

GEORGE HOME
AUTOMATION

Developer Guide V1.2

1

Table of Contents
Introduction .. 2

Intended Audience .. 2

Key Concepts ... 2

GHA Hierarchy ... 2

GHA Objects .. 3

The Home node ... 3

The Devices Node ... 4

The Binding ... 4

Scenes ... 5

Schedules .. 5

Customizations .. 5

The IGHAObject (a deeper dive) ... 8

GHA Modules .. 12

GHA Modules – A deeper dive .. 14

Adding Capabilities ... 17

Inheriting from other objects.. 18

Device Drivers ... 18

2

Introduction

George Home Automation (or GHA) is an application platform designed to support complex home
automation scenarios. Its object-oriented design gives end-users the flexibility to create objects that
model the everyday items we see in our homes and map those items to underlying devices to control
our home environment.

One of the key features of GHA is extensibility. New functionality can be created for GHA using a variety
of methods including: Modules, Device drivers, and in-application scripting. In this document, we will
discuss each of these capabilities and how end-users can use programming skills to create new
functionality for GHA.

GHA is written in C# and leverages Microsoft’s .NET development environment.

Intended Audience

The reader is expected to understand C# and Microsoft .Net development. Depending on the type of
extensibility or customization the reader is attempting, knowledge of networking and other integration
techniques may be required. A working knowledge of object-oriented programming is also required.

Key Concepts
Many of the topics in this section can also be found in the GHA Users Guide. Knowledge of the concepts
here are required to develop new functionality for GHA.

There are several concepts that are necessary to understand when starting out with GHA. These are
generally described in this section.

GHA Hierarchy
The entire GHA system lives in a hierarchy that contains instances (called GHA Objects) of predefined or
custom developed classes used to implement various automation scenarios. The out-of-the-box
hierarchy contains the following root nodes:

• Home – Contains models for locations and devices that are part of the automation environment
• Devices – Drivers that implement standard Capabilities and control physical devices live here
• Media – Catalog of media managed by GHA
• Scenes – Predetermined collections of device states that can be activated and deactivated

manually or through automation
• Modules – Provides for the creation of custom classes to implement new GHA capabilities
• Information Sources – Contains services that provide data from external sources (e.g. Weather)
• Monitors – Provides various monitors for GHA subsystems (i.e. Alerts, Task Scheduler)
• Server – Contains configuration nodes for various server functions

3

GHA Objects
GHA Objects in the hierarchy are instances of classes that
implement various functions. Each GHA Object has a unique
Object ID that is represented as a Globally Unique Identifier
(GUID). Each object can be references by its GUID or a Path. The
Path is also unique and represents the object’s location in the
hierarchy. The path is a universal resource identifier (URI)
starting with the prefix “gha://”. Succeeding parts of the path
describe the lineage of the object. For example, an object with
the path: gha://gharoot/Home/House/MainFloor/Foyer/Chandelier
shows where in the hierarchy the Chandelier object resides. The
Chandelier’s parent is an object called “Foyer”. The Foyer’s
parent is an object called “MainFloor”, and so-on. A GHA Object
may have at most one parent and have many children.

GHA Objects contain various properties that describe the object
itself and its current state. All GHA Objects contain the default

properties Class, Description, DisplayName, Icon, Name, ObjectID, Parent, and Path. Object-specific
properties are also defined for objects to describe its state. For example, the object shown in Figure (1)
represents a Table Lamp which is an instance of the Light class.

In addition to the standard properties associated with every GHA object, the Light class shown here has
properties unique to it: Brightness, PresetDimLevel, RampRate, and PowerState. It is also worth noting
that this object is a good example of inheritance. As an object-oriented platform GHA makes heavy use
of inheritance to simplify the creation of new capabilities. We will talk more about inheritance when we
discuss custom modules.

The Home node
The Home node in GHA is used to model the space to be automated. Locations may be specified under
the Home node. For example, a House object is normally the first object placed under the Home node.

While not strictly a requirement, it is a best-practice. The House object
can then contain various objects used to provide logical separation (i.e.
floors, garage, basement, etc.). These objects can contain children to
further subdivide the space (i.e. bedrooms, offices, etc.). Finally,
device objects used to represent physical devices can be placed
anywhere under the Home node hierarchy. For example, a Family
Room object can contain devices model objects that represent lights,
motion detectors, presence detectors, thermostats, etc. Figure (2)
shows an example of a Home node and its hierarchy containing a
typical three-floor home.

The Home node hierarchy in GHA is special in that it separates the
physical device controllers (i.e. Insteon, SmartThings, etc.) from logical
representations of devices. Logical representations “live” under the
Home node in the GHA hierarchy. These logical representations are
objects that contain certain Capabilities. When used in a Home level

Figure 1 GHA Object with Properties

Figure 2 Typical three-floor Home
hierarchy

4

object, Capabilities define the user-level specification of a device. For example, a Light contains the
Capabilities PowerState and Dimmable. Those Capabilities manifest themselves as properties in the
Home level object. In Figure (1), the PowerState property represents the PowerState capability as do
the Brightness, PresetDimLevel, and RampRate properties represent the Dimmable capability. The
physical device controllers themselves are represented under the Devices node.

The Devices Node
GHA has a standard Application Programming Interface (API) which is used implement device drivers.
The drivers delivered with GHA or those developed by third parties, leverage this API and Capabilities to

implement a consistent control mechanism between Home level devices
and physical devices. The Devices node contains the drivers configured
for a GHA system. The drivers themselves are represented as GHA
Objects under the Devices node. And, like all GHA Object, device driver
nodes can also contain children. Figure (3) shows object hierarchy
associated with the Universal Devices ISY driver including Its child
nodes. Figure (4) shows the properties associated with

one of the children of the ISY device.
Consistent with its name, this object
implements control over a dimmer.
You can see in the property list, the
standard GHA Object properties as
well as properties the implement the
PowerState and Dimmable

Capabilities. These are the same Capabilities that were used to define
the properties for the Home level device. In this case, however, the
properties that implement the desired Capabilities have code
associated with them to command the ISY to set the state of the
physical dimmer.

The Binding
A key concept to understand in GHA is that logical devices in the Home hierarchy are connected to
device objects under the Devices hierarchy. We have this level of abstraction so that multiple physical
device technologies can be consistently mapped to Home hierarchy objects without the user worrying
about the differences between say Insteon and SmartThings. Another benefit of this approach is to
allow for the replacing of underlying device technologies without impacting any of the objects under the
Home hierarchy and associated automations. The connection between the logical representation of
devices under the Home hierarchy and the device driver representation under the Devices node is called
a Binding. During a Binding operation, logical devices search for physical device controllers with
matching Capabilities. The user selects the appropriate device, and the two objects are bound together.
A property changed in one, will be reflected in the other.

Figure 3 ISY Object properties

5

Scenes
A Scene in GHA is a mechanism where multiple objects can be controlled collectively. Let’s say you want
to define a Scene called “ChristmasDecorations” where you want to control yard lights connected to
your Landscape lighting and your Christmas tree together. In GHA, this is simply done by creating a
Scene object under the Scenes node, adding the objects to control, setting the desired property values
for those objects and deciding on how you want the scene to behave. The key concept to understand
about Scenes is the Scene behavior. In GHA, scenes can be configured to set the desired object
properties when activated and leave them that way even when the scene is deactivated. This is called
Set behavior. Alternatively, the scene can be configured to set the desired properties when the scene is
activated and restore them to their previous state when deactivated. This is called Set-Restore
behavior.

Schedules
Schedules in GHA can be used to activate a Scene or execute a script at a given date and time. The
actions can be taken just once or repeated. In addition to simple date/time triggers, GHA can schedule
actions for local sunrise and/or sunset.

Customizations
GHA can be customized in several ways. First, all objects in the Home part of the hierarchy can have a
custom script attached to a change of any of its property values. For example, all locations implement
the Occupancy Capability which includes a property called Occupied. When Occupied is true, the
location is considered occupied. When false, the location is considered empty. A property change script
can be associated with the Occupied property and it will be invoked when the Occupied property
changes. The script can then perform custom actions based on the occupancy of the location.

The second method for customization is the Module. There is a Modules node in the hierarchy which
contains user-developed modules that can be used to implement highly sophisticated customizations.
The modules themselves contain custom classes which follow the same object-oriented methodology
that built-in classes follow. As such, they can contain properties and methods as well as support
inheritance. Once a module has been created, it is compiled and made available to the rest of GHA.
Classes within modules implicitly conform to the GHA Object specification and can be used anywhere a
built-in GHA Object can be used.

The final way to do customizations is through building custom device drivers. GHA exposes an open API
that can be leveraged by developers to implement their own device drivers.

Decorations

GHA uses .NET Decorations to control the handling of various properties and classes. These are
described here.

6

GHAProperty

 Name Description

 GHAPropertyAttribute Adds specific attributes to GHA Properties for handling by consuming
objects

Properties
 Name Description

 Aggregation Defines the method used by parent objects to aggregate the property from
children

 Description Text stating the purpose of the property

 IsBindable Property may be used as a binding point

 IsEnumeration Tells GHA that this property is an enumeration

 IsMomentary Applies to boolean values. Property resets to false automatically.

 IsReadonly Property should not be changed by GUI's

 IsVisible Determines if the property is visible to UI's

 SpecialHandling An application-specific field that can be used tag the property for special handling
(i.e. GUI rendering a specific control to display the property)

GHA Executive Services available to developers

GHA uses a component called the Executive to coordinate and manage the activities of the entire
system. The Executive offers several services that make it easier for developers to perform routine,
repeatable tasks. They are exposed to developers as static methods in the GHASys class. They are
summarized below.

 Name Description

AddTimer Creates a simple timer object under Modules/GHATimers

node in the hierarchy. Timer is NOT started after creation.
Set the Enabled property to true to activate the timer

CreateAlert(DateTime, String, String,
String, String)

Creates and publishes an alert

FireDebugCallbacks(String, String,
String, String, Int32, String)

Initiates Debug event callbacks

7

FireMessageCallback(String, String) Initiates a message callback. Receiving end should pop a

message box or take some sort of action to let the user
know this event has happened

GetDevices Returns the Devices root object in the GHA hierarchy

GetHome Returns the Home object in the GHA hierarchy

GetMedia Returns the Media root object in the GHA hierarchy

GetModules Returns the Module root object in the GHA hierarchy

GetMonitoring Returns the Monitor root object in the GHA hierarchy

GetScenes Returns the Scenes root object in the GHA hierarchy

GetSchedules Returns the Schedule root object in the GHA hierarchy

IsDark Helper method to access Nighttime status

IsLight Helper method to access Daylight status

RemoveTimer Removes the timer with the specified name

SendCommand(IGHAObject, string) Sends the provided string using the command device. The

command device is assumed to implement either the
IInfraredOutput or ISerialPort capabilities

SendSMTPMessage(String, String,
String, String, String)

Queues an SMTP message

SendSMTPMessage(String, String,
String, String, String, String, String)

Queues an SMTP message

Speak(String) Initiate text to speech operation that will render on the

default audio device of the GHA server

Speak(String, ITTSStream) Initiates text to speech operation that will render on the

specified device

Speak(String, ITTSText) Initiates text to speech operation that will render on the

specified device

8

The IGHAObject (a deeper dive)

In this section we will learn a little more about the IGHAObject. We will build a couple of simple scripts
exercising some of the methods found in the IGHAObject. Finally, we will talk a little about GHAHelper
functions.

 In addition to the properties described earlier, the IGHAObject contains several methods which are
used to manage itself and the hierarchy. A complete definition of the IGHAObject can be found in
appendix I. However, there are a few methods which are the most used. These are shown in Table I.

Table 1Most used IGHAObject methds

 Name Description

 CreateObject Creates an object of the specified class name as a child of the calling object

 DeleteObject Deletes a child object of the calling object matching the specified name

 GetObject(Guid) Returns the object with the requested Object ID

 GetObject(String) Returns the object at the specified relative path

 GetObject(Uri) Returns an object at the specified absolute Uri

 GetValue Returns the value of the specified property

 Move Moves the current object and its children to a new parent object

 Rename Renames the calling object to the specified new name

 SetValue(String,
Object)

Sets the specified property to the specified value

 SubscribeToCreate Subscribes to the Create object event for the object. Invokes event handler
if a new object is created under the owning object.

 SubscribeToDelete Subscribes to the Delete object event for the object. Invokes event handler
if a child object is deleted under the owning object.

 SubscribeToProperty Subscribes to any changes to the specified property

 Unsubscribe Unsubscribes from the specified subscription (property change, create, or
delete)

Whether called from a script, Module, or device driver; these methods allow for the creation,
manipulation, and deletion of objects within the GHA hierarchy. Let us start with a couple of simple
examples of how these methods are used in a script.

9

Our first example will be a
script that is invoked when
the Occupied property
changes for a location object
called Garage. You start by
right clicking the Garage
object and navigating to the
GHAPropertyChangedScript
menu item as shown here.
The list of properties
associated with the Garage
object is shown. Select the
Occupied property and click
Ok. A new node under the
Garage object will be created
that contains the beginnings of a script. Highlight the OnChangeOccupied script node under Garage and
a code editor will appear. In our example, the Garage contains an overhead light called OverheadLight.
We want our script to turn OverheadLight to “on” when the Garage is occupied, and “off” when it is not.

When we created the script, GHA setup a property subscription to the Garage Occupied property using
the SubscribeToProperty method. It did all this behind the scenes so the user would just need to focus
on the logic used to implement our desired functionality. A simple script implementing that
functionality is shown here:

1. using GHASchema;
2. using GHASchema.GHASystem;
3. using GHASchema.Helpers;
4. void OnPropertyChanged(IGHAObject ghaObj,string PropertyName, object NewValue, Guid sub

ID)
5. {
6. IGHAObject overheadLight = ghaObj.GetObject("gha://gharoot/Home/House/Garage/Overhe

adLight");
7.
8. bool occupancyState = (bool)NewValue;
9.
10. overheadLight.SetValue("PowerState", occupancyState);
11.
12. }

Note the name of the method “OnPropertyChanged”. Any subscription to a property would need to
point to a method that implements this signature. The first parameter is the IGHAObject containing the
property that has changed. In this case, it is the Garage object. The second contains the name of the
property – the Occupied property of the Garage object. The third contains the new value of the
property – the Occupied property is a Boolean value, but the method signature declares it as a .Net
Object type. We will need to cast that to a bool when we want to use it later in the script. The fourth
is the internal subscription identifier used for this subscription (it is returned by the SubscribeToProperty
method, but that is not important for this discussion).

10

The next line of code uses the GetObject method to get a handle on the OverheadLight object we wish
to control. This form of the GetObject method takes the full path to the object. Note that GetObject can
return a child of the current object using a relative path (e.g. just the name), or any object in the entire
hierarchy using the full path as shown in the example. Once this line of code executes, the variable
overheadLight (declared as an IGHAObject) has a reference to the OverheadLight object. That reference
has full access to all properties and methods exposed by the OverheadLight object.

Line eight, casts the value of the Occupied property as passed to the OnPropertyChanged method into
its native Boolean representation. The last line uses the SetValue method on the OverheadLight object
to set the PowerState property to the same value as the Occupied property of the Garage object.

We are not done quite yet. Note the second
button in the code editor window. It is the
“Commit to Server” button. You must click
on that to save your work. Now hover over
the third button. That is the “Build” button.
While it is not necessary to “Build” your
scripts, it is a good idea. If you have a
syntax error, the editor will show you after
you click on the “Build” button.

That is it, you built your first script! You also
learned how to use a few of the key
methods and concepts of the IGHAObject.

Now let us move on to a slightly more
complicated scenario. In this scenario we want a water sensor object to notify us if it detects water via
the GHA Text to Speech function on the default audio device for the GHA Server, and on Amazon echo
devices (I bet you didn’t know you could do this, well, GHA can!). We want GHA to remind us every five
minutes via text to speech until it has detected that the water is no longer detected.

We have created a water sensor under the Home hierarchy called SumpPumpSensor. The
SumpPumpSensor object has a property called WaterDetected. As in the previous example, we will
create a GHAPropertyChangedScript by right clicking on SumpPumpSensor and selecting the appropriate
item under “New”. In this case, the script is called OnChangeWaterDetected. The script implementing
the desired functionality is shown here:

1. using GHASchema;
2. using GHASchema.GHASystem;
3. using GHASchema.Helpers;
4. using GHASchema.Classes.Capabilities.Speech;
5. void OnPropertyChanged(IGHAObject ghaObj,string PropertyName, object NewValue, Guid sub

ID)
6. {
7. bool waterDetected = (bool)NewValue;
8.
9. // Get a handle on a speech device
10.
11.

11

12. ITTSText alexaRoot= ghaObj.GetObject("gha://gharoot/Devices/GHAAlexaRoot") as ITTS
Text;

13.
14.
15. if(waterDetected)
16. {
17. // Water is detected
18.
19.
20.
21. GHASys.Speak("Attention! Water is detected by the sump pump" , alexaRoot);
22. GHASys.Speak("Attention! Water is detected by the sump pump");
23.
24. // Initiate nag
25.
26. Action nag1 = new Action(() =>
27. {
28.
29. GHASys.Speak("Attention! Water is detected by the sump pump");

30. GHASys.Speak("Attention! Water is detected by the sump pump" ,

 alexaRoot);
31. });
32.
33. var timer = GHASys.AddTimer("Timer_" + ghaObj.ObjectID.ToString(), 5.0

*60.0*1000.0, nag1, true);
34. timer.Enabled = true;
35. }
36. else
37. {
38. // Water is no longer detected
39.
40. GHASys.RemoveTimer("Timer_" + ghaObj.ObjectID.ToString());
41.
42.
43. GHASys.Speak("Attention! Water is no longer detected by the sump pump");
44.
45.
46.
47.
48.
49. }
50. }

As in the previous example, the OnPropertyChanged method defines the entry point for the script. GHA
will call it when the WaterDetected property is changed. Line 7 casts the NewValue parameter as a
Boolean variable called waterDetected. Line 12 uses the GetObject method to get a reference to a
device called GHAAlexaRoot. In this example, however, it converts that object to a variable defined as a
GHA Capability called ITTSText. We will talk about why we do this in a moment.

Line 15 sets up a conditional section of code where we process both the “true” and “false” states of
waterDetected (the variable that is currently holding the value of the WaterDetected property). Lines
21 and 22 utilize the Speak function from GHAHelpers. As we will learn in more detail later, GHAHelpers
expose system-wide functions in a simplified manner. Any script, Module or device driver can access
the functions in GHAHelpers. In this example, we make two calls to the Speak function. The first tells
GHA to speed the specified line of text to a specific device: alexaRoot. The type accepted by this form
of the Speak method is ITTSText. This is why we explicitly converted the result of the GetObject call in

12

line 12 to ITTSText. Line 22 uses the default audio device of the GHA Server to speak the specified text.
The next few lines implement the five-minute reminder requirement.

The .NET framework defines an Action data type which essentially encapsulates a segment of code that
can be referred to by a single variable. In our example, we define an Action variable appropriately
called nag1. The nag1 variable is assigned the code segment shown in Lines 29 and 30 – GHASys.Speak
calls to notify users in the home that a leak has been detected. Note that the Speak methods are
identical to the statements in line 21 and 22 previously described.

Line 33 introduces another GHAHelper function called AddTimer. We will explore these helper function
in more detail later, but in short, the AddTimer method creates a timer of the specified name (we’ll
describe how we named it later) and duration (in milliseconds). The third parameter of AddTimer
specifies the Action that is to be taken when the timer expires. The fourth is the auto-reset flag. When
it is true, the timer automatically restarts after the timeout period has expired. This causes the Action to
be executed every time the number of milliseconds in “duration” have expired. A reference to the
newly created timer is assigned to the variable called timer.

We just described what happens when the WaterDetected property is set to true. An attention message
is spoken on the default audio device of the GHA server, and the Amazon Echo devices are getting
notifications alerting people in the home. These alerts and notifications will continue – every five
minutes – until the WaterDetected property is set to false (presumably when the water issue is
resolved). When it is set to false, we need to take a few actions to stop the “nagging” done by the
script. That is handled in lines 36 through 43.

The timer that we created in Line 33 is deleted by another GHAHelper function called RemoveTimer.
The RemoveTimer method takes the name of the previously created timer as its single parameter. Note
the name we are using. We take the static text string “Timer_” and append the ObjectID of the
IGHAObject that contains the WaterDetected property. In this case it is the SumpPumpSensor object.
Using this technique, we can guarantee that the name of this timer is unique. All active timers are
visible in the Modules portion of the hierarchy under a node called GHATimers.

GHA Modules
Modules provide the most flexible way to add functionality to GHA. At its core, the GHA Module
functionality is a code generator. The objective of a GHA Module is to provide IGHAObject classes that
may be used within the GHA hierarchy. The items you see when you right click under the Home node in
the hierarchy are actually built-in IGHAObject classes that can be used to create nodes. The GHA
Modules functionality allows us to add custom IGHAObject classes to our GHA Server thus extending its
capabilities.

The end-user defines a module, creates classes under that module, and adds properties and methods
under each class. All of this can be done through the GHA Configurator user interface. In fact, using the
Modules functionality, it is possible to create a class containing only properties that can be added to the
GHA hierarchy without writing a single line of code! Let us create a simple module as an example.

Our module will implement a class called Announcer which can be used to provide simple text to speech
functionality. The first step is to create a module under the Modules node in the hierarchy. Right click
on Modules, select New>GHASchema.Modules.GHAModule>GHAModule. A node will be created under

13

Modules called GHAModule. Right click that, select Rename and provide the new name of Announcer.
Now that we have the module created, we need to create a class that can be subsequently used by GHA.

Right click Announcer and select New>GHASchema.Modules.GHAClass>GHAClass. A new class is
created called GHAClass. Rename it to Announcer.

The first thing we need to do is tell GHA where in the hierarchy this class is allowed to be added as an
object. We do this by using the ContainedBy function within modules. Right click on the Announcer
class and select ContainedBy>Home>Home. That will instruct the GHA Executive to allow objects of the
type Announcer to be created under the Home portion of the hierarchy.

Now we need to add some properties to our new class. For our example we will create two properties.
The first will be a text property to enter the text to speak. The second is Boolean property which will be
used to trigger the text to speak action. Right click the
Announcer class again and select
New>GHASchema.Modules.Property>GHAPropertyString.
Rename the newly created node TextToPlay. Right click on
the Announcer class again and select
New>GHASchema.Modules.Property>GHAPropertyBoolean.
Rename the newly created node Play. Highlight the node
named Play. You will see a series of properties that will
define the behavior of this Boolean property. We want this
Play property to be momentary. That is, we set it and it
resets automatically. We want it to act like a push button.
To achieve this, we need to set the IsMomentary property to
true as shown in Figure (xx).

Now we need to add some code to react to when the Play
property changes. We do this through a
GHAPropertyChange method. Create one by right clicking
the Announcer class again, selecting
New>GHASchema.Modules.GHAMethod>GHAPropertyChangeMethod. The names of currently
provided properties are displayed. Select the “Play” property. A new node under the Announcer class

will be created called OnChangePlay. The newly created
Announcer module with its Announcer class will look something
like Figure (xx).

The OnChangePlay method needs to have code added to take
the actions required to actually perform the desired text to

speech functionality. Highlight the OnChangePlay node and a code editor will appear. Before we add
the code, we need to understand the context provided by GHA to the OnChangePlay object. You can
assume that four variables are already present even thought you cannot see them in the editor. These
include:

14

Variable name Data type Description

ghaObj Object The object containing the property that has
changed

PropertyName string The name of the property that has changed

NewValue Object The new value of the property

subID Guid Subscription identifier created by the
SubscribeToProperty method.

We add the following code to the OnChangePlay method using the code window.

1. bool playState = (bool)NewValue;
2. if(playState)
3. {
4. string message = this.TextToPlay;
5. GHASys.Speak(message);
6. }

We cast the NewValue variable to a Boolean variable called playState first. Line 2 tests if the playState is
set to true. Remember that we have defined this property as momentary, so this method will be
executed twice. The first time it will have a value of true, the second false. We are only interested if the
property is set to true. If playState is true, we setup the call to the GHAHelper speak. We grab the
string that is in the TextToPlay property we previously created and assign it to a string variable called
message. We then invoke the GHAHelper function Speak to convert the message to speech and play it
over the default audio device of the GHA Server.

Before we leave this node, we must commit the code we entered to the server. At the top of the code
editor you will find a series of buttons. The second button will commit the code entered to the server.
The final step in making the classes in our new module available to GHA is to Generate the module.

Generating the Module involves right clicking the Announcer Module node (not the class) and selecting
Generate. The Generate function builds the module and instructs the GHA Executive to load it making it
available for use within the system. Any changes to the module will not be made available to the GHA
system until the Generate function is executed.

GHA Modules – A deeper dive

Let us take a walk-thru of the code that is generated by GHA behind the scenes. This exercise will show
us more details about how IGHAObjects are used. The code generated by GHA for this module is shown
below:

1. //--
2. // <auto-generated>
3. // This code was generated by a tool.
4. // Runtime Version:4.0.30319.42000
5. //
6. // Changes to this file may cause incorrect behavior and will be lost if
7. // the code is regenerated.

15

8. // </auto-generated>
9. //--
10.
11. namespace GHAModules.Announcer {
12. using System;
13. using System.Diagnostics;
14. using System.ComponentModel.Composition;
15. using GHASchema.GHASystem;
16. using GHASchema.Helpers;
17.
18.
19. [System.Serializable()]
20. [System.ComponentModel.Composition.Export("Announcer", typeof(GHASchema.GHASystem.I

GHAPlugin))]
21. [GHASchema.Attributes.GHAContainedBy(typeof(GHASchema.GHASystem.Home))]
22. public class Announcer : GHASchema.GHASystem.GHAObject, System.ComponentModel.INoti

fyPropertyChanged, GHASchema.GHASystem.IGHAPlugin {
23.
24. private string @__texttoplay;
25.
26. private bool @__play;
27.
28. public Announcer()
29. {
30. _Class="Announcer";
31. }
32.
33. public Announcer(string name, GHASchema.IGHAObject parent, GHASchema.GHASystem.

GHARootClass ghaRoot, string objID) :
34. base(name, parent, ghaRoot, objID) {
35. this.SubscribeToProperty(this,"Play","OnChangePlay");
36. }
37.
38. [GHASchema.Attributes.GHAProperty(Description="", IsReadonly=false, IsBindable=

false, IsRequired=false, IsBrowsable=false, IsMomentary=false, SpecialHandling="", Filt
er="", Aggregation=Aggregation.None, IsVisible=true)]

39. public virtual string TextToPlay {
40. get {
41. return this.@__texttoplay;
42. }
43. set {
44. if ((@__texttoplay == value)) {
45. Debug.WriteLine("Value did not change");
46. }
47. else {
48. this.@__texttoplay = value;
49. base.OnPropertyChanged("TextToPlay");
50. }
51. Debug.WriteLine("Property Setter invoked");
52. }
53. }
54.
55. [GHASchema.Attributes.GHAProperty(Description="", IsReadonly=false, IsBindable=

false, IsRequired=false, IsBrowsable=false, IsMomentary=true, SpecialHandling="", Filte
r="", Aggregation=Aggregation.None, IsVisible=true)]

56. public virtual bool Play {
57. get {
58. return this.@__play;
59. }
60. set {
61. if ((@__play == value)) {

16

62. Debug.WriteLine("Value did not change");
63. }
64. else {
65. this.@__play = value;
66. base.OnPropertyChanged("Play");
67. }
68. Debug.WriteLine("Property Setter invoked");
69. }
70. }
71.
72. public virtual void OnChangePlay(object ghaObj, string PropertyName, object New

Value, System.Guid subID) {
73. try {
74. bool playState = (bool)NewValue;
75.
76. if(playState)
77. {
78. string message = this.TextToPlay;
79. GHASys.Speak(message);
80.
81. message = announcer.GetValue("TextToPlay") as string;
82.
83. GHASys.Speak(message);
84.
85.
86.
87. }
88. }
89. catch (System.Exception ex) {
90. // Handle exceptions here
91. var debugEvent = GHASys.BuildDebugEvent(this, ex);
92. GHASys.FireDebugCallbacks(debugEvent);
93. }
94. }
95. }
96. }

There are a few observations from the code that yields details on building objects for GHA. Line 22
declares the Announcer class. Note that in .NET terms it inherits from GHAObject and implements the
InotifyPropertyChanged interface. To be compatible with the GHA Hierarchy, a class must inherit from
GHAObject. While the Announcer class also directly implements INotifyPropertyChanged, this is not
strictly necessary because GHAObject already implements that interface. Also note that the Announcer
class is decorated with the [Serializable] and [ContainedBy] attributes. The [Serializable] attribute is
required to support various GHA internal functions. The [ContainedBy] attribute instructs the GHA
Configurator to show the class as an available child to objects of the specified type: The Home class in
this case.

The constructor signature for the class in line 33 is unique to classes declared by Modules. Because GHA
Modules are loaded in separate .NET Application Domains, the GHA Executive must treat them slightly
differently hence the need for this unique constructor signature. When you develop Device drivers for
GHA, you will use the standard constructor signature. More on that when we talk about Device drivers.

Notice within the constructor there is a call to the SubscribeToProperty method. In this example, we are
subscribing to the “Play” property of the current class and telling the class to execute a method called
“OnChangePlay” when the “Play” property is changed. Remember when we added the

17

GHAPropertyChange object in our example? This line of code actually implements the property
subscription.

Lines 39 through 70 declare the two properties we defined in our example: TextToPlay and Play. Notice
that the code generator takes care of creating getters and setters for each property. Pay special
attention to the decoration of the “Play” property on line 55. The GHAProperty attribute describes any
special handling that is required for this property. Notice the variable called “IsMomentary” in the
attribute parameter list. It is set to true. Remember in our example where we declared the “Play”
property as momentary? This is where it is actually implemented. Keep this trick in mind when we get
into developing device drivers.

The last piece of our walk-thru is the “OnChangePlay” method starting in Line 72. Most of the code in
that method should look familiar. We created it within the editor. The GHA Modules subsystem
wrapped our custom code within a method of the proper signature for handling property changes and
included an exception handler to ensure any problems with our custom code would not cause the GHA
System to crash.

Adding Capabilities

GHA Capabilities can be added to GHA Module classes by right
clicking the class and selecting Add/Remove capabilities. The Edit
Capabilities window will appear showing available capabilities on
the left and assigned capabilities on the right. Let us create a
class that will be used to implement a dimmable light. We will
not repeat the steps needed to create a new module and class
here. Our new class is called LightTest. Note that in Figure (XX)
we have already selected the IDimmable and IPowerState
Capabilities. After clicking the Ok button, GHA will populate the
LightTest Class with the properties and methods associated with
the assigned capabilities. See Figure (xx).

18

Inheriting from other objects

Inheritance is a powerful feature in Object Oriented programming. It allows a new class to take on (or
inherit) the capabilities from an inherited class without copying and pasting code (or even having
visibility to the code of the inherited class). The GHA Modules subsystem allows a class to inherit from
the wide range of GHA built-in classes. The default inherited class for custom classes in the GHA
Modules subsystem is the GHAObject. To inherit from a different class, right click on the GHA Module
Class and select InheritFrom. A menu of class categories will appear where you can navigate to the class
you wish to inherit.

Device Drivers

The device subsystem in GHA is designed to be extensible. New devices can be created by developing
device drivers that “plug in” to the GHA system. There are a few prerequisites that are needed before
you can develop a device river for GHA.

Prerequisites

• Knowledge of programming in Microsoft’s .NET 6.
• Visual Studio 2022 or greater (community edition is okay)

Setting up your development environment

 The best way to develop for GHA is to use Visual Studio 2022. Device drivers in GHA are implemented
as .NET 6 class libraries. Your first step is to setup and configure Visual Studio to build drivers for GHA.

It is a best practice to develop drivers in separate class libraries. However, there is nothing preventing
you from having more than one driver in a single library. It is assumed that the reader has a working
knowledge of Visual Studio 2022, so we will not repeat the detailed steps to create a class library
project. While you are creating the class library here are a few configuration items to keep in mind.

• The class library must use .NET 6 as its target framework.
• Include a reference to GHASchema.dll in your project
• Add the NuGet package Log4Net if you intend to use the GHA Executive Logging function in your

driver (Very useful to debug your driver)
• Use a non-production instance of your GHA system while you develop your driver
• Install the Visual Studio Remote Debugger on your target development system

IGHADevice Interface

19

All GHA devices must implement the IGHADevice Interface. Classes that implement this interface (when
instantiated) appear under the Devices root of GHA. It is important to note that ONLY classes destined
to appear under the Devices root should implement this interface. You may note that many of the pre-
built devices provided with GHA have objects that appear under device driver objects. These objects
should not implement IGHADevice but should implement IGHAObject (or preferably inherit from
GHAObject). A summary of that interface is shown here.

Properties
 Name Description

 Version Returns the version number for the device driver

Methods
 Name Description

 Initialize Called by the GHA executive during device initialization. Perform device-specific
initialization in this method

 Install Called by the GHA executive when the device driver is installed

 Shutdown Called by the GHA executive during shutdown operations. Perform device-specific
shutdown steps in this method

 Uninstall Called by the GHA executive when the user deletes a device driver from the Devices
node

GHA Executive interaction with device drivers

On startup, the GHA Executive searches the Devices folder under the installation path for class libraries
that implement the IGHADevice Interface. It then loads the class library and makes it available for
subsequent loading in GHA. If the device has already been installed, the Initialize method is invoked. It
is expected that any startup-specific activities for the device are performed in this method. If the device
has not been installed, the executive ignores the device specified in the library. However, it does make
any classes that implement the IGHADevice interface available when the user right-clicks and selects
“New” under the Devices node in the GHA Configurator.

When a user decides to create an instance of a device, they simply right-click the Devices node in the
GHA Configurator and click “New”. A list of all available device classes is presented. When the user
selects one of these device classes, the GHA Executive creates an instance of the class and invokes its
Install and Initialize methods. The Install method performs any device-specific one-time steps that are
required by the device driver. For example, a device driver might need to create objects to manage
multiple instances of a specific device type such as audio devices installed on a computer. In that case,
the Install method might search the local computer for audio devices and create an object for each
device.

20

During GHA shutdown, the GHA Executive calls the Shutdown method for each currently installed device
driver. Any device-specific shutdown steps should be performed in this method.

Once the device is installed and initialized, the GHA Executive allows the device driver to manage itself.
That is a key concept to understand. The device driver has full access to all IGHAObjects in the system.
It can also inadvertently monopolize processing resources. Just a few things to consider when
developing drivers.

• Run the device management on a new thread created during the device initialization process.
That will keep blocking operations localized to the device driver.

• Be careful of using blocking calls in the Install or Initialize methods.
• Ensure you call OnPropertyChanged(string name) method in your property setters when the

value of the property has changed to ensure that property subscriptions are fired. Alternatively,
using an MSIL weaver like Fody.PropertyChanged can be used to simplify your code.

• Ensure you have exception handling built into your device driver. While the GHA Executive tries
to protect itself from misbehaving device drivers, it is possible that exceptions might “bubble
up” from a faulting device driver crashing the entire GHA system.

When the user decides to delete a device, the GHA Executive invokes the driver’s Uninstall method.
That method should, at a minimum, gracefully shutdown the device driver. Additionally, the Uninstall
method should remove any references in the hierarchy to GHAObject types defined within the driver.
For example, a media-handling device might create a device-specific type that is used in the GHA Media
subsystem. References to those types must be removed when the device driver is deleted or there may
be impact on the GHA system.

A simple example

In this example, we will build a “stub” device driver to handle lighting control. The example itself does
not implement control on a real device. Rather, it shows a simple device model that implements a few
key features of GHA: Implementing a base device driver, implementing device capabilities, making
objects Bindable.

Device Capabilities in GHA are actually .NET Interfaces. In the Modules section, we simply did point-and-
click definition of capabilities to be implemented by classes in the module. Building device drivers is a
little more complex in that we must provide code to implement .NET interfaces. Thankfully, Visual
Studio provides the ability to pre-populate properties and methods defined by .NET interfaces with
templates. That allows us to focus on the logic of the device driver versus the structure to make it
compatible with GHA.

In our lighting control example, we want to implement a driver that implements the IPowerState and
IDimmable capabilities. We do this by declaring that the class must implement the IPowerState and
IDimmable interfaces. Further, this device would be of much use if we did not allow it to bind to a
device model under the Home hierarchy, so we must also implement the IBindable interface. Keep in
mind that all classes used directly in the GHA hierarchy must also inherit from IGHAObject. The source
code for our example is shown here.

21

1. using GHASchema;
2. using GHASchema.Attributes;
3. using GHASchema.Classes.Capabilities;
4. using GHASchema.Classes.Capabilities.Lighting;
5. using GHASchema.Classes.Capabilities.Power;
6. using GHASchema.GHASystem;
7. using System;
8. using System.Collections.Generic;
9. using System.Linq;
10. using System.Text;
11. using System.Threading.Tasks;
12.
13. namespace GHADevices.LightStub {
14. [Serializable]
15. public class LightStub: GHAObject, IGHADevice, IPowerState, IDimmable, IBindable {
16. public LightStub(string name, IGHAObject parent, string ObjectID = ""): base(name,

parent, ObjectID) {
17.
18. }
19. private string _version = "1.0";
20. public string Version => _version;
21.
22. private bool _powerState = false;
23. [GHAProperty(description: "Power state, On if true, Off if false")]
24. public bool PowerState {
25. get => _powerState;
26. set => _powerState = value;
27. }
28.
29. private double _brightness = 0.0;
30. [GHAProperty(description: "Level of lighting between 0.0 and 1.0")]
31. public double Brightness {
32. get => _brightness;
33. set => _brightness = value;
34. }
35.
36. private double _presetDim = 1.0;
37. [GHAProperty(description: "Level to set lighting when the PowerState is true betwee

n 0.0 and 1.0")]
38. public double PresetDimLevel {
39. get => _presetDim;
40. set => _presetDim = 1.0;
41. }
42.
43. private double _rampRate = 0.1;
44. [GHAProperty(description: "Rate in seconds at which to get desired lighting level")

]
45. public double RampRate {
46. get => _rampRate;
47. set => _rampRate = value;
48. }
49.
50. IGHAObject _boundObject = null;
51. public IGHAObject BoundObject {
52. get => _boundObject;
53. set => _boundObject = value;
54. }
55.
56. public object Initalize() {
57. return true;
58. }

22

59.
60. public object Install() {
61. return true;
62. }
63.
64. public object Shutdown() {
65. return true;
66. }
67.
68. public object Uninstall() {
69. return true;
70. }
71. }
72. }

You can see in the class constructor that we declare this class as inheriting from GHAObject (the
recommended implementation of IGHAObject). It also defines the IGHADevice, IPowerState,
IDimmable, and IBindable interfaces. You can also see that we have declared the class as Serializable.
This is required. This allows the GHA Executive to save the state of the device driver between restarts.

As we further examine the example, we can see the properties and methods associated with the various
interfaces we have declared for this class. Since this is a simple example, the IGHADevice methods
simply return a true. Technically, we can return anything as these values are ignored by the GHA
Executive. What is more interesting is how we structure the property definitions.

It is a best practice in GHA to define your own backing store variables for properties. While not strictly
required, it aids in debugging. Also please note the GHAProperty decoration on each of the defined
properties. This decoration tells GHA if there is any special handling required for this property. At a
minimum, you should define a description in the GHAProperty decoration. That description will show
up in the GHA Configurator making it simpler for users to understand the function of the property.

23

Device Templates

GHA offers a number of device templates that can be inherited in your custom device drivers. Much of
the functionality required to build a device driver is already included in the device templates. Where
device-specific processing is required, the device template implements either a virtual or abstract
method to allow the developer to build their own device. These classes are browsable using the built-in
Visual Studio Object browser. Online documentation for device templates and GHA Capabilities can be
found here.

Matrix Switcher

The Matrix switcher template is used by any device that can associate an input to an output. The Nuvo
Concerto driver uses the Matrix switcher template. The Matrix switcher template can also be used to
define other types of devices that can switch between various inputs. For example, a Television.

GHAMatrixSwitcher

GHAMatrixSwitcherInput

GHAMatrixSwitcherZone

Media Player
GHAMediaPlayerBase

Serial Port
GHASerialPortBase

Tuner
GHATunerBase

Television Tuner
GHATelevisionTunerBase

UPnP Device
GHAUPnPDeviceBase

UPnP Media Renderer
GHAUPnPMediaRenderBase

https://ghacontentfiles.blob.core.windows.net/$web/developer/core/html/G_GHASchema_Classes.htm

	Introduction
	Intended Audience
	Key Concepts
	GHA Hierarchy
	GHA Objects
	The Home node
	The Devices Node
	The Binding
	Scenes
	Schedules
	Customizations
	Decorations
	GHAProperty

	Properties
	GHA Executive Services available to developers

	The IGHAObject (a deeper dive)
	GHA Modules
	GHA Modules – A deeper dive
	Adding Capabilities
	Inheriting from other objects

	Device Drivers
	Prerequisites
	Setting up your development environment
	IGHADevice Interface
	Properties
	Methods
	GHA Executive interaction with device drivers
	A simple example

	Device Templates
	Matrix Switcher
	Media Player
	Serial Port
	Tuner
	Television Tuner
	UPnP Device
	UPnP Media Renderer

