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The Cellular Redox Process 

 

Laser Therapy: Exploring the Role of Redox Mechanisms (Low-Level Light Therapy) 

Introduction 

CELLULAR REDOX STATE is the delicate balance between the levels of reactive oxygen species (ROS) 

produced during metabolism and ROS scavenged by the antioxidant system.1 ROS are largely 

produced as oxidative metabolism byproducts of the mitochondria. These ROS alter the cellular 

redox state. In higher concentrations they can be cytotoxic; however, in lower concentrations they 

are now being appreciated as important signaling molecules. In certain cell types, they have 

demonstrated their effect on cellular function, in particular as growth regulators.2 In plants, the 

chloroplast is a major source of ROS, produced by photostimulation of the chloroplast electron 

transport chain. 

Photosynthesis is dependent upon the absorption of photon energies from the visible and near 

visible spectrum. Plant life utilizes biomolecular photoacceptors to absorb this energy. 

Subsequent photoexcitation is tightly linked to biomolecular electron transport, which in essence 

involves the oxidation and reduction of biomolecules in the chain. This electron transport is used 

to create the proton motive force and thus generates energy for the cell. This electron transport 

also influences the reduction and oxidation of biomolecules associated with the electron transport 

chain (i.e., the production of associated ROS). In this way, visible and near visible light provides 

the energy for the production of high-energy molecules and influences the reduction/oxidation 

(redox) state of the cell. 

Laser research has revealed that specific wavelengths of light in the visible and near visible 

spectrum (at the correct dose, intensity, and pulse frequency) can induce a variety of cellular 

effects in some non-photosynthetic cells.3–13 Our understanding of such effects will help 

determine the clinical utility of low-intensity lasers and light-emitting diodes (LEDs). Interestingly, 

these cellular effects appear to share some mechanisms with the specialized processes of 

photosynthesis. 

This review surveys several lines of evidence that implicate a relationship between light, electron 

transport, and cellular redox signal transduction in photosynthetic and non-photosynthetic 

organisms, including human beings. The intention is not to provide an exhaustive review of each 

individual area of research, but rather to propose a novel framework for integrating these 

fascinating areas of research. 

Mitochondrial Photostimulation 

There is now substantial evidence demonstrating the specificity with which low-intensity 

monochromatic light interacts with certain nonphotosynthetic cells and tissues.3–23 In these 

particular cases, it is evident that low-intensity lasers and LEDs induce wavelength-specific, 

intensity-specific, energy density–specific, and pulsed frequency–specific effects. In certain cellular 

and tissue states, these effects participate in coordinated processes, such as wound healing and 

the modulation of chronic inflammation. Given the complexity of these processes and the 
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specificity of the effects of low-intensity light therapy (LILT), it appears possible that laser and LED 

technologies may be acting on some specific aspect of endogenous physiology. 

In addition, there is now a growing body of evidence that indicates that low-intensity red and 

near-infrared light is acting on cells through a primary photoacceptor: cytochrome C oxidase, the 

terminal enzyme of the mitochondrial electron transport chain.6,14,24–39 This evidence implies 

cytochrome C oxidase absorption, over other possible elements of the electron transport chain. 

Eells's group, for example, has demonstrated that low-intensity red light (670 nm) can modulate 

the effects of molecules known to directly inhibit cytochrome C oxidase activity.30,33 Furthermore, 

low-intensity laser researchers Karu and Kolyakov have reported similarities between the 

absorption spectrum of cytochrome C oxidase and the action spectra for various biological 

responses of HeLa cells irradiated with monochromatic light of 580–860 nm.36 These action 

spectra demonstrate peak positions in the red range (between 613.5 and 623.5 nm), the far-red 

range (between 667.5 and 683.7 nm), and two peak positions in the infrared range (750.7–772.3 nm 

and 812.5–846.0 nm). Karu's work implies absorption at the two copper centers in cytochrome C 

oxidase, the CuA binuclear center and the heme A3/CuB binuclear center. This research suggests 

that it is in fact the oxidized form of cytochrome C oxidase, and perhaps the oxidized forms of 

these copper centers, that is particularly sensitive to these wavelengths of low-intensity 

light.15,29,35 This suggests that pro-oxidant cellular conditions, which likely promote the oxidized 

form of cytochrome C oxidase, may result in increased sensitivity to red and near-infrared light. 

Interestingly, LILT research has shown that certain cellular and tissue states, known to be 

associated with pro-oxidant conditions, demonstrate an increased sensitivity to low-intensity laser 

and LED biostimulation. Actively proliferating cells and chronically inflamed tissues have shown 

an increased sensitivity to red and near-infrared (NIR) LILT.6,13,15,22,40–43 Among the cell types 

investigated, HeLa cells, fibroblasts, and epithelial cells have all demonstrated sensitivity to LILT. 

These cells are particularly photosensitive when they are in a proliferative phase.44–46 In each case, 

the proliferative phase of these cell types is associated with a pro-oxidant redox state.2 

At the tissue level, diabetic wounds have been shown to be more sensitive to LILT than normally 

healing tissue.20,22,23,47 This may in part be due to pro-oxidant conditions associated with diabetic 

hyperglycemia.48,49 Pro-oxidant conditions may promote the presence of the oxidized, more 

photosensitive form of cytochrome C oxidase in the mitochondria of treated tissue.35 This, in 

addition to other factors such as vascular compromise and poor metabolism, might help to explain 

the increased LILT response in poorly healing diabetic wounds as compared to normally healing 

tissue. 

A similar argument could be made for the increased sensitivity of chronically inflamed joints, as 

in the case of temporomandibular disorders. This pathology has been shown to be associated 

with pro-oxidant conditions and has been shown to be particularly sensitive to LILT.42,50 

The leading theory attempting to explain the basic mechanism of LILT implicates cytochrome C 

oxidase as the primary photoacceptor. Once cytochrome C oxidase is stimulated by light, electron 

transport is accelerated, leading to increased ATP production.26,27,51 At the same time, this 

photobiostimulation is linked to the generation of ROS.11,29 This increased metabolism and 

transient increase in ROS then participate to provide energy and intracellular signal transduction. 
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The complete signal transduction pathway has not yet been clearly elucidated. However, in some 

cases, LILT research demonstrates that it may involve downstream modulation of intracellular pH 

and calcium concentrations.8,19 Thus, photostimulation of cytochrome C oxidase is thought to lead 

to increased energy availability and signal transduction. This culminates in biochemical and 

cellular changes that lead to macroscopic effects, such as increased human epithelial cell 

proliferation or accelerated healing in diabetic wounds.44,47 As mentioned above, these effects are 

known to be dependent upon cell type, cellular growth phase, and associated redox conditions. 

The apparent photosensitivity of the mitochondrial electron transport apparatus is a relatively new 

addition to biological science. Leading low-intensity laser researcher Tiina Karu commented that 

photosensitivity might be a common property of higher animals and could have physiological 

significance under certain conditions, under exposure to orange-red light and in high-ADP 

conditions.35 One suggestion is that exposure to orange-red light at dawn may somehow help 

organisms prepare their cells for exposure to higher levels of UV light in the day. 

The mitochondrial electron transport chain no doubt shares an evolutionary relationship with the 

photosynthetic electron transport chain. Electron transport systems are fundamental to life on 

earth. There is a clear functional similarity between the analogous mitochondrial and 

photosynthetic systems. It appears possible that these biomolecular electron transport systems in 

certain cell types may share properties that render them sensitive to some forms of visible and 

near visible light. 

Reactive Oxygen Species and the Electron Transport Chain 

The photosynthetic electron transport chain (PETC) is the principal place of appearance of ROS in 

plants under illumination. It is well established that these ROS participate in cellular signal 

transduction in plants. “The photosynthetic electron transport chain (PETC) has the capacities both 

to produce and to scavenge ROS. It is accepted now that the response of plants to any 

environmental factor deviating from its optimal value, as well as to wounding, includes an 

increased production of the ROS. The control of the ROS level is necessary both to prevent 

oxidative stress or, more accurately, oxidative damage of cell components, and to provide some 

developmental processes and the response in incompatible plant-pathogen interactions.52” 

Similarly to the PETC, animal mitochondrial production and maintenance of intracellular ROS play 

a significant role in biology. The development of our distant animal relative, the ancient sea 

urchin Strongylocentrotus purpuratus, provides an interesting example. In the sea urchin embryo, 

asymmetrical clusters of mitochondria in the cell lead to localized generation of intracellular ROS. 

Investigators have determined that it is this localized, intracellular ROS generation that determines 

the sea urchin's initial blueprint. This localized ROS generation determines the oral/aboral axis of 

the developing organism.53 In reference to the organization of the mitochondria, a related 

phenomenon also seems to participate in LILT. Likely due to redox changes, low-intensity helium-

neon lasers have been shown to alter the organization of the mitochondrial apparatus in several 

cell types.25–27 

Concerning mammalian cells, R. Burdon has written a comprehensive review of redox regulation 

of cell proliferation in which he remarked that there is a growing body of evidence to suggest that 
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ROS (superoxide and hydrogen peroxide) may play a crucial role in the mechanisms underlying 

proliferative responses.2 In the review, the author reports prior studies in which low concentrations 

of ROS were shown to be effective in stimulating in vitro growth of hamster and rat fibroblasts. 

These effects are believed to be mediated through effects on redox-sensitive regulatory proteins, 

including redox-sensitive transcription factors. 

More recently, G. Pal et al. have conducted very elegant research investigating the effect of the 

low-intensity helium-neon laser on normal human skin fibroblasts.54 Using fiber-optic nano-

probes, single cells and cell populations were irradiated. Intracellular effects were then monitored 

with fluorescence life-time imaging. Laser-induced cellular proliferation was observed in the 

irradiated human fibroblasts. The study demonstrated that this induced proliferation was 

associated with real-time transient increases in ROS production. 

In some cases, the production of ROS by the electron transport chain leads to proliferative 

mechanisms. In other cases, as in plants, ROS production can trigger the induction of antioxidative 

scavenging mechanisms. In this way, the ROS level is controlled and homeostasis is maintained. 

As mentioned above, low-intensity laser/LED research shows that like the PETC, the mitochondrial 

electron transport chain produces ROS when illuminated with certain wavelengths (e.g., 632.8, 

812, and 820 nm) of monochromatic light.11,29,54 The generation of such ROS, in addition to 

increased ATP production, may be involved in stimulating restorative mechanisms. Such a process 

might participate in the treatment of delayed wound healing or chronic inflammation in the 

following manner. 

Pro-oxidant conditions in cells, as those found in chronic inflammation or diabetes, may promote 

the oxidation of cytochrome C oxidase, resulting in increased mitochondrial photosensitivity to 

low-intensity monochromatic light. As mentioned above, once stimulated, the “oxidized” 

mitochondrial electron transport chain generates ATP and ROS. Amidst increased metabolism, 

these particular ROS alter cellular function. In some cases they may promote proliferation, and in 

others they may act to induce antioxidative mechanisms that promote redox homeostasis and 

improve cellular functioning. In some cases, such ROS signaling could act to alter gene expression 

by influencing redox-sensitive transcription factors.55–58 In fact, LILT has been shown to alter the 

expression of a variety of genes. In their research, Zhang et al. used cDNA microarray analysis to 

investigate this phenomenon and found that red light irradiation regulated the expression of 111 

genes in 10 functional categories.46 Most of these affected genes are known to directly or 

indirectly play roles in the enhancement of cell proliferation and the suppression of apoptosis. 

Several genes related to anti-oxidation and mitochondria energy metabolism were also found to 

express differentially upon irradiation. 

Low-Intensity Ultraviolet A Photostimulation 

Let us look at one more established phenomenon of photobiology. Ultraviolet (UV) light induction 

of DNA repair is one of the most well studied interactions of near visible light with cells. This has 

been of particular interest to those working with gene therapy. In the developing field of gene 

therapy, one approach involves using a retroviral vector to introduce a gene to a cell. To ensure 

the expression of the introduced gene, scientists are searching for ways to safely induce DNA 

polymerases involved in facilitating the expression of the viral gene. In one particular gene therapy 
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case, researchers have been exploring methods for activating gene transduction to treat articular 

cartilage defects.59 It was previously known that ultraviolet C light (less than 280 nm) facilitates 

retroviral transduction by inducing DNA repair enzymes that mediate second-strand synthesis. 

However, UVC light causes serious side effects, including DNA damage and significant cytotoxicity. 

Consequently, its utility in gene therapy is limited. However, UV light closer to the visible spectrum 

has shown more promise. Researchers have experimented with ultraviolet A light (320–400 nm) at 

lower intensities (35-mW and 100-mW lasers). Ultraviolet A is not absorbed by DNA and does not 

directly induce DNA mutations. At lower intensities/doses, it is not significantly cytotoxic. In their 

study, UVA low-intensity laser light was shown to be an effective method to induce gene 

transduction by activating DNA polymerases. Although the basic mechanisms of signal 

transduction are not clear, UVA-activated gene transduction is associated with the transient 

increase in intracellular reactive oxygen species. This low-intensity UV stimulation of DNA 

polymerases, possibly through the generation of ROS, bears an interesting similarity to red and 

near infrared low-intensity laser stimulation. The potential photoacceptor for UVA light has not 

been clearly identified, although similar mechanisms may be involved. 

In addition to the more widely discussed red and infrared photostimulation, Karu reports that the 

action spectrum of irradiated HeLa cells also demonstrates UVA-induced activation of nucleic acid 

synthesis. Karu also reports on experiments that have shown that a specific wavelength of UVA 

light (365 nm), like red and infrared light, can lead to activation of mitochondrial oxygen 

consumption.29 Cytochrome C oxidase does demonstrate some UV absorption; however, more 

work needs to be done to explore its potential role as a UV photoacceptor in this case.60 As in red 

and infrared photostimulation, other photoacceptors may be involved. Nonetheless, this UVA-

induced biostimulation provides another interesting example in which near visible light appears 

to be generating ROS through some biomolecular photoacceptor. Subsequently, cellular 

functioning (i.e., DNA polymerase activity) is altered. 

Conclusion 

In conclusion, low-intensity monochromatic light has been shown to cause a variety of effects on 

irradiated cells, depending on the state (i.e., growth phase and redox conditions) of those 

irradiated cells. These effects appear to be clinically relevant. LILT is now used by some 

practitioners to treat poorly healing wounds and chronically inflamed tissues. Monochromatic 

light (UVA) effects are also being investigated for their potential role in gene therapy. 

In these phenomena we observe physiology previously thought to be limited to photosynthetic 

organisms and specialized photoresponsive cells. In the case of low-intensity red and near-

infrared light stimulation of several cell types, it seems that cytochrome C oxidase may act as a 

primary photoacceptor. Photoexcitation of this photoacceptor in the mitochondrial electron 

transport chain then alters cellular function, at least in part, through increased metabolism and 

the generation of reactive oxygen species. As in plants, these alterations influence cellular redox 

state and function. Furthermore, the initial redox state of irradiated cells appears to influence their 

photosensitivity. 

Thus, low-intensity lasers and LEDs may be acting on tissues through interactions with 

endogenous cellular redox systems. This may explain the specificity of LILT effects. This also may 
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provide a framework to explain why some cells in pro-oxidant states, such as those that are 

chronically inflamed, are more sensitive to LILT. In these sensitive cells, LILT would provide further 

ROS, which may be specific to promoting proliferation, or in some cases accelerating antioxidant 

mechanisms. In such a scenario, these processes would provide the energy and the direction to 

restore redox homeostasis and improve cell functioning. Future clinical research into LILT should 

include a closer look at redox state. It is likely that our understanding of LILT therapy could be 

advanced with in-vitro and in-vivo assessments of redox conditions. 

In the words of dermatologic researcher Dr. Andrzej Slominski, “life on earth since inception has 

depended on a constant source of energy from the burning gases of our sun.”61 There is an ancient 

relationship between the visible and near visible spectrum of electromagnetic radiation and the 

biomolecules of life. We still have much to learn about this relationship. Research into the 

mechanisms of LILT may be opening another chapter in our understanding. 
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