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Abstract
Introduction: Damage to the spinal cord is a central nervous system disorder that results in direct 
damage to neural cells (axons, cell bodies) and glia, followed by autonomic, motor and sensory 
impairments. Inflammatory response after this injury can contribute to secondary tissue damage 
that leads to further behavioral and functional disorders. Inflammation is a complex process, which 
occurs after an injury. If this progressive process is not well controlled can lead to additional 
damage to the spinal cord which is preventing neural improvement and regeneration and, which 
ultimately will not provide good clinical consequences. Inflammation in the injured spinal cord 
is a physiological response that causes the death of glial and neuronal cells. The reduction of the 
initial inflammatory process after damage to the spinal cord is one of the important therapeutic 
strategies. It has been proposed that low-level laser (LLL) therapy, as a noninvasive manner, can 
modulate inflammatory processes, which leads to a significant improvement in neurological 
symptoms after spinal cord injury (SCI). 
Methods: A comprehensive review was performed on SCI, the etiologies, and treatment methods 
using the keywords spinal cord injury, low-level laser, and inflammation in valid medical databases 
such as Google Scholar, PubMed, and Elsevier (76 articles). Among the collected papers, articles 
that were most relevant to the purposes of the study were selected and studied. 
Results: LLL therapy was able to reduce inflammation and also attenuate neuronal damage after 
spinal cord damage. 
Conclusion: The present study illustrates that LLL therapy has positive effects on improving 
functional recovery and regulating the inflammatory function in the SCI.
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Introduction
Spinal cord injury (SCI) is the main disorder in the 
central nervous system that specified by sensory, motor, 
and autonomic function impairments. SCI is followed 
by interruption of neuronal signaling along the spinal 
pathways. Restrictions on SCI have negative economic, 
social, and individual effects on patients with SCI.1-5 The 
incidence of SCI which is more common in men than in 
women has approximate ranges from 3.6 to 195 cases per 
million each year.6,7

In previous studies, according to the mechanism of 
injury, spinal cord injuries have been classified into two 
traumatic and non-traumatic types.8,9 The traumatic 
type of SCI is caused by such events as falling, vehicle 
accidents, sport, and violence. These events may cause 

a fracture in the spinal column, which is an important 
factor in exerting physical pressure on the spinal cord 
tissue, leading to loss of neurological function below 
the level of injury.8,10 In the non-traumatic type of SCI, 
factors like the infection, degenerative disk disease, and 
the tumor can cause SCI. As a result, SCI can cause 
extensive cellular damage, necrosis, and apoptosis, in 
neuronal and glial cells.11,12 In addition to the division 
mentioned above, according to the pathophysiology of 
injury, researchers have divided the spinal cord injuries 
into primary and secondary injuries.13-16 Primary injury 
begins immediately after injury which often results 
from mechanical impactions on the spinal cord, such 
as contusion, compression, stretching, penetration, and 
laceration.1,16 This phase is well characterized by acute 
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hemorrhage and ischemia in the spinal cord tissue. The 
secondary injury which is characterized by neuronal and 
glial cell death starts after primary injury and can last up 
to weeks.17-19 In addition, the injury site can be extended 
to non-injured tissue. In the center of the injury site, fluid-
filled cysts and glial scars are often formed. However, the 
precise mechanism of secondary injury is incompletely 
understood.20 Previous studies suggested that secondary 
damage can be divided into three phases: the acute 
phase, the subacute phase, and the chronic phase, each 
with different various pathophysiological processes.16,21,22 
Secondary injury is a complex and progressive process 
that includes inflammation, the death of neurons and 
glial cells, ischemia, excitotoxicity and electrolyte 
imbalances, free radical’s production, lipid peroxidation, 
and demyelination of surrounding neurons.11,20,23-26 
The secondary phase makes the principal cause for the 
morbidity occurring in patients with damage to the spinal 
cord.19

Inflammation in Spinal Cord Injury
Stress and inflammation are major causes of damage to the 
central nervous system.27 The results of earlier studies have 
shown that the damage does not affect the whole structure 
of the spinal cord. In the animal model, Contusion and 
compression types of SCI are common in research.3,15 The 
primary injury in contusion and compression models 
can cause tension and rupture in the spinal cord vessels.1 
Traumatic SCI initiates an inflammatory response 
that is one of the main causes of symptoms of SCI.19 

Immediately after an injury to the blood-brain barrier, the 
inflammatory response is initiated by resident immune 
cells (astrocytes and microglia), peripheral immune cells 
(neutrophils, macrophages, and monocytes) and also 
the release of their chemical mediators.3,27,28 8–24 hours 
after the lesion, peripheral immune cells can be observed 
inside the spinal cord tissue. Activated microglia can be 
observed on the first day after the injury, reaching their 
highest levels from day 3 to day 7. Neutrophils are the first 
leukocytes present in the lesion site from the first 3 to 12 
hours after the lesion.29,30 Subsequently, 3-4 days after SCI, 
monocytes and macrophages infiltrate into the lesion site.3 
It is well documented that, in an inflammatory response, 
the immune cells are one of the most important causes 
of neural cell degeneration.15,19 This reaction starts within 
hours after damage to spinal cord tissue and achieves 
peak values within a few days and it may continue for 
several years.15 

The expression of TNF-𝛼 and IL-1β was observed by 
astrocytes and microglia 5–15 min. after injury.12,27 The 
peak of TNF-𝛼 and IL-1β expression are at 1 hour and 
12 hours after injury, respectively.12 An in vitro study has 
shown that TNF-𝛼 and IL-1β can cause oligodendrocyte 
death and also inhibit glutamate transporters in 
astrocytes.31 In the secondary phase, TNF-𝛼 release from 
astrocytes can stimulate the additional release of this 

cytokine. It can also cause the accumulation of calcium 
in the neuronal cells.12,32 The principal effects of TNF-𝛼 
on the SCI have not been clearly established. However, 
the researchers have suggested that in the primary 
phase of CNS damage, it can cause edema and immune 
cell migration, neuronal cell death, and also some 
neuroprotective effects.20

The inflammatory reactions expand within hours after 
damage to the spinal cord, achieving peak values within a 
few days. Likewise, the infiltration of peripheral immune 
cells is followed by macrophages and monocytes.8,15,33 
TNF-𝛼 levels in the spinal cord elevate one hour after 
trauma. However, it is thought that it may lead to 
edema and immune cell migration, cell death, and some 
neuroprotective effects in the primary phase of SCI.20

Different approaches have been proposed to treat SCI 
in animal studies, such as the reduction of inflammation, 
the infusion of neurotrophic factors, the reduction of 
endogenous growth suppressors, and the transplantation 
of growth-promoting cells.34,35 In both developed and 
developing countries, the reduction of neurological 
impairments after SCI is the main problem facing 
the healthcare sector.6 Nowadays despite the use of 
various therapies such as drug therapy, gene therapy, 
hypothermia, tissue engineering, and transplantation 
of stem cells in patients with damage to the spinal cord, 
none of the above methods has completely eliminated the 
complications of this injury.11,36-41 It is well documented 
that reducing and controlling inflammation in SCI can 
reduce the complications in SCI models.33, 42

Low-Level Laser in SCI
The results of some preliminary studies have clearly 
shown that the application of low-level laser (LLL) may 
have useful effects on central nervous system damage.43,44 
Recently, the use of laser therapy, as a noninvasive 
procedure, has been considered one of the new therapeutic 
strategies for the treatment of wounds and burns, pain, 
osteoporosis, and periodontal diseases.36,43,45-50 Previous 
studies have suggested that lasers can affect the level of 
inflammatory factors such as TNF-α and IL-1𝛽.51,52 They 
are also useful for neurological and neurodegenerative 
disorders such as traumatic brain injury, stroke, and 
damage to the spinal cord.44,53-56 In previous studies, lasers 
were divided into high and low power. High-power lasers 
have immediate effects and are most commonly used in 
surgical operations. Unlike high-power lasers, low-power 
lasers had no rapid tissue effects.57 Moreover, the results 
from animal CNS injury studies have indicated that LLL 
may have helpful effects on the treatment of inflammatory 
conditions after CNS injury.58-60 Experimental 
investigations in animals indicate that the use of LLL 
can decrease the post-traumatic inflammatory reactions 
and prevent the effects of reactive oxygen species (ROS) 
release and NF-κB activation.42,61,62 It is well documented 
that LLL can attenuate inflammation response and TNF-α 
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level in Broncho alveolar lavage fluid animal models.51

The use of LLL can have an effect on cell performance 
by affecting the enzymes, organelles, and cell membranes. 
It is well documented that LLL can change physiological 
reactions by activating transcription factors, enhancing 
mitochondrial respiration, decreasing main inflammatory 
factors, increasing angiogenesis and neurogenesis to 
increase wound healing, repairing tissues, and decreasing 
inflammation.63,64 Evidence has also suggested that 
photobiomodulation is useful in reducing neuropathic 
pain and programmed cell death.65 Furthermore, some 
investigations have demonstrated that transcranial 
infrared laser therapy used in 6 and 24 hours after an 
ischemic stroke in animal models leads to significant 
recovery of neurological defects.56,66,67 Animal studies 
have shown that laser therapy prevents the aggregation 
of macrophages at the site of neuronal tissue injury and 
modulates the inflammation process, which promotes 
improvement in neuronal tissue repair and decreases 
injury complications by reducing the secretion of PEG2 
and LTB4.68,69

A study by Gonçalves et al demonstrates that LLL 
therapy after SCI can decrease the inflammation reactions 
in the spinal cord by regulating the migration of immune 
cells in the spinal cord and it can prevent the destruction 
of axonal myelin. Also, it can cause a decrease in the 
size of the central cavity and enhance motor function.70 
Oron et al proposed the transcranial application of LLL 
after traumatic brain injury could provide a striking 
functional neurological benefit and reduces brain tissue 
damage.71 It is well documented that LLL can promote 
axonal regeneration and functional recovery in rat 

SCI.72,73 Previous studies36,42,43,63-69 (Table 1) have clearly 
documented that the application of photobiomodulation 
can have beneficial effects on the treatment of ischemic-
reperfusion model through decreasing inflammatory 
factors, inhibiting programmed cell death, stimulating 
angiogenesis, and enhancing neurogenesis.74 In addition, 
it has been shown that laser therapy can significantly 
decrease CD68 positive cells in the site of neuronal injury, 
and the beneficial results of this therapeutic manner in 
the regulation of immune cell proliferation have been 
demonstrated, which may have impressed the reduction 
in neural cell death, having significant effects on the 
recovery of function behavior.75

The results of Rochkind and colleagues’ study have 
shown that the treatment of a transected SCI animal 
model by a composite implant and laser irradiation 
(780 nm) can improve axonal re-growth and spinal cord 
healing.76 On the other hand, experimental studies by 
Wu et al determined that photobiomodulation (810 nm) 
had striking effects on improving axonal restoration 
and functional recovery in both dorsal hemisection and 
contusion models of SCI.73

It is also proposed that LLL can regulate the 
inflammatory reactions, modulate the secondary damage, 
and reduce programmed cell death and edema in the 
primary phase of recovery.

Conclusion
According to the results of previous studies, LLL can 
promote functional recovery in a contusion model of the 
SCI, which can emphasize LLL application in CNS injury 
as a favorable non-invasive therapy for clinical usage.

Table 1. Some Studies About the Effect of LLL in SCI

Author Year Title SCI Model Length of Radiation

Svobodova et al63 2019
The effect of 808 nm and 905 nm wavelength light on recovery after 
SCI

Compression 808 and 905 nm

Kim et al64 2017
Low-level laser irradiation improves motor recovery after contusive 
SCI in rats

Contusion 850 nm

Janzadeh et al36 2017
Combine effect of Chondroitinase ABC and low level laser (660 nm) 
on SCI model in adult male rats

Compression 660 nm

Veronez et al65 2017
Effects of different fluences of low-level laser therapy in an 
experimental model of SCI in rats

Contusion 808 nm

Song et al42 2017
Low-level laser facilitates alternatively activated macrophage/
microglia polarization and promotes functional recovery after crush 
SCI in rats

Compression 810 nm

Hu et al66 2016
Red LED photobiomodulation reduces pain hypersensitivity and 
improves sensorimotor function following mild T10 hemicontusion 
SCI

Hemicontusion 670 nm

Paula et al67 2014 Low-intensity laser therapy effect on the recovery of traumatic SCI Contusion 780 nm

Ando et al43 2013 Low-level laser therapy for SCI in rats: effects of polarization Contusion 808 nm

Wu et al68 2009
810 nm Wavelength light: An effective therapy for transected or 
contused rat spinal cord

Contusion and 
Hemisection

810 nm

Byrnes et al69 2005
Light promotes regeneration and functional recovery and alters the 
immune response after SCI

Hemisection 810 nm
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