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Abstract

A FLRW cloud is a solution of classical General Relativity (GR) were a homogeneous fluid of fixed mass 𝑀 collapses in a free
fall, following a radial geodesic 𝑅(𝜏) of the FLRW metric. This solution can be used to model the interior of a Black Hole (BH)
with regular matter/radiation, without the need of negative pressure or surface terms. We propose that our Universe emerged from
such a FLRW cloud with mass 𝑀 ≃ 5 × 1022𝑀⊙ that collapsed 25 Gyrs ago inside its own event horizon 𝑟𝑆 = 2𝐺𝑀 . The resulting
BH had a very low density, so the collapse continues inside for 11 Gyrs. When it reaches neutron star density it explodes, like a
Supernova, into the hot Big Bang expansion that we observe today. Such BHU expansion is trapped inside 𝑟𝑆 = 2𝐺𝑀 , which acts
like a cosmological constant Λ = 3/𝑟2

𝑆
. The BHU expansion follows 𝑅 ≃ [𝑟2

𝐻
𝑟𝑆]1/3 so a large fraction of 𝑀 is outside its Hubble

radius 𝑟𝐻 = 𝐻−1. This solves the horizon and structure formation problems. Thus, the BHU model does not need Dark Energy or
Inflation, yet it can be tested using current Cosmic maps because the observable Universe today is larger than 𝑟𝑆 .
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1. Introduction

The Big Bang (BB), Dark Energy (DE), Λ, inflation, DM
and BHs are puzzles we don’t yet understand at any funda-
mental level. The corresponding GR solutions, e.g. FLRW or
Schwarzschild (SW) metrics, involve non physical singularities.
Singularity theorems are sometimes interpreted as an indication
that a new theory of (Quantum) Gravity might be needed to un-
derstand these puzzles. But this is far from settle (see [1]). May
be we don’t need a new theory of Gravity but just a better model.
That a non singular version of such solutions exist is clear from
direct observations. Singularities often represent a simple ap-
proximation to a more complex physical solution. Our goal is to
look for a better approximation within GR to understand these
puzzles at a more fundamental level. We elaborate on a well
known example of non singular BH: a Bubble Universe. This is
a domain wall that connects a region of true and false vacuum,
with de Sitter (dS) space inside. These solutions are not very
appealing because they have no matter or radiation anywhere,
except in a surface term or bubble, required to glue the dS and
SW discontinuity (e.g. see [2, 3, 4]). The BHU proposal pre-
sented here can be thought as a type of Bubble Universe with a
FLRW interior (including regular matter and radiation) and no
bubble or surface term. The empty space outside is just a local
approximation, which is used to describe isolated BHs, like in
the SW metric. In a more realistic situation we can interpret the
BH solution to exist inside another FLRW background [5].

The BB with inflation is the standard cosmological model
that we use to interpret observations such as BAO, SN, CMB
and LSS. This is despite the fact that we have no idea of how
the BB or inflation started. For the same reason, we don’t need

a particular formation mechanism to consider the BHU as a
possible alternative to the BB and BH paradigms. In §5, we
give some ideas about how a BHU could form. But our scope
and focus here is not so much on the formation mechanism
itself but to show that some new solutions exist that can help us
understanding the above puzzles at a more fundamental level.

A Schwarzschild BH metric (BH.SW) represents a singular
object of mass 𝑀 . The BH event horizon 𝑟𝑆 ≡ 2𝐺𝑀 prevent
us from interacting with the inside (which makes BHs good
candidates for DM). Physically, a singular point does not make
any sense. What is the metric inside? What happens when
matter or BHs merge? Do BHs grow and co-evolve with galaxies
(e.g. [6])? Do observed BH form in stellar collapse or are they
seeded by primordial BHs? How do primordial BH form (e.g.
[7])? Most of these modelings assume the BH.SW solution, but
can we actually answer any of these questions if we do not have
a physical model for the BH interior?

Here, we look for an alternative solution to the BH.SW inte-
rior, defined as a non singular object of size 𝑟𝑆 which reproduces
the BH.SW metric for the outside 𝑟 > 𝑟𝑆 . A physical BH of size
𝑟 = 𝑟𝑆 and mass 𝑀 , has a density:

𝜌𝐵𝐻 =
𝑀

𝑉
=

3𝑟−2
𝑆

8𝜋𝐺
=

3𝑀−2

32𝜋𝐺3 . (1)

The BH interior can not be made out of regular matter or radia-
tion because according to GR a perfect fluid with mass 𝑀 has a
minimal radius ([8]):

𝑅 > 9/8𝑟𝑆 . (2)

But objects with mass and sizes matching 𝑟𝑆 have been observed.
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What is inside a BH then? The highest known density for a
stellar object is that of a Neutron star, which has the density
of an atomic nucleus, but is still a few times larger than 𝑟𝑆 .
To achieve such a high density for a perfect fluid, the radial
pressure inside a BH needs to be negative ([9] and references
therein). Cosmologist are used to this type of fluids, which
are called Quintessence, Inflation or Dark Energy (DE). So,
could the inside of a BH be DE? [10] have argued that the same
DE repulsive force that causes cosmic acceleration could also
prevent the BH singular collapse.

We find a new solution to these questions, which we call
the BHU (for 𝑅 < 𝑟𝑆) or FLRW cloud (for 𝑅 > 𝑟𝑆). We
will also explore the idea that our Universe corresponds to such
BHU solution. As the universe expands 𝐻 tends to 𝐻Λ which
corresponds to a trapped surface 𝑟Λ = 1/𝐻Λ, just like the event
horizon of a BH. Moreover, the density of our universe in that
limit is 𝜌 = 3𝐻2

Λ
/8𝜋𝐺 which exactly corresponds to that of a

BH, in Eq.1 for 𝑟𝑆 = 𝑟Λ. In fact, the Hubble Horizon 𝑟𝐻 = 1/𝐻
also has this property. This is not just a coincidence as advocated
by some scientist ([11, 12]). It directly indicates that we actually
live inside a very massive physical BH. It also tells us what is
the metric inside a BH. Our Universe is the only object whose
interior we know and has the density of a BH. And the metric
that we observe is the FLRW metric. We will explicitly show
that such BHU or FLRW cloud is a solution to classical GR.

The idea that the universe might be generated from the inside
of a BH is not new and has extensive literature (see [13, 14]
and references therein) which mostly focused in dS metric with
a dual role of the BH interior and an approximation for our
universe. Many of the formation mechanisms involve some
modifications or extensions of GR, often motivated by quantum
gravity or string theory. This is what we try to avoid here,
following the arguments in [15]. There are also some simple
scalar field 𝜑(𝑥) examples (e.g. [16]) which presented models
within the scope of a classical GR and classical field theory with
a false vacuum (FV) interior similar to our BH.fv solution here.
These models have been questioned using no-go theorems, such
us that by [17], that state that no smooth solution to 𝜑(𝑥) can
interpolate between dS and SW space. But this is not an issue
for our solution for three reasons. First, the external asymptotic
space is really SW+dS or FLRW (a BH is a perturbation within
a FLRW metric), where solutions do exist (e.g. [18]). Second,
we do not need 𝜑(𝑥) to smoothly transit between metrics: 𝜑(𝑥)
is trapped in a FV, which is discontinuous by nature, as shown
in the Bubble Universes (e.g. see [2, 3, 4]). Finally, we do not
actually need a scalar field or 𝜌Λ to have a BHU solution. We
just need the interior of the BH to follow a FLRW geodesic,
which results in no bubble or surface terms.

Several authors before have grasped the idea or speculated that
the FLRW metric could be the interior of a BH ([19, 20, 21, 22]).
But these previous solution were incomplete ([12]) or outside
classical GR. [23] showed, independently from us, that a dust
filled FLRW metric can be joined to an outside BH.SW metric,
in good agreement with what we find in §4.

Our BHU solution sounds similar, but is quite different from
that of [24], who speculated that all final (e.g. BH) singularities
’bounce’ or tunnel to initial singularities of new universes. Here

we propose the opposite, that such mathematical singularities
are not needed to explain the physical world. As stated by [25],
the concept of physical infinity is not a scientific one if science
involves testability by either observation or experiment. The
BHU model can avoid the initial causal and entropy paradoxes
([26, 27]) because our universe could start as a FLRW collapsing
cloud, and entropy decreases during the collapse because of
gravity.

In §2 we present the GR field equations of a perfect fluid
for homogeneous solutions: a FV and an expanding FLRW
universe. We also give a brief introduction to the general case of
solutions with spherical symmetry in physical SW coordinates.
The FLRW solution can also be expressed as in-homogeneous
in these SW coordinates. This duality is a key ingredient to find
and interpret our new solutions for a BH interior in §3. In §4 and
§5 we study the junction of the BHU and FLRW cloud solutions
and its formation. We also discuss how these solutions apply
both to BHs and to our Universe. We end with a summary and
a discussion of observational windows to test the BHU.

2. Some simple solutions

Given the Einstein-Hilbert action ([28, 29, 30, 31]):

𝑆 =

∫
𝑉4

𝑑𝑉4

[
𝑅 − 2Λ
16𝜋𝐺

+ L
]
, (3)

where 𝑑𝑉4 =
√−𝑔𝑑4𝑥 is the invariant volume element, 𝑉4 is

the volume of the 4D spacetime manifold, 𝑅 = 𝑅
𝜇
𝜇 = 𝑔𝜇𝜈𝑅𝜇𝜈 is

the Ricci scalar curvature and L the Lagrangian of the energy-
matter content. We can obtain Einstein’s field equations (EFE)
for the metric field 𝑔𝜇𝜈 from this action by requiring 𝑆 to be
stationary 𝛿𝑆 = 0 under arbitrary variations of the metric 𝛿𝑔𝜇𝜈 .
The solution is ([32, 30, 31]):

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈 ≡ −16𝜋𝐺
√−𝑔

𝛿( √−𝑔L)
𝛿𝑔𝜇𝜈

, (4)

where 𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 and L is the matter Lagrangian.

For perfect fluid in spherical coordinates:

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 (5)

where 𝑢𝜈 is the 4-velocity (𝑢𝜈𝑢𝜈 = −1), 𝜌, and 𝑝 are the energy-
matter density and pressure. This fluid is made of several com-
ponents, each with a different equation of state 𝑝 = 𝜔𝜌.

Eq.4 requires that boundary terms vanish (e.g. see [33, 34,
31]). Otherwise, we need to add a Gibbons-Hawking-York
(GHY) boundary term [35, 36, 37] to the action:

𝑆 =

∫
𝑉4

𝑑𝑉4

[
𝑅 − 2Λ
16𝜋𝐺

+ L
]
+ 1

8𝜋𝐺

∮
𝜕𝑉4

𝑑3𝑦
√
−ℎ 𝐾. (6)

where 𝐾 is the trace of the extrinsic curvature at the boundary
𝜕𝑉4 and ℎ is the induced metric. We will show explicitly in §4.2
that the GHY boundary results in a Λ term when the evolution
happens following a FLRW metric inside an expanding BH
event horizon. To cancel the GHY term we need 𝑟Λ = 𝑟𝑆 . That
Λ is a GHY term was propose in [38] and has also been later
interpreted as a boundary entropy term by [39, 40, 41].
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Figure 1: The potential 𝑉 (𝜙) , of a classical scalar field 𝜙 (𝑥) , made of the
superposition of plane waves. A configuration with total energy: 𝜌5 = 𝐾5 +𝑉5
(black dot at 𝜙5) can loose its kinetic energy 𝐾5 during expansion (e.g. a
supernova explosion or a expanding background) due to Hubble damping and
relax into one of the static (𝐾 = 0) ground state (or FV) 𝜌5 = 𝑉5 ≡ 𝑉 (𝜙5)
(red dots). This can generate a Black Hole (BH.fv) and regular matter from
reheating. Each FV has an energy excess Δ𝑖 ≡ 𝑉𝑖 − 𝑉0 over the true vacuum
at 𝑉0 (blue dot). Quantum tunneling (dashed lines) could allow 𝜙 to jump
between FV, resulting in BH evaporation and new matter/radiation.

2.1. Scalar field in curved space-time
Consider a minimally coupled scalar field 𝜑 = 𝜑(𝑥𝛼) with:

L ≡ 𝐾 −𝑉 = −1
2
𝜕𝛼𝜑𝜕

𝛼𝜑 −𝑉 (𝜑) (7)

The Lagrange equations are: ∇̄2𝜑 = 𝜕𝑉/𝜕𝜑. We can estimate
𝑇𝜇𝜈 (𝜑) from its definition in Eq.4 to find [30]:

𝑇𝜇𝜈 (𝜑) = 𝜕𝜇𝜑𝜕𝜈𝜑 + 𝑔𝜇𝜈 (𝐾 −𝑉) (8)

comparing to Eq.5:

𝜌 = 𝐾 +𝑉 ; 𝑝 = |𝐾 | −𝑉 (9)

In general we can have 𝑝 ∥ ≠ 𝑝⊥ for non canonical scalar fields
(see Eq.5 in [42] for further details). The stable solution corre-
sponds to 𝑝 = −𝜌 ≡ −𝜌𝑣𝑎𝑐:

∇̄2𝜑 = 𝜕𝑉/𝜕𝜑 = 0 ; 𝜌 ≡ 𝜌𝑣𝑎𝑐 = −𝑝 = 𝑉 (𝜑) = 𝑉𝑖 (10)

where 𝜑 is trapped in the true minimum𝑉0 or some false vacuum
(FV) state 𝑉𝑖 = 𝑉0 + Δ. The situation is illustrated in Fig.1.

2.2. The FLRW metric in comoving coordinates
The flat FLRW metric in comoving coordinates 𝜉𝛼 =

(𝜏, 𝜒, 𝜃, 𝛿), corresponds to an homogeneous and isotropic space:

𝑑𝑠2 = 𝑓𝛼𝛽𝑑𝜉
𝛼𝑑𝜉𝛽 = −𝑑𝜏2 + 𝑎(𝜏)2 [

𝑑𝜒2 + 𝜒2𝑑Ω
]

(11)

where we have introduced the solid angle: 𝑑Ω2 = 𝑑𝜃2 +
sin 𝜃2𝑑𝛿2. The scale factor, 𝑎(𝜏), describes the expan-
sion/contraction as a function of comoving or cosmic time 𝜏
(proper time for a comoving observer). For a comoving ob-
server, 𝑢 = 0, the time-radial components of Eq.5 are:(

𝑇00 𝑇10
𝑇01 𝑇11

)
=

(
𝜌(𝜏) 0

0 𝑝(𝜏)𝑎2

)
(12)

Figure 2: Physical radial coordinate 𝑅 = 𝑎 (𝜏)𝜒 in units of 𝑐/𝐻0 as a function
of cosmic time 𝑎 for a flat ΩΛ = 0.75 FLRW metric. The Hubble horizon
𝑐/𝐻 (blue dotted line), is compared to the observable universe 𝑟𝑜 in Eq.18
(continuous line) and the FLRW Event Horizon 𝑟∗ = 𝑎𝜒∗ in Eq.17 (dashed red
line), which here is smaller than the primordial causal boundary of inflation 𝜒§
(dashed green line). Scales larger than 𝑎𝜒§ are prior to inflation. Scales larger
than 𝑟∗ are causally disconnected (magenta shading). Scales smaller than 𝑟∗
but larger than 𝑐/𝐻 are dynamically frozen (yellow shading). At 𝑎 ≃ 1 (now)
the Hubble horizon reaches our event horizon 𝑎𝜒∗ = 𝑐/𝐻Λ. Table 1 gives a
summary of the different scales presented.

and the solution to EFE in Eq.4 is then:

3
(
¥𝑎
𝑎

)
= 𝑅𝜇𝜈𝑢

𝜇𝑢𝜈 = Λ − 4𝜋𝐺 (𝜌 + 3𝑝) (13)

𝐻2 ≡
(
¤𝑎
𝑎

)2
= 𝐻2

0
[
Ω𝑚𝑎

−3 +Ω𝑅𝑎
−4 +ΩΛ

]
(14)

𝜌Λ ≡ 𝜌vac +
Λ

8𝜋𝐺
(15)

𝜌𝑐 ≡
3𝐻2

8𝜋𝐺
; Ω𝑋 ≡ 𝜌𝑋

𝜌𝑐 (𝑎 = 1) (16)

whereΩ𝑚 (or 𝜌𝑚) represent the matter density today (𝑎 = 1),Ω𝑅
is the radiation, 𝜌vac represents vacuum energy: 𝜌vac = −𝑝vac =
𝑉 (𝜑) in Eq.10, and 𝜌Λ = −𝑝Λ is the effective cosmological
constant density. Note that Λ (the raw value) is always constant,
but 𝜌Λ (effective value) can change if 𝜌𝑣𝑎𝑐 changes. Given 𝜌(𝜏)
and 𝑝(‘𝑡𝑎𝑢) we can use the above equations to find 𝑎(𝜏).

2.3. The FLRW metric as a Black Hole
Observations show that the expansion rate today is dominated

by 𝜌Λ. This indicates that the FLRW metric lives inside a
trapped surface 𝑟Λ ≡ 1/𝐻Λ = (8𝜋𝐺𝜌Λ/3)−1/2, which behaves
like the interior of a BH. To see this, consider outgoing radial
null geodesic (the Event Horizon at 𝜏, [43]):

𝑟∗ ≡ 𝑎𝜒∗ = 𝑎
∫ ∞

𝜏

𝑑𝜏

𝑎(𝜏) = 𝑎

∫ ∞

𝑎

𝑑 ln 𝑎
𝑎𝐻 (𝑎) <

1
𝐻Λ

≡ 𝑟Λ (17)

where 𝜒∗ (𝑎) is the corresponding comoving scale. For small 𝑎
the value of 𝜒∗ is fixed to a constant 𝜒∗ ≃ 3𝑟Λ. Thus, the physical
trapped surface radius 𝑟∗ increases with time. As we approach
𝑎 ≃ 1 the Hubble rate becomes constant and 𝑟∗ freezes to a
constant value 𝑟∗ = 𝑟Λ This is shown as a red dashed line in Fig.2.
No signal from inside 𝑟∗ can reach outside, just like in the interior
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of a BH. In fact, according to Birkhoff theorem (see [44]), the
metric outside should be exactly that of the BH.SW in the limit
of empty outside space. So the FLRW metric is a BH:SW
from the outside with 𝑟𝑆 = 𝑟Λ. This breaks homogeneity (on
scales larger than 𝑟Λ), but this is needed if we want causality.
Homogeneity is inconsistent with a causal origin.

The causal boundary of inflation 𝜒§ (shown as green dashed
line) corresponds to the particle horizon during inflation 𝜒§ =

𝑐/(𝑎𝑖𝐻𝑖) or the Hubble horizon 1/𝐻𝑖 when inflation begins 𝑎𝑖 .
We can in principle have that 𝜒§ > 𝜒∗, as shown in the figure.
But why should there be two separate causal scales?

The observable universe or particle horizon is:

𝑟𝑜 = 𝑎

∫ 𝑎

𝑎𝑒

𝑑 ln 𝑎
𝑎𝐻 (𝑎) (18)

where 𝑎𝑒 is either 𝑎𝑒 = 0 (in models without inflation) or the
scale factor when inflation ends. For ΩΛ ≃ 0.7, the particle
horizon today is 𝑟𝑜 ≃ 3.26𝑐/𝐻0, which is larger than 𝑟Λ as
shown in Fig.2. This shows that, observers like us are trapped
inside 𝑟∗ = 𝑎𝜒∗ but can nevertheless observe what happened
outside. If we look back to the CMB maps (𝑎 ≃ 103) we
can see frozen BAO scales (outsisde the Hubble scale 1/𝐻 at
𝜃 ≃ 1deg. on the sky) but also scales outside our Event Horizon
𝑟∗ (𝜃 ≃ 60deg. on the CMB sky) [45, 38, 46, 47, 48].

2.4. Spherical symmetry in physical coordinates
The most general shape for a metric with spherical symmetry

in physical or SW coordinates (𝑡, 𝑟, 𝜃, 𝛿) can be writen as:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = −(1 + 2Ψ)𝑑𝑡2 + 𝑑𝑟2

1 + 2Φ
+ 𝑟2𝑑Ω2 (19)

where Ψ(𝑡, 𝑟) and Φ(𝑡, 𝑟) are the two gravitational potentials.
The Weyl potential Φ𝑊 is the geometric mean of the two:

(1 + 2Φ𝑊 )2 = (1 + 2Φ) (1 + 2Ψ) (20)

Ψ describes propagation of non-relativist particles and Φ𝑊 the
propagation of light. For 𝑝 = −𝜌 we have Ψ = Φ = Φ𝑊 .
Eq.19 can also be used to describe the BH.SW solution (or any
other solution) as a perturbation (2|Φ| < 1) around a FLRW
background:

𝑑𝑠2 ≃ −(1 + 2Ψ)𝑑𝑡2 + (1 − 2Φ)𝑎2𝑑𝜒2 + 𝑎2𝜒2𝑑Ω2 (21)

where 𝑟 = 𝑎(𝜏)𝜒 and 𝑡 ≃ 𝜏. The same result follows from
perturbing the FLRW metric in Eq.11.

Solutions to EFE for Eq.19 are well known, e.g. see Eq.(7.51)
in [31]. For a static perfect fluid BH with arbitrary 𝜌(𝑟) inside
𝑟𝑆 and empty space (Λ = 0) outside, we have 𝐺0

0 = −8𝜋𝐺𝜌(𝑟).
This can be solved using 𝑚(𝑟):

Φ(𝑟) = −𝐺𝑚(𝑟)
𝑟

= −𝐺
𝑟

∫ 𝑟

0
𝜌(𝑟) 4𝜋𝑟2𝑑𝑟 (22)

so the interior 𝑟 < 𝑟𝑆 of a BH has:

Φ(𝑟) =
{

−𝐺𝑀/𝑟 for 𝜌(𝑟) = 𝑀 𝛿𝐷 (𝑟)
− 1

2 (𝑟/𝑟0)2 for 𝜌(𝑟) = 𝜌0 ≡ 3
8𝜋𝑟2

0

(23)

Ψ(𝑟) depends on 𝐺1
1 and 𝑝(𝑟). For 𝑝 = −𝜌 we have 𝐺0

0 = 𝐺1
1

and the general solution with Λ ≠ 0 is:

Φ = Ψ = −𝐺𝑚(𝑟)
𝑟

− Λ𝑟2

6
(24)

The remaining EFE in Eq.4 are 𝐺2
2 = 𝐺3

3 and correspond to
energy conservation ∇𝜇𝑇 𝜇𝜈 = 0. For a comoving observer 𝑢 = 0
in a perfect fluid of Eq.5:

𝜕𝑡 𝜌 = − 𝜌 + 𝑝
1 + 2Φ

𝜕𝑡Φ. ; 𝜕𝑟 𝑝 =
𝜌 + 𝑝

1 + 2Ψ
𝜕𝑟Ψ (25)

Note how 𝜌 = −𝑝 results in constant 𝜌 and 𝑝 in time and
everywhere, but with a discontinuity at 2Φ = 2Ψ = −1. This
means that 𝜌 and 𝑝 could be constant but different in both sides
of 2Φ = 2Ψ = −1. This will be addressed with the study of
junction conditions in §4).

Empty space (𝜌 = 𝑝 = 𝜌Λ = 0) in Eq.24 results in the BH.SW
metric:

2Φ = 2Ψ = −2𝐺𝑀/𝑟 ≡ −𝑟𝑆/𝑟 (26)
There is a trapped surface at 𝑟 = 𝑟𝑆 (2Φ = −1). Outgoing radial
null geodesics cannot leave the interior of 𝑟𝑆 , while incoming
ones can cross inside. The solution to Eq.24 for 𝜌 = 𝑝 = 𝑀 = 0,
but 𝜌Λ ≠ 0 results in deSitter (dS) metric:

2Φ = 2Ψ = −𝑟2/𝑟2
Λ ≡ −𝑟2𝐻2

Λ = −𝑟28𝜋𝐺𝜌Λ/3 (27)

where 𝜌Λ is the effective density: 𝜌Λ = Λ/(8𝜋𝐺) + 𝑉 (𝜑). We
can immediately see that this solution is the same as the interior
of a BH with constant density in Eq.23 with 𝜌0 = 𝜌Λ.

dS metric corresponds to the surface of a hypersphere of
radius 𝑟Λ in a flat spacetime with an extra spatial dimension
(see Appendix A). This has a constant positive Ricci curvature
𝑅 = 4Λ and a finite volume inside 𝑟Λ. As in the BH.SW metric,
dS metric also has a trapped surface at 𝑟 = 𝑟Λ (2Φ = −1). Radial
null events (𝑑𝑠2 = 0) connecting (0, 𝑟0) with (𝑡, 𝑟) follow:

𝑟 = 𝑟Λ
𝑟Λ + 𝑟0 − (𝑟Λ − 𝑟0)𝑒−2𝑡/𝑟Λ

𝑟Λ + 𝑟0 + (𝑟Λ − 𝑟0)𝑒−2𝑡/𝑟Λ
(28)

so that it takes 𝑡 = ∞ to reach 𝑟 = 𝑟Λ from any point inside.
The BH.SW metric is singular at 𝑟 = 0, while dS is singular
at 𝑟 = ∞. But note that this singularity can not be reached
from the inside because of the trapped surface at 𝑟Λ in Eq.28.
The inside observer is trapped, like in the FLRW case. Both
metrics are equivalent for 𝐻 = 𝐻Λ (see [49, 50]) which explains
why the dS metric reproduces primordial inflation in comoving
coordinates. For 𝑀 and 𝜌Λ constant, the solution to Eq.24 is:

2Φ = 2Ψ = −𝑟2𝐻2
Λ − 𝑟𝑆/𝑟, (29)

which corresponds to dS-SW (dSW) metric, a BH.SW within a
dS background. Solution of a BH inside a FLRW metric also
exist (e.g see [5]). Here we will show that GR solutions also
exit for a FLRW inside a BH (or inside a larger FLRW metric).

We also consider a generalization of dS metric, which we call
dS extension (dSE), which is just a recast of the general case:

2Φ(𝑡, 𝑟) ≡ −𝑟2𝐻2 (𝑡, 𝑟) ≡ −𝑟2/𝑟2
𝐻 (30)

Table 1 shows a summary of notation and metrics considered
in this paper.
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Table 1: Some notation used in this paper.
Notation name comment
𝑟Λ = 1/𝐻Λ deSitter (dS) Event Horizon 3𝐻2

Λ
= 8𝜋𝐺𝜌Λ, Eq.27

−2Φ = 𝑟2𝐻2
Λ

dS metric Eq.27 static, inside BH.fv
𝑟𝑆 = 2𝐺𝑀 BH Event Horizon 𝜌𝐵𝐻 (𝑟Λ) = 𝜌Λ, Eq.1
−2Φ = 𝑟𝑆/𝑟 Schwarzschild (SW) metric BH.SW, outside BHU, Eq.26

−2Φ = 𝑟𝑆/𝑟 + 𝑟2𝐻2
Λ

dSW = dS-SW static, outside BHU, Eq.29

−2Φ =

{
𝑟𝑆/𝑟 for 𝑟 > 𝑟𝑆
𝑟2𝐻2

Λ
for 𝑟 < 𝑟𝑆

False Vacuum or BH.fv frozen BHU in Eq.36

𝑟∗ = 𝑎𝜒∗ (𝜏) = 𝑎
∫ ∞
𝜏

𝑑𝜏
𝑎 (𝜏) FLRW Event Horizon Outgoing null geodesic Eq.17

𝑟𝐻 = 1/𝐻 Hubble Horizon 𝑟 > 𝑟𝐻 frozen Fig.2
−2Φ = 𝑟2𝐻2 dSE= dS Extension Eq.30 FLRW or BH.u interior Eq.33
𝑅 =

[
𝑟2
𝐻
𝑟𝑆
]1/3 BHU Junction Eq.39, Eq.51 Null geodesic: 𝑅 = 𝑟∗ Eq.C.5

−2Φ =

{
𝑟𝑆/𝑟 for 𝑟 > 𝑅
𝑟2𝐻2 for 𝑟 < 𝑅 FLRW cloud for 𝑅 > 𝑟𝑆 BH.u for 𝑅 < 𝑟𝑆 , Eq.38

𝑟𝑜 = 𝑎𝜒𝑜 = 𝑎
∫ 𝜏

0
𝑑𝜏
𝑎 (𝜏) Observable Universe Eq.18 Particle Horizon today 𝑟𝑜 > 𝑟Λ

𝑟§ = 𝑎(𝜏)𝜒§ = 𝑎(𝜏)𝜒∗ Causal Boundary Eq.45 for Inflation: 𝜒§ = 𝜒∗ = (𝑎𝑖𝐻𝑖)−1

Figure 3: Logarithm of physical radius 𝑟 = 𝑎 (𝜏)𝜒 (top) and comoving time 𝜏
(bottom) as a function of SW time 𝑡 in Eq.34 for 𝑎 (𝜏) = 𝑒𝜏𝐻Λ and different
values of 𝜒. All quantities are in units of 1/𝐻Λ. For early time or small 𝜒:
𝜏 ≃ 𝑡 . A fix 𝜒 acts like an Horizon: as 𝑡 ⇒ ∞ we have 𝜏 ⇒ − ln 𝜒 (dotted),
which freezes inflation to: 𝑟 = 𝑎𝜒 ⇒ 𝑒− ln (𝐻Λ𝜒) 𝜒 = 1/𝐻Λ (dashed).

3. Some new solutions

Here we consider some additional solutions with spherical
symmetry which are simple variations of the previous well
known cases in Table 1.

3.1. The FLRW metric in physical coordinates

Consider a change of variables from 𝑥𝜇 = [𝑡, 𝑟] to comoving
coordinates 𝜉𝜈 = [𝜏, 𝜒], where 𝑟 = 𝑎(𝜏)𝜒 and angular variables
(𝜃, 𝛿) remain the same. The metric 𝑔𝜇𝜈 in Eq.19 transforms to

𝑓𝛼𝛽 = Λ
𝜇
𝛼Λ

𝜈
𝛽
𝑔𝜇𝜈 , with Λ

𝜇
𝜈 ≡ 𝜕𝑥𝜇

𝜕𝜉 𝜈 . If we use:

Λ =

(
𝜕𝜏 𝑡 𝜕𝜒𝑡

𝜕𝜏𝑟 𝜕𝜒𝑟

)
=

(
(1 + 2Φ𝑊 )−1 𝑎𝑟𝐻 (1 + 2Φ𝑊 )−1

𝑟𝐻 𝑎

)
(31)

with 2Φ = −𝑟2𝐻2 and arbitrary 𝑎(𝜏) and Ψ, we find:

𝑓𝛼𝛽 = Λ𝑇
(
−(1 + 2Ψ) 0

0 (1 + 2Φ)−1

)
Λ =

(
−1 0
0 𝑎2

)
(32)

In other words, these two metrics are the same:

−(1 + 2Ψ)𝑑𝑡2 + 𝑑𝑟2

1 − 𝑟2𝐻2 = −𝑑𝜏2 + 𝑎2𝑑𝜒2 (33)

dSE metric in Eq.30 with 2Φ = −𝑟2𝐻2 corresponds to the
FLRW metric with 𝐻 (𝑡, 𝑟) = 𝐻 (𝜏): this is a hypersphere of
radius 𝑟𝐻 that tends to 𝑟Λ (see Appendix A). This frame duality
can be understood as a Lorentz contraction 𝛾 = 1/

√
1 − 𝑢2

where the velocity 𝑢 is given by the Hubble-Lemaitre law: 𝑢 =

𝐻𝑟. An observer in the SW frame, not moving with the fluid,
sees the moving fluid element 𝑎𝑑𝜒 contracted by the Lorentz
factor 𝛾: 𝑎𝑑𝜒 ⇒ 𝛾𝑑𝑟 . For constant 𝐻, the FLRW metric
corresponds the interior of a BH with constant density in Eq.23.
A Lorentz factor 𝛾 also explains 𝑑𝜏 = 𝛾−1𝑑𝑡 as time dilation.

Given 𝑎(𝜏), we can find Ψ and 𝜏 = 𝜏(𝑡, 𝑟). For 𝑎(𝜏) = 𝑒𝜏𝐻Λ

we have 2Ψ = 2Φ = −𝑟2𝐻2
Λ

and (see [49, 51]):

𝑡 = 𝑡 (𝜏, 𝜒) = 𝜏 − 1
2𝐻Λ

ln [1 − 𝐻2
Λ𝑎

2𝜒2], (34)

which reproduces dS metric. In comoving coordinates the met-
ric is inflating exponentially: 𝑎 = 𝑒𝜏𝐻Λ , while in physical co-
ordinates it is static. Fig.3 illustrates how this is possible and
shows how 𝜏 = 𝜏(𝑡, 𝑟) freezes (see [50] for some additional
discussion). Note also how 𝜕𝜏 𝑡 = (1 + 2Φ𝑊 )−1 in Eq.31 for
2Φ𝑊 = −𝑟2𝐻2 is the generalization of Eq.34 for ¤𝐻 ≠ 0.
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3.2. False Vacuum Black Hole (BH.fv)
Eq.26 and Eq.27 are the simplest solutions to EFE. They cor-

respond to some form of empty space. The simplest modeling
of physical BH interior is a combination of the two:

𝜌 = −𝑝 =

{
0 for 𝑟 > 𝑟𝑆
Δ for 𝑟 < 𝑟𝑆

(35)

where Δ > 0. To recover the BH.SW solution outside, we use
𝑉0 = Λ = 0. The solution to EFE in Eq.24 for Eq.35 (which we
called BH.fv) is then:

2Φ = 2Ψ =

{
−𝑟𝑆/𝑟 for 𝑟 > 𝑟𝑆 ≡ 2𝐺𝑀
−𝑟2𝐻2

Λ
for 𝑟 < 𝑟𝑆 = 𝑟Λ ≡ 1/𝐻Λ

(36)

where: 𝜌Λ = 𝜌𝐵𝐻 = Δ and𝑀 = 4𝜋
3 𝑟

3
𝑆
Δ. Recall thatΛ = 𝑉0 = 0

and 𝜌Λ refers to the effective Λ density inside the BH. In a more
realistic situation, on larger scales the BH.SW metric should be
considered a perturbation of FLRW background, e.g. Eq.21,
with Λ ≠ 0 and 𝑉0 ≠ 0 (see Appendix B).

The above solution has no singularity at 𝑟 = 0. Note how,
contrary to what happens in the BH.SW, in the BH.fv solution,
the metric components don’t change signature as we cross inside
𝑟𝑆 . In both sides of 𝑟𝑆 we have constant but different values of
𝑝 and 𝜌. This comes from energy conservation in Eq.25. There
is a discontinuity at 2Φ = −1 where 𝑟 = 𝑟𝑆 , in agreement with
Eq.25, but the metric is static and continuous at 𝑟𝑆 . This solution
only happens when 𝑟𝑆 = 𝑟Λ = (8𝜋𝐺Δ/3)−1/2. The smaller Δ
the larger and more massive the BH. In the limitΔ ⇒ 0, we have
𝑟𝑆 = 𝑟Λ ⇒ ∞ and we recover Minkowski space, as expected.

At a fixed location, the scalar field 𝜑 inside the BH is trapped
in a stable configuration (𝜌 = 𝑉0 +Δ) and can not evolve (𝐾 = 0
in Eq.9). The same happens for the field outside (see Fig.1).
A FV in Eq.35 with equal Δ but with smaller initial radius
𝑟 = 𝑅 < 𝑟𝑆 is subject to a pressure discontinuity at 𝑟 = 𝑅 which
is not balanced in Eq.25 and results in a bubble growth ([2, 4]).
Such boundary grows and asymptotically reaches 𝑅 = 𝑟𝑆 (see
top panel of Fig.3). The inside of 𝑟𝑆 is causally disconnected,
so the pressure discontinuity does not act on 𝑟 = 𝑟𝑆 , which
corresponds to a trapped surface.

3.3. FLRW cloud & Black Hole Universe (BH.u)
We next look for solutions where we have matter 𝜌𝑚 =

𝜌𝑚 (𝑡, 𝑟) and radiation 𝜌𝑅 = 𝜌𝑅 (𝑡, 𝑟) inside some radius 𝑅 and
empty space outside:

𝜌(𝑡, 𝑟) =

{
0 for 𝑟 > 𝑅
Δ + 𝜌𝑚 + 𝜌𝑅 for 𝑟 < 𝑅 . (37)

When 𝑅 > 𝑟𝑆 we call this a FLRW cloud and when 𝑅 < 𝑟𝑆 this
is a BH Universe (BHU of type BH.u). For 𝑟 > 𝑅, we have the
SW metric. For the interior we use the dSE notation in Eq30:
2Φ(𝑡, 𝑟) ≡ −𝑟2𝐻2 (𝑡, 𝑟) ≡ −𝑟2/𝑟2

𝐻
, so that:

2Φ(𝑡, 𝑟) =
{
−𝑟𝑆/𝑟 for 𝑟 > 𝑅
−𝑟2𝐻2 for 𝑟 < 𝑅 (38)

At the junction 𝑟 = 𝑅, we find that:

𝑅 = [𝑟2
𝐻𝑟𝑆]1/3, (39)

Figure 4: Spatial representation of 𝑑𝑠2 = (1 + 2Φ)−1𝑑𝑟2 + 𝑟2𝑑𝜃2 2D metric
embedded in 3D flat space for: deSitter (dS, bottom left, 2Φ = −𝑟2/𝑟2

∗ ), FLRW
(𝑟 (𝜏) < 𝑟∗, blue sphere inside dS), Schwarzschild (SW, top left, 2Φ = −𝑟∗/𝑟)
and two versions of the combined BHU metrics. Yellow region shows the
projection coverage in the (𝑥, 𝑦) plane. In the top right figure we show a BHU
with dS (or FLRW) interior and SW metric exterior joint at the Event Horizon
𝑟∗ = 2𝐺𝑀 = 1/𝐻Λ (red circles). The BHU solution has in general two nested
FLRW metrics join by SW metric (bottom right). See Appendix A for a more
detailed explanation.

For 𝑟 < 𝑅 we can change variables as in Eq.31-33. In the
comoving frame of Eq.33, from every point inside de BHU, co-
moving observers will have the illusion of an homogeneous and
isotropic space-time around them, with a fixed Hubble-Lemaitre
expansion 𝐻 (𝜏). This converts dSE metric into FLRW metric.
So the solution is 𝐻 (𝑡, 𝑟) = 𝐻 (𝜏) and 𝑅(𝜏) = [𝑟𝑆/𝐻2 (𝜏)]1/3.
Given 𝜌(𝜏) and 𝑝(𝜏) in the interior we can use Eq.14 to find
𝐻 (𝜏) and 𝑅(𝜏):

𝐻2 (𝜏) = 8𝜋𝐺
3

𝜌(𝜏) = 𝑟𝑆

𝑅3 (𝜏)
(40)

This corresponds to a homogeneous FLRW cloud of fix mass
𝑀 = 𝑟𝑆/2𝐺 confined inside 𝑅(𝜏). The corresponding comov-
ing radius 𝜒∗ is 𝜒∗ (𝜏) ≡ 𝑅(𝜏)/𝑎(𝜏). We can see how 𝑅 can be
related with a free fall geodesic radial shell:

𝑑𝑅

𝑑𝜏
= 𝑎

𝑑𝜒∗
𝑑𝜏

+ 𝜒∗
𝑑𝑎

𝑑𝜏
= 𝑉0 + 𝐻𝑅 = 𝑉0 + (𝑟𝑆/𝑅)1/2 (41)

where 𝑉0 ≡ 𝑎 ¤𝜒∗. For a time-like geodesic of constant 𝜒∗ (𝑑𝜒 =

0) we have𝑉0 = 0. For a null-like geodesic (𝑎𝑑𝜒 = 𝑑𝜏): 𝑉0 = 1.
The later case corresponds to 𝑅 = 𝑟∗ in Eq.17 from which we
can immediately see that 𝑟𝑆 = 𝑟Λ like in the BH.fv solution
of Eq.36. So even when Λ = Δ = 0, the mass 𝑀 inside 𝑅
generates 𝑟Λ = 𝑟𝑆 . We will come back to this point in §4.2. We
can integrate Eq.41 to find 𝑅(𝜏), for a fix 𝑉0 and 𝑟𝑆 , regardless
of 𝜌(𝜏). This shows that a solution for 𝑅(𝜏) exist for any content
inside 𝑅.

To complete the solution, i.e. to find Ψ and 𝜏 = 𝜏(𝑡, 𝑟), we
need to solve Eq.31 with 2Φ = −𝑟2𝐻2 (𝜏). For 𝐻 (𝜏) = 𝐻Λ the
solution is Ψ = Φ and Eq.34. The FLRW metric with 𝐻 = 𝐻Λ

becomes dS metric in Eq.27 as in the BH.fv solution Eq.36.
Such solutions are illustrated in Fig.4.
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Figure 5: Illustration of the BHU inside the event horizon 𝑟𝑆 = 2𝐺𝑀. This
is a Schwarzschild (empty) metric outside (𝑟 > 𝑅) and a FLRW metric with
a Hubble radius 𝑟𝐻 = 𝑐/𝐻 inside (𝑟 < 𝑅). The BHU solution in Eq.39
requires 𝑅 = [𝑟2

𝐻
𝑟𝑆 ]1/3. There is a region with matter outside the Hubble

radius 𝑅 > 𝑟 > 𝑟𝐻 (yellow shading). This solves the horizon problem in
Cosmology and is a source for perturbations that enter the horizon as the metric
expands, creating LSS and BAO in Cosmic Maps, pretty much like what is
usually assumed for Cosmic Inflation.

3.4. A frozen BH internal layer
Note how for 𝑅 < 𝑟𝑆 (i.e. inside the BH) Eq.39 indicates that

there is a region with no matter: 𝑟𝑆 > 𝑟 > 𝑅 and a region with
matter outside the Hubble horizon 𝑅 > 𝑟 > 𝑟𝐻 . The region
increases during collapse inside a BH and re enters the Hubble
horizon as it expands. This is a potential source of frozen per-
turbations, which acts very much like Cosmic Inflation. This is
illustrated in Fig.5 (see also Fig.2) and will be further discussed
in §6.5

4. Junction conditions

We can arrive at the same BHU (BH.fv and BH.u) solutions
using Israel’s junction conditions ([52, 53]). We will combine
two solutions to EFE with different energy content, as in Eq.37,
on two sides (𝑉4

− and 𝑉4
+) of a hypersurface junction Σ =

𝑉4
− ∩𝑉4

+. The inside 𝑔− is FLRW metric and the outside 𝑔+ is
BH.SW metric. The junction conditions require that the metric
and its derivative (the extrinsic curvature 𝐾) match at Σ. This
means that the join metric provides a new solution to EFE in
𝑉4 = 𝑉4

− [< Σ] ∪ 𝑉4
+ [> Σ]. In many cases, like in the Bubble

Universes, this does not work and the junction requires a surface
term (the bubble) to glue both solutions together. We will show
that for both timelike and null geodesics the junction conditions
are satisfied for the BHU and there are no surface terms.

In this section, we follow closely the notation in §12.5 of [31]
with 𝑑𝑠2 = 𝑔𝑎𝑏𝑑𝑥

𝑎𝑑𝑥𝑏 where 𝑎 = 0, 1, 2, 3 for the 4D metric
and 𝑑𝑠2

Σ
= ℎ𝛼𝛽𝑑𝑦

𝛼𝑑𝑦𝛽 with 𝛼 = 0, 1, 2 for the 3D induced
metric: i.e. 𝑑𝑠2 restricted to the Σ hypersurface.

4.1. Timelike Junction
We start by choosing a timelike Σ fixed in comoving coor-

dinates at some value 𝜒∗. This can be identified with a causal

boundary, like the free fall collapse of a star of fixed mass 𝑀 or
the particle horizon of Inflation 𝜒§ = 𝜒∗ = (𝑎𝑖𝐻𝑖)−1, where 𝑎𝑖
and𝐻𝑖 are the scale factor and Hubble rate when Inflation begins
(see §Appendix D). The spherical shell radius follows a radial
geodesic trajectory in the FLRW metric. This corresponds to a
FLRW cloud of fixed mass 𝑀 that is expanding or contracting
(see also [23] and §12.5 of [31]).

The induced 3D metric ℎ−
𝛼𝛽

for 𝑑𝑦𝛼 = (𝑑𝜏, 𝑑𝛿, 𝑑𝜃) and fixed
𝜒 = 𝜒∗, is:

𝑑𝑠2
Σ− = ℎ−𝛼𝛽𝑑𝑦

𝛼𝑑𝑦𝛽 = −𝑑𝜏2 + 𝑎2 (𝜏)𝜒2
∗𝑑Ω

2 (42)

For the outside SW frame, the junction Σ+ is described by
𝑟 = 𝑅(𝜏) and 𝑡 = 𝑇 (𝜏), where 𝜏 is the FLRW comoving time.
We then have:

𝑑𝑟 = ¤𝑅𝑑𝜏 ; 𝑑𝑡 = ¤𝑇𝑑𝜏, (43)

where the dot refers to derivatives with respect to 𝜏. The metric
ℎ+ induced in the outside SW metric is:

𝑑𝑠2
Σ+ = ℎ+𝛼𝛽𝑑𝑦

𝛼𝑑𝑦𝛽 = −𝐹𝑑𝑡2 + 𝑑𝑟
2

𝐹
+ 𝑟2𝑑Ω2

= −(𝐹 ¤𝑇2 − ¤𝑅2/𝐹)𝑑𝜏2 + 𝑅2𝑑Ω2 (44)

where 𝐹 ≡ 1 − 𝑟𝑆/𝑅. Comparing Eq.42 with Eq.44, the first
matching conditions ℎ− = ℎ+ are then:

𝑅(𝜏) = 𝑎(𝜏)𝜒∗ ; 𝐹 ¤𝑇 =

√︁
¤𝑅2 + 𝐹 ≡ 𝛽(𝑅, ¤𝑅) (45)

For any given 𝑎(𝜏) and 𝜒∗ we can find both 𝑅(𝜏) and 𝛽(𝜏).
We also want the derivative of the metric to be continuous at

Σ. For this, we estimate the extrinsic curvature 𝐾± normal to
Σ± from each side of the hypersurface as:

𝐾𝛼𝛽 = −
[
𝜕𝑎𝑛𝑏 − 𝑛𝑐Γ𝑐𝑎𝑏

]
𝑒𝑎𝛼𝑒

𝑏
𝛽 (46)

where 𝑒𝑎𝛼 = 𝜕𝑥𝑎/𝜕𝑦𝛼 and 𝑛𝑎 is the 4D vector normal to Σ. The
outward 4D velocity is 𝑢𝑎 = 𝑒𝑎𝜏 = (1, 0, 0, 0) and the normal
to Σ− on the inside is then 𝑛− = (0, 𝑎, 0, 0). On the outside
𝑢𝑎 = ( ¤𝑇, ¤𝑅, 0, 0) and 𝑛+ = (− ¤𝑅, ¤𝑇, 0, 0). It is straightforward to
verify that: 𝑛𝑎𝑢𝑎 = 0 and 𝑛𝑎𝑛𝑎 = +1 (for a timelike surface) for
both 𝑛− and 𝑛+.

We then find that the extrinsic curvature in Eq.46 to the Σ

junction, estimated with the inside FLRW metric, i.e. 𝐾− is:

𝐾−
𝜏𝜏 = −(𝜕𝜏𝑛−𝜏 − 𝑎Γ

𝜒
𝜏𝜏)𝑒𝜏𝜏𝑒𝜏𝜏 = 0

𝐾−
𝜃 𝜃 = 𝑎Γ

𝜒

𝜃 𝜃
𝑒𝜃𝜃𝑒

𝜃
𝜃 = −𝑎𝜒∗ = −𝑅 (47)

where we have used Eq.45 and the following Christoffel symbols
for the FLRW:

Γ𝜏𝜏𝜏 = Γ𝜏𝜏𝜒 = Γ
𝜒
𝜏𝜏 = Γ

𝜒
𝜒𝜒 = 0 ; Γ𝜏𝜃 𝜃 = 𝑎

2𝜒2
∗𝐻 (48)

Γ
𝜒
𝜏𝜒 = Γ𝜏𝜒𝜒𝑎

−2 = 𝐻 ; Γ
𝜒

𝜃 𝜃
= −𝜒∗

For the SW metric:

Γ𝑡𝑡𝑡 = Γ𝑟𝑡𝑟 = 0 ; Γ𝑟𝜃 𝜃 = −𝐹𝑅 ; (49)

Γ𝑡𝑡𝑟 = −Γ𝑟𝑟𝑟 = Γ𝑟𝑡𝑡𝐹
−2 =

𝑟𝑆

2𝐹𝑅2
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which results in 𝐾+:

𝐾+
𝜏𝜏 = ¥𝑅 ¤𝑇 − ¤𝑅 ¥𝑇 +

¤𝑇𝑟𝑆
2𝑅2𝐹

( ¤𝑇2𝐹2 − 3 ¤𝑅2) =
¤𝛽
¤𝑅

𝐾+
𝜃 𝜃 = ¤𝑇Γ𝑟𝜃 𝜃 = − ¤𝑇𝐹𝑅 = −𝛽𝑅 (50)

where we have used the definition of 𝛽 in Eq.45. In both cases
𝐾𝛿𝛿 = sin2 𝜃𝐾𝜃 𝜃 , so that when𝐾−

𝜃 𝜃
= 𝐾+

𝜃 𝜃
it follows that𝐾−

𝛿𝛿
=

𝐾+
𝛿𝛿

. Comparing Eq.47 with Eq.50, the matching conditions
𝐾−
𝛼𝛽

= 𝐾+
𝛼𝛽

require 𝛽 = 1, which using Eq.45 gives:

𝑅 =
[
𝑟2
𝐻𝑟𝑆

]1/3 (51)

This reproduces the junction in Eq.39. The time equation is:

¤𝑇 =
1

1 − 𝑅2𝐻2 (52)

which is the generalization of Eq.34 for ¤𝐻 ≠ 0 and agrees
with 𝜕𝜏 𝑡 = (1 + 2Φ𝑊 )−1 in Eq.31 for 2Φ𝑊 = −𝐻2𝑅2, so it
corresponds to a time dilation in the comoving frame.

For constant 𝑟𝑆 the timelike Σ, only works for a dust (𝑝 = 0)
matter dominated FLRW metric 𝑟2

𝐻
∝ 𝑎3, for only in this case

Eq.51 agrees with 𝑅 = 𝑎𝜒∗ with a constant 𝜒∗. This corresponds
to a FLRW dust cloud of fix mass 𝑀 expanding or collapsing.
This case illustrates well the point we want to make. For 𝑝 ≠ 0
we need to consider a null junction, which allows for a general
𝐻 (𝜏), see Eq.41 and Appendix C.

4.2. The GHY boundary term
The expansion inside an isolated BH is bounded by the event

horizon 𝑟 < 𝑟𝑆 and we need to add the GHY boundary term
𝑆𝐺𝐻𝑌 to the action in Eq.6, where:

𝑆𝐺𝐻𝑌 =
1

8𝜋𝐺

∮
𝜕𝑉4

𝑑3𝑦
√
−ℎ 𝐾 (53)

The integral is over the induced metric at 𝜕𝑉4, which corre-
sponds to Eq.42, i.e.𝜕𝑉4 = Σ at 𝑅 = 𝑟𝑆:

𝑑𝑠2
𝜕𝑉4

= ℎ𝛼𝛽𝑑𝑦
𝛼𝑑𝑦𝛽 = −𝑑𝜏2 + 𝑟2

𝑆𝑑Ω
2 (54)

So the only remaing degrees of freedom in the action are time 𝜏
and the angular coordinates. We can use this metric and Eq.47
to estimate 𝐾:

𝐾 = 𝐾𝛼𝛼 =
𝐾𝜃 𝜃

𝑅2 + 𝐾𝛿 𝛿

𝑅2 sin2 𝜃
= − 2

𝑅
= − 2

𝑟𝑆
(55)

We then have

𝑆𝐺𝐻𝑌 =
1

8𝜋𝐺

∫
𝑑𝜏 4𝜋𝑟2

𝑆 𝐾 = −𝑟𝑆
𝐺
𝜏 (56)

The Λ contribution to the action in Eq.6 is:

𝑆Λ = − Λ

8𝜋𝐺
𝑉4 = −

𝑟3
𝑆
Λ

3𝐺
𝜏 (57)

We have estimated the total 4D volume 𝑉4 as that bounded by
𝜕𝑉4 inside 𝑟 < 𝑟𝑆: 𝑉4 = 2𝑉3𝜏, where the factor 2 accounts

for the fact that 𝑉3 = 4𝜋𝑟3
𝑆
/3 is covered twice, first during

collapse and again during expansion. Comparing the two terms
we can see that we need Λ = 3𝑟−2

𝑆
or equivalently 𝑟Λ = 𝑟𝑆 to

cancel the boundary term. In other words: evolution inside
a BH event horizon induces a Λ term in the EFE even when
there is no Λ term to start with. Such event horizon is only
a boundary for outgoing geodesics, i.e. expanding solutions.
This provides a fundamental interpretation to the observed Λ as
a causal boundary [45, 38].

5. The formation of the BHU

How does a BH or our Universe evolve into the solution
of Eq.38? This is an important question. It is not enough
to find a solution to EFE. We need to make sure that such a
configuration can be achieved in a causal way. A good example
of this problem is the standard FLRW solution. The FLRW
universe has no causal origin: the Hubble rate is the same
everywhere, not matter how far, and this is not causally possible
([45, 38]). Cosmic Inflation alleviates this problem, but does
not solve it.

We propose here two possible BHU formation scenarios: one
that happens during a rapid expansion (or explosion) and a
version that happens during the collapse. Both can be applied
to a small object, like a star, or a large object, like our Universe.
The main difference is that for the larger object the density
corresponding to 𝑟𝑆 is very low (few atoms per cubic meter) and
we can assume a dust (𝑝 = 0) fluid. This is not the case for small
object, like a star. But stars do eventually collapse and explode.
Here we focus in formation scenario during collapse which we
consider more appealing as it does not require a FV, inflation or
DE. In §Appendix D we present the expanding scenario.

5.1. Cloud collapse
Consider a large cloud dominated by dust or CDM (𝜌𝑚 with

𝑝 = 0) with radius 𝑅 and mass 𝑀 , surrounded by a region of
empty space. This is a good approximation for our Universe
with 𝑀 ≃ 5×1022𝑀⊙ which corresponds to the mass inside our
FLRW event horizon 𝑟Λ. The resulting BH density is very low,
𝜌𝐵𝐻 = 3𝑟−2

𝑆
/8𝜋𝐺 = 𝜌Λ, which is 25% lower than the critical

density today 𝜌 = 3𝐻2
0/8𝜋𝐺 (a few protons per cubic meter).

But 𝑝 = 0 is not in always a good approximation. For stellar
object 𝑀 ≃ 𝑀⊙ we have 𝜌𝐵𝐻 ≃ 3𝑀−2

⊙ /32𝜋𝐺 corresponds to
atomic nuclear density and resist collapse.

Gravity will make such dust cloud collapse following a free
fall timelike geodesic of Eq.38 with 𝑅 given by Eq.51: 𝑅 =

(𝑟2
𝐻
𝑟𝑆)1/3. As there is no pressure support, it will eventually

collapse into a BH when 𝑅 = 𝑟𝑆 = 𝑟𝐻 = 2𝐺𝑀 . The event
horizon does not stop the collapse as it only prevents outgoing
null geodesics, but it welcomes incoming events. So the collapse
continues free fall inside the BH as illustrated in the left half of
Fig.6 where the junction 𝑅 = (𝑟2

𝐻
𝑟𝑆)1/3 remains valid.

The density increases as 𝜌 ∼ Δ𝜏−2, where Δ𝜏 is the time
remaining to reach 𝑅 = 0. As the density inside gets larger it will
resist further collapse. The density eventually reaches nuclear
atomic density of a neutron star which produces a bounce or
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Figure 6: Illustration of the formation of a BHU. A cloud of radius 𝑅 and mass 𝑀 collapses under gravity. When it reaches 𝑅 = 𝑟𝑆 = 2𝐺𝑀 it becomes a BH.
The collapse proceeds inside the BH until it bounces producing an expansion (the hot Big Bang). The event horizon 𝑟𝑆 behaves like a cosmological constant with
Λ = 3/𝑟2

𝑆
so that the expansion freezes before it reaches back to 𝑟𝑆 = 𝑟Λ. The bottom panels shows a numerical calculation for ΩΛ = 0.75 with 𝑅 = [𝑟2

𝐻
𝑟𝑆 ]1/3.

Structure in-between 𝑅 and 𝑟𝐻 is frozen and seeds structure formation in our Universe, which could include smaller BHUs, CMB, stars and galaxies.

explosion. This is similar to a supernova explosion or a hot
Big Bang. The expansion follows the standard cosmic evolution
(nucleosynthesis, CMB decoupling and so on). During radiation
domination the junction follows the null geodesic rather the
timelike geodesic. The resulting fluid cools down as it expands.
Finally it freezes as it reaches back to 𝑅 = 𝑟𝑆 .

As detailed in §4.2 the evolution inside a BH event horizon
induces a Λ term in the EFE even when there is no Λ term to
start with. This provides a fundamental interpretation to the
observed Λ as causal boundary [45, 38].

The bottom panel of Fig.6 shows an actual numerical cal-
culation for the formation of our Universe. During collapse,
the boundary 𝑅 is fixed in comoving coordinates and follows
𝑅 = [𝑟2

𝐻
𝑟𝑆]1/3, where we have fixed 𝑟𝑆 = 2𝐺𝑀 to its observed

value today 𝑟𝑆 = Ω
−1/2
Λ

/𝐻0 with ΩΛ ≃ 0.75 and 𝑟𝐻 is just given
by Eq.14 with Ω𝑚 ≃ 0.25 and ΩΛ = 0. After the Big Bang, 𝑅
follows a null geodesic 𝑎𝑑𝜒 = 𝑑𝜏 (red dashed line) with 𝐻 (𝜏)
given by ΩΛ ≃ 0.75 and Ω𝑚 ≃ 0.25. The Big Bang happened
𝜏 ≃ 𝐻−1

0 ≃ 14Gyrs ago and our Universe collapsed into a BH
about 25Gyrs ago.

6. Discusion & Conclusion

Table 1 shows a summary of the notation and models used in
this paper. The SW metric in Eq.26 is well known and studied
but the interior solution is not physical because it corresponds
to a singular point source. Moreover a BH interior can not be

made out of regular matter because according to GR an object of
mass 𝑀 must have a minimal radius given by Eq.2 ([8]). What
is inside a BH then? We have looked for classical GR solutions
for a BH interior. Our motivation is to find a physical model
and study if this results in some different observed properties
for BHs.

The outside manyfold 𝑉4
+ of a BH is approximated as empty

space so the solution 𝑔+ is the BH.SW metric. Because the inside
𝑉4

− is causally disconnected, 𝑉4
+ acts like a simple boundary

condition. Given some 𝜌 and 𝑝 inside 𝑟𝑆 , we can solve EFE
inside with such boundary condition to find 𝑔−, the inside metric
of a physical BH. We find that 𝑔− is just the well known FLRW.
The general solution in Eq.38 corresponds to what we call here
a FLRW cloud for 𝑅 > 𝑟𝑆 . Such cloud can collapse to become a
BHU (𝑅 < 𝑟𝑆). This solution is not static, which explains how
we can avoid the constrain in Eq.2. We have verified Israel´s
conditions to double check that the join manyfold 𝑉4

− ∪ 𝑉4
+

is also a solution to EFE and there are no surface terms (see
§4). This is different from just matching two arbitrary metrics
because it correspond to well defined physical content in Eq.37.

The Λ contribution can be interpreted as negative gravity
caused by a causal boundary, see §4.2. In the case of our
Universe we can interpret the measured 𝑟Λ as the event horizon
𝑟𝑆 = 2𝐺𝑀 of a large collapsing FLRW cloud of mass 𝑀 . This
sheds new light over the measured coincidence between 𝜌Λ and
𝜌𝑚 [54, 55, 56, 38].
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6.1. False Vaccum BH solution (BH.fv)
BH.fv solution corresponds to a constant FV discontinuity

(Eq.35) with dS metric inside (Eq.36), with a trapped surface
which matches the BH.SW event horizon. A constant density
(or negative pressure) corresponds to a centrifugal force, 2Φ =

−(𝑟/𝑟𝑆)2 that opposes Newtonian gravity, 2Φ = −𝑟𝑆/𝑟, i.e.
Eq.24. The equilibrium happens when both forces are equal,
which fixes 𝑟 = 𝑟𝑆 , and is the equivalent of the stable circular
Kepler orbits in Newtonian dynamics.

This solution is similar to the classical Bubble Universe so-
lution ([2, 57, 4, 56, 7]) including the gravastar ([10]) and other
extensions (e.g. [13, 16, 58, 14, 59]). But there are some impor-
tant differences. In §4 we show that there are no surface terms.
We find that a nullike hypersurface Σ , in Eq.C.5, provides a
continuous solution. The same solution is also found in the
asymptotic limit 𝑅 = 𝑟𝑆 for a timelike hypersurface Σ of Eq.51.

6.2. The BH universe (BH.u) and FLRW cloud
In Eq.38 we propose a FLRW cloud with a FLRW interior

as a solution to GR. When 𝑅 < 𝑟𝑆 this corresponds to a BH.u.
We can have other BHs, matter and radiation inside a BHU. The
inside needs to be expanding as in the FLRW metric of Eq.11,
with a trapped surface given by 𝜌Λ. This holds the expansion
and balance gravity at 𝑟𝑆 as in the BH.fv solution. The join
FLRW+SW solution (Eq.38) is also a solution to Einstein’s
field equations as the two metrics reduce to the same form on a
junction (see §4). The junction 𝑅(𝜏) asymptotically tends to 𝑟𝑆
as illustrated by Fig.6.

As with the SW metric, the exterior metric of the BHU could
also be FLRW (e.g. see [5] and Eq.21). So in the BHU we have
two nested FLRW metrics. This is illustrated in bottom right of
Fig.4. We can have smaller BHs inside larger BHs or smaller
FLRW metrics inside larger FLRW universes. Mathematically
this looks like a Matryoshka (or nesting) doll [19] or a fractal
structure [22]. But physically, each BH has a different mass and
therefore different physical properties and internal structure.

We have shown in §4.2 that an expanding BH.u interior gen-
erates a Λ term even when there is no Λ to start with. If the
BHU also contains a true Λ, FV or DE with constant 𝜌 = Δ, the
resulting 𝜌Λ and the SW radius 𝑟𝑆 are

8𝜋𝐺𝜌Λ = 3𝑟−2
𝑀 + Δ ; 𝑟𝑆 = 𝑟Λ =

𝑟𝑀𝑟Δ

(𝑟2
𝑀

+ 𝑟2
Δ
)1/2

(58)

where 𝑟𝑀 = 2𝐺𝑀 and 𝑟Δ =
√︁

3Δ/8𝜋𝐺. In the limit of Δ = 0
we have 𝑟𝑆 = 𝑟𝑀 . For Δ larger than the BH mass density we
have 𝑟𝑆 ≃ 𝑟Δ. This is similar BH.fv with some subdominant
matter and/or radiation inside. The most general BHU would
be a combination of both 𝑀 and Δ.

6.3. BH formation
Another issue, which we address partially in §5 and §Ap-

pendix D, is how such physical BHU solutions can be achieved
(e.g. astrophysical and primordial BH formation) and if they can
have a causal origin. We propose two possible BHU formation
scenarios: one that involves FV and can only happen during a

rapid expansion (or explosion) and a version that originates in
a stellar collapse. Both can be applied to a small object, like a
star, or a large object, like our Universe. We have focused in
the collapsing case which can result in a BHU without DE or
FV. The expanding scenario requires a FV and is presented in
§Appendix D. The collapsing scenario is illustrated in Fig.6.

6.4. Our universe as a BH

The BHU can be interpreted as a BH within our universe or
as an expanding universe inside a larger space-time. As pointed
out in the introduction, that the universe might be generated
from the inside of a BH has a long and interesting history. [12]
argued that 𝑝 and 𝜌 in the homogeneous FLRW solution are
only a function of time (in comoving coordinates) and can not
change at 𝑟 = 𝑟𝑆 to become zero in the exterior. A FLRW cloud
collapsing into a BHU allows for an inhomogeneous FLRW
solution inside 𝑟𝑆 .

Homogeneity is the illusion of the comoving observer inside
𝑟𝑆 . The FLRW metric is trapped inside 𝑟∗ (Eq.17), and is then
equivalent to a spherically symmetric metric of Eq.33. The
FLRW metric is only homogeneous in space which breaks the
relativity principle. The frame duality in Eq.31 is only valid for
physical coordinates that are centered at the BH location. But
in the transformed (comoving) frame any point inside the BHU
is subject to the same expansion law with equal 𝑎(𝜏). From
every point inside de BHU, observers will see an homogeneous
and isotropic space-time around them. Just like in the universe
around us.

Our observable Universe is consistent with resulting from a
collapse of a very large and low density cloud, which we model
as a FLRW cloud. As detailed in §5 and Fig.6, such cloud
collapsed into a BH. The resulting event horizon is the causal
boundary to our Universe and produces the cosmic acceleration
that we interpret as DE.

6.5. Is Cosmic Inflation needed?

Inflation ([60, 61, 62, 63]) is an important ingredient in the
standard cosmological model. For a review see [64, 65] and
also §Appendix D. It solves several problems, the most relevant
here are: 1) the horizon problem 2) the source of LSS 3) the
flatness problem. The horizon and LSS problems rise because
much of the LSS that we observed today, e.g. BAO in CMB
maps, was outside the Hubble horizon 𝑟𝐻 at the time of light
emission and therefore could not have had a causal origin. The
idea of inflation is that during the very first instances of the hot
Big Bang expansion the Universe became dominated by some
FV or DE which produced a dS expansion phase. Such expo-
nential expansion solves all the above problems. But you need
to fine tune some mechanisms and potential 𝑉 (𝜑) to generate
a period of slow rolling so that inflation lasted enough e-folds,
but stopped at the right time and reheats to allow for the stan-
dard expansion that we observed. Such inflation is not directly
observable because it occurred when the Universe was opaque.
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6.6. The Horizon and LSS problems
As detailed in §3.4 and Fig.5, a large fraction of the mass

𝑀 that collapsed into our BHU is outside 𝑟𝐻 , specially close
to the Big Bang phase, as 𝑅 = [𝑟2

𝐻
𝑟𝑆]1/3 (see Fig.6). This

clearly solves the horizon problem. The same mass outside
𝑟𝐻 can be the source of LSS perturbations, such as BAO in
Cosmic Maps, as it re-enters 𝑟𝐻 . Harrison [66] and Zel’dovich
[67] independently proposed in 1970, long before Inflation was
invented, that gravitational instability of regular matter alone
can generate a scale invariant spectrum of fluctuations, very
similar to that in Inflation models.

6.7. The flatness problem
Our results can be extended to models with 𝑘 ≠ 0. For

example, we reproduce Eq.51 if we define 𝑟−2
𝐻

to be:

𝑟−2
𝐻 ≡ 𝐻2 + 𝑘/𝑎2 =

8𝜋𝐺
3

𝜌 (59)

so this does not change our BHU model, interpretation or the
expansion/collapse rate. A time-like geodesic of constant co-
moving radius 𝜒∗ contains the same constant mass 𝑀 also for
𝑘 ≠ 0. The flatness problem solved by inflation, is only a prob-
lem if we allow for a non flat topology in the FLRW metric.
But why choose 𝑘 ≠ 0, a donut or a dodecahedron topology for
empty space? Given some mass or energy content EFE can not
be used to decide the topology of the metric. This is a global
property that is either assumed or directly measured. So any
choice other than 𝑘 = 0 would require some justification that is
outside GR. In our analysis we assumed a global flat topology
𝑘 = 0 because this is the natural choice for empty space.

6.8. Observational test of the BHU
The first evidence for the BHU, as a model for our Universe,

is the fact that the measured cosmic density and expansion rate
(e.g. 𝑟𝐻 ) follow Eq.1, which clearly indicates that we live in-
side a BH. The second evidence comes from measuring cosmic
acceleration, which is also an indication of being inside a BH
event horizon 𝑟𝑆 = 𝑟Λ. The horizon and LSS problems are also
solved in the BHU without need of DE or inflation. Moreover
the BHU provides a fundamental model for the meaning of Λ
and the hot Big Bang as shown in Fig.6.

The observable Universe today is larger than 𝑟∗ (the FLRW
event Horizon in Fig.2). This indicates that we can observe
what happened outside 𝜒∗ = 𝑟∗/𝑎. At the time of CMB last
scattering, 𝜒∗ corresponds to an angle 𝜃 = 𝜒∗/𝜒𝑜 ≲ 1 rad ≃ 60
deg. So we can actually observe scales larger than 𝜒∗. Scales
that are not causally connected! This could be related to the so-
called CMB anomalies (i.e, apparent deviations with respect to
simple predictions from ΛCDM, see [38, 46, 47] and references
therein), or the apparent tensions in measurements from vastly
different cosmic scales or times (e.g. [68, 69, 70, 71]).

A measurement of the DE equation of state 𝜔 ≡ 𝑝/𝜌 ≠ −1
could falsify the BHU. It would indicate that cosmic accelera-
tion is not caused by the causal event horizon 𝑟𝑆 produce by 𝑀 .
A possible way around this, is that 𝜔may vary when we include
the effect of matter or radiation that is outside the BHU event

horizon. If there are other island universes outside ours, Galax-
ies and QSO, as well as BHs, could have accreted from outside
𝑟𝑆 into our BHU. Possible relics around us have been erased dur-
ing radiation domination. But some relics could have entered
after matter domination, in our distant past. If we measured the
age of an object (e.g. star, QSO or galaxy) which is older than
the BB, this will be a very clear indication in favour of the BHU
model. If our universe merged with another BHU which was
few % smaller, we might be able to see such % glitches in 𝐻 (𝑧)
with current or future data.

There is good observational evidence for homogeneity and
lack of correlations in the CMB at 𝑟 > 𝑟Λ (see [48] and
references therein). This suggests that the underlying physi-
cal mechanism sourcing the observed anisotropy encompasses
scales beyond our causal universe. This agrees with the varia-
tions found in cosmological parameters over large CMB regions
([46]), which is the largest reported evidence for a violation
of the Cosmological principle. Such observations indicate a
breakdown of the standard BB picture, but could be understood
within the BHU. Fig.31 in [46] shows that the size of these
causal regions follow the BHU relation between 𝜒§ and 𝜌Λ.

The BHU model allows for a Perfect Cosmologocal Principle,
the one advocated by Einstein (when he introduced Λ) and the
Steady State Cosmology ([72, 73, 74]). But there is no need for
ad hoc matter creation to explain the observed cosmic expansion.
The frame duality in Eq.33 explains how we can have at the
same time an expanding universe in comoving coordinates (as
observed by the Hubble-Lemaitre law) and a static BHU in the
outside SW frame.
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Appendix A. Geometrical representations

To visualize the BHU metric in a 2D plot we consider the
most general shape for a spherically symmetric metric in 2D
space (𝑥, 𝑦) embedded in 3D flat space (𝑥, 𝑦, 𝑧) (see also §7.1.3
in [31]). In polar coordinates (𝑟, 𝜃) with 𝑟2 = 𝑥2 + 𝑦2 and
tan 𝜃 = 𝑥/𝑦 we have:

𝑑𝑠2 =
𝑑𝑟2

1 + 2Φ
+ 𝑟2𝑑𝜃2 (A.1)

In 3D space we just have one additional angle, 𝛿, in Eq.19, but
the radial part is the same. The case Φ = 0 corresponds to flat
space: 𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2. The simplest case with curvature can
be represented by a 2D sphere (S2) embedded in 3D flat space
using an extra dimension 𝑧:

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 ; 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2
∗ (A.2)
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This metric is flat in 3D coordinates, but constraint to 𝑟∗, which
is the radius of the sphere and the curvature within the 2D
surface of S2. We can replace 𝑧 by 𝑟 using: 𝑧2 = 𝑟2

∗ − 𝑟2 to find:

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
𝑑𝑟2

1 − 𝑟2/𝑟2
∗
+ 𝑟2𝑑𝜃2 (A.3)

so that 2Φ = −𝑟2/𝑟2
∗ just like in the dS metric of Eq.27 for

𝑟∗ = 𝑟Λ. It tell us that dS space corresponds to being in the flat
surface of a sphere (like us in Earth). This is illustrated in the
bottom left of Fig.4. Note how (𝑟, 𝜃) are coordinates in the (𝑥, 𝑦)
plane. The S2 space is trapped or bounded by 𝑟 < 𝑟∗ (yellow
region). The metric changes signature (becomes imaginary)
for 𝑟 > 𝑟∗: this region can’t be reached (white region). The
case 𝑟 = 𝑟∗ (red circles) corresponds to the Event Horizon at
2Φ = −1.

The Newtonian interpretation of 2Φ = −𝑟2/𝑟2
∗ is that this is

caused by a centrifugal force, like that in the orbit of a satellite.
Even when there is no matter, the curvature (or boundary) is
interpret as a repulsive gravitational force that causes accelera-
tion.

The FLRW metric (or dSE metric in Eq.33) correspond to a
smaller sphere S2 (inside dS sphere) with an expanding radius
𝑟𝐻 (𝜏) that tends asymptotically to 𝑟Λ = 1/𝐻Λ (see Eq.33):

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 ; 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2
𝐻 (𝜏) (A.4)

So it has the same topology and Event Horizon or trapped surface
(red circle) as dS metric. It is represented in Fig.4 by a blue
sphere inside dS sphere in the bottom left corner. This illustrates
how it is possible that each observer inside sees an homogeneous
space even when the sphere is centered around a given position.

The next simplest case can be represent by a static radius that
increases with 𝑟 , i.e. : 𝑥2 + 𝑦2 + 𝑧2 = 𝑟3/𝑟∗. We can replace 𝑧
by 𝑟 using: 𝑧2 = 𝑟3/𝑟∗ − 𝑟2 to find:

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
𝑑𝑟2

1 − 𝑟∗/𝑟
+ 𝑟2𝑑𝜃2 (A.5)

so that 2Φ = −𝑟∗/𝑟 just like in the SW metric of Eq.26 for
𝑟∗ = 2𝐺𝑀 . This is illustrated in the top left of Fig.4. The
case 𝑟 = 𝑟∗ (red circle) corresponds to the Event Horizon at
2Φ = −1. The Newtonian interpretation for 2Φ = −𝑟∗/𝑟 is the
inverse square law for a point mass 𝑀: 𝑟∗ = 2𝐺𝑀 .

The SW space is bounded by 𝑟 > 𝑟∗ (yellow region). The
metric changes signature (becomes imaginary) for 𝑟 < 𝑟∗ and
this region can not be reached. This coverage is complementary
to dS or FLRW metric which only cover the inner region. We
can match the dS and SW metrics at 𝑟 = 𝑟∗ to cover the full
(𝑥, 𝑦) plane as in the BHU metric. Physically this corresponds
to a balance between the centrifugal force, represented by dS
potential 2Φ = −𝑟2/𝑟∗, and the SW inverse square law, 2Φ =

−𝑟∗/𝑟, like what happens in the circular Keplerian orbits. This
matching is the junction in Eq.51 which corresponds to a causal
boundary. This can also be seem as a Lorentz contraction
𝛾 = 1/

√
1 − 𝑢2 where the velocity 𝑢 is given by the Hubble-

Lemaitre law: 𝑢 = 𝐻𝑟. The time duality between the FLRW
and SW frame can also be interpreted as a time dilation, see
Eq.33.

This BHU metric is shown in the top right of Fig.4, which is
asymptotically Minkowski. The dS metric is the limiting case
of FLRW metric and SW metric is a perturbation over FLRW
metric. So more generally, the BHU is a combination of 2
FLRW metrics join by a SW metric. The junction happens at
the effective value of 𝑟∗ = 𝑟Λ = 2𝐺𝑀 corresponding to the inner
FLRW 𝜌Λ (which we denote as 𝜌Λ− ). If the outer FLRW has
𝜌Λ+ ≠ 0, then the SW hyperbolic surface will close as another
S2 sphere (bottom right).

Appendix B. Non empty solution

Eq.35 for 𝑉0 ≠ 0 and Λ ≠ 0:

𝜌(𝑟) =
{
𝑉0 for 𝑟 > 𝑟𝑆
𝑉0 + Δ for 𝑟 < 𝑟𝑆

(B.1)

can be solved as Φ = Ψ with

2Φ =

{ −𝑟𝑆/𝑟 − 𝑟2𝐻2
Λ+

for 𝑟 > 𝑟𝑆 ≡ 2𝐺𝑀 (1 + 𝜖)
−𝑟2𝐻2

Λ−
for 𝑟 < 𝑟𝑆 = 𝑟Λ− ≡ 1/𝐻Λ−

(B.2)

where 𝜖 ≡ 𝜌Λ+/Δ and

3𝐻2
Λ+

≡ 8𝜋𝐺𝜌Λ+ ; 𝜌Λ+ = Λ/8𝜋𝐺 +𝑉0 (B.3)

3𝐻2
Λ−

≡ 8𝜋𝐺𝜌Λ− ; 𝜌Λ− = 𝜌Λ+ + Δ (B.4)

So there are different effective 𝜌Λ outside (𝜌Λ+ ) and inside (𝜌Λ− ),
but only one Λ. The exterior of the BH has the dSW metric but
more generally it is a perturbation of the FLRW metric.

Appendix C. Null Junction

A null junction has degeneracies which requires more elab-
orate consideration. This level of detail is beyond the scope of
this paper, so we only give a brief account of such calculation.
For a more careful analysis see [53]. We choose Σ to be a
radial null surface in the FLRW metric, i.e.: 𝑑𝜏 = 𝑎𝑑𝜒. This
results in a radial coordinate 𝜒∗ (𝜏) which is no longer constant
and that we want to identify with the FLRW event horizon of
Eq.17. At any given time the corresponding physical distance
is 𝑟∗ (𝜏) = 𝑎(𝜏)𝜒∗ (𝜏) with ¤𝜒∗ = 1/𝑎. For the outside SW coor-
dinate system, Σ+ is described as before by Eq.43. The induced
inside metric ℎ− with 𝑦𝛼 = (𝜏, 𝜃, 𝛿) and 𝑑𝜏 = 𝑎𝑑𝜒 is now:

ℎ−𝛼𝛽𝑑𝑦
𝛼𝑑𝑦𝛽 = 𝑎2𝜒2

∗𝑑Ω
2 = 𝑟2

∗ (𝜏)
[
𝑑𝜃2 + sin2 (𝜃)𝑑𝛿2] (C.1)

This has to agree with ℎ+ in Eq.44. The first matching conditions
ℎ− = ℎ+ are in this case:

𝑅 = 𝑟∗ (𝜏) = 𝑎𝜒∗ ⇒ ¤𝑅 = 1 + 𝐻𝑅 (C.2)

𝐹2 ¤𝑇2 = ¤𝑅2 ⇒ ¤𝑇 =
¤𝑅

1 − 𝑟𝑆/𝑅
(C.3)

The outward 4D velocity is 𝑢𝑎 = 𝑒𝑎𝑡 = (1, 1/𝑎, 0, 0), so it has
a radial component in the comoving frame. For a null surface
we define a transverse extrinsic curvature [53]. We use the
same notation as in Eq.46 with the difference that 𝑛 is now a
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transverse null vector: 𝑛𝑎𝑢𝑎 = 0 and 𝑛𝑎𝑛𝑎 = 0. We then have:
𝑛− = 𝐴(1,−𝑎, 0, 0) where 𝐴 = 𝐴(𝜏) is an arbitrary function of
𝜏. On the outside 𝑢𝑎 = ( ¤𝑇, ¤𝑅, 0, 0) and 𝑛+ = (− ¤𝑅, ¤𝑇, 0, 0) as
before, but where we have now used the new matching condition
above ¤𝑅 = 𝐹 ¤𝑇 in Eq.C.3. Using the Christoffel symbols in Eq.48
and Eq.49, we find:

𝐾−
𝜏𝜏 = −𝜕𝜏𝑛−𝜏 − 2𝐴Γ𝜒𝜏𝜒 −

1
𝑎
𝜕𝜏𝑛

−
𝜒 −

𝐴

𝑎2 Γ
𝜏
𝜒𝜒 = 0

𝐾+
𝜏𝜏 = ¥𝑅 ¤𝑇 − ¤𝑅 ¥𝑇 +

¤𝑇𝑟𝑆
2𝑅2𝐹

( ¤𝑇2𝐹2 − 3 ¤𝑅2) = 0

𝐾−
𝜃 𝜃 = 𝐴Γ𝜏𝜃 𝜃 − 𝑎𝐴Γ

𝜒

𝜃 𝜃
= 𝐴𝑅(𝐻𝑅 − 1)

𝐾+
𝜃 𝜃 = ¤𝑇Γ𝑟𝜃 𝜃 = − ¤𝑇𝐹𝑅 = − ¤𝑅𝑅 (C.4)

𝐾±
𝛿 𝛿 = sin2 𝜃 𝐾±

𝜃 𝜃

Thus, the second matching conditions 𝐾−
𝛼𝛽

= 𝐾+
𝛼𝛽

together with
Eq.C.2 results in:

¤𝑅 = 1 + 𝐻𝑅 ; 𝐴 =
1 + 𝐻𝑅
1 − 𝐻𝑅 (C.5)

The left hand side is fulfil for any 𝐻 (𝜏) as long as 𝑅 = 𝑎𝜒∗
is a null geodesic (i.e ¤𝜒∗ = 1/𝑎), which is our staring point in
Eq.C.2 and agrees with Eq.41 for 𝑉0 = 1. The right hand side
fixes the normalization 𝐴 = 𝐴(𝜏) of 𝑛− in Σ−.

When 𝑎 is small the null geodesics 𝑅 = 𝑟∗ in the integral
of Eq.17 is dominated by the late time value of 𝐻Λ and this
means that the FLRW event horizon 𝜒∗ is fixed in comoving
coordinates. This reproduces the junction in Eq.51. On the
opposite limit, when 𝐻 is constant: 𝐻 = 𝐻Λ = 𝑟−1

Λ
we have

¤𝑅 = 0 and 𝑅 = 𝑟Λ = 𝑟𝐻 = 𝑟𝑆 . This results in 2Ψ = 2Φ =

−𝐻2𝑅2 = −𝑟𝑆/𝑅 = −1 in the junction Σ, as in the BH.fv
solution of Eq.36. This makes sense because for a dS expansion
null events are fixed in physical coordinates.

Appendix C.1. The GHY boundary term
We estimate the GHY boundary term to the action 𝑆𝐺𝐻𝑌

following the steps in §4.2. We use the formalism in [75] for
boundaries of null surfaces. This is similar to what we did
before with the main difference that the induced metric is now
2D instead of 3D:

𝑑𝑠2 = 𝑞𝐴𝐵𝑑𝑧
𝐴𝑑𝑧𝐵 = 𝑅2 (𝑑2𝜃 + sin2 𝜃𝑑𝛿2). (C.6)

and
𝑆𝐺𝐻𝑌 =

1
8𝜋𝐺

∮
𝜕𝑉4

𝑑𝜆𝑑2𝑧⊥
√
𝑞 (Θ + 𝜅) (C.7)

where 𝜅 is the non-affinity coefficient: 𝑙𝑎∇𝑎𝑙𝑏 = 𝜅𝑙𝑏 and

Θ ≡ 𝑞𝐴𝐵Θ𝐴𝐵 =
𝐾𝜃 𝜃

𝑅2 + 𝐾𝛿𝛿

𝑅2 sin2 𝜃
(C.8)

We can use Eq.C.4 to find Θ = −2 ¤𝑅/𝑅 = −2𝜅. So the corre-
sponding trace of the extrinsic curvature is:

Θ + 𝜅 = −
¤𝑅
𝑅

(C.9)

For 𝜕𝑉4 we have 𝑅 = 𝑟𝑆 and ¤𝑅 = 2. Thus, we recover the same
result as Eq.55. From this we can arrive to the same conclusion
that the boundary GHY term fixes 𝑟Λ = 𝑟𝑆 .

Figure D.7: Extension of Fig.2 to the period of inflation. The FLRW Event
Horizon 𝑟∗ = 𝑎𝜒∗ in Eq.17 (red dashed line) here is also the BHU junction and
matches the primordial causal boundary for inflation 𝜒∗ = 𝜒§. Scales larger
than 𝑟∗ are causally disconnected (green shading). Our event horizon today
𝑎𝜒∗ ≃ 𝑐/𝐻Λ becomes the BH event horizon (dot-dashed line) in the SW frame.

Appendix D. Forming a BHU in an expanding background

To form a BHU during an explosion or rapid expansion we
need a FV, 𝜌Λ, term as explained in §2.1. This will play the
role of Dark Energy (DE). Consider a localized field with some
fixed total energy 𝜌 = 𝐾 + 𝑉 (black dot labeled 𝜌5 in Fig.1).
In an expanding background (such a supernovae explosion or
Inflation) the field can rapidly lose its kinetic energy (𝐾5), due
to Hubble damping, and end up trapped inside some FV (𝑉5).
If the outside background is at a lower FV, this will generate an
expanding BH of type BH.fv, as discussed in §3.2. This could
be the start of some inflation. Because additional FV structure
can exist within a given FV, the same Hubble damping can form
a BH.fv inside a larger BH.fv. When 𝐾 is not fully damped,
the classical reheating mechanism around a FV could also be a
source of matter/radiation. This could turn a BH.fv into BH.u
(see §3.3). There is some literature on Bubble Universe forma-
tion (e.g. see [56, 14] and references therein) but they typically
involve quantum gravity ideas or GR extensions. As illustrated
in Fig.1 there could be a landscape of nested BHU of different
masses and sizes. The masses and sizes of such BH.fv bares
no relation with the energy of the expansion (e.g. supernova
explosion or inflation) or the host object which originated the
expansion. Such BHUs are similar to primordial BHs [7].

A possible evolution of our universe is shown in Fig.D.7. The
Hubble Horizon 𝑟𝐻 is defined as 𝑟𝐻 = 𝑐/𝐻. Scales larger than
𝑟𝐻 cannot evolve because the time a perturbation takes to travel
that distance is larger than the expansion time. This means that
𝑟 > 𝑟𝐻 scales are "frozen out" (structure can not evolve) and are
causally disconnected from the rest (e.g. see [65]). Thus, 𝑐/𝐻
represents a dynamical causal horizon that is evolving. This
was illustrated in Fig.2 and Fig.5.

A primordial field 𝜑 settles or fluctuates into a false (or slow
rolling) vacuum which will create a BH.fv with null junction Σ

in Eq.C.2. Such causal boundary to the particle horizon during
inflation 𝜒§ = 𝑐/(𝑎𝑖𝐻𝑖) or the Hubble horizon when inflation
begins. The size 𝑅 = 𝑎(𝜏)𝜒§ of this vacuum grows and asymp-
totically tends to 𝑟𝐻 = 𝑐/𝐻 with 𝐻 = 𝐻𝑖 . The inside of this
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BH will be expanding exponentially 𝑎 = 𝑒𝜏𝐻𝑖 while the Hub-
ble horizon is fixed 1/𝐻𝑖 . Accoording to standard models of
primordial inflation ([60, 61, 62, 63]), this inflation ends (at
some 𝑎𝑒) and vacuum energy excess converts into matter and
radiation (reheating). This results in BH.u, where the infinites-
imal Hubble horizon starts to grow following the standard BB
evolution. Note that the inflation in the BH.fv solution stops
naturally at cosmic time 𝜏𝑖 = −𝐻−1

𝑖
ln 𝜒§𝐻𝑖 (see Fig.3) when

physical SW distance is 𝑟 = 𝑎(𝜏)𝜒§ = 1/𝐻𝑖 . In standard mod-
els of primordial inflation, 𝐻𝑖 is much larger that 𝐻Λ so that
1/𝐻𝑖 is much smaller than 1/𝐻Λ. So a FV Δ only grows to a
maximum size 𝑅 = 𝑟𝑆 = (8𝜋𝐺Δ/2)−1/2 = 1/𝐻𝑖 . Something
else has to happen if we want the size to become cosmological.
In inflation this is provided by slow rolling. Regardless of these
formation details, 𝜒§ remains the causal scale for the original
BH.fv inflation, unless slow rolling ends before. So we propose
to identify 𝜒∗ in Eq.C.2 with 𝜒§ from inflation (see also Fig.2)
which is equivalent to say that DE is just inflation.

Smaller primordial BH could be created following similar
scenarios within the expansion caused by Cosmic Inflation or
during a SN explosion. The size of the BHU will depend on the
combination of 𝜌Λ and the slow rolling mechanism. For such
BH.fv it seems that any matter falling inside will be diluted away
by the rapid internal expansion and will not affect its size.
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