genre, Rating) VALUES (‘0001’, ‘Matrix Reloaded’, ‘Science
Fiction’, ‘PG’);
This is what you need to know about this query:
e INSERT INTO Movies (MovielD, Title, Genre, Rating) is the operation that informs SQL of
the data we want to add. The data in the first set of parentheses indicate the columns
we want to populate.

o VALUES ('0001°, ‘Matrix Reloaded’, ‘Science Fiction’, ‘PG’) indicates the list of values we
want for each column.

Example Query 3: UPDATE

UPDATE Orders SET CustomerName= ‘Jane Done’ WHERE CustomerName= ‘John Doe’;

This is what you need to know about this query:
o UPDATE Orders is the operation that instructs SQL which table we want to update.

e SET CustomerName= “Jane Doe’ indicates the updated data
o WHERE CustomerName= ‘John Doe’ indicates the data we want to update.

Example Query 4: DELETE
DELETE FROM Contractors WHERE ContractorName= ‘Smith Contracting, Inc.’;
This is what you need to know about this query:
e DELETE FROM Contractors is the operation that indicates where we want to make a

deletion.
e WHERE ContractorName= ‘Smith Contracting, Inc.” indicates the data we want to delete.

Example Query 5: DROP
DROP TABLE Movies;
This is what you need to know about this query:
e DROP TABLE Movies is the operation that indicates which table we want to delete.
These are just the basics of using SQL with an Oracle RDBMS. The query language includes other

elements that extend basic SQL functions. You are now ready to put your knowledge to work
and take a course that teaches the basics of developing a local database.

PHP For Loop: A Lesson in Repetition
https://www.udemy.com/blog/php-for-loop/

PHP: Hypertext Preprocessor (PHP) is a server-side scripting language that is interpreted by a
web server, and then optionally displayed in HTML. It basically runs as a program inside of a
website. PHP programs do not compile the same as general purpose programming languages,
but use similar logic, such as loops that change program logic.

Adding Loops to Your PHP Programs

Computer programs rarely contain statements that run on a continuous path from beginning to
end. The more common scenario is that the program makes stops along the path to evaluate
conditions and execute statements according to those conditions. PHP supports four types of
loop statements:

o for — Repeat for a specific number of times

e while — Repeat until the condition is true

¢ do..while — Same as While, but executes at least once
o foreach — Repeat elements in an array

For this tutorial the concentration is the for loop. If the PHP language is new to you, you may
want to consider learning PHP from scratch first to grasp the basics of the language.

The for loop syntax looks like this:

for (declaration; condition; action)

{

Statement to execute;

}

As you can see, there are two basic steps for creating a for loop in PHP:

1. Start the loop with the for keyword followed by three parameters (declaration, condition,
and action) enclosed in parentheses:

o Declaration — Expression that declares the variable that you want to loop and its starting
value. Add a semicolon at the end of the expression.

¢ Condition — Expression that sets the condition that you want to use to test against the
variable. The loop will continue until this condition is no longer true. Add a semicolon at
the end of the expression.

e Action — Expression that specifies how the value of the variable is updated. You can use
the increment operator (++) to increase the value or the decrement operator (- -) to
decrease the value. This expression is written with the operator immediately following
the variable, no spaces.

2. Next, you add the statement that you want to execute, enclosed in curly brackets.
Example 1: Simple Loop

This example uses the classic “Hello world!” program to demonstrate how a PHP for loop
works.

<?php
for (Snum=1; Shum<=5; Snum++)

{

echo “ Hello world!””
;

}

>

In English language terms, this block of code states to start a variable called num at 1, continue
the loop as long as the value of num is less than or equal to 5, and at the end of each loop
increase the value of num by one. For each loop print “Hello world!” on the screen.

Here’s the output:

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

'"

For each loop there is an output of “Hello world!” to the screen.

Example 2: Nested for Loops

The snippet of code in example 1 contains a single for loop. You can also create nested loops of
two or more for loops that add more complexity to your code. This example contains two for
loops to create a mathematical table you might recognize from your childhood. You can learn
more interesting techniques in a PHP for beginners course.

<?php
echo “<table>”;
for (Sx=1; Snum<=10; Sx++)

echo “<tr>;
for (Sy=1; $y<=10; Sy++)
{

echo “<td>";

echo $Sx*Sy;
echo “</td>";

}

echo “</tr>";

}
echo “</table>”;
?>

Here’s the output:

12345678910

2468101214161820

36912151821242730

481216202428323640

510 1520 253035404550

61218 24 3036 42 48 54 60

7142128354249566370

81624324048 56647280

9182736455463728190

102030405060 70 8090 100

You might recognize the output as a multiplication table. This nested for loop consists of two
for loops: one that generates the outer 1-10 values (the x variable) and one that generates the
inner values (the y variable). The “td” and “tr” in the example are HTML elements that are

responsible for creating the table structure (better looking than in this post). Interested in a
lesson about these and more HTML elements, try an HTML workshop course.

The examples presented in this tutorial should help you understand how PHP for loops work. As
mentioned at the start of this tutorial, the PHP language was developed as a scripting tool to
accommodate web development. If you're interested in learning more details about creating
PHP programs for websites, you may want to consider a course that teaches the basics of PHP
web development.

PHP If Else Tutorial: Extending the If Condition
https://www.udemy.com/blog/php-if-else/

In programming, a statement that executes only when a particular expression is true is called a
conditional statement. In PHP, you have several options for adding conditional logic to your
programs. When you need your code to test conditions, and then execute a statement based
on that result, an if else statement is recommended. This tutorial introduces the PHP if else
statement, examines how to write the code in PHP, and provides examples for demonstration
and practice. If you are just beginning to learn PHP, you may want to start with a course

to learn PHP fundamentals from scratch.

The PHP if else syntax looks like this:

if (condition)
{

Code to execute if the condition returns true;

}

else

{

Code to execute if the condition returns false;

}

Examining an if else Statement in PHP

The logic for an if else statement starts with the if keyword that is followed by a condition,
which is enclosed in parentheses.

The next part begins with an open curly bracket that indicates that a block of code is coming up.
In this case, the block of code is a statement to execute if the condition returns true. A
semicolon is added at the end to indicate the end of the expression. A closed curly bracket is
added to signal the end of the code block (this is optional).

Up to this point the if else statement looks just like an if statement. The difference in the two is
that the if statement contains an action for the program to take if the statement returns false.
After the code block, the else keyword indicates the start of logic for a false return for the
condition. This requires another code block, so another open curly bracket is added.

The else code block simply contains a statement to execute if the conditional expression
returns false. The statement concludes with a semicolon, and a closed curly bracket ends the
block of code.

The formatting in the syntax may have caught your attention. While it is not required and does
not affect the operation of the program, indenting the execution statements so that the
keywords and execution statements stand out aids in readability. Anyone reading the code can

easily see where each part begins. You can learn more PHP syntax in a course that teaches PHP
programming for beginners.

Let’s take a look at an example.

Example 1: Basic PHP if else Statement

<?php
Snum=50;

if(Snum == 50)

{

echo “ Hello Universe!”;

}

else

{

echo “Hello World!”;

}

>
Output:
Hello Universe!

The output is “Hello Universe” because the condition is true (equal to 50). If the value of num is
changed to 5, the output would be “Hello World! since the condition is now false. This is a basic
example of a PHP if else statement. What do you do if your program requires more conditional
statements (think multiple choice)? You add more PHP if else statements, of course!

Example 2: Nested PHP if else statements

When your PHP program needs to test more than one condition, one option is to use nested if
else statements. Adding multiple if else statements in a PHP program is particularly useful when
you need to test several conditions such as with a login process. Check out a course in creating
a PHP login script to learn how to do this.

Nesting if else statements adds a bit more complexity to your program. Let’s review the logic
before we dive into an example.

if (condition 1)
{

Code to execute condition 1 returns true;

}

else
if (condition 2)
{

Code to execute if condition 2 returns true;

}

else

{

Code to execute if all conditions returns false;

}

The difference between this syntax and the basic if else is the additional condition and code to
execute if the condition is true. There is also an additional else keyword added to connect the
additional code block.

Here’s an example:

if (totalHoursWorked >= 40)

{
Sbonus = 100;

}

else
if (StotalHoursWorked >= 50)

{
Sbonus = 200;

}

else

{
Sbonus = 50;

}

This example includes two checks for the number of hours an employee has worked, and
awards a bonus accordingly. While you are able to omit the open and close brackets, they help
keep the code organized as complexity grows, as in this example. You also have the option of
writing the additional condition using the elseif keyword.

This example contains only two conditions. As a best practice, try to avoid stringing more than
three if else statements. At that point you should consider using a switch statement, which
functions like an if statement, but uses a format that is considered more readable for code with
multiple check statements. A Learning fundamentals of PHP course that includes conditional
statements such as if else and switch will help to advance your PHP knowledge.

Java If Else: An Exercise in Flow Control
https://www.udemy.com/blog/java-if-else-2/

A Java program executes sequentially unless you add code that breaks up this natural flow, and
makes it more dynamic. For example, a section of your program may execute code that prints a
specific message if the user is younger than 65 years old , and present a different message if
they are over 65. You would handle this in your program by adding decision-making logic in the
form of control flow or conditional statements. For this tutorial we are going to explore how to
control the flow of Java programs using if else statements. This concept is considered a basic
concept of the Java language. If you want to enhance your knowledge to include other core
concepts, a course in Java fundamentals is recommended.

Before we jump into learning about the if else statement, let’s start with the concept on which
it is built—the if statement.

An if statement looks like this:

int Age = 70;
if (Age > 65)
{

System.out.println {“You are ready for retirement!”);

}

This snippet of code contains an initialization of a variable Age that is set to the number 70. The
condition tests for when Age is greater than the number 65. If this statement returns true, the
message, “You are ready for retirement!” is printed on the screen. If the condition is not met,
then the program ignores the code block and continues program execution. Since our variable
is currently set to a number that is greater than the 65, the message would be displayed.

You are not limited to a single if statement. The following example shows what Java code with
multiple if statements looks like.

Example 1: Multiple if Statements

public static void main (String[] args)
{
int Age =18;
if (Age < 65)
{
System.out.println {“You are too young to retire!”);
}
if (Age >=65)
{
System.out.println {You are ready for retirement!”);

}

This example contains two tests and possible outputs:

o If Age is less than 65, print “You are too young to retire!” to the screen.
o |f Age is greater than or equal to 65, print “You are ready for retirement!”

The program starts with the first condition to test if it is true, and executes the output for only
one of the conditions, depending on the value of Age.

In the if statement, conditions that return false values are ignored and program execution
continues. If you want Java to do some more decision making, you can add if else logic.

Like the if statement, if else tests for specific conditions. However, it goes a step further and
gives the program something to do in both true and false cases.

The if else statement syntax looks like this:

if (condition)
{

Statement to execute if condition is true;

}

else

{

Statement to execute if condition is false;

}

The first half mimics the syntax for the if statement. The if keyword indicates a change in
program flow is about to change, which is followed by a condition (Boolean expression) that is
enclosed in parentheses. You then create your first code block that includes the statement that
you want to execute if the condition returns true (all enclosed in brackets). The second code
block is similar to the first, but contains a statement that executes if the condition returns false
(again all in brackets). The code blocks can contain any expression that returns a Boolean (true
or false) value. The expressions always ends with a semicolon.

Formatting tips:

e Extra whitespace is ignored in Java programs, so you can add indentations as needed to
aid readability. You can learn more interesting information in an introduction to Java
programming course.

e Curly brackets that enclose the statement to execute are optional when there is only a
single statement. However, it is good programming practice to add them to make the
program easy to read.

Example 2: Basic if else Statement

This example contains an if else statement that prints a classic message on the screen.

intnum =4;
if (num >=3)
{
System.out.printin(“Hello World!”);

}

else

{

System.out.printIn(“Sorry. No printout!”);

}

This code creates a variable called num and gives it a starting value of 1. The program continues
the loop as long as the value of num is less than 5. At the end of each the loop, the program
increases the value of num by one. For each loop the program prints “Hello world!”

Here’s the output:

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

The words “Hello world!” are printed to the screen five times.

Example 3: Compound Statements

Example 3 contains a single statement within a code block. Java also supports compound
statements within a single code block.

This is what the syntax looks like:

if (condition)
{
Statement 1 to execute;
Statement 2 to execute;
Statement 3 to execute;
}

else

{

Statement 4 to execute;

}
Here’s an example:

public static void main(String[] args)
{
if (num < 0)

{

System.out,printin(“Your value is a negative number.”;
System.out.printin(“Try another number:”);
num = keyboard.nextiInt ();

}

else

{

System.out.printin(“You did not enter a negative number. Good job!”);

}
}

This example does the following:

e The variable num is being evaluated.

e The condition checks if the num variable is less than zero.

e |f the condition returns true, the program prints “Your value is a negative number. Try
another number.” to the screen.

e The “num = keyboard.nextInt ();” statement gets the next value of num, and the
condition is evaluated again with the new value.

e If the condition returns false, the program prints “You did not enter a negative number.
Good job!” to the screen.

Best practices for if else statements with compound statements:

e Make sure all of your statements are enclosed in brackets. As mentioned previously, this
aids readability.

e Position the opening and closing brackets for a code block, with appropriate
indentation, on a separate line. This adds a bit more coding, but aids readability.

Example 4: Saving Time with Boolean Operators

The examples so far include less than (<) and greater than or equal to (>=) operators to test the
conditions, and for good reason. These relational operators work best to test a single condition.
If your if else logic requires testing multiple conditions (also called a compound condition),
Boolean operators called short-circuiting operators are ideal to use instead of coding a string of
conditions (that could become messy!). The short-circuiting operators get their name from how
quickly they can evaluate conditions. For example, in some cases Java does not have to
evaluate the second condition. In Java, && (Logical AND) and Il (Logical OR) are short-circuit
operators.

The following table shows when each operator returns a Boolean (true or false) value.

Logical
Opgerator True when... False when...
&& Both conditions return true e At least one condition returns false

. Both conditions returns true
At least one condition returns *

Il ¢ Both conditions return false
true

The syntax for a Java if else statement that contains a compound condition looks like this:

if ((condition 1) logical operator (condition 2))

{

Statement to execute if condition is true;

}

else

{

Statement to execute if condition is false;

}

In addition to the placement of the logical operator between the conditions, you should also
notice another difference right away. A set of parentheses is placed around each condition as
well as the entire compound condition. These are the only two differences in comparison to a
statement with a single condition.

Here’s an example if else statement that contains a compound condition that uses the &&
operator:

if ((a<5) && (b >5))
{

System.out.printin(“This is true!”);

}

else

{

System.out.println (“This is false!”);

}

In this example, Java evaluates the first condition and then the second according to the
following:

¢ First condition true, second condition true; statement returns true.
¢ First condition false, Java skips second condition; statement returns false.
e First condition true, second condition false; statement returns false.

If the statement returns true, Java prints “This is true!” on the screen. Otherwise, “This is false!”
is printed on the screen.

In this next if else statement we use the Il operator to combine conditions:

if ((a==5) || (b==10)
{

System.out.printin(“This is true!”);

}

else

{

System.out.printin(“This is false!”);

}

In this example, the decision making works like this:

o First condition true, Java skips second condition; statement returns true.
e First condition false, second condition true; statement returns true.
e First condition false, second condition false; statement returns false.

If the statement returns true, Java prints “This is true!” on the screen. Otherwise, “This is false!”
is printed on the screen.

Learning how operators work in Java is essential to programming in the language. You may
want to consider a course in Java for complete beginners that teaches the core aspects of the
programming language.

Example 5: Nested if else Statements

The examples so far have contained a single condition statement to test. If your program
requires a test of multiple conditions, then nested if else statements are what you need. A
nested statement is also referred to as a multibranch.

The syntax for nested if else statements:

if (condition)

{

Statement to execute if condition is true;

}

else if

{

Statement to execute if condition is true;

}

else if

{

Statement to execute if condition is true;

}

else

{

Statement to execute if condition is false;

}

The following example contains two else if statements.

public static void main (String args[])

{
int score = 85;
if (score < 70)
{

System.out.printIn(“You did not receive a passing score!”);}
else if (score = = 85)

{
System.out.printIn(“You received a passing score!”);
}
else if (score = = 100)
{
System.out.println (“You received a perfect score!”); }
else
{
System.out.printlin (“I don’t know your score!”);
}

Here’s the output:

You received a passing score!

In this example, the variable score is set to 30. There are four conditions (tests), each with an
output if the condition returns true. The final statement is the output if neither of the

conditions returns true:

e Test 1: If score is less than 70. If true, “You did not receive a passing score!“ is printed to

the screen.

e Test 2: If score equals 85. If true, “You received a passing score! “is printed to the
screen.

o Test 3: If score is equal to 100. If true, “You received a perfect score! “is printed to the
screen.

e Test 4: If score does not return true for tests 1-3. If true, “I don’t know your score!” is
printed to the screen.

There is no limit to the number of else if statements you can add to a program. However, it is
always a good idea to write out and test your logic to discover the most efficient method to
achieve the goal of the program. Too many nested if else statements can easily become
confusing. Creating a flow diagram of your program is one way to test your logic. This method
of testing allows you to visualize the flow of your logic.

Closing Thoughts

This tutorial explained different ways to use if else logic in a Java program. Try modifying the
examples or create new ones to practice what you have learned. The if else statement is just
one type of condition that you can use in Java. You can also use the following control
statements:

¢ Conditional statements: In addition to if and if else, there is also the switch statement
that tests a condition against several statements.

e Repetition statements: Loops such as while, for, and do-while.

e Special control statements: These include the break, continue, and return statements.

The samples in this tutorial contain snippets of code. A course that enables you to learn to
program in Java is recommended to give you hands-on experience with the programming
language.

PL/SQL Tutorial: Expanding the Value of SQL
https://www.udemy.com/blog/plsql-tutorial/

In this lesson you can expect to learn all the basics of coding and running a PL/SQL program.
There are examples throughout the lesson that you can use for understanding and as a guide to
practice creating your own PL/SQL programs. This tutorial gives a brief history of Oracle SQL,
the basis of PL/SQL. An introductory course in Oracle SQL is recommended if you want to learn
more about the basics of the SQL language.

What is PL/SQL?

Oracle released Structured Query Language (SQL) for commercial use in the late 1970s, and in
less than 10 years later it became the standard for querying data in a relational database
management system (RDBMS). Oracle also developed MySQL You may want to participate in a
MySQL training course to learn about this language too.

SQL is a powerful programming language, but if you need to construct more complex
statements to manipulate your data, you need another tool. Oracle developed PL/SQL in the
1990s to extend the functionality of SQL to include procedural commands.

PL/SQL is a compound acronym that stands for Procedural Language/Structured Query
Language. As you would probably expect, a procedural language involves giving the computer
directions. In the case of PL/SQL, these directions are in the form of commands that are
grouped in units called blocks (more information about these later). PL/SQL allows you to
combine procedural constructs (such as IF, Else, Loop, and End Loop) with SQL statements.

The additional functionality you have with PL/SQL offers the following advantages:

e Since your code is encapsulated in blocks, you can easily store it in the database and
reuse it in multiple programs.

e More control of your programs through conditional and control statements

e Better flow and more completeness with error handling.

e Portability. Once you write a PL/SQL program, you can run it on any Oracle database
server regardless of the operating system.

e Improved performance by way of the PL/SQL engine that takes the multiple statements
in a block and processes them at the same time.

How Does PL/SQL Work?

A PL/SQL program consists of one or more blocks. A block is a unit of code that stores both SQL
and PL/SQL statements.

Let’s look at a basic PL/SQL block using the classic “Hello World” program.

BEGIN
DBMS_OUTPUT.PUT_LINE (‘Hello World’);
END;

The Hello World program contains two keywords that are required for every PL/SQL block:
BEGIN and END.

The execution section of the program, defined by the BEGIN keyword, is the body and contains
the PL/SQL and SQL statements to execute to accomplish the task. In this case we want to print
“Hello World” to the screen. In the statement, DBMS_OUTPUT.put_line refers to the package
name and procedure. Those concepts are discussed later. Each statement in this section must
conclude with a semicolon.

The END keyword marks the end of the block. A semicolon at the end is required here too.

Optional Sections of a PL/SQL Program

In addition to an execution section, a block can also contain declaration and exception sections.
These sections are defined by the DECLARE and EXCEPTION keywords, respectively.

Here’s an example program that contains the required execution section and optional
declaration and exception sections:

DECLARE
Bonus NUMBER (8,2);
Temp_Id NUMBER (6) = 100;

BEGIN

SELECT salary * 0.10 INTO bonus

FROM employees

WHERE employee_id = emp_id;
EXCEPTION

When NO_DATA_FOUND

THEN

Null;

END;

The DECLARE keyword at the very top of the block indicates the start of a declaration section.
Here is where you list all the placeholders you plan to use to accomplish your task. A
placeholder can be a variable with a value that can change in the block. In the example block,
Bonus and Temp_Id are variables. Along with declaring their names, you can also define their
data type and assign an initial value.

PL/SQL supports a variety of pre-defined data types. The most common are Varchar2, Char,
Number, Date, and Long:

e Varchar2 (maximum_length) — Stores character data with variable lengths up to 32767
bytes (2000 bytes maximum inserted into a database column with a VARCHAR2 data
type).

e Char [maximum_lengthl)] — Stores character data of a fixed length up to 32767 bytes
(2000 bytes maximum inserted into a database column with a Char data type)..

e Number[(precision, scale)] — Stores numbers (fixed or floating-point) without any
maximum. The precision parameter refers to the total number of numbers. The scale
parameter refers to rounding.

o Date — Stores dates from and including January 1, 4712 B.C. to and including December
32.4712 A.D.

e Long — Stores character strings with variable lengths. Similar to VARCHARZ2, but has a
maximum length of 32,760 bytes.

You can learn more about other data types that PL/SQL supports in an Oracle PL/SQL tutorial
course.

In the example, both variables are defined with the NUMBER data type; only the Temp_Id is
initialized with a starting value. If your block does not require any placeholders, you don’t need
this section. A semicolon is required at the end of a placeholder declaration. The execution
section of this block starts with the keyword BEGIN and contains a SQL SELECT statement.

The EXCEPTION keyword means that the block contains error handling. The exception section of
a PL/SQL block includes actions for the system to take when an error occurs. If you know that
specific errors may occur in your block, adding an exception section is a good practice. This
ensures that your program executes and terminates gracefully. An example of an exception is if
your program includes a calculation that requires dividing two numbers, you might consider
adding an exception for cases when the divisor is zero. In this case, you would be able to code

your error handling the ZERO_DIVIDE predefined exception that is available in PL/SQL. There
are several of these available.

Here’s an example of PL/SQL code that contains an exception section:

BEGIN
DBMS_OUTPUT.PUT_LINE(1/0);
EXCEPTION
When ZERO_DIVIDE
THEN
DBMS_OUTPUT.PUT_LINE(‘Division by zero’);
END;

In the example, every time the user inputs a value that equates to division by zero, the program
throws an error with the message, “Division by zero.”

More About Blocks

The PL/SQL language supports anonymous and named blocks.
Anonymous Blocks

The Hello World and Bonus programs above are examples of anonymous blocks. They are called
“anonymous” because they do not have a header or name associated with them. This is a
significant characteristic because it means that other blocks in the program cannot reference
them. Another important feature of anonymous blocks is that they are not stored in the
database; they are compiled each time the system loads them into memory. Activities that
require one-time processing are good examples of when to use anonymous blocks.

Named Blocks

A named block is stored in the database and can be run over and over again. There are types of
named blocks: function and procedure. The difference in the two is that a function always
returns a value. A procedure doesn’t explicitly return a value. You can pass parameters to a
procedure that get modified and are returned back to the program that is calling the procedure.
That is not required.

Here’s the syntax for a basic named block:

CREATE PROCEDURE <named_block>
BEGIN

<SQL or PL/SQL statement>;
END;

Package

A package is a block that organizes your procedures and functions and variables into cohesive
units. For example, you may want to store all of your code that deals with employment in a
package called HR. This type of package provides the block with a namespace.

Here’s the syntax for a package:

CREATE OR REPLACE PACKAGE <package> AS
<variable name and type declaration>;
BEGIN
<SQL or PL/SQL statement>;
END;

Trigger

A chunk of code that is stored in the data dictionary and reacts to some kind of activity in the
database. So, when some condition is true, this chunk of code will be executed and the end
user might not be aware of it. For example, if you update the salary of some employees, you
might want to store that in some special log file. Any time there is any update activity, that
trigger gets executed and is written to the log file.

Here’s the syntax for a trigger:

CREATE OR REPLACE
TRIGGER <trigger_name>
BEFORE OR AFTER
INSERT OR UPDATE OR DELETE
ON <table_name>
BEGIN

<SQL or PL/SQL statement>;
END;

The sections above explained some basic information about how to program using PL/SQL.
Here are some basic tips for writing a PL/SQL program:

e Start with what it is you want to do
e Break up the different parts

Running a PL/SQL Program

Once you write a PL/SQL program, you can run it on any Oracle database server regardless of
the operating system.

PL/SQL is run in a PL/SQL environment (compiler) that includes a PL/SQL engine that runs the
PL/SQL block. The engine is responsible for separating the parts of the entire block and
forwarding them to their respective executor (procedural statement executor or SQL statement

executor on an Oracle server). Once each part is executed, processing returns to the engine
where the parts are integrated and the process complete.

The engine can exist on the client side (The PL parts executed on the client and the SQL parts go
to the database server and back to the client). You can also create a PL/SQL program that is run
inside the database server.

You have three options to use to run a PL/SQL block:
e Write the program in a text file and then execute on your SQL prompt.

e Use an Oracle tool such as Oracle SQL Developer.
e Use a third-party tool such as TOAD.

Conclusion

This tutorial dove right into coding with PL/SQL, and is a great start to learning PL/SQL. A good
complement is a course that examines Oracle PL/SQL from scratch so that you can understand
the minute details of the programming language.

Oracle vs. MySQL vs. SQL Server: A Comparison of Popular RDBMS

https://www.udemy.com/blog/oracle-vs-mysql-vs-sql-server/

Since their introduction in the 1980s, relational database management systems (RDBMS) have
become the standard database type for a variety of industries. As their name implies, these
systems are based on the relational model that organizes data into groups of tables referred to
as relations. This post explores the history and features of three popular RDBMS: Oracle,
MySQL, and SQL Server. The comparison should help you understand the differences between
the systems, and if considering implementing a RDBMS, provide you with information that will
help make a decision. If you are interested in learning more about how RDBMS work, there are
many courses available. For example, an Oracle getting started course can introduce you to this
platform and teach you detailed information about how it works.

Summary Feature Comparison

The following table includes information about the Oracle, MySQL, and SQL Server databases
and how they compare.

‘Feature HOracIe HMySQL HSQL Server

Interface |GuI, saL lsaL laul, saL, various

. . ot
Language Many, including C, C#, C++, Eﬂigz;m;:;dmagnz' ((;ﬁ"(fctiv’e Java, Ruby, Python,
support Java, Ruby, and Objective C C' ! v J VB, .Net, and PHP
Operating Windows, Linux, Solaris, HP- ||Windows, Linux, OS X, .

. Windows
System UX, OS X, z/0S, AIX FreeBSD, Solaris
‘Licensing HProprietary HOpen source ”Proprietary
Oracle
History

IBM was the first company to develop a RDBMS, however, Oracle Corporation made history in
1980 by releasing its RDBMS, Oracle, for commercial use. Just a few years later the company
would release a version of its system for IBM computers. Since its exhibition to the RDBMS
market, Oracle has consistently led the way. According to Gartner, Oracle owned nearly 50% of
the RDBMS market in 2011. In addition to opening up the commercial market for RDBMS, the
Oracle Corporation also was the first company to develop a commercial-level version of SQL
that was designed to manipulate data in a RDBMS using (at that time) queries and joins.

Features

The first “real” release of the Oracle RDBMS was Oracle 2. This system supported only basic SQL
features, and it was written in an assembly language. The following year, and for the next 10
years or so, Oracle Corporation released updates to its flagship database. Probably one of the
reasons the Oracle RDBMS has managed to remain at the top of mighty RDBMS is linked to its
product updates that are closely tied to changes in the market. Database buzzwords such as
“scalable”, “programmable”, “distributed”, and “portable” are also tied to Oracle release. For
example, in 1985 support for a client-server model was added in anticipation of a growing
acceptance of network communication. As the Internet paved the way for the Digital Era, the
Oracle RDBMS was updated to include a native Java virtual machine (JVM).

Oracle Database 12c is the most recent release of the RDBMS, and it includes the following
features:

¢ New data redaction to enhance security of sensitive data

e Introduction of Oracle Advanced Analytics platform

e New database handling for archiving Flash Data Archive (FDA)

e Support for integrating with operating system processor groups

e Support for data pump for database consolidation

e Several enhancements to Oracle Application Express, a rapid-development tool that
allows users to develop Web apps using SQL and/or PL/SQL.

¢ Advanced network compression to enhance performance

If you're interested in how you code with Oracle SQL, an introduction to Oracle SQL course can
provide the basics of the language.

SQL Server

History

Microsoft SQL Server entered the RDBMS market as a serious competitor in the mid 1990s
when Microsoft purchased it from Sybase, and then released version 7.0. The companies
originally worked together to develop the platform to run on the IBM OS/2 platform. However,
Microsoft eventually developed its own operating system (Windows NT), and wanted to work
solo to create a database management for it. It would take several years for the Microsoft and
Sybase to completely sever their ties. Sybase eventually changed it’s product name so that it
would be completely different from the product sold to Microsoft. Microsoft SQL Server version
4.2 was the initial release.

Features

In 2000, Microsoft released SQL Server 2000. The release was a significant milestone for the
company because it marked the first release of the product where the original Sybase code was
completely replaced. In the same vein as Oracle Corporation, Microsoft has attempted to
enhance SQL Server to keep up with changing technology. SQL Server 2005 is an example. The
eXtensible Markup Language (XML) received stamp of approval from W3C and started gaining
ground in the late 1990s. One of the major new features of SQL Server 2005 was support for
XML data. Other notable features of the flagship product include the introduction of SQL Server
Always On (data management technology to decrease user downtime), support for structured
and semi-structured data, enhanced compression, and several add-ons to support other
products on the market. SQL Server 2012 was proclaimed as the last release to include native
support for OLE. A SQL Server 2012 essentials course can offer more information about this
platform and how to use it.

SQL Server 2014 is the latest release of SQL Server and includes the following features:

e Introduction of In-Memory Online Traction Processing (OLTP), an embedded feature
that allows sophisticated database management to enhance performance

e New solutions to handle disaster recovery

e Updated version of SQL Server Data Tools for Business Intelligence (SSDT BI)

MySQL
History

There are two unique aspects of MySQL in comparison to Oracle and SQL Server: it was not
originally developed for commercial use and it is an open source database. The database
platform was a happenstance as the individuals who developed it started out trying to use
mSQL to interface with their database tables, and decided they needed a much more powerful
interface. The initial phase of MySQL used an API leveraged from mSQL, enhancements that
increased speed considerably, and other features that included the InnoDB storage engine, full
text search, portability, and internationalization.

Another difference of the MySQL platform in comparison to the other two is that it is open
source. The Digital Age spawned a movement in software development collaboration that has
blossomed into a competitive market for databases and other software. According to market
reports, there is an excess of 10 million installations of MySQL, which indicates it is quickly
moving into the enterprise space.

The ownership of MySQL has transitioned from the product’s humble beginnings. The two most
notable acquisitions are (1) in 2008 when Sun Microsystems acquired MySQL AB, the company
that created MySQL, and (2) in 2010 when Oracle acquired Sun Microsystems.

Features

Oracle and SQL Server are considered tools that favor users with large enterprise systems, while
MySQL is considered a tool that appeals most often to individuals interested in managing
databases associated with their websites. As with Oracle and SQL Server, MySQL has released
updates to its software just about every year. The original version was developed in the mid
1990s. The most notable changes to MySQL was in 2010, the time of the last acquisition in
2010. The enhancements to this release (GA release 5.5) included semisynchronous replication,
custom partitioning, improved support for SMP and updates to the InnoDB 1/0 subsystem. If
you are just learning about MySQL, you may be interested in learning more details about it. A
MySQL database for beginners course is a good place to start your education.

Conclusion

This comparison shows just how close the databases are in three key areas. Considering your
unique situation is probably more relevant for deciding which one to implement than
determining which one is best.

