
MNRAS 000, 1–11 (2020) Preprint October 9, 2021 Compiled using MNRAS LATEX style file v3.0

The Black Hole Universe (BHU)

Enrique Gaztañaga★
Institute of Space Sciences (ICE, CSIC), 08193 Barcelona, Spain
Institut d´ Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain

October 9, 2021

ABSTRACT

Recent observations show that cosmic expansion is dominated by an effective cosmological constant. This means that we
live inside a trapped surface, which corresponds to a Black Hole (BH) event horizon. We show that such Black Hole Universe
(BHU) is also a solution to classical GR, where two nested FLRWmetrics are connected by a BH event horizon. Observed CMB
anomalies are consistent with these idea. The BHU solution can be used to model our Universe or a stellar BH inside. Observed
BHs (and possibly BHs making the Dark Matter, DM) could be made of such BHUs. A BHU can originate by kinetic damping
of a field into a false vacuum in an expanding background, such as cosmic inflation or a supernova explosion. In comoving
coordinates the BHU is expanding while in Schwarzschild coordinates it is asymptotically static. Such frame duality allows for a
Perfect Cosmological Principle where spacetime can be homogeneous both in space and time, in better agreement with relativity.
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1 INTRODUCTION

BB, DM, Dark Energy (DE), Λ and BHs are puzzles we don’t un-
derstand at any fundamental level. The corresponding GR solutions
seem to involve singularities that make no physical sense. Many the-
orist interpret mathematical singularity theorems as evidence that no
other solutions can possibly exist and that solution to these puzzles
require a theory of Quantum Gravity. But this is far from settle (Dad-
hich 2007) and it is outside the scope of our paper. That a non singular
version of such solutions exist is clear from direct observations. Here
we elaborate over a well known example of non singular classical
solution to GR: the Bubble Universes. A domain wall, or thin bubble,
connects a region of false vacuum, with de Sitter (dS) space inside,
with empty space. These solutions are not very appealing because
they have no regular matter and require a surface term (or bubble ten-
sion f ≠ 0) to artificially glue dS and SWmetrics discontinuity (e.g.
see Blau et al. 1987; Aguirre & Johnson 2005). Our BHU proposal
is a new type of Bubble Universe with a FLRW interior (including
regular matter) and no bubble or surface term (f = 0).
Wemight never know how the BB or inflation started, but this does

not prevent us from using them as the standard cosmological model
to interpret observations. Something similar happens with BHs. For
the same reason, we don’t need to specify a particular formation
mechanism to consider the BHU as an alternative to the BB and BH
paradigms. In §2.1 and 6.3, we give some ideas on how a BHU could
form. But our scope and focus here is not on the formationmechanism
but to show that a new classical non-singular GR solutions exist and
hopefully it can help us understanding the above puzzles.
A Schwarzschild BH metric (BH.SW) represents a singular object

of mass " . The BH event horizon A(, ≡ 2�" prevent us from
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interacting with the inside (which makes BHs good potential Dark
Matter candidates). Physically, a singular point does not make any
sense.1 But objects with mass and sizes matching A(, have been
observed.What is themetric inside?What happenswhen they accrete
matter or when two BHs merge? Do BHs grow and co-evolve with
galaxies (e.g.Kormendy&Ho2013)?DoobservedBH form in stellar
collapse or are they seeded by primordial BHs? How do primordial
BH form (e.g. Kusenko 2020)? Most of these modelings assume the
BH.SW solution, but can we actually answer any of this if we do not
have a physical model for the BH interior?

Here, we look for an alternative solution to the BH.SW interior,
defined as a non singular classical object of size A(, which repro-
duces the BH.SW metric for the outside A > A(, . A physical BH of
size A = A(, and mass " , has a density:

d�� =
"

+
=

3A−2
(,

8c�
=

3"−2

32c�3 . (1)

This is more compact than any form of regular matter (Buchdahl
1959). The highest known density for a stellar object is that of a
Neutron star, which has the density of an atomic nucleus, but is still
a few times larger than A(, . To achieve such a high density for a
perfect fluid, the radial pressure inside a BH needs to be negative
(Brustein & Medved 2019 and references therein). Cosmologist are
used to this type of fluids, which are called Quintessence, Inflation
or Dark Energy (DE). So, could the inside of a BH be DE? Mazur
& Mottola (2015) have argued that the same DE repulsive force
that causes cosmic acceleration could also prevent the BH collapse,
resulting in the so call gravastar solution. The simplest DE is the

1 This is why it took Newton over 20 years to publish the inverse square
law of gravity. He did not need to solve Quantum Gravity to address such
singularity, but he had to (re) invent integration (darkcosmos.com).
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ground state dE02 ≡ +0 (i) of a scalar field i(G). When such DE is
constant both as a function of space and time, it is equivalent to Λ.
Gaztañaga (2021) have argued that a constant vacuum energy does
not gravitate, but a false vacuum (FV) discontinuity does.
Here, we look for a classical BH solution defined by a spatial

discontinuity at the event horizon. This requires non-static solutions
with radial fluid velocity D ≠ 0 relative to the outside SW observer.
The two key questions we want to address here are:What are possible
metrics for the inside of such a physical BH?What is the meaning of
the BH mass " measured by an outside SW observer, like us?
We find a new solution to these questions, which we call the BHU

metric. We will also explore the idea that our Universe corresponds
to such BHU solution. As the universe expands � tends to �Λ which
corresponds to a trapped surface AΛ = 1/�Λ, just like the event
horizon of a BH. Moreover, the density of our universe in that limit
is d = 3�2

Λ
/8c� which exactly corresponds to that of a BH, in Eq.1

for A(, = AΛ. This is not just a coincidence as advocated by some
scientist (Landsberg 1984; Knutsen 2009). It directly indicates that
we actually live inside a very massive physical BH. It also tells us
what is the metric inside a BH: our Universe is the only object whose
interior we know and has the density of a BH. We will explicitly
show that such BHU is a solution to classical GR.
The idea that the universe might be generated from the inside of a

BH is not new and has extensive literature. Easson & Brandenberger
(2001) and Oshita & Yokoyama (2018) present a good summary of
past and recent literature which mostly focused in dS metric with a
dual role of the BH interior and an approximation for our universe.
Many of the formation mechanisms involve some modifications or
extensions of GR, often motivated by quantum gravity or string the-
ory. This is what we try to avoid here (Ellis & Silk 2014). There
are also some examples (e.g. Daghigh et al. 2000) which presented
models within the scope of a classical GR and classical field theory
with FV interior similar to our BH.fv solution here. These models
are affected by the no-go theorem, such us Galtsov & Lemos (2001),
that state that no smooth solution to i(G) can interpolate between dS
and SW space. But this is not an issue for our solution for two rea-
sons. First, the external asymptotic space is really SW+dS or FLRW
(a BH is a perturbation within a FLRW metric), where solutions
do exist (e.g. Dymnikova 2003). Second, we do not need i(G) to
smoothly transit between metrics: i(G) is trapped in a FV, which is
discontinuous by nature.
The above solutions provide support to the idea that our universe

could be inside a BH, but they are too simplistic, as they don’t contain
any matter or radiation. Can these ideas be extended to the FLRW
metric? Several authors have grasped the idea and speculated that
the FLRW metric could be the interior of a BH (Pathria 1972; Good
1972; Popławski 2016; Zhang 2018). But these were incomplete
(Knutsen 2009) or outside classical GR. Stuckey (1994) found that
an inside dust dominated FLRWmetric could be joined to an outside
BH.SW metric. This provides a new exact solution to GR which is
a good precedent to our BH.u solution (in §4.2). Here we indepen-
dently extend and re-interpreted this solution. First we have included
radiation and a Λ term (or a FV vacuum), which is to understand
the dual role of dΛ as a boundary and a BH event horizon. We also
interpret the outside BH.SW solution as perturbation in an external
FLRW and explore the physical BH and cosmological interpretation
of such solution. We also give some new ideas on how such BHU
could form.
The BHU solution is quite different from that of Smolin (1992),

who speculated that all final (e.g. BH) singularities ’bounce’ or tunnel
to initial singularities of newuniverses.Herewe propose the opposite,
that such mathematical singularities are not needed to explain the

physical world. As stated by Ellis (2008), the concept of physical
infinity is not a scientific one if science involves testability by either
observation or experiment. The BHU model can avoid the initial
causal and entropy paradoxes (Dyson et al. 2002; Penrose 2006)
because of its origin within a larger expanding spacetime.

In §2 we present the GR field equations of a perfect fluid for
homogeneous solutions: a FV and an expanding FLRW universe. In
§3we give a brief introduction to the general case of in-homogeneous
solutions with spherical symmetry in proper SW coordinates. The
FLRW solution can also be expressed in these SW coordinates. This
duality is a key ingredient to find our new solution for a physical BH
interior in §4. As far as we know this is a new result. In §5 we discuss
how to apply these solutions to our universe. We end with a summary
and a discussion of observational windows to test the BHU.

2 HOMOGENEOUS SOLUTIONS

We will solve Einstein’s field equations (EFE) Padmanabhan (2010):

�`a + Λ6`a = 8c� )`a ≡ −
16c�
√−6

X(√−6L)
X6`a

, (2)

where �`a ≡ '`a − 1
26`a' and L is the matter Lagrangian. For

perfect fluid in spherical coordinates:

)`a = (d + ?)D`Da + ?6`a (3)

where Da is the 4-velocity (DaDa = −1), d, and ? are the energy-
matter density and pressure. This fluid is in general made of several
components, each with a different equation of state ? = ld. In
general, for a fluid moving with relative radial velocity D with Da =
(D0, D, 0, 0), we have D2

0 = −600 (1 + 611D
2) and:

)0
0 = −d − D

2 (d + ?)611 ; )1
1 = ? + D

2 (d + ?)611

)1
0 = (d + ?) D0D ; )2

2 = )
3
3 = ? (4)

For a comoving observer D = 0. The outside manyfoldMout is empty
space so the outside netric 6out is the BH.SW. Because the inside
Min is causally disconnected,Mout acts like a boundary condition
(Gaztañaga 2021). Given some d and ? inside A(, , we will solve
EFE inside to find 6in. To impose the boundary at A(, wewill use the
same (proper) SW outside coordinate frame (that is not comoving
with the fluid). This will result in solutions for Min that are not
static. We will verify Israel (1967) conditions to check that the join
manyfoldM = Min ∪Mout is also a solution to EFE without any
surface terms (see §4.3).

2.1 Scalar field in curved space-time

Consider a minimally coupled scalar field i = i(GU) with:

L ≡  −+ = −1
2
mUim

Ui −+ (i) (5)

The Lagrange equations are: ∇̄2i = m+/mi.We can estimate)`a (i)
from its definition in Eq.2 to find:

)`a (i) = m`imai + 6`a ( −+) (6)

comparing to Eq.3:

d =  ++ ; ? = | | −+ (7)
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Figure 1. The potential + (q) , of a classical scalar field q (G) , made of the
superposition of plane waves. A configuration with total energy: d5 =  5++5
(black dot at q5) can loose its kinetic energy  5 during expansion (e.g. a
supernova explosion or a expanding background) due to Hubble damping and
relax into one of the static ( = 0) ground state (or FV) d5 = +5 ≡ + (q5)
(red dots). This can generate a Black Hole (BH.fv) and regular matter from
reheating. Each FV has an energy excess Δ8 ≡ +8 − +0 over the true vacuum
at +0 (blue dot). Quantum tunneling (dashed lines) could allow q to jump
between FV, resulting in BH evaporation and new matter/radiation.

In general we can have ? ‖ ≠ ?⊥ for non canonical scalar fields (see
Eq.5 in Díez-Tejedor & Feinstein 2006 for further details). The stable
solution corresponds to ? = −d ≡ −dE02 :

∇̄2i = m+/mi = 0 ; d ≡ dE02 = −? = + (i) = +8 (8)

where i is trapped in the true minimum +0 or some false vacuum
(FV) state +8 = +0 +Δ. The situation is illustrated in Fig.1. Consider
a localized field with some fixed total energy d =  + + (black
dot labeled d5 in the figure). In an expanding background (such a
supernovae explosion or Inflation) the field can rapidly lose its kinetic
energy ( 5), due to Hubble damping, and end up trapped inside some
FV (+5). If the outside background is at a lower FV, this will generate
an expanding BH of type BH.fv, as we will discuss in §4.1. This
could be the final outcome of stellar collapse, or the start of some new
cosmic inflation, avoiding the traditional BB or BH.SW singularities.
Because additional FV structure can exist within a given FV, the
same Hubble damping can form a BH.fv inside a larger BH.fv. When
 is not fully damped, the classical reheating mechanism around
a FV could also be a source of matter/radiation. This could turn
a BH.fv into BH.u (see §4.2). Quantum tunnelling can result in a
phase transition or vacuum evaporation, which can also be a source
of matter/radiation and new BH.fv.

2.2 The FLRW metric in comoving spherical coordinates

The FLRWmetric in comoving coordinates bU = (g, j, X, \), corre-
sponds to an homogeneous and isotropic space:

3B2 = 5UV3b
U3bV = −3g2 + 0(g)2

[
3j2 + j23l2

:

]
(9)

where we have introduced the solid angle: 3l: ≡ sinc(
√
: j)3l

with 3l2 = cos2 X3\2 + 3X2 and : is the curvature constant : =
{+1, 0,−1}. For the flat case (: = 0) we have 3l2

:
= 3l2. The scale

factor, 0(g), describes the expansion/contraction as a function of
comoving or cosmic time g (proper time for a comoving observer).

For a comoving observer, the time-radial components are:(
)00 )10
)01 )11

)
=

(
d(g) 0

0 ?(g)02

)
(10)

i.e. D = 0 in Eq.4. The solution to EFE in Eq.2 is:

3
(
¥0
0

)
= '`aD

`Da = Λ − 4c� (d + 3?) (11)

�2 ≡
(
¤0
0

)2
= �2

0

[
Ω<0

−3 +Ω'0−4 +Ω:0−2 +ΩΛ
]
(12)

dΛ ≡ dvac +
Λ

8c�
(13)

d2 ≡
3�2

8c�
; Ω- ≡

d-

d2 (0 = 1) (14)

where Ω< (or d<) represent the matter density today (0 = 1), Ω' is
the radiation, dvac represents vacuum energy: dvac = −?vac = + (i)
in Eq.8, and dΛ = −?Λ is the effective cosmological constant density.
Note thatΛ (the rawvalue) is always constant, but dΛ (effective value)
can change if dE02 changes. Given d and ? at some time, we can
use the above equations to find 0 = 0(g) and determine the metric
in Eq.9. Recent observations show that the expansion rate today is
dominated by dΛ. This indicates that the FLRWmetric lives inside a
trapped surface AΛ ≡ 1/�Λ = (8c�dΛ/3)−1/2, which behaves like
the interior of a BH. We can see this by considering outgoing radial
null geodesic:

Aout = 0(g)
∫ ∞

g

3g

0(g) = 0
∫ ∞

0

30

02� (0)
<

1
�Λ
≡ AΛ (15)

which shows that signals can not escape from the inside of AΛ.

3 PROPER COORDINATES

The most general shape for a metric with spherical symmetry in
proper or SW coordinates (C, A, X, \) is Padmanabhan (2010):

3B2 = 6`a3G
`3Ga = −(1 + 2Ψ)3C2 + 3A2

1 + 2Φ
+ A23l2

:
(16)

where 3l: was introduced in Eq.9 to allow for non-flat space.Ψ(C, A)
and Φ(C, A) are the two gravitational potentials. The Weyl potential
Φ, is the geometric mean of the two:

(1 + 2Φ, )2 = (1 + 2Φ) (1 + 2Ψ) (17)

Ψ describes propagation of non-relativist particles andΦ, the prop-
agation of light. For ? = −d we have Ψ = Φ = Φ, . Eq.16 can also
be used to describe the BH.SW solution (or any other solution) as a
perturbation (2|Φ| < 1) around a FLRW background:

3B2 ' −(1 + 2Ψ)3C2 + (1 − 2Φ)023j2 + 02j23l2
:

(18)

where A = 0(g)j and C ' g. The same result follows from perturbing
the FLRW metric in Eq.9. EFE for Eq.16 are well known, e.g. see
Eq.(7.51) in Padmanabhan (2010). For a static perfect fluid with
arbitrary d(A) inside A(, and empty space (Λ = 0) outside, we have
�0

0 = −8c�d(A). This can be solved using <(A) ≡
∫ A
0 d(A) 4cA23A:

Φ(A) = −�<(A)
A

=

{
−�"/A for d(A) = " X� (A)
− 1

2 (A/A0)2 for d(A) = d0 ≡ 3
8cA2

0

(19)

Ψ(A) depends on �1
1 and ?(A). For ? = −d we have �0

0 = �
1
1 and

the general solution with Λ ≠ 0 is:

Φ = Ψ = −�<(A)
A
− ΛA

2

6
(20)
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Table 1. Summary of metric notation used in this paper.

−2Φ(C , A ) name comment
A(, /A SW = Schwarzschild BH.SW, outside BHU
A2/A2

Λ
dS = deSitter static, inside BH.fv

A(, /A + A2/A2
Λ

dSW = dS-SW static, outside BHU
A2/A2

�
dSE= dS Extension FLRW, inside BH.u

The remaining EFE, �2
2 = �3

3 correspond to energy conservation
∇`) `a = 0. For a comoving observer D = 0 in a perfect fluid of Eq.4:

mC d = −
d + ?

1 + 2Φ
mCΦ. ; mA ? =

d + ?
1 + 2Ψ

mAΨ (21)

Note how d = −? results in constant d and ? everywhere, but with
a discontinuity at 2Φ = 2Ψ = −1. This means that d and ? can be
constant, but different in both sides of 2Φ = 2Ψ = −1. This can be
addressed with the study of junction conditions (see §4.3). We can
also consider anisotropic pressure ? ‖ ≠ ?⊥ (Brustein & Medved
2019; Dymnikova 2019) which can result from non canonical scalar
field (Díez-Tejedor & Feinstein 2006). Empty space (d = ? = dΛ =
0) in Eq.20 results in the BH.SW metric:

2Φ = 2Ψ = −2�"/A ≡ −A(, /A (22)

In the presence of Λ, this metric corresponds to dΛ = + (i) +
Λ/8c� = 0 in Eq.8. There is a trapped surface at A = A(, (2Φ = −1).
Outgoing radial null geodesics cannot leave the interior of A(, ,
while incoming ones can cross inside. The solution to Eq.20 for
d = ? = " = 0, but dΛ ≠ 0 results in deSitter (dS) metric:

2Φ = 2Ψ = −A2�2
Λ
≡ −A2/A2

Λ
(23)

where �2
Λ
≡ 8c�dΛ/3 and dΛ = Λ/(8c�) + + (i). We can imme-

diately see that this solution is the same as the interior of a BH with
constant density in Eq.19 with d0 = dΛ. Topologically, dS metric
corresponds to the surface of a hypersphere of radius AΛ in a flat
spacetime with an extra spatial dimension (see Appendix A). As in
the BH.SW metric, dS metric also has a trapped surface at A = AΛ
(2Φ = −1). Radial null events (3B2 = 0) connecting (0, A0) with (C, A)
follow:

A = AΛ
AΛ + A0 − (AΛ − A0)4−2C/AΛ

AΛ + A0 + (AΛ − A0)4−2C/AΛ
(24)

so that it takes C = ∞ to reach A = AΛ from any point inside. The
BH.SW metric is singular at A = 0, while dS is singular at A = ∞.
In comoving coordinates, dS singularity corresponds to a comoving
Hubble horizon that shrinks to zero (see Fig.4). But note that this
singularity can not be reached from the inside because of the trapped
surface at AΛ in Eq.24. The inside observer is trapped, also like in
the FLRW case. In fact, both metrics are equivalent for � = �Λ (see
Mitra 2012) which explains why the dSmetric reproduces primordial
inflation in comoving coordinates.
As first noticed by Einstein (O’Raifeartaigh & Mitton 2015), the

Steady-State Cosmology (SSC), with a perfect cosmological princi-
ple, is also reproduced by dSmetric. But contrary to the original SSC
proposal of Bondi & Gold (1948); Hoyle (1948), there is no need for
continuous matter creation (or a C-field) because the metric is ex-
panding in comoving coordinates but is static in proper coordinates
because dΛ = + (i) is trapped to a fixed FV value in Eq.8.

We will also consider a generalization of dS metric, which we call
dS extension (dSE), which is just a recast of the general case:

2Φ(C, A) ≡ −A2�2 (C, A) ≡ −A2/A2
� (25)

where A� ≡ 1/� corresponds to the Hubble radius. Table 1 shows

Figure 2. Logarithm of proper radius A = 0 (g)j (top) and comoving time g
(bottom) as a function of SW time C in Eq.29 for 0 (g) = 4g�Λ and different
values of j. All quantities are in units of 1/�Λ. For early time or small j:
g ' C . A fix j acts like an Horizon: as C ⇒∞ we have g ⇒ − ln j (dotted),
which freezes inflation to: A = 0j ⇒ 4− ln (�Λj) j = 1/�Λ (dashed).

a summary of metrics considered in this paper. When we have both
" and dΛ constant, the solution to Eq.20 is: 2Φ = 2Ψ = −A2�2

Λ
−

A(, /A, which corresponds to dS-SW (dSW)metric, a BH.SWwithin
a dS background. Solution of a BH inside a FLRW metric also exist
(e.g see Kaloper et al. 2010). Here we will show that GR solutions
also exit for a FLRW inside a BH (or inside a larger FLRW metric).

3.1 The FLRW metric in proper coordinates

Consider a change of variables from G` = [C, A] to comoving co-
ordinates ba = [g, j], where A = 0(g)j and angular variables
(X, \) remain the same. The metric 6`a in Eq.16 transforms to
5UV = Λ

`
UΛ

a
V
6`a , with Λ

`
a ≡ mG`

mb a
. If we use:

Λ =

(
mg C mjC

mgA mjA

)
=

(
(1 + 2Φ, )−1 0A� (1 + 2Φ, )−1

A� 0

)
, (26)

with 2Φ = −A2�2 and arbitrary 0(g) and Ψ:

5UV = Λ
)

(
−(1 + 2Ψ) 0

0 (1 + 2Φ)−1

)
Λ =

(
−1 0
0 02

)
, (27)

In other words, these two metrics are the same:

−(1+2Ψ)3C2+ 3A2

1 − A2�2 +A
23l2

:
= −3g2+02

[
3j2 + j23l2

:

]
(28)

dSE metric of Eq.25 corresponds to the FLRWmetric with � (C, A) =
� (g): this is a hypersphere of radius A� that tends to AΛ (see Ap-
pendix A). This frame duality can be understood as a Lorentz con-
traction W = 1/

√
1 − E2 where E = �A . The SW frame, that is not

moving with the fluid, sees a moving fluid element 03j contracted by
the Lorentz factor W: 03j⇒ W3A . For constant �, the FLRWmetric
corresponds the interior of a BH with constant density in Eq.19. In
general, we can find Ψ = Ψ(C, A) and C = C (g, j) or g = g(C, A) given
0(g). For 0(g) = 4g�Λ we have 2Ψ = 2Φ = −A2�2 and

C = C (g, j) = g − 1
2�Λ

ln [1 − �2
Λ
02j2], (29)
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where A < AΛ = 1/�Λ, which reproduces dS metric. In comoving
coordinates the metric is inflating exponentially: 0 = 4g�Λ , while in
proper coordinates it is static. Fig.2 illustrates how this is possible and
shows how g = g(C, A) freezes (see Mitra 2012 for some additional
discussion). The general frame duality of Eq.28, from a comoving
frame to a proper SW frame, is a new result as far as we know, and a
key ingredient to interpret our new physical BH solution.

4 BLACK HOLE SOLUTIONS

4.1 False Vacuum Black Hole (BH.fv) solution

Eq.22 and Eq.23 are the simplest solutions to EFE. They correspond
to some form of empty space. The simplest modeling of physical BH
interior is a combination of the two (see Eq.2.2 in Blau et al. 1987):

d = −? =
{

0 for A > A(,
Δ for A < A(,

(30)

where Δ > 0. To recover the BH.SW solution outside, we use +0 =
Λout = 0. In a more realistic situation, on larger scales the BH.SW
metric should be considered a perturbation of FLRW background,
e.g. Eq.18, with Λout ≠ 0 and +0 ≠ 0, in fact we could also have
a FLRW metric outside (see Appendix B). The solution to EFE in
Eq.20 for Eq.30 (which we called BH.fv) is then:

2Φ = 2Ψ =
{ −A(, /A for A > A(, ≡ 2�"
−A2�2

Λin
for A < A(, = AΛin ≡ 1/�Λin

(31)

where: dΛin = d�� = Δ and " = 4c
3 A

3
(,

Δ. Recall that Λ =

+0 = 0 and dΛin refers to the effective Λ density inside the BH.
The above solution has no singularity at A = 0. Note how, contrary
to what happens in the BH.SW, in the BH.fv solution, the metric
components don’t change signature as we cross inside A(, . In both
sides of A(, we have constant but different values of ? and d. This
comes from energy conservation in Eq.21. There is a discontinuity
at 2Φ = −1 where A = A(, , in agreement with Eq.21, but the metric
is static and continuous at A(, . This solution only happens when
A(, = AΛin = (8c�Δ/3)−1/2. The smaller Δ the larger and more
massive the BH. In the limit Δ⇒ 0, we have A(, = AΛin ⇒ ∞ and
we recover Minkowski space, as expected.

At a fixed location, the scalar field i inside the BH is trapped in
a stable configuration (d = +0 + Δ) and can not evolve ( = 0 in
Eq.7). The same happens for the field outside (see Fig.1). A FV in
Eq.30 with equal Δ but with smaller initial radius A = ' < A(, is
subject to a pressure discontinuity at A = ' which is not balanced
in Eq.21 and results in a bubble growth (Blau et al. 1987; Aguirre
& Johnson 2005). Such boundary grows and asymptotically reaches
' = A(, (see top panel of Fig.2, Fig.3 and Eq.42). The inside of
A(, is causally disconnected, so the pressure discontinuity does not
act on A = A(, , which corresponds to a trapped surface.

4.2 Black Hole Universe (BH.u) solution

We next look for solutions where we have matter d< = d< (C, A) and
radiation d' = d' (C, A) inside but an empty BH.SW outside:

d(C, A) =

{
−? = 0 for A > A(,
Δ + d< + d' for A < A(,

. (32)

Note that ? = −Δ+d'/3 ≠ −d inside, so that mCΦ ≠ 0 and D ≠ 0: the
fluid inside has to move relative to SW frame of the outside observer.

For A > A(, , the solution is the same as Eq.31. For the interior we
use the dSE notation in Eq25: 2Φ(C, A) ≡ −A2�2 (C, A), so that:

2Φ(C, A) =
{
−A(, /A for A > A(, = 2�"
−A2�2 (C, A) for A < A(, = 1/�Λin

(33)

where A(, = 2�" = 1/�Λin as before. We can find the interior
solution with a change of variables of Eq.26-28. This converts dSE
metric into FLRW metric so the solution is just � (C, A) = � (g).
Given d and ? in the interior of a BH we can use Eq.12 with dΛin =

Δ = 3A−2
(,
/8c� to find � (g) and 0(g). We call this a BH universe

(BH.u). To complete the solution, i.e. to find Ψ and g = g(C, A), we
need to solve Eq.26 with 2Φ = −A2�2 (g). For � (g) = �Λin the
solution is Ψ = Φ and Eq.29. The flat FLRW metric with � = �Λin
becomes dS metric in Eq.23 as in the BH.fv solution.

Given )`a in Eq.10 we can find )̄UV in the proper frame using the
inverse matrix of Eq.26: )̄UV = (Λ−1)`U (Λ−1)a

V
)`a :

)̄0
0 = −

d − ?2Φ
1 + 2Φ

; )̄1
1 =

? − d2Φ
1 + 2Φ

(34)

which is independent of Ψ. Comparing to Eq.4 gives the velocity in
the proper frame D2 = −2Φ = A2�2, which is just the Hubble law.
The Lorentz factor is W = (1 + 2Φ)−1/2 so that W3A gives the proper
length, in agreement with Eq.16.

Solution � (C, A) = � (g) in Eq.33 is valid for all A < A(, =

1/�Λin because � (g) > �Λin . We can see this by considering outgo-
ing radial null geodesic in the FLRW metric of Eq.15. which shows
that signals can not escape from the inside to the outside of the BH.u.
But incoming radial null geodesics 0(g)

∫ g
0

3g
0 (g) can in fact be larger

than A(, if we look back in time. This shows that inside observers
are trapped inside the BH.u but they can nevertheless observe what
happened outside (Gaztañaga & Fosalba 2021).

4.3 Junction conditions

We can arrive at the same BHU (BH.fv and BH.u) solutions using
the junction conditions of Israel (1967). Here we follow closely the
notation in §12.5 of Padmanabhan (2010). We will combine two
solutions to EFE with different energy content, as in Eq.32, on two
sides of a timelike hypersurface Σ =Min ∩Mout. The inside 6in is
FLRW metric (or dS metric for � = �Λin ) and the outside 6out is
BH.SW metric. This is similar to the case §12.5.1 in Padmanabhan
(2010) with the difference that we use : = 0 (instead of : = 1) and
consider a general FLRW solution 0(g) with Λ, d< and d' (instead
of a pressure-free dust model without Λ.). This is relevant to provide
the limiting trapped surface A(, =

√
3/Λ. We define Σ to be fixed

in comoving coordinates at j = A(, , so Σ only depends g (here we
fix 0 = 1 when j = A(, ). For the outside SW coordinate system,
Σout is described by A = '(g) and C = ) (g), where g is the comoving
time in the FLRW metric. We then have:

3A = ¤'3g ; 3C = ¤)3g, (35)

where the dot refers to derivatives with respect to g. The induced
metric ℎin on the inside ofΣin with H0 = (g, X, \) and fixed j = A(, ,
is:

3B2Σ = ℎ013H
03H1 = −3g2 + 02 (g)A2

(,
3l2 (36)

has to agree with ℎout, the BH.SW metric outside at Σout:

−�3C2 + �−13A2 + A23l2 = −(� ¤)2 − ¤'2/�)3g2 + '23l2 (37)

where � = 1 − A(,
'

. The matching condition ℎin = ℎout is:

'(g) = 0(g)A(, ; � ¤) =
√
¤'2 + � ≡ V(', ¤') (38)
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Thus, for a given FLRW solution 0(g) we know both ' and V. The
extrinsic curvature  in/>DC normal to Σin/>DC from each side is:

 ging = 0 ;  \in\ =  
X
inX = −

1
0A(,

 goutg =
¤V
¤'

;  \out\ =  
X
outX = −

V

'
(39)

Thus, the second matching condition  in =  out requires V = 1,
which using Eq.38 results in:

¤'2 = '2�2 =
A(,

'
(40)

¤) = 1
1 − '2�2 ⇒ ) =

∫
3'

�'(1 − �2'2)
(41)

This results in 2Ψ = 2Φ = −�2'2 = −A(, /' in the junction Σ
as in Eq.33. This is the dSE generalization of dS space for arbitrary
0(g): 2Ψ = 2Φ = −'2/A2

�
with A� ≡ 1/� (g) in Eq.25. The critical

density inside A� , corresponds to that of a BH: from Eq.40 we have
�2 = A(, /'3 = 8c�d/3.
This Σ junction grows and tends to A(, = 1/�Λin . It takes ) = ∞

in the SW time of Eq.41 to asymptotically reach A(, = 1/�Λin (see
Fig.2). In this limit, Eq.40 reproduces the BH.fv junction of Eq.31
for constant � = �Λin . Before that, the BHU junction is not static
(not even in the SW frame) as � decays into �Λin when ' grows
to A(, . Despite the discontinuity in d at A(, , the BHU metric
and extrinsic curvature are continuous when we join them with the
expanding timelike hypersurface of Σ. This proofs that the BHU
metric is also a solution to EFE and there are no surface terms in the
junction (see Eq.21.167 in Misner et al. 1973). This does not require
that the metrics have identical Riemann tensor or invariant scalars.

The effective Λ term corresponds to a trapped surface A(, =

1/�Λin in the FLRW (or dS) metric which matches the horizon of a
BH in empty space (see Fig.5). In a more realistic case, the external
background is not empty and we then need to study the junction of
two FLRWwith two different effective Λ8= and Λ>DC , matter content
and Hubble laws 0(g). The effective Λ8= will be the trapped surface
of a BH inside the outside FLRWmetric (see also Appendix B). Here
we just want to point out that such solutions exist and more work is
needed to workout more realistic situations.

This junction solution is similar to the one found for Bubble Uni-
verses (e.g. see Blau et al. 1987; Aguirre & Johnson 2005 and refer-
ences therein) but with some important differences. Our solution is
more general as it corresponds to the FLRW metric (which includes
matter and radiation as well as a FV), which is not static in the SW
frame. The Bubble Universes instead only use dS metric in its static
representation. Also, a surface term with f ≠ 0 is needed to match
the resulting discontinuity in the  curvature. The BHU junction is
continuous in comoving coordinates and has no surface terms.

4.4 Evolving junction: internal BH dynamics

The junction conditions indicate that the division between interior
and exterior solutions in Eq.31 and Eq.33 is not A(, , which is
only the limiting case. This is illustrated in Fig.3. That both the
metric and the external curvature are continuous at ' shows that
there are no surface terms and the join metric is a solution to EFE
(see Eq.21.167 in Misner et al. 1973). The energy-momentum tensor
)`a corresponding to this solution has a discontinuity (as expected
for a BH): dΛin = −?Λin ≠ 0 for A < ' and dΛout = 0 for A > '.

Inside the physical BHwe have an expanding junction: A = '(g) =
0(g)A(, . Because '(g) < A(, is always inside A(, , the external
SW observer can not distinguish this evolving junction from the

Figure 3. Illustration of the interior dynamics of a BHU. The junction ' =

0 (g)ABF (black disk) grows towards the SW radius ' = A(, (dashed red
circle). The inside of ' = 0 (g)ABF is dS or a FLRW metric (dominated
by negative pressure: d = −?) while the outside is empty BH.SW metric, a
perturbation around a FLRW background with other BHs and matter.

limiting static one A = A(, . This is why we chose to express the
solution this way. The junction '(g) grows and asymptotically tends
to A(, as shown in Fig.3. This happens at a finite comoving time
gΛin as in the top panel of Fig.2. The exact function depends on the
form of 0 = 0(g). For constant ¤0/0 = � = �Λin = 1/A(, , the
solution can be expressed analytically as:

'(g) = '04
�Λin g = 4�Λin (g−gΛin ) A(, (42)

where we have chosen 0 = 1 when ' = A(, . We start with a
finite size ' = '0 = 00A(, at g = 0, where 00 = 4−gΛin�Λin .
After gΛin�Λin e-folds, '0 grows into ' = A(, . This inflation stops
asymptotically at g = gΛin = −A(, ln 00. We can think of '0 as a
quantum size (FV) fluctuation of energy dΛin = Δ, which (in empty
space) will inflate to size A(, = 1/�Λin = (8c�Δ/3)−1/2.

This new solution to EFE is not just an arbitrary matching of two
other random solutions. It is a new solution of a new physical con-
figuration given by the energy content in Eq.32. This configuration
corresponds exactly to our definition of a generic physical BH. The
one we set to find in the introduction and whose horizon separates
two regions with different matter-energy content. The same horizon
defines the junction of two well known solutions to EFE.

5 IMPLICATIONS FOR OUR UNIVERSE

The BH.fv interior, dS metric, can be transformed into a FLRW
metric with constant � = �Λin . This frame duality provides a new
interpretation for the BH.fv solution in Eq.31. This is not only a
solution for a BH inside a universe. The inside comoving observer,
sees this solution as an expanding inflationary universe inside a BH,
even when the metric is static in proper coordinates and A = A(, is
fixed. The same happens with the BH.u solution of Eq.33, which is
equivalent to a child FLRW in the interior.

Recall how the outside BH.SW solution should be considered a
perturbation of a parent FLRW in Eq.18. So we have two nested
FLRW metrics which are connected with the BHU. Each one could
have a different effective dΛ (or FV). So could our universe be a child
FLRW metric? The fact that we have measured dΛ ≠ 0 provides a
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strong indication that this is the case. It is hard to explain what Λ
means or the coincidence problem otherwise (see below).
The change of variables in Eq.26 is only valid for proper coordi-

nates that are centered at the center of the BH location. But in the
transformed (comoving) frame of Eq.28 any point inside is subject
to the same expansion law with equal 0(g). From every point inside
de BHU, comoving observers will see an homogeneous and isotropic
space-time around them (see bottom left of Fig.5). At least all the way
back in time to A(, = 1/�Λ, which is in their distant past. All points
inside the BH were at the center in their distance past (just as in the
homogeneous expanding universe). Even if all points inside see an
homogeneous expansion, as they look back in time from a position
that is off centered, some regions of the sky will be closer to the past
horizon than others. This could result in some significant deviations
from isotropy and homogenety on the largest scales. Regions outside
the trapped surface could have a similar background but with uncor-
related fluctuations that fit different parameters. Such deviations have
already been measured in the form of large scale CMB anomalies
and variations of cosmological parameters (see Fosalba &Gaztañaga
2021).
Note how we can have FVs inside other FVs (see Fig.1). So we

can have BHs inside other BHs or FLRWmetrics inside other FLRW
universes. Mathematically this looks like a Matryoshka (or nesting)
doll or a fractal structure. But physically, in the common SW frame,
each BH has a different mass and therefore different physical proper-
ties. The child FLRW BHU have smaller mass (and larger FV) than
the parent BHU. A BHU of one solar mass can have a FLRW metric
inside but this inside will not have any galaxies and is going to be
very different from that in a " ' 5.8 × 1022"� BHU, like ours,
which contains billions of galaxies and BHs of many different sizes.
So each BHU layer could be physically quite different from the next,
unlike Matryoshka dolls or fractal structures.

5.1 The evolution of the BH universe

How did the universe evolve into the solution of Eq.33? This is an
important question. It is not enough to find a solution to EFE. We
need to make sure that such a configuration can be achieved in a
causal way. Without Λ, the FLRW universe has no causal origin: the
Hubble rate (in Eq.12) is the same everywhere, not matter how far,
and this is not causally possible. The comoving coordinate j = A(,
that fixes the junction in §4.3 above can be identified as the causal
horizon j§ in the zero action principle (Gaztañaga 2021). In the
FLRW Universe, the Hubble Horizon A� is defined as A� = 2/�.
Scales larger than A� cannot evolve because the time a perturbation
takes to travel that distance is larger than the expansion time. This
means that A > A� scales are "frozen out" (structure can not evolve)
and are causally disconnected from the rest. Thus, 2/� represents a
dynamical causal horizon that is evolving.
The standard evolution of our universe is shown in Fig.4. Note

that here we choose 0 = 1 now, as opposed to Fig.3 where 0 = 1
corresponds to ' = A(, . It turns out that both are not so different
(the so call coincidence problem in cosmology). A primordial field
i settles or fluctuates into a false (or slow rolling) vacuum which
will create a BH.fv with a junction Σ in Eq.36, where the causal
boundary is fixed in comoving coordinates and corresponds to the
particle horizon during inflation j§ = 2/(08�8) or the Hubble hori-
zon when inflation begins. The size ' = 0(g)j§ of this vacuum
grows and asymptotically tends to A� = 2/� following Eq.40 with
� = �8 . The inside of this BH will be expanding exponentially
0 = 4g�8 while the Hubble horizon is fixed 1/�8 . Accooring to stan-
dard models of primordial inflation (Starobinskiǐ 1979; Guth 1981;

Figure 4. Comoving (top) j and proper (bottom) ' = 0 (g)j radial coor-
dinate in units of 2/�0 as a function of cosmic time 0 (scale factor). The
Hubble horizon 2/� (blue continuous line), is compared to the observable
universe j after inflation (dashed line) and the primordial causal bound-
ary j§ = 2/(08�8) (dot-dashed red line). Larger scales (green shading)
are causally disconnected, smaller scales (yellow shading) are dynamically
frozen. After inflation 2/� grows again. At 0 ' 1 (close to now) the Hubble
horizon reaches our event horizon A(, = 2/�Λ.

Linde 1982; Albrecht & Steinhardt 1982), this inflation ends and
vacuum energy excess converts into matter and radiation (reheating).
This results in BH.u, where the infinitesimal Hubble horizon starts
to grow following the standard BB evolution.

Note that the inflation in the BH.fv solution (i.e. Eq.42) stops
naturally at cosmic time g8 = −�−1

8
ln j§�8 (see Fig.2) when proper

distance is A = 0(g)j§ = 1/�8 . In standard models of primordial
inflation,�8 is much larger that�Λ so that 1/�8 is much smaller than
1/�Λ. So a quantum FV fluctuation Δ only grows to a maximun size
' = A(, = (8c�Δ/2)−1/2 = 1/�8 . Something else has to happen
if we want the size to become cosmological. It could be reheating or
some othermechanism.Quantum tunneling into smallerΔ (see Fig.1)
also produces larger A(, . Matter and radiation can also appear some
other ways: from the original quantum fluctuations, from quantum
tunneling to/from other FV, from infall of matter from outside (see
§2.1-6.3) or from Hubble damping of smaller FV that turn into BHs
(see §2.1). Regardless of these formation details, j§ remains the
causal scale for the original BH.fv inflation in Eq.42. Recall that the
BH.fv solution requires a discontinuity in dΛ = 0, so this BH.fv
evolution happens with independence of what we assume about Λ in
EFE. A causal boundary in empty space generates a boundary term
in the action that fixes the value of Λ to Λ = 4c� < d + 3? >, where
the average is over the light-cone inside j§ (Gaztañaga 2021). This
Λ represents a trapped surface for the emerging BH.u universe.
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The observable universe (or particle horizon) after inflation is:

j$ = j$ (0) =
∫ 0

04

3 ln 0′

0′� (0′) = j$ (1) − j̄(0), (43)

where 04 is the scale factor when inflation ends. For ΩΛ ' 0.7,
the particle horizon today is j$ (1) ' 3.262/�0 and j̄(0) =∫ 1
0
3 ln 0/(0�) is the radial lookback time, which for a flat universe

agrees with the comoving angular diameter distance, 3� = j̄. The
observable universe becomes larger than A(, = AΛ when 0 > 1, as
shown in Fig.4 (compare dotted and dashed lines). This shows that,
observers like us, living in the interior of the BH universe, are trapped
inside A(, but can nevertheless observe what happened outside. We
can estimate j§ from dΛ =< d</2 + d' >, where the average is
in the lightcone inside j§. For ΩΛ ' 0.7 Gaztañaga (2021) found:
j§ ' 3.342/�0 which is close to j$ today. But imagine that ΩΛ
is caused by some DE component and has nothing to do with j§.
We still have that j§ . j$ , because otherwise j§ would have cross
'� = 1 early on, resulting in smaller j$ than measured (see Fig.4).
Thus, at the time of CMB last scattering (when 3� ' j$), j§ cor-

responds to an angle \ = j§/3� . 1 rad' 60 deg. Sowe can actually
observe scales larger than j§. Scales that are not causally connected!
This could be related to the so-called CMB anomalies (i.e, apparent
deviations with respect to simple predictions from ΛCDM, see Gaz-
tañaga 2021; Fosalba & Gaztañaga 2021 and references therein), or
the apparent tensions in measurements from vastly different cosmic
scales or times (e.g. Planck Collaboration 2020).

6 DISCUSION & CONCLUSION

The SW metric in Eq.22 is well known and studied but the interior
solution is not physical because it corresponds to a singular point
source of mass " at A = 0. We have looked for classical non-singular
GR solutions for a BH interior. Our motivation is to find a physical
model and study if this results in some different properties for BHs.
The outside manyfoldMout of a BH is approximated as empty space
so the solution 6out is the BH.SW metric. Because the insideMin is
causally disconnected,Mout acts like a simple boundary condition.
Given some d and ? inside A(, , we have solve EFE inside with such
boundary condition to find 6in, the inside metric of a physical BH.
To our surprise we have found that 6in is just the well known FLRW,
the same metric that describes our universe! This frame duality,
represented by Eq.26, has several observational consequences, as we
will discuss below.
To impose the boundary at A(, we have use the same (proper) SW

coordinate frame that is not movingwith the fluid so that)1
0 ≠ 0. This

results in a solution forMin that is not static. We have verified Israel
(1967) conditions to double check that the join manyfoldMin∪Mout
is also a solution to EFE and there are no surface terms (see §4.3).
This is different from just matching two randommetrics. We can add
both matter and radiation to both sides of A(, and we still have a
BHU solution. The BHU connects two FLRW metrics (see Fig.5)
connected with BH.SW and an effective Λ term.

The relativistic version of Poisson equation comes from the
geodesic deviation equation (see Eq.12 in Gaztañaga 2021):

∇`g` =
3Θ

3B
+ 1

3
Θ2 = '`aD

`Da = Λ − 4c� (d + 3?) (44)

where g` is the geodesic acceleration (Padmanabhan 2010). This is
also the Raychaudhuri equation for a shear free, non rotating fluid
where Θ = ∇aDa and B is proper time. The above equation is purely
geometric: it describes the evolution in proper time of the dilatation

coefficient Θ of a bundle of nearby geodesics. Note how dΛ > 0
produces acceleration and therefore expansion. A key point to the
BHU solution is the dΛ discontinuity at A = A(, which could also
be understood as a boundary to the Einstein-Hilbert action. The
action on shell (>=−Bℎ is a boundary term (Gaztañaga 2021):

(>=−Bℎ =
∫
"

3"

8c�
∇`g` =

∮
m"

3+`g`

8c�
(45)

which is zero outside causal contact. This translates into Eq.C1which
addresses the coincidence problem (see AppendixC).

6.1 False Vaccum BH solution (BH.fv)

BH.fv corresponds to constant FV discontinuity (Eq.30)with dSmet-
ric inside (Eq.31), with a trapped surface which matches the BH.SW
event horizon. A constant density (or negative pressure) corresponds
to a centrifugal force, 2Φ = −(A/A(, )2 that opposes Newtonian
gravity, 2Φ = −A(, /A, i.e. Eq.20. The equilibrium happens when
both forces are equal, which fixes A = A(, , and correspond to stable
circular Kepler orbits.

This solution is similar to the classical Bubble Universe solution
(Blau et al. 1987; Frolov et al. 1989; Aguirre & Johnson 2005;
Garriga et al. 2016; Kusenko 2020) including the gravastar (Mazur
&Mottola 2015) and other extensions (e.g. Easson & Brandenberger
2001; Daghigh et al. 2000; Firouzjahi 2016; Oshita & Yokoyama
2018; Dymnikova 2019). But there are some important differences.
In §4.3 we show that there are no surface terms so there is no need
to introduce an additional term or surface tension (f ≠ 0) in the
bubble junction, Σ, to glue the BH.SW and dS metrics. We find
that a timelike hypersurface, fix in comoving coordinates, provides a
continuous solution. As far as we know, this is new (see also Stuckey
1994) and different from anisotropic models with negative radial
pressure (Brustein & Medved 2019; Dymnikova 2019) or the above
Bubble Universes, which have f ≠ 0 over a spacelike or null bubble
hypersurface.

6.2 The BH universe solution (BH.u)

In Eq.33 the BH interior is the FLRW metric. This BH.u solution
is new, as far as we know. As discuss in the introduction, previous
proposals were not proper or complete solutions within GR. We
can have other BHs, matter and radiation inside a BHU within a
larger space-time. The inside needs to be expanding as in the FLRW
metric of Eq.9, with a trapped surface given by dΛ. This holds the
expansion and balance gravity at A(, as in the BH.fv solution. The
join FLRW+SW solution (Eq.33) is also a solution to Einstein’s field
equations as the two metrics reduce to the same form on a junction
of constant j = A(, in Eq.36, and the extrinsic curvature in Eq.39
is the same in both sides. The junction '(g) between interior and
exterior solutions in Eq.31 and Eq.33 is not necessarily A(, , which
is the limiting case. The junction '(g) asymptotically tends to A(,
as shown in Fig.3.

The exterior metric could also be FLRW, as the BH.SWmetric can
be considered a local perturbation within a larger FLRW background
with arbitrary A = 0(g)j in Eq.18. This is illustrated in Fig.5. In
this case we need to distinguish between two different effective dΛ,
the one in the inside FLRW metric, dΛin and the one for the outside
background, dΛout , which should be smaller (see Appendix A). This
is independent of Λ, which is always fixed (see Appenix C).

The solutions to the field equations are independent of the choice
of coordinates but )̄`a (C, A) depends on the fluid motion (see Eq.34).
We used comoving coordinates (g, j), where the fluid is expanding
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and the observed is comoving, to find the interior solution. But we
can then transform back to proper SW frame (C, A), using the duality
transformation Eq.26, to find a full BH solution in Eq.33 that is
continuous in the metric and curvature at A(, , like in the BH.fv
case. As in the singular BH.SWmetric, outgoing radial null geodesics
cannot escape the event horizon, but incoming ones can enter (see
discussion around Eq.15). So the BHU solution is a physical BH.

6.3 BH formation

Another issue, which we only address partially in §2.1, is how such
physical BH solutions can be achieved (e.g. astrophysical and pri-
mordial BH formation) and if they can have a causal origin. There is
extensive literature on Bubble Universe formation (e.g. see Garriga
et al. 2016; Oshita & Yokoyama 2018 and references) but they typi-
cally involve quantum gravity ideas or extensions. Hubble dumping
of the kinetic energy  of a classical scalar field i (see Fig.1) can
result in a FV trapped field configuration. Such initially small local
discontinuity, with FV energy density Δ, will grow as Eq.42 until
it reaches the stable BH size corresponding to d�� = Δ. So Δ is
the BH density: the smaller Δ the larger the BH size and mass. As
illustrated in Fig.1 if we think of + (i) as the superposition of many
plane waves of different frequencies this will result in a landscape of
nested BHU of different masses and sizes.
Could a BHU formed just from the final collapse of a dying star?

Instead of a forming a BH.SW singularity (as usually assumed),
such stellar collapse may just result into a large supernova (SN)
explosion. As pointed out by Buchdahl (1959), regular matter can
only be compressed to a radius which is 9/8 times larger than that of
BH.SW, so such explosion seems unavoidable if the collapse does not
halt before (forming a more compact object). As explained above,
during the SN explosion, Hubble damping of the kinetic energy
associated to a local scalar field i could result into a trapped FV,
which will grow into BH.fv and can also produce matter/radiation
(from reheating) and turn into a BH.u.
Matter and radiation can also infall into a BH. For a BH.SW

solution we assume that this results into a BH mass increase. But for
a BHU this results in a jump of the internal Hubble expansion rate
( Δ�/� = "1/(2"2)). Such jump will be diluted away in time by
the same accelerated expansion. So whatever we feed a BHU with, it
is lost into internal kinetic expanding energy with no change in the
BH mass, which is given by the FV energy. In Fig.1 we can see that
BHU of very different masses can be formed as the spectrum of Δ8
values could be quite broad if we allow + (i) to be a superposition
of many plane waves.
These ideas are speculative as we need a detailed modeling to find

how all this happens. But the point we want to make here is that
the BH interior seems important for models of BH formation and
we can not just assume that a BH corresponds to a singular BH.SW
metric inside, because this is not a physical solution. We conclude
that further work is needed to understand BH formation.

6.4 What is " for a physical BH?

For a stellar or galactic BH within a larger universe where we neglect
Λ or+0, the BHmass" in the BHU is given by the FV excess energy
Δ, so that d�� in Eq.1 is d�� = Δ and" = (32c�3Δ/3)−1/2. For a
more general case see Eq.B3. So the largerΔ the smaller the BHmass
and size. This is independent of the matter and energy content that
falls inside the BH. So " in the BHU solution does not correspond
to the actual total mass or radiation inside, which is not observable

from the outside, but should instead be interpreted in terms of the
FV energy excess Δ. This could have implications for models of
astrophysical BH formation (such as Kormendy & Ho 2013) and
primordial BH formation (e.g. Kusenko 2020 and references therein)
which usually assume that BH accretion andmerging results in linear
increase of the BH mass " .

6.5 Our universe as a BH

BothBH type solutions can be interpreted as aBHwithin our universe
or as an expanding universe inside a larger space-time. As pointed
out in the introduction, that the universe might be generated from
the inside of a BH has a long and interesting history. Knutsen (2009)
argued that ? and d in the homogeneous FLRW solution are only
a function of time (in comoving coordinates) and can not change at
A = A(, to become zero in the exterior. This is an important point
and seems to contradict the BHU solution. The riddle is resolved
with Λ. Without Λ the FLRW universe can not have a causal origin:
the comoving density and Hubble rate are the same everywhere, and
this is not causally possible. A causal horizon j§ fixes Λ (Gaztañaga
2021) which solves this problem and also generates an even horizon
j§ = A(, similar to that of a BH.SW: A(, . This allows for an
homogeneous FLRW solution inside A(, that has a dΛ discontinuity
at A(, and looks in-homogeneous in the SW frame.
Homogeneity is therefore the illusion of the comoving observer

inside AΛ = A(, . The FLRW metric is trapped inside A < AΛ, and is
then equivalent to an inhomogeneous spherically symmetric metric
of Eq.28. The FLRWmetric is only homogeneous in space, but not in
space-time. A new frame where comoving time and space are mixed,
can break or restore this symmetry. The frame duality in Eq.26 is
only valid for proper coordinates that are centered at the BH location.
But in the transformed (comoving) frame any point inside the BHU is
subject to the same expansion law with equal 0(g). From every point
inside de BHU, observers will see an homogeneous and isotropic
space-time around them. Just like in the universe around us.

6.6 Evidence for a BHU

Wecan sketch the evolution of our universewith this BHUmodel (see
Fig.3-4). In proper coordinates this solution has no BB (or bounce):
it is not singular at A = 0 or at g = 0, because we have a non-singular
BH.fv before we start the FLRW BH.u phase. The inside comoving
observer is trapped inside A < A(, = 2�" = 1/�Λ and has the
illusion of a BB. The space-time outside (the parent FLRW universe)
could be longer and larger than the BB estimates. We could have a
network of island universes with matter and radiation in between.

This also explains why our universe (or other island universes) is
expanding and not contracting. The initial fluctuation �2

8
= 8c�Δ/3

could be expanding (�8 > 0) or contracting (�8 < 0). In the later
case it will either recollapse very quickly or it will else bounce into
expansion dominated by the repulsive gravitational force that results
from the negative pressure from constant Δ or Λ (see Eq.44).

We have other observational evidence that the expanding metric
around us is inside a BHU. We can recover the BB homogeneous
solution in the limit Δ⇒ 0, where we have A(, ⇒ ∞ and dΛ = 0.
But we have measured dΛ > 0 (ΩΛ ' 0.7) which implies " ' 5.8×
1022"� and A(, ' 2/�0, as in the BHU. The causal interpretation
for j§, also explains the observed coincidence between dΛ and d<
today (Gaztañaga 2020;Gaztañaga 2021). See alsoAppendixC about
the coincidence problem and the causal boundary.

If we look back to the CMB times, j§ corresponds to ' 60 de-
grees in the sky. The observed anomalies in the CMB temperature

MNRAS 000, 1–11 (2020)
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Figure 5. Spatial representation of 3B2 = (1+2Φ)−13A2 +A23\2 2D metric
embedded in 3D flat space for: deSitter (dS, bottom left, 2Φ = −A2/A2

∗ ),
FLRW (A (g) < A∗, blue sphere inside dS), Schwarzschild (SW, top left,
2Φ = −A∗/A ) and two versions of the combined BHU metrics. Yellow region
shows the projection coverage in the (G, H) plane. In the top right figure we
show a BHU with dS (or FLRW) interior and SW metric exterior joint at
the Event Horizon A∗ = 2�" = 1/�Λ (red circles). The BHU solution has
in general two nested FLRW metrics join by SW metric (bottom right). See
Appendix A.

maps at larger scales (Gaztañaga 2020; Gaztañaga 2021; Fosalba &
Gaztañaga 2021; Gaztañaga & Fosalba 2021) provide additional sup-
port for the annisotropies expected in the BHU model. There is also
a window to see outside our BHU using the largest angular scales
for I > 2 and measurements of cosmological parameters from very
different cosmic times. There is already mounting evidence for this
(e.g. Planck Collaboration 2020; Riess 2019; Abbott et al. 2019).
If there are other island universes outside ours, Galaxies and QSO,

as well as BHs, could be accreted from outside AΛ into our BHU.
Because the horizon 1/�Λ is so large, we can only see evidence of
those mergers at early times, during or right after the CMB, when
j§ subtends ' 60deg. on the sky. Could this be related to rarely old
QSO or galaxies observed at high z? If our BHUmerges with another
BHUwhich is few% smaller, wemight be able to see such% glitches
in � (I) with current or future data, at I > 2 and very large angle
separation.
Camacho & Gaztañaga (2021) found evidence for homogeneity

and lack of correlations in the CMB at A > AΛ. This suggests that the
underlying physical mechanism sourcing the observed anisotropy en-
compasses scales beyond our causal universe. Fosalba & Gaztañaga
(2021) found variations in cosmological parameters over large CMB
regions. This is the largest reported evidence for a violation of the
Cosmological principle. Such observations indicate a breakdown of
the standard BB picture in favor of the BHU. Their Fig.31 shows that
the size of these regions follow the BHU relation between j§ and
dΛ. This is consistent with the idea that our universe was accreted to
or created by a larger BHU.
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general shape for a spherically symmetric metric in 2D space (G, H)
embedded in 3D flat space (G, H, I). In polar coordinates (A, \) with
A2 = G2 + H2 and tan \ = G/H we have:

3B2 =
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In 3D space we just have one additional angle, X, in Eq.16, but
the radial part is the same. The case Φ = 0 corresponds to flat
space: 3B2 = 3G2 + 3H2. The simplest case with curvature can be
represented by a 2D sphere (S2) embedded in 3D flat space using an
extra dimension I:

3B2 = 3G2 + 3H2 + 3I2 ; G2 + H2 + I2 = A2
∗ (A2)

This metric is flat in 3D coordinates, but constraint to A∗, which is
the radius of the sphere and the curvature within the 2D surface of
S2. We can replace I by A using: I2 = A2

∗ − A2 to find:

3B2 = 3G2 + 3H2 + 3I2 = 3A2

1 − A2/A2
∗
+ A23\2 (A3)

so that 2Φ = −A2/A2
∗ just like in the dS metric of Eq.23 for A∗ = AΛ.

It tell us that dS space corresponds to being in the flat surface of a
sphere (like us in Earth). This is illustrated in the bottom left of Fig.5.
Note how (A, \) are coordinates in the (G, H) plane. The S2 space is
trapped or bounded by A < A∗ (yellow region). The metric changes
signature (becomes imaginary) for A > A∗: this region of space does
not exist (white region). The case A = A∗ (red circles) corresponds to
the Event Horizon at 2Φ = −1.

The Newtonian interpretation of 2Φ = −A2/A2
∗ is that this is caused

by a centrifugal force, like that in the orbit of a satellite. Even when
there is no matter, the curvature (or boundary) is interpret as a repul-
sive gravitational force that causes acceleration.
The FLRWmetric (or dSEmetric in Eq.28) correspond to a smaller

sphere S2 (inside dS sphere) with an expanding radius A� (g) that
tends asymptotically to AΛ = 1/�Λ (see Eq.28):

3B2 = 3G2 + 3H2 + 3I2 ; G2 + H2 + I2 = A2
� (g) (A4)

So it has the same topology and Event Horizon or trapped surface
(red circle) as dS metric. It is represented in Fig.5 by a blue sphere
inside dS sphere in the bottom left corner. This illustrates how it is
possible that each observer inside sees an homogeneous space even
when the sphere is centered around a given position.

The next simplest case can be represent by a static radius that
increases with A:

3B2 = 3G2 + 3H2 + 3I2 ; G2 + H2 + I2 = A3/A∗ (A5)

As before, we can replace I by A using: I2 = A3/A∗ − A2 to find:

3B2 = 3G2 + 3H2 + 3I2 = 3A2

1 − A∗/A
+ A23\2 (A6)

so that 2Φ = −A∗/A just like in the SWmetric of Eq.22 for A∗ = 2�" .
This is illustrated in the top left of Fig.5. The case A = A∗ (red
circle) corresponds to the Event Horizon at 2Φ = −1. The Newtonian
interpretation for 2Φ = −A∗/A is the inverse square law for a point
mass ": A∗ = 2�" .

The SW space is bounded by A > A∗ (yellow region). The metric
changes signature (becomes imaginary) for A < A∗. Contrary to many
other representations of SW metric, it is clear here that this inner
region of space does not exist (it is not covered by the metric in
actual space). This coverage is complementary to dS or FLRWmetric
which cover the inner region and not the outer region. We can match
the dS and SW metrics at A = A∗ to cover the full (G, H) plane as in
the BHU metric. Physically this corresponds to a balance between
the centrifugal force, represented by dS potential 2Φ = −A2/A∗, and
the SW inverse square law, 2Φ = −A∗/A, like what happens in the
circular Keplerian orbits.2

2 See: https://darkcosmos.com/home/f/keplers-laws.

This BHU metric is shown in the top right of Fig.5, which is
asymptotically Minkowski. The dS metric is the limiting case of
FLRW metric and SW metric is a perturbation over FLRW metric.
So more generally, the BHU is a combination of 2 FLRW metrics
join by a SW metric. The junction happens at the effective value of
A∗ = AΛ = 2�" corresponding to the inner FLRW dΛ (which we
denote as dΛin ). If the outter FLRW has dΛout ≠ 0, then the SW
hyperbolic surface will close as another S2 sphere (bottom right). If
dΛout = 0 we have asymptotic Minkowski space (top right).

APPENDIX B: SOLUTION FOR +0 ≠ 0 AND Λ ≠ 0

Eq.30 for +0 ≠ 0 and Λ ≠ 0:

d(A) =
{
+0 for A > A(,
+0 + Δ for A < A(,

(B1)

can be solved as Φ = Ψ with

2Φ =

{
−A(, /A − A2�2

Λout
for A > A(, ≡ 2�" (1 + n)

−A2�2
Λin

for A < A(, = AΛin ≡ 1/�Λin

(B2)

where n ≡ dΛout/Δ and

3�2
Λout
≡ 8c�dΛout ; dΛout = Λ/8c� ++0 (B3)

3�2
Λin
≡ 8c�dΛin ; dΛin = dΛout + Δ (B4)

So there are different effective dΛ outside (dΛout ) and inside (dΛin ).
The exterior of the BH has the dSW metric but more generally it is
a perturbation of the FLRW metric.

APPENDIX C: THE COINCIDENCE PROBLEM

Consider our Universe as the interior of a BHU. For a universe of
finite age, there is finite causal boundaryM. This requires a boundary
term for the action that fixes Λ = 4c� < d + 3? >, where the
average is over the light-cone inside M (Gaztañaga 2021). If the
causal boundary is set to M = M� +M$ , where M� and M$ are the
volumes inside and outside the BHU, we find:
Λ

4c�
=< d + 3? >= −2+0 − 2Δ

M�

M
+ < d< + 2d' > (C1)

We then have that dΛin = +0 + Δ + Λ/8c� becomes:

dΛin =

{
Δ for M$ � M�

< d</2 + d' > for M� � M$
(C2)

The first case corresponds to a small BHU inside a larger space
where < d</2 + d' >' 0 because the BHU content is negligible
when average over a much larger outside volume M$ . This also
represents a BH inside our Universe. The second case corresponds
to a BHU that is causally disconnected from the rest of space-time.
The observational fact that dΛ ∼ d< seems to agree well with this
second solution (Gaztañaga 2021). This agreement (the coincidence
problem) seems to be telling us that the light-cone volume outside
our BHU is not very large. But note that < d</2 + d' >' Δ if
matter and radiation are generated by some reheating (see §2.1). DE,
inflation and BH interior seem different aspects of the same BHU
solution.

MNRAS 000, 1–11 (2020)

https://darkcosmos.com/home/f/keplers-laws

	Introduction
	Homogeneous solutions
	Scalar field in curved space-time
	The FLRW metric in comoving spherical coordinates

	Proper coordinates
	The FLRW metric in proper coordinates

	Black Hole Solutions
	False Vacuum Black Hole (BH.fv) solution
	Black Hole Universe (BH.u) solution
	Junction conditions
	Evolving junction: internal BH dynamics

	Implications for our Universe
	The evolution of the BH universe

	Discusion & Conclusion
	False Vaccum BH solution (BH.fv)
	The BH universe solution (BH.u)
	BH formation
	What is M for a physical BH?
	Our universe as a BH
	Evidence for a BHU

	Geometrical representations
	Solution for V0 0 and 0
	The coincidence problem

