
 

  

GEORGE HOME 
AUTOMATION 

Users Guide V1.3 

      



1 
 

Table of Contents 
Introduction .................................................................................................................................................. 6 

Key Concepts ................................................................................................................................................. 7 

GHA Hierarchy ........................................................................................................................................... 7 

GHA Objects .............................................................................................................................................. 7 

The Home node ......................................................................................................................................... 8 

The Devices Node ..................................................................................................................................... 8 

The Binding ............................................................................................................................................... 9 

Scenes ....................................................................................................................................................... 9 

Schedules .................................................................................................................................................. 9 

Customizations ........................................................................................................................................ 10 

Security Alarm Controller........................................................................................................................ 10 

Speech Recognition Framework ............................................................................................................. 10 

Getting Started ............................................................................................................................................ 12 

Installing GHA Server .............................................................................................................................. 12 

Install GHA Configurator ......................................................................................................................... 14 

Basic GHA configuration ......................................................................................................................... 14 

Built-in Devices............................................................................................................................................ 17 

Configuring Devices for use .................................................................................................................... 17 

ZWave Devices ........................................................................................................................................ 17 

Universal Devices ISY .............................................................................................................................. 19 

Sonos ....................................................................................................................................................... 21 

Computer Audio ...................................................................................................................................... 21 

Barix Exstreamer ..................................................................................................................................... 21 

Blue Iris Webcam and Security Software ................................................................................................ 22 

Google Chrome Cast ............................................................................................................................... 24 

Universal Plug and Play ........................................................................................................................... 24 

Global Cache GC-100 .............................................................................................................................. 25 

CHIYU BF-430 Network Serial Port .......................................................................................................... 25 

Legrand Nuvo Concerto Whole Home Audio System ............................................................................. 26 

MQTT ...................................................................................................................................................... 27 

Phillips Hue Lighting ................................................................................................................................ 29 

Konnected Alarm Panel........................................................................................................................... 30 



2 
 

SmartThings ............................................................................................................................................ 32 

Amazon Echo and Alexa speech recognition .......................................................................................... 33 

Amazon Echo notifications ..................................................................................................................... 33 

Amazon Alexa Speech Recognition ......................................................................................................... 33 

GHA Built-in Classes ...................................................................................................................................... 1 

Base class .................................................................................................................................................. 2 

Root classes ............................................................................................................................................... 2 

Home ..................................................................................................................................................... 2 

Devices .................................................................................................................................................. 2 

Information Sources .............................................................................................................................. 2 

Media .................................................................................................................................................... 3 

Modules ................................................................................................................................................ 3 

Monitors ................................................................................................................................................ 3 

Scenes ................................................................................................................................................... 3 

Server .................................................................................................................................................... 3 

Home root classes ..................................................................................................................................... 3 

Location ................................................................................................................................................. 3 

Device classes ........................................................................................................................................ 5 

GHASecurityCamera ............................................................................................................................ 10 

GHA Capability Definitions .......................................................................................................................... 12 

IBindable ................................................................................................................................................. 12 

Properties ............................................................................................................................................ 12 

ILocationInfo ........................................................................................................................................... 12 

Properties ............................................................................................................................................ 12 

IObjectReference .................................................................................................................................... 12 

Properties ............................................................................................................................................ 12 

IQuartzScheduler .................................................................................................................................... 12 

Properties ............................................................................................................................................ 12 

Methods .............................................................................................................................................. 13 

IShutdown Interface ............................................................................................................................... 13 

Methods .............................................................................................................................................. 13 

IClimateControl ....................................................................................................................................... 13 

Properties ............................................................................................................................................ 13 



3 
 

ITemperatureController .......................................................................................................................... 13 

Properties ............................................................................................................................................ 13 

ITemperatureSensor ............................................................................................................................... 14 

Properties ............................................................................................................................................ 14 

IThermostat ............................................................................................................................................. 14 

Properties ............................................................................................................................................ 14 

IDigitalOutput.......................................................................................................................................... 15 

Properties ............................................................................................................................................ 15 

IInfraredOutput ....................................................................................................................................... 15 

Properties ............................................................................................................................................ 15 

Methods .............................................................................................................................................. 15 

ISerialPort ................................................................................................................................................ 15 

Properties ............................................................................................................................................ 15 

Methods .............................................................................................................................................. 16 

IColoredLighting ...................................................................................................................................... 16 

Properties ............................................................................................................................................ 16 

IDimmable ............................................................................................................................................... 16 

Properties ............................................................................................................................................ 17 

IAudioControl .......................................................................................................................................... 17 

Properties ............................................................................................................................................ 17 

IAV_Component ...................................................................................................................................... 17 

IAvailability .............................................................................................................................................. 17 

Properties ............................................................................................................................................ 17 

IAVInput .................................................................................................................................................. 17 

Properties ............................................................................................................................................ 18 

Methods .............................................................................................................................................. 18 

IFader ...................................................................................................................................................... 18 

Properties ............................................................................................................................................ 19 

IMatrixSwitcher ....................................................................................................................................... 19 

Properties ............................................................................................................................................ 19 

Methods .............................................................................................................................................. 19 

IMatrixSwitcherZone ............................................................................................................................... 19 

Properties ............................................................................................................................................ 19 



4 
 

Methods .............................................................................................................................................. 20 

IMediaPlayer ........................................................................................................................................... 20 

Properties ............................................................................................................................................ 21 

Methods .............................................................................................................................................. 21 

IMediaQueue .......................................................................................................................................... 21 

Properties ............................................................................................................................................ 22 

Methods .............................................................................................................................................. 22 

ISupportedMedia .................................................................................................................................... 22 

Properties ............................................................................................................................................ 22 

ITransportControl .................................................................................................................................... 22 

Properties ............................................................................................................................................ 22 

Methods .............................................................................................................................................. 23 

ITuner ...................................................................................................................................................... 23 

Properties ............................................................................................................................................ 23 

Methods .............................................................................................................................................. 23 

IPowerState ............................................................................................................................................. 23 

Properties ............................................................................................................................................ 23 

ICODetector ............................................................................................................................................ 23 

Properties ............................................................................................................................................ 24 

ISmokeDetector ...................................................................................................................................... 24 

Properties ............................................................................................................................................ 24 

IWaterSensor .......................................................................................................................................... 24 

Properties ............................................................................................................................................ 24 

IGarageDoorSensor ................................................................................................................................. 24 

Properties ............................................................................................................................................ 24 

IMotionDetector ..................................................................................................................................... 24 

Properties ............................................................................................................................................ 24 

IPresenceDetector .................................................................................................................................. 25 

Properties ............................................................................................................................................ 25 

Methods .............................................................................................................................................. 25 

ITTSStream .............................................................................................................................................. 25 

Methods .............................................................................................................................................. 25 

ITTSText ................................................................................................................................................... 25 



5 
 

Methods .............................................................................................................................................. 25 

IAlarmControl .......................................................................................................................................... 25 

Properties ............................................................................................................................................ 26 

Methods .............................................................................................................................................. 26 

Disclaimers .................................................................................................................................................. 28 

General .................................................................................................................................................... 28 

Alarm controller, Konnected hardware and Noonlight monitoring ....................................................... 28 

 

  



6 
 

Introduction 
George Home Automation (or GHA) is an application platform designed to support complex home 
automation scenarios.  Its object-oriented design gives end-users the flexibility to create objects that 
model the everyday items we see in our homes and map those items to underlying devices to control 
our home environment.   

Key features of GHA include: 

• Object-oriented paradigm that implements standard models (aka Capabilities) for devices. 
• The complexity of the underlying device implementation is invisible to the standard Capabilities 

provided by GHA. 
• Segregation between standard device Capabilities and underlying implementation allows for the 

use of multiple underlying device technologies and the ability to quickly replace underlying 
technologies without impacting how the end-user interacts with GHA. 

• Built-in scripting capability to implement user-specific logic in response to events 
• Text-to-Speech support 
• Custom Modules may be developed within the application itself to implement new functionality 
• Open device driver model allowing third parties to develop GHA support for their devices 
• Built-in Scheduling module to implement automation flows based on date, time, sunrise or 

sunset events 
• Custom Scenes to aggregate multiple devices with unique states (i.e. Bedtime, Movie time, etc.) 
• Sophisticated media management capability including an extensible catalog of various media 

types (audio, video, broadcast, satellite, etc.) 
• Built-in MQTT server and generalized MQTT device modeling to support compatible devices 
• User presence detection 
• Built-in device drivers for 

o ZWave 
o ISY 
o Venstar thermostat 
o Sonos 
o Nuvo tuner 
o Nuvo Grand Concerto matrix switcher 
o Global Cache GC100 
o BF-430 network serial port 
o Barix media streamer 
o Built-in computer audio device 
o Phillips Hue bridge and devices 
o SmartThings hub devices 
o Konnected Pro Security alarm hardware 
o Noonlight Alarm monitoring 

  



7 
 

Key Concepts 
There are several concepts that are necessary to understand when starting out with GHA.  These are 
generally described in this section.  Further details on these topics may be found elsewhere in the 
documentation. 

GHA Hierarchy 
The entire GHA system lives in a hierarchy that contains instances (called GHA Objects) of predefined or 
custom developed classes used to implement various automation scenarios.  The out-of-the-box 
hierarchy contains the following root nodes: 

• Home – Contains models for locations and devices that are part of the automation environment 
• Devices – Drivers that implement standard Capabilities and control physical devices live here 
• Media – Catalog of media managed by GHA 
• Scenes – Predetermined collections of device states that can be activated and deactivated 

manually or through automation 
• Modules – Provides for the creation of custom classes to implement new GHA capabilities 
• Information Sources – Contains services that provide data from external sources (e.g. Weather) 
• Monitors – Provides various monitors for GHA subsystems (i.e. Alerts, Task Scheduler) 
• Server – Contains configuration nodes for various server functions 

GHA Objects 
GHA Objects in the hierarchy are instances of classes that 
implement various functions.  Each GHA Object has a unique 
Object ID that is represented as a Globally Unique Identifier 
(GUID).  Each object can be references by its GUID or a Path.  The 
Path is also unique and represents the object’s location in the 
hierarchy.  The path is a universal resource identifier (URI) 
starting with the prefix “gha://”.  Succeeding parts of the path 
describe the lineage of the object.  For example, an object with 
the path:  gha://gharoot/Home/House/MainFloor/Foyer/Chandelier 
shows where in the hierarchy the Chandelier object resides.  The 
Chandelier’s parent is an object called “Foyer”.  The Foyer’s 
parent is an object called “MainFloor”, and so-on.  A GHA Object 
may have at most one parent and have many children.   

GHA Objects contain various properties that describe the object 
itself and its current state.  All GHA Objects contain the default 

properties Class, Description, DisplayName, Icon, Name, ObjectID, Parent, and Path.  Object-specific 
properties are also defined for objects to describe its state.  For example, the object shown in Figure (1) 
represents a Table Lamp which is an instance of the Light class.  

In addition to the standard properties associated with every GHA object, the Light class shown here has 
properties unique to it:  Brightness, PresetDimLevel, RampRate, and PowerState.  It is also worth noting 
that this object is a good example of inheritance.  As an object-oriented platform GHA makes heavy use 

Figure 1 GHA Object with Properties 



8 
 

of inheritance to simplify the creation of new capabilities.  We will talk more about inheritance when we 
discuss custom modules. 

The Home node 
The Home node in GHA is used to model the space to be automated.  Locations may be specified under 
the Home node.  For example, a House object is normally the first object placed under the Home node.  

While not strictly a requirement, it is a best-practice.  The House object 
can then contain various objects used to provide logical separation (i.e. 
floors, garage, basement, etc.).  These objects can contain children to 
further subdivide the space (i.e. bedrooms, offices, etc.).  Finally, 
device objects used to represent physical devices can be placed 
anywhere under the Home node hierarchy.  For example, a Family 
Room object can contain devices model objects that represent lights, 
motion detectors, presence detectors, thermostats, etc.    Figure (2) 
shows an example of a Home node and its hierarchy containing a 
typical three-floor home.   

The Home node hierarchy in GHA is special in that it separates the 
physical device controllers (i.e. Insteon, SmartThings, etc.) from logical 
representations of devices.   Logical representations “live” under the 
Home node in the GHA hierarchy.  These logical representations are 
objects that contain certain Capabilities.  When used in a Home level 

object, Capabilities define the user-level specification of a device.  For example, a Light contains the 
Capabilities PowerState and Dimmable.  Those Capabilities manifest themselves as properties in the 
Home level object.  In Figure (1), the PowerState property represents the PowerState capability as do 
the Brightness, PresetDimLevel, and RampRate properties represent the Dimmable capability.  The 
physical device controllers themselves are represented under the Devices node. 

The Devices Node 
GHA has a standard Application Programming Interface (API) which is used implement device drivers.  
The drivers delivered with GHA or those developed by third parties, leverage this API and Capabilities to 

implement a consistent control mechanism between Home level devices 
and physical devices.  The Devices node contains the drivers configured 
for a GHA system.   The drivers themselves are represented as GHA 
Objects under the Devices node.  And, like all GHA Object, device driver 

nodes can also contain children.  Figure (3) shows object hierarchy 

Figure 2 Typical three-floor Home 
hierarchy 

Figure 3 Devices Node 



9 
 

associated with the Universal Devices ISY driver including Its child nodes.  Figure (4) shows the 
properties associated with 

one of the children of the ISY device.  Consistent with its name, this 
object implements control over a dimmer.  You can see in the property 
list, the standard GHA Object properties as well as properties the 
implement the PowerState and Dimmable Capabilities.  These are the 
same Capabilities that were used to define the properties for the 
Home level device.  In this case, however, the properties that 
implement the desired Capabilities have code associated with them to 
command the ISY to set the state of the physical dimmer.   

 

The Binding 
A key concept to understand in GHA is that logical devices in the Home 
hierarchy are connected to device objects under the Devices hierarchy.  
We have this level of abstraction so that multiple physical device 
technologies can be consistently mapped to Home hierarchy objects 
without the user worrying about the differences between say Insteon and SmartThings.  Another benefit 
of this approach is to allow for the replacing of underlying device technologies without impacting any of 
the objects under the Home hierarchy and associated automations.  The connection between the logical 
representation of devices under the Home hierarchy and the device driver representation under the 
Devices node is called a Binding.  During a Binding operation, logical devices search for physical device 
controllers with matching Capabilities.  The user selects the appropriate device, and the two objects are 
bound together.  A property changed in one, will be reflected in the other.   

Scenes 
A Scene in GHA is a mechanism where multiple objects can be controlled collectively.  Let’s say you want 
to define a Scene called “ChristmasDecorations” where you want to control yard lights connected to 
your Landscape lighting and your Christmas tree together.   In GHA, this is simply done by creating a 
Scene object under the Scenes node, adding the objects to control, setting the desired property values 
for those objects and deciding on how you want the scene to behave.  The key concept to understand 
about Scenes is the Scene behavior.  In GHA, scenes can be configured to set the desired object 
properties when activated and leave them that way even when the scene is deactivated.  This is called 
Set behavior.  Alternatively, the scene can be configured to set the desired properties when the scene is 
activated and restore them to their previous state when deactivated.   This is called Set-Restore 
behavior.   

Schedules 
Schedules in GHA can be used to activate a Scene or execute a script at a given date and time.  The 
actions can be taken just once or repeated.  In addition to simple date/time triggers, GHA can schedule 
actions for local sunrise and/or sunset.  The Schedule Node in the hierarchy is where important 
information regarding your installation is provided such as:  Street Address, Zipcode and/or 
Latitude/Longitude.  The address is critically important if you choose to utilize the provided Noonlight 

Figure 4 ISY Object properties 



10 
 

Monitoring service driver.  Further, the Zipcode and/or Latitude/Longitude are required to calculate 
local sunrise/sunset times used elsewhere in GHA. 

Customizations 
GHA can be customized in several ways.  First, all objects in the Home part of the hierarchy can have a 
custom script attached to a change of any of its property values.  For example, all locations implement 
the Occupancy Capability which includes a property called Occupied.  When Occupied is true, the 
location is considered occupied.  When false, the location is considered empty.  A property change script 
can be associated with the Occupied property and it will be invoked when the Occupied property 
changes.  The script can then perform custom actions based on the occupancy of the location. 

The second method for customization is the Module.  There is a Modules node in the hierarchy which 
contains user-developed modules that can be used to implement highly sophisticated customizations.  
The modules themselves contain custom classes which follow the same object-oriented methodology 
that built-in classes follow.  As such, they can contain properties and methods as well as support 
inheritance. Once a module has been created, it is compiled and made available to the rest of GHA.   
Classes within modules implicitly conform to the GHA Object specification and can be used anywhere a 
built-in GHA Object can be used. 

The final way to do customizations is through building custom device drivers.  GHA exposes an open API 
that can be leveraged by developers to implement their own device drivers.  

Security Alarm Controller 
GHA Offers a built-in security alarm controller that can bind with a device driver implementing the 
AlarmControl Capability.  The security alarm controller offers the features you would expect:  
Arming/Disarming, delayed trigger, pass-code disarm, panic button, etc.  The various user interfaces 
shipped with GHA (Windows, Android, and iOS) have a specialized interface for the alarm.   The goal is to 
replace classic alarm panels with one that can also control your home. 

It is important that the bound device fully implement the AlarmControl Capability.  Doing so will provide 
features like siren support and detection of various alert conditions such as sensor contact, fire, smoke, 
carbon monoxide, etc.  The GHA security alarm controller can also work with a third-party security alarm 
monitoring service.   

The monitoring service must have an associated driver that implements the AlarmServiceProvider 
Capability.  We’ve partnered with Noonlight™ to provide 24/7 professional monitoring as a separately 
purchased feature. A compatible driver ships with GHA. When properly configured, GHA can 
automatically contact a UL certified, professionally staffed, US based monitoring center whenever a 
security or smoke/fire emergency is detected.  Noonlight agents can dispatch first responders to your 
home within minutes of an alarm in all 50 US states.  For more information and to purchase a 
subscription, go to the GHA website (https://www.george-home.com). 

Speech Recognition Framework 
GHA implements a framework that allows speech recognition services (like Amazon Alexa) to have a 
consistent method to interact with GHA.   Two things are required to utilize the framework.  First, a 
device driver that implements the ISpeechRecognition Capability (like the built-in Alexa device driver). 
Second, GHASpeechPortal objects located in your hierarchy where your physical speech recognition 



11 
 

devices exist.  The GHASpeechPortal objects must be bound to devices that implement the 
SpeechRecognition Capability.   The idea is to have the Speech Recognition Framework default to 
controlling objects close to where the speech recognition device is located.  For example, to control 
lighting using the Amazon Alexa service, a user can say “Ask George Home to turn on lights”.   The GHA 
Speech Recognition Framework will recognize that as a generic lighting command and attempt to find 
lights at the same level in the Home hierarchy as the physical Amazon Echo device that received the 
command.  If it finds them, it will turn them on.  Alternatively, a user can say “Ask George Home to turn 
on lights in the living room”.  In this case, the GHA Speech Recognition Framework will look for a 
location called Living Room and turn on any lights found there. GHA also provides for a 
GHADefaultSpeechPortal that can be used without performing any bindings to physical devices.  This is 
intended to be used for very simple implementations.  One thing to note about searching for location 
names, the framework will use the DisplayName property if it is defined in its search.  

The GHA Speech Recognition Framework supports the following control/query capabilities: 

• Lighting control 
• HVAC query 
• Media control (media library and playlists) 
• Scene control 
• Garage query 

  



12 
 

Getting Started 
 

Installing GHA Server 
GHA has two installable components.  The first is the GHA Server itself.   This installs as a Windows 
console application but can optionally be configured to run as a service.  The media containing the GHA 
server has a program called setup.exe.  Double-click on setup.exe to start the installation.   

GHA requires .NET 7.0 to be running on the computer running the server.   If .NET 7.0 is not available, 
the installation will fail.   The required .NET Runtimes that are required are:      Windows Hosting Bundle 
and  Windows Desktop Runtime 

 

The stand-alone .NET Runtime is bundled with the Desktop Runtime and should not be separately 
installed. 

 

 

 

https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/runtime-aspnetcore-7.0.5-windows-hosting-bundle-installer
https://dotnet.microsoft.com/en-us/download/dotnet/thank-you/runtime-desktop-7.0.5-windows-x64-installer


13 
 

A number of directories will be created in the installation directory.  Of note is GHADevices.  The 
GHADevices directory will contain the driver libraries that will be used with this installation of GHA 
Server.  Driver dll’s may be loaded via the GHAConfigurator under File>Devices… . 

Open a PowerShell window and navigate to the installation directory.   Type the following into the 
window:  .\GHAWorkerService.exe 

If the installation was successful, you should see a PowerShell window that looks like Figure(xx).  You can 
gracefully terminate the GHA Server by hitting the Enter key while the PowerShell window is in focus.   

 

GHA Server requires a username and password to allow access.  To create the user name and password, 
launch the Windows Computer Manager 
application.  Open the Local Users and Groups node 
and select “Users”.  Right-click on the Users node 
and select New User…  You will be presented with a 
dialog to create a Window user account.  Please 
provide the appropriate information and uncheck 
the block next to the words “User must change 
password at next logon”.  Click on Create.   Your 
GHA User account is now ready for use.   

Optional step:  Install GHA Server as a Windows 
service.  In the GHA Server installation directory 

you will find two PowerShell scripts:  InstallService and UninstallService.  To install the GHA Sever as a 
Windows Service (which will automatically start the GHA Server every time the computer restarts), enter 
the following command in an elevated PowerShell with the default directory set to the GHA Server 
installation directory:  .\InstallService.ps1 

If you are upgrading from version 1.1 to version 1.2 and installed GHA as a Windows Service, you will see 
two services in the Computer Manager Services window called GeorgeHA Executive.  You should run the 
PowerShell file UninstallV1.1Service.ps1 to remove the V1.1 service.   

 

 

  



14 
 

Install GHA Configurator 
 

GHA Configurator is the application that will be used to configure and manage the GHA Server.  Double-
click the setup icon from the GHA Configurator installation location.  When the installer completes, GHA 

Configurator will launch and present a login screen.  Type in the user name 
and password you created while installing the GHA Server.  The text box 
below the password should contain the name of the GHA Server.  If you do 
not see your server name there, click on the caret and see if it appears in the 
list.  If it is still not visible, type in the name of the server manually.  You can 
also use localhost if you are running GHA Configurator on the same 
computer as the GHA Server.  

If the installation is successful, the GHA Configurator application will launch 
and show the default initial hierarchy in the left hand pane.  At this point, 
GHA is up and running and ready for configuration. 

 

Basic GHA configuration 
 

For this basic configuration, we will be creating a two-story home with a Main floor and a Second floor.  
Right-clicking on the “House” node in the hierarchy will present a set of classes that can be children of 
the House node.   Click on the “GHASchema.GHASystem.Floor” menu item to reveal the GHA class for 
Floor.  As shown in Figure (xx), click on “Floor” to create an instance of the Floor class under House.  A 
new object named “Floor” will appear under House in the hierarchy as shown in 

Figure (xx).  Of course, we want 
this object to be named “Main 
Floor”, so we need to right-click on 
the object and select “Rename”.  
The Rename window will appear 
asking for the new name for the 
object.  Type in “MainFloor” 
(spaces are not supported), and 
the object will be renamed to the 

desired name.  Repeat the above steps to create a “SecondFloor” object under 
House in the hierarchy.  Following the same procedure, we will add several rooms to the hierarchy to 
complete our two-story house.  Next up is adding devices. 



15 
 

For our basic configuration, we will be focused on lighting.  
Using the same process as adding locations and rooms 
under the House hierarchy, we can add objects that 
represent lights.  Right click on a location object, select 
New > GHASChema.Classes.Device.Lighting.Lighting to 
reveal the GHA classes that represent Lights.  Select the 
“Light” class as shown in Figure (XX).  The Light class in 
GHA contains the definitions for the PowerState and 

Dimmable Capabilities.  If you are looking for a lighting class that simply implements on/off functionality, 
you can select the OnOffLight class which implements only the PowerState Capability. 

Repeat the process for the lighting you wish to add to the various rooms under your House hierarchy.  
Once you are finished, you should see a hierarchy like Figure(xx).  At 
this point we have added lighting objects, but we have not 
configured GHA to control physical devices.  To do this, we need to 
add device drivers under the Devices node. 

Our basic configuration will include a Universal Devices ISY device.  
There is a built-in GHA device driver that supports the ISY.  To install 
it, right-click on the Devices node in the hierarchy, and select New > 
GHASchema.IGHADevice > ISYDriver.  The ISY driver will load and 
discover any ISY devices on your network.   

Select an ISY device under the ISYRoot node to show the properties 
associated with the ISY device.  You’ll notice an error in the LastError 
property that says, “The username is not provided.  Specify a 
username”.  Type in the username and password you have 
configured for your ISY device.  Figure(XX) shows the properties 

associated with the ISY. 
The ISY driver should start automatically detecting and 
populating the devices and groups configured on your ISY.   
If you do not see devices populating within a few minutes, 
you may need to restart your GHA Server.   

Once the GHA ISY Driver populates devices under your ISY 
device node, you should see something like Figure (XX).  
Please note that the devices are given names that relate to 
the type of physical ISY-compatible device that was 
detected.  Devices that support dimming have a prefix 
starting with ISYDimmable.  ISY groups start with ISYGroup.  
The combination of letters and numbers after the prefix are 
the unique identifiers that the ISY device uses to access the 
physical device.  For our basic configuration, we’ll focus on 

the devices starting with ISYDimmable.  In GHA, these devices implement the PowerState and Dimmable 
Capabilities.   

 



16 
 

Highlight one of the ISYDimmable objects and you will see the properties 
associated with PowerState and Dimmable Capabilities.   You will also see 
properties that unique to the ISY device object itself.  Remember when 
we discussed how GHA is object-oriented and takes advantage of 
inheritance?  This is inheritance in action.  Within GHA, there is an 
ISYDeviceBase class that contains the properties that are required to 
manage an ISY-connected physical device.   The ISYDimmableDevice class 
inherits from this base class to take on all of the control capabilities that 
are built into the ISY driver for ISY physical devices.  The 
ISYDimmableDevice class implements the required software to control 
the dimming functions.  As you get into building your own device drivers 
and modules, you can take advantage of the base capabilities offered in 
GHA classes to make your own custom classes. Note the ISY device has a 

property called ISYDeviceName.  This name is set in the ISY 
Admin Console (see https://www.universal-devices.com for 
information on using the admin console).  It is recommended 
that this name be something meaningful to allow you to easily 
associate the GHA ISY device object with the physical device 
being controlled.   

We now have the pieces in-place to enable control from the 
GHA objects under our Home hierarchy.  We just need to 
connect the objects under the Home hierarchy to their 
corresponding objects under the Devices hierarchy.  We do this 
through a Binding.   

As described under key concepts, the Binding maps the 
Capabilities associated with objects created under the Home 
hierarchy with the same Capabilities defined for device objects 
created under the Devices hierarchy.  For example, the Light class used as the basis for a Table Lamp 
defined in the Home hierarchy in our basic configuration above contains properties defined in the 
PowerState and Dimmable Capabilities.   The object ISYDimmable_12 41 E7 1 defined under the Devices 
hierarchy contains the implementation code for PowerState and Dimmable Capabilities.    The two 
objects can be bound together.  To Bind an object under the Home hierarchy with an object under the 
Devices hierarchy, right click the object under the Home hierarchy and select Bind.  A window containing 
compatible objects under the Device hierarchy will be 
displayed.  Select the object you wish to bind and click on Ok.  
The two objects are now bound.   Changes to properties in one 
object will be reflected in the other. 

  

https://www.universal-devices.com/


17 
 

Built-in Devices 
 

GHA comes with several built-in device drivers.  This section will describe these and discuss any driver-
specific configuration topics. 

Configuring Devices for use 
 

Device drivers may be selected for use by using the GHAConfigurator Device drivers dialog available at 
File>Devices… file menu.  When selected, a dialog like 
Figure (XX) will be shown.  By highlighting an item in the 
Driver File column, the dialog will show the GHA 
compatible devices available in the selected file.  The 
checkbox in the “Loaded” column indicates that the 
driver file is already loaded, and its devices are available 
for use.  To load a driver file, simply check its “Loaded” 
checkbox and click the “Okay” button.  The driver will be 
loaded, and its devices will be available under the 
Devices>New node in GHAConfigurator.  Conversely, it is 
possible to unload a driver by de-selecting its “Loaded” checkbox.  However, if devices within the file are 
in-use by GHA, you will receive a prompt similar to Figure (XX) 
indicating that GHA will be unable to unload the driver until you 
delete the appropriate devices from the hierarchy.  While loading 
device drivers is a dynamic function, unloading is not.  After 
deselecting the “Loaded” checkbox associated with the driver you 
wish to unload, you will see a message like Figure (XX).   You must 
restart the GHA Server for the driver unload to be finalized. Please 
wait a few minutes before restarting to allow the GHA Server to 
complete final reconfiguration steps. 

 

 

ZWave Devices 
 

GHA supports Zwave devices through a USB Controller.  While most ZWave USB controllers are based on 
the same underlying chip-set provided by Silicon Labs, we recommend that the AEOTEC Z-Stick Gen5+ 
be used.  Theoretically, any ZWave USB device built with Silicon Labs 500 or 700 series chips should 
work. 

GHA Implements ZWave via the GHAZWaveDevices driver.  Once the driver is enabled, created a 
GHAZWaveDeviceRoot under the Devices node.  Under the GHAZWaveDeviceRoot, create a 
GHAZWaveController.  The driver does not currently automatically detect ZWave controllers that may 
be attached to your GHA Server.  You’ll need to determine the COM port that your USB ZWave 



18 
 

controller is assigned by looking at Windows Device 
Manager.   An example Device Manager window 
showing the USB Controller and associated COM port is 
shown in the figure.  Note the COM port as that will 
need to be provided to the ZwaveDevice property of the 
GHAZwaveController object in your Configurator as 
shown in the figure.   

Once the ZwaveDevice property is set to the COM 
port associated with your USB ZWave controller, the 
GHAZwaveController IsInitialized property should be 
“True”.  If the property does not show as “True” after 
a few minutes, please restart your GHA Server.   

If your controller had previously associated ZWave 
devices, they will appear under the 
GHAZWaveController node.  The GHA Zwave driver 
supports the following device types: 

• On/Off Switch 
• Dimmable device 
• Wall Controller 
• Scene Switch 
• Notification Sensor 

 

Adding new devices to your ZWave can be done in multiple ways.  First, many USB ZWave controllers 
allow you to include devices simply by pushing a button on the controller itself.  This approach allows 
you to move around your home with the ZWave controller and perform the inclusion steps as outline in 
your controller’s documentation.  Once you’ve completed this process, you may plug your ZWave USB 
controller back into your GHA Server, restart GHA, and your new, supported devices will appear under 
the GHAZWaveController node. 

The second way to include devices into your ZWave network is to use the “Inclusion mode” from within 
GHA.  Most ZWave devices need to be placed into Inclusion mode before the ZWave controller.  Follow 
the instructions provided by your ZWave device manufacturer.  In most cases the process is as follows: 

1.  Place your device in Inclusion mode.  Usually, by pressing and holding a button on the device 
itself until it flashes. 

2. In the Configurator, check the GHAZWaveController InclusionMode property. 
3. Back on the device, press the button again.  Most devices will flash a green LED indicating that 

the inclusion to the ZWave network was successful.  A red LED will flash if inclusion was not 
successful.   

The GHA ZWave driver will interrogate the device looking for supported capabilities.  If the device is 
supported, it will be added under the GHAZWaveController node in the Configurator.   



19 
 

Removing devices from your ZWave network follows a similar process to inclusion.  Again, the manual 
method using the button on a controller can be used (follow the instructions on your controller and 
device), or you can use the built-in capability provided by the GHA ZWave driver. 

The GHA ZWave driver method involves checking the GHAZWaveController Exclusion mode property 
after placing the device into exclusion mode.  Follow the directions provided by your device 
manufacturer.  Once the device is excluded, it will be removed from the GHA Hierarchy.   

Please make sure that the GHA ZWave device driver is not in Inclusion or Exclusion mode for long 
periods of time. 

Additionally, the GHA Zwave driver can “cast” certain devices into other types.  For example, there are 
ZWave motion sensors (like the Zooz ZSE40) that also include a variety of other sensors (e.g. 
Temperature sensor) that wouldn’t normally be surfaced as a separate device.  In these cases, you can 
manually add the “Casted” devices, set the Node ID of the casted device to the device that contains 
other sensors, and the driver will automatically replace the existing device and attempt to detect any 
additional sensors that the device supports.  Currently, the casted motion sensor is supported.  Other 
devices may be added in the future. 

The GHA Zwave driver also supports grouping devices so that they may be controlled as a single device.  
Device groups are defined by setting the MemberNodeIDs property of a group with a comma separated 
list of node IDs for the devices that are to be grouped.  Two group types are currently supported: 

• Lighting Group (contains dimmable devices) 
• Relay Group (contains On/Off switch devices) 

 

Universal Devices ISY 
 

The Universal Devices ISY-994 device provides control over a variety of devices including those that 
support Insteon.   The GHA ISY driver exposes the various ISY Insteon device models in a way that can be 
used by the GHA System.   The current ISY supported version is 4.7.5.  Other versions may work but have 
not been tested.  The first step in using the device driver is to add it to your GHA Devices hierarchy.  
Right click on Devices and select the ISYDriver.  Once the driver is installed, it will automatically detect 
ISY devices on the network attached to the GHA server.  Once detected, the ISY device will appear under 
the Devices>ISYDriver>ISYRoot.    If ISY Devices are not detected within five minutes, you may need to 
restart the GHA Executive Service. 

https://www.universal-devices.com/


20 
 

The properties exposed by the ISY driver to GHA are showing in Figure(XX).   Only two properties are 
required to be configured for the ISY driver:  
UserName and Password.  Enter them in the properties 
field to allow GHA to access the ISY Device.  Once 
authenticated, the ISY driver will populate GHA with 
the Insteon devices known to the ISY device.  These 
devices will appear under the ISY Device in the 
hierarchy.   

The GHA ISY driver supports the following Insteon 
device types: 

• ControlLinc 
• Health and Safety 
• Dimmer 
• Relay switch 
• Groups 
• Sensor/Actuators 

 

Each device type exposes base Insteon properties and device-unique properties.  For example, the 
ISYDimmable device (Insteon Dimmer) exposes the base Insteon properties of ISYAddress and 
ISYDeviceName.  Additionally, it supports the dimmer-specific properties of Brightness, PowerState, 
PresetDimLevel, and RampRate.  Please see Figure (XX).  If the dimmer-specific properties sound 
familiar, they should.  The ISYDimmableDevice class implements the IPowerState and IDimmable 
Capabilities.   

  



21 
 

Sonos 
 

The Sonos driver allows GHA to control Sonos media players.  The driver supports playing of MP3, WAV, 
and Sonos favorites with control initiated from within GHA’s media handling services.  Adding the Sonos 
driver can be accomplished by right-clicking on Devices and selecting New>IGHADevices>GHASonos 
Root.  Once the driver is loaded, it searches for Sonos devices present on your home network.  
Discovered devices appear under the GHASonosRoot.  Each GHA Sonos device implements the 
IMediaPlayer Capability allowing it to be bound to a GHA MediaZone under the Home hierarchy.  The 
driver also creates and populates the SonosFavorites root under Media>Content in the GHA hierarchy. 

Computer Audio 
 

The Computer Audio driver detects and makes available to GHA the sound devices that exist on the 
computer running the GHA server.  Once created, the GHA driver searches for sound cards and makes 
them available under the Devices>GHAComputerAudio root.  The driver also can manually initiate 
detection of computer audio devices.  The GHA driver implements the IMediaPlayer Capability for 
detected devices allowing them to be bound to GHA MediaZones under the Home hierarchy.   

Barix Exstreamer 
 

The Barix Exstreamer is purpose-built MP3 media streaming device.  It attaches to your home network 
and through the GHA Barix Exstreamer driver, can play GHA-managed media content.  Once installed, 
the GHA Barix driver will automatically detect Exstreamers on your network and create Extreamer 
devices under the Devices>GHABarixRoot.  The Exstreamer GHA devices implement the IMediaPlayer 
Capability for detected devices allowing them to be bound to GHA MediaZones under the Home 
hierarchy.   

  



22 
 

Blue Iris Webcam and Security Software 
 

Blue Iris is a webcam and security software designed to monitor, record and manage IP-based and 
Analog cameras.  Additionally, the GHA Blue Iris software provides a device that implements the 
IMotionSensor Capability allowing Blue Iris to report motion detected events to GHA.  Configuring Blue 

Iris to work with GHA requires two steps.  First, the Blue Iris 
software must be configured.  Please note, this document 
assumes that you have a working knowledge of Blue Iris.  Step by 
step instructions for Blue Iris will not be presented. 

These instructions assume that Blue Iris release 5.5.4.4 is being 
configured.  There may be differences in other versions.  
Configure the Blue Iris Web server to only require login’s from 
Non-LAN sources.  Optionally, you can limit access to specific IP 
addresses.  These settings are required to access the camera 
streams only.  Access to configure Blue Iris will continue to require 
a Username and Password.  To configure Blue Iris to report 
motion events to GHA, you need to enable the MQTT in the 
Digital IO and IoT settings tab.  Set the MQTT server address to 
point to your GHA server and port 1833.  GHA does not require 
authentication, so leave the Login and Password fields blank.  
Don’t forget to check the Enabled checkbox.  Next, each camera 
must be configured to send an MQTT alert and reset message to 
GHA.  The alert and reset messages are shown here.  Please make 
sure the MQTT topic and post/payload are copied EXACTLY as 
shown in the figure.   

 

 

 

Configuring the GHA server requires adding the 
GHABlueIrisRoot driver under the Devices Node.  
Blue Iris servers cannot be auto-detected, so you 
must manually add a Blue Iris server under the GHA 
BlueIrisRoot.  Of course, you may change the default 
name to suit your needs.  Once created, highlight the 
new device and examine the Property Browser 
window.  Enter the IP address and port number for 
your Blue Iris server along with a Username and 
Password.  Once configured, the GHA Blue Iris server 
Status property should show “Successfully logged 
in”. The Blue Iris driver will then create camera and 
motion sensor objects under the Blue Iris server 



23 
 

node you previously created.  Highlight one of the cameras under 
the Blue Iris Server node.  You will see a number of properties, most 
are read-only.  However, there are two that control the Blue Iris’ 
driver’s behavior while creating GHA Stream objects under 
Media/Content.  Yes, the Blue Iris driver will create a BlueIrisStreams 
node under Media/Content.  These streams are standard GHA 
Streams and can be played on compatible devices (i.e. devices that 
support the MIME type of the stream).  Google Chrome Cast devices 
are able to play the MJPG Streams, so configuring a Media Zone to 
include a television that supports Chrome Cast will give you the 
ability to play security camera streams right on your television! 

By default, both H.264 and MJPEG streams are created.  The GHA 
Blue Iris camera object allows you to specify if you want either or 

both.  The figure shows the result of both stream types 
being selected.   

 

 

 

 
 
 
 
 
 
 
 

 

  



24 
 

Google Chrome Cast 
 

Chrome Cast is a media playing protocol implemented by many television manufacturers.  The GHA 
Chrome Cast driver models Chrome Cast capable devices as a Media Player by implementing the 
IMediaPlayer Capability.  Install the GHAChromeCastRoot driver under the Devices node.  Once 
installed, the GHAChromeCast driver will search your network for Chrome Cast compatible devices and 
create a GHAChromeCaster device under the GHAChromeCastRoot node.  You are free to rename the 

Caster nodes to whatever you like if the names are unique.   

 

 

Universal Plug and Play 
 

Universal Plug and Play (UPnP) defines a standard set of protocols and device specifications to allow 
compatible devices to interact.   UPnP defines a specific set of devices and protocols designed to support 
Audio-Visual applications called UPnPAV.  GHA implements the UPnPAV Control Point standard and 
supports control of UPnPAV Media Renderer devices.  To install UPnPAV functionality, install the 
GHAUPnPDeviceRoot driver under the Devices node.  Once installed, the driver will automatically begin 
searching for UPnPAV Media Renderer devices on your network.  Discovered UPnPAV Media Renderer 

devices will appear as GHA Objects under the 
GHAUPnPDeviceRoot node.  Unfortunately, many vendors do 
not fully implement the UPnPAV Media Renderer 
specification.  The GHA UPnP driver will detect many 
incomplete implementations and ignore them.  However, 
some truly incompatible devices will get created.  To account 
for this, the GHA UPnP driver allows for user-defined 
exclusions of Models and Vendors.  The fields are comma 
separated lists of Models/Vendors that should be excluded.  
Each item can leverage wildcards.  Using a ‘?’ character in the 
exclusion will look for matches containing all of the supplied 
characters and any single character in the position where the 
‘?’ is located.  An ‘*’ character will look for matches 
containing all of the supplied characters and any number of 

characters in the position where the ‘*’ is located.  Any discovered Media Renderer devices will 
implement the IMediaPlayer Capability.   

  



25 
 

Global Cache GC-100 
 

The Global Cache GC-100 is a network attached device that 
can present serial ports and Infrared transmitters on your 
home network.   While modern home automation devices are 
network-based, there are a number that still rely on RS-232 
serial ports and infrared to control.  The GC-100 allows GHA to 
communicate with these devices.  The GC100 driver will 

automatically detect and provision newer GC-
100’s into the Devices>GHAGlobalCacheRoot 
portion of the hierarchy.  Older devices can be 
added manually by right clicking on 
GHAGlobalCacheRoot and selecting 
New>GHAGC100.  Once the device is added its 
IP address would need to be manually 
configured.  That is not necessary for automatically detected by GC-100.  Once the GC-100 is added to 
the hierarchy, the driver will attempt to determine the sub-devices contained within the discovered GC-
100.   These sub-devices will appear under the GC-100 in the hierarchy.  If no devices are shown, check 
the GetDevices property to initiate the device discovery manually.  The GHA GC-100 driver currently 
supports serial ports and Infrared transmitters.  An example of the GC-100 and how its sub-devices are 
show in Figure (xx).   

CHIYU BF-430 Network Serial Port 
 

USE THIS DEVICE AT YOUR OWN RISK.  IT OFTEN GETS INTO A STATE WHERE IT REFUSES CONNECTIONS 
REQUIRING A POWER-CYCLE.  WHEN IN THIS STATE, GHA MIGHT BECOME NON-RESPONSIVE 

The CHIYU BF-430 is a low cost SMALL (2.6" x 3.6") industrial Single port RS232 or RS485 serial device 
server that can make your industrial serial devices to be IP / Ethernet network enabled. BF-430 can be 

added by adding the GHAGridConnect device under the Devices 
root, and manually adding the BF430SerialPort device under the 
GHAGridConnectRoot.  Unfortunately, automatic detection of 
the BF-430 is not possible.  You will note that the BF430 device 
properties do not include typical serial port properties (e.g. 
Baud rate).  This is because the BF-430 does not support remote 
configuration of the serial port via API calls.  Configuration of 
the BF-430 is done via browser. 

Like other devices that implement the ISerialPort Capability, 
there are some properties that can be used either through the 
Configurator or through custom modules and scripting.   For 
example, the DataReceived property is set to true when the 

serial port has detected that the connected device has sent data to the serial port.  BytesAvailable shows 
the number of bytes sent from the connected device to the serial port.  Like all ISerialPort devices like 

https://www.globalcache.com/products/gc-100/


26 
 

the BF-430 can operate in a “stream” mode or in a “line-oriented” mode.   The default mode is stream, 
where the DataReceived flag is set as soon as data is received on the serial port.  In Line-oriented mode, 
the driver waits until the EndOfMessageMarker is presented to the serial port before setting the 
DataReceived flag.   

 

Legrand Nuvo Concerto Whole Home Audio System 
 

The Concerto is an eight zone, six input matrix switcher with a built in amplifier.  It is controlled via serial 
port commands.  The GHA Grand Concerto 
driver models the device with two types of 
GHA Objects:  Inputs and Zones.  Once the 
GHAGrandConcerto device is created under 
the Devices root, the driver automatically 

creates the Input and Zone objects.  The only configuration required by the driver is to assign the serial 
port connected to the Grand Concerto itself. 

Once configured, the inputs can be bound to other audio devices defined in the GHA Devices hierarchy 
by using the standard GHA Bind functionality.  GHA Media Zones located under the Home hierarchy can 
be mapped to Grand Concerto Zones.  Once inputs and zones are properly bound, GHA can control how 
and where audio content is played.  And here is where the magic of GHA’s media handling can really be 
seen.  Let’s say your configuration has a Sonos device connected to one of the Concerto.  When a user 
wants to play a Sonos favorite, they first navigate to the GHA Media Zone associated with the room 
where the content is to be played.  They select the item and hit “Play”.   GHA takes over from there.  
First, the inputs connected to the Concerto are searched to determine if any are compatible with the 
required media.  In this case, the Sonos device is found and allocated to play the Sonos favorite.  GHA 
tells the Concerto to power-on the proper media zone and connect the selected input to that zone.  
Finally, GHA tells the Sonos device to select and play the Sonos favorite.  That’s it!  There is no manual 
picking of inputs and outputs.  No fumbling with your Sonos app to select and play the right media.  Just 
simple, intelligent control of how audio is played. 

  



27 
 

MQTT 
 

In addition to having a built-in MQTT broker, GHA can also support presenting of internal objects to an 
MQTT network or controlling external MQTT devices.  To enable MQTT functionality, a GHQMQTTBroker 
device must be created.  Do this by right-clicking on the Devices node and select 

New>IGHADevice>GHAMQTTBroker.  The 
GHAMQTTBroker root node should appear 
under the Devices node in the hierarchy.  

Internal GHA devices are presented through 
a Client Proxy.   For your convenience, the 
GHAMQTTBroker root can directly publish 
objects with the Lighting and Light 
Capabilities by simply selecting the 
PublishLight and PublishLighting properties 
as shown in Figure (XX).  After PublishLight 
or PublishLighting is checked, a proxy object 
will be created under the GHAMQTTBroker.  
The presence of that object indicates that 
any object under the Home hierarchy that 
is of the Light or Lighting class and their 
properties will be automatically published 
to the MQTT network using the MQTT topic 

GHA/<ghaservername>/Objects/<ghaPathToObject>/<propertyname> 

When a property for these proxied objects change, a MQTT message is published with a payload object 
containing the value of the property.   

It is also possible to publish other object types by creating a GHAMQTTClientProxy and specifying the 
class of objects to be published.  A Client Proxy is created by right-clicking on the GHAMQTTBroker node 



28 
 

and select the GHAMQClientProxy.  Once created, the Client Proxy 
requires that the DeviceClass property be specified.  If the device class 
is valid, all objects under the Home hierarchy of that class will be 
published to the MQTT network.  The DeviceStatus property will show 
if the device class is being successfully published. 

In addition to publishing internal objects to an MQTT network, it can 
control external MQTT devices.  Built-in support is provided for 
dimmable lighting devices through the GHAMQTTIDimmableDevice 
device class (right-click the GHAMQTTBroker node and select 
GHAMQTTIDimmableDevice to create one).  New devices will be added 
in future releases as well as the ability to create custom devices. 

Once the device is created, it needs to be configured to control a 
device on the MQTT network.  This is done by creating a Mapping 
between GHA known properties and the topics controlling the remote 
device.   

The GHAMQTTIDimmableDevice contains the properties associated 
with the IDimmable Capability.  Those properties must be mapped to the topics controlling the 

equivalent properties on the remote MQTT device.  This is 
done by clicking on the browse button next to the 
Mappings property of the GHAMQTTIDimmableDevice.   
The MQTT GHA Map Builder window appears as shown in 
Figure (XX).  The map builder displays the properties 
available with the GHA object.  When one of these 
properties is selected, you will see the mapping between 
the internal GHA value and the MQTT value.  For example, 
the PowerState property shows the internal values of true 
and false mapping to the MQTT values of on and off.  Note 
that the MQTT topic for the PowerState property must be 
set to the topic used by the remote device.  In Figure (xx) 
the topic is set to remote/mqdimmer1/powerstate.  The 
value must be set to a topic the remote MQTT device will 

respond do.  The MQTT payload will be set 
to the mappings specified for the property. 

Certain value types are automatically 
configured to be “pass-thru”.  For example, 
numeric values (integer and floating point) 
will be tagged as passthrough, and their 
values will be provided via MQTT Payload associated with the topic.  In the case of the 



29 
 

GHAMQTTIDimmableDevice, Brightness, PresetDim Level and RampRate are floating point numbers that 
are passed via the MQTT topic without change. 

 

Phillips Hue Lighting 
 

GHA provides support for Phillips Hue Lighting by right-clicking the Devices node and selecting 
GHAPhillipsHueDevicesRoot.  Once the driver is installed, a device discovery operation will be initiated 
that will populate the GHAPhillipsHueDevicesRoot with all Hue bridges discovered on your network. If 

necessary, it is possible to manually trigger a 
discovery operation by clicking on the 
InitiateDiscovery property of the 
GHAPhillipsHueDeviceRoot object.   

Once a Hue bridge is discovered, it must be 
registered with GHA.  This is done by selecting the 
discovered Hue Bridge under the 
GHAPhillipsHueDevicesRoot, PUSHING THE 
BUTTON ON THE HUE BRIDGE, and clicking on the 
Register property.  It is incredibly important that 
the button on the Hue bridge is pushed prior to 
clicking on Register.  Once registered, the Hue 
bridge object will acquire and store an AppKey 
that will subsequently be used to control devices 
associated with the Hue bridge.   Once an AppKey 

is visible, click on the Init property to discover and create GHAObjects to control Hue Lighting devices.  
New devices may be added by clicking on the Discover 
property or by restarting GHA.   

 

  



30 
 

Konnected Alarm Panel 
GHA has built-in support for the Konnected Alarm Panel Pro.  The supplied driver implements the 
IAlarmControl Capability.  Once the driver has been enabled, it can be installed by right-clicking on the 
Devices node and selecting the GHAKonnectedIORoot device.  The driver will then detect any Konnected 
Alarm Panel Pro hardware installed on your network.  The driver will then attempt to provision the 
device and configure it to report alarm events to your GHA server.  If you have pre-configured the 
Konnected hardware with zones and alarms, the driver will import that configuration into GHA.  The 
figure shows a portion of the GHA hierarchy containing Konnected Pro device with zones and an alarm 
configured.  In addition to importing an existing configuration, it is 
possible to add zones and alarms within GHA by right clicking on the 
Konnected Pro device node and selecting the desired sensor or alarm 
to add.   

The figure shows the 
properties associated 
with a Konnected 
Zone.  The AlarmDelay 
property defines the 
number of seconds to 
wait before triggering an alarm.  This configuration is 
useful for entryways into a home where you wish to allow 
some time to disarm an alarm after home entry.   

The AlarmSensor property allows you to select the type 
of sensor being monitored by this zone.  These include 
Contact, Smoke, Fire, Carbon Monoxide (CO), and 
Motion.  It is imporant to correctly configure this 
property in order to inform the Noonlight alarm 
monitoring service (if used) of the emergency service that 
is required.   

The AlarmZoneType property allows you to configure if the 
sensor is Normally Open or Normally Closed.  For example, 
most door sensors are normally closed until the door is 
opened.  This will allow the GHA Alarm Controller to 
correctly interpret the alarm status associated with the 
zone. 

The figure shows the properties associated with the 
Konnected Alarm.  The AlarmName property is the internal 
name used by the Konnected Pro device for the alarm.  
Please refer to the Konnected Pro documentation for  more 
information.  The driver default is “alarm1”.  The Trigger 
property defines how the Konnected Pro will trigger the 
alarm.  Please refer to the Konnected Pro documentation 
for more information.  The driver default is “One”. 



31 
 

The figure shows the Konnected Pro device and it’s associated properties.  Note the “Provision” 
property.  When clicked, the Konnected driver will provision the Konnected Pro hardware with the zones 
and alarms currently defined in GHA.  It will also 
configure the Konnected Pro hardware to report 
alarm status to your GHA Server.  Note that after a 
provisioning, the Konnected device will reboot. 
Noonlight Monitoring 

GHA has partnered with Noonlight to provide a 
professional 24x7 monitoring for US customers.  The 
service itself is a separately purchased item.  Please 
see the George HA website (https://www.george-
home.com) for additional details.  The Noonlight 
monitoring interface is implemented as a standard 
GHA Driver.  Once enabled, it is installed by right-
clicking on the Devices node in the GHA Hierarchy and 
selecting the GHANoonlightDriver.   

The Noonlight driver needs to be associated with 
Alarm Controller configured under the Home Node. 
The figure shows the properties of a GHA Alarm 
Controller.  Note the AlarmServiceProvider property is set to the GHANoonlightDriver.  Also, note that 

we’ve bound the Alarm Controller to a Konnected Pro 
device.  It is important to understand that the GHA 
Alarm Controller MUST be bound with a compatible 
alarm panel device such as the Konnected Pro.  
Further, the GHA Alarm Controller MUST be 
associated with an instance of the 
GHANoonlightDriver for the alarm monitoring to be 
enabled.   

https://www.george-home.com/
https://www.george-home.com/


32 
 

The figure shows the properties associated 
with the GHA Noonlight driver.  Several 
settings must be provided to enable the 
Noonlight service.  First, purchase a product 
key from the GHA website.  The product key 
must be typed into the AlarmSubscriptionKey 
field and hit return.  The key will be validated.  
You’ll be notified if the key is valid or invalid.  
Next, the AccountName and PhoneNumber 
properties must be populated with accurate 
information.  The phone number MUST be 
provided in the 1XXXYYYZZZZ format.  No 
spaces or special characters are allowed.   

In addition to the Noonlight driver 
configuration, the Schedule node in the GHA 
Hierarchy MUST have address information 
defined.  This address is provided to 
Noonlight during an alarm event which will in-
turn be provided to first responders.    It is 

critically important that this information is provided and accurate.  IF THE REQUIRED INFORMATION OR 
A VALID PRODUCT KEY IS NOT PROVIDED, THE NOONLIGHT MONITORING SERVICE WILL NOT RESPOND 
TO ALARM EVENTS.   

In addition to the primary contact information, the GHA Noonlight driver allows for an additional 
contact name and phone number.  If the primary contact does not respond to the Noonlight monitoring 
center, the additional contact will be notified.  If nobody responds to the Noonlight monitoring center, 
Noonlight will dispatch the appropriate first responder for the address provided in the Schedule node. 

 

SmartThings 
GHA Support for SmartThings is via the GHA SmartThings driver controlling a SmartThings Hub. You must 
first configure the SmartThings Hub and associate devices before enabling the GHA SmartThings driver.  
Once your hub is configured, install the GHA SmartThings driver like you would any other GHA driver.  
However, to make the driver work, you will need a Personal Access Token (PAT) from the SmartThings 

website.  First, ensure you 
have a SmartThings account.  
You should have created one 
when you configured your 
SmartThings Hub. Navigate to 
the SmartThings PAT web 

page and sign-in with your SmartThings account.  Click on the GENERATE NEW TOKEN button. You will 
be presented with a page that allows you to name your new access token and grant it privileges.  Give 
your token a name you will recognize (like GHASmartThingsToken) Provide your token with ALL 
PRIVILEGES by checking the major categories (i.e. Devices, Installed Applications, Applications, etc.).    

https://account.smartthings.com/tokens
https://account.smartthings.com/tokens


33 
 

Then click the GENERATE TOKEN button at the button of the page.  You will then be shown your token.  
COPY IT IMMEDIATELY AND KEEP IT IN A SAFE 
PLACE.  YOU WILL NOT BE ABLE TO SEE IT 
AGAIN.  Paste or type your newly acquired 
API key into the SmartThingsAPIKey property 
as shown.  Click InitiateUpdate and your 
SmartThings devices should start appearing 
under the GHASmartThings node. 

 

 

Amazon Echo and Alexa speech 
recognition 
GHA supports the Amazon Echo in two ways. 
First, as a method to provide notifications.  
Second, as one of GHA’s supported speech 
recognition technologies.   

Amazon Echo notifications 
Notifications rely on a skill called Notify Me by Thomptronics.  To enable notifications through your 
Amazon Echo devices, you must enable the skill.  Follow the instructions to link the skill and obtain the 
AccessCode associated with your Echo (Notify Me will send you an email with the key).  Cut and paste 

that key into the AccessCode property under 
the GHAAlexaRoot node. Your Amazon Echo 
devices will be enabled GHA text to speech 
devices implementing the ITTSText Capability.  
Your custom drivers, modules, and scripts can 
now send notifications through your Amazon 
Echo devices.  Please see the example in the 
GHA Developer Guide, The IGHAObject (a 
deeper dive) section.   

Amazon Alexa Speech Recognition 
The GHA Alexa driver works with the GHA 
Speech Recognition Framework.  To utilize 
your Amazon Alexa service, you must link your 
GHA Server to your Alexa account.  This is 
done either in the Alexa app or the Alexa 

website.  While linking, you will be asked for your Machine ID and your System ID.  Both are found as 
properties under the Server node in the Configurator.  For your convenience, you can right click on the 
MachineID and SystemID nodes to copy the values into your clipboard which can be subsequently used 
in the linking process.  Once successfully linked, you will see a page like the figure.  Once linked, you can 
start using your Amazon Echo devices for speech recognition.   



34 
 

GHAEcho devices will be created under the 
Devices>GHAAlexaRoot node when a command from the 
device is connected.  It is recommended that you invoke a 
simple voice command on each Echo device one at a time, 
and rename the device to something meaningful for you (e.g. 
KitchenEcho).  While not strictly required, it is recommended 
that you create a GHASpeechPortal under the Home 
hierarchy where your physical Echo devices are located.  This 
will allow the GHA Speech Framework to search for objects to 
control/query closest to the Echo device.  Alternatively, you 
could simply let the DefaultSpeechPortal handle speech 
requests.  It is important that you do not bind the 
DefaultSpeechPortal to an Echo device.   

All GHA Alexa commands must start with “Open George Home”, and then follow with a supported 
command.  GHA Alexa speech recognition supports the following commands: 

HVAC 

“What is the inside temperature” 

“What is the inside temperature in the [room 
name] 

Lighting 

“Turn [on/off] lights” 

“Turn [on/off] [room name] lights” 

Garage 

“What is the status of the garage?” 

Scenes 

“stop scene [scene name]” 

“deactivate scene [scene name]” 

“play scene [scene name]” 

“activate scene [scene name]” 

Media 

“play playlist [playlist name]” 

“play playlist on [media zone name]” 

“play album [album name]” 

“play album [album name] in “[media zone 
name]” 

“play anything by [artist name]” 

“play something by [artist name]” 

“play something by [artist name]” in the [media 
zone] 

“play anything by {artist name]” in the {media 
zone]” 

“stop playing” 

“stop music” 

“stop [media zone]” 

“stop the [media zone]” 

“stop what is playing on [media zone]” 

 

  



1 
 

User Interfaces 
 

GHA ships with user interfaces (UI) for Windows (GHAWinUI) and Android devices (iOS version is in 
development).  The Windows UI is available from the George Home Automation website, Downloads 
section.  Once installed, the GHAWinUI will prompt you for your GHA Server name and GHA Server 
credentials.  Once 
authenticated, you will 
see a window that looks 
similar to the figure.  
Pressing the “Home” 
button will render your 
GHA Objects specified in 
your GHA Hierarchy 
(what you defined in 
Configurator).    For your 
quick access, hierarchy 
items such as Media, 
Media Zones, Scenes, and 
Intercom are available on 
this first page.  You also have the ability to define Favorites by right-clicking an object and selecting the 
“Add to Favorites” menu item.   

The Android version of the user interface is available on the Google Play Store.  The Android version is 
designed for both mobile phones and tablets.  The tablet version is targeted for wall-mounted 
controllers and optimized for devices in landscape mode.  Like the Windows version, you must provide 
credentials and your GHA Server name.  This is by tapping LOGIN SETTINGS under the Settings window.   

  

https://george-home.com/buy
https://play.google.com/store/apps/details?id=com.george_home.GeorgeHA


2 
 

 

GHA Built-in Classes 
 

GHA defines a library of built-in classes that can be used to model virtually any home environment.  This 
section describes the various classes available, their inheritance tree, and the properties that can be 
used to control the behavior of objects created from the classes. 

Base class 
 

The GHAObject is the base class for all objects in the GHA System.  The class defines the following 
properties. 

Name  Description 

Children Collection containing the children of the object 

Class Type from which the object is derived 

Description Free-form description of the object 

DisplayName Name to be used by end-user displays to refer to the object 

Icon Icon used to represent the object 

Name Name of the object 

ObjectID Unique ID of the object expressed as a .NET GUID 

Parent The object owning the current object in the hierarchy 

Path URI pointing to the location of the object in the hierarchy 
 

 

Root classes 
 

Root classes appear at the top of the hierarchy and are designed to contain related classes. 

Home 
The Home hierarchy contains objects that model the physical home environment.  For example, 
locations and device abstractions.   

Devices 
The Devices hierarchy contains all physical device objects defined for the GHA installation.   

Information Sources 
The Information sources hierarchy contains objects that can provide external information to the rest of 
the GHA system.  For example, weather information is provided as an object under Information Sources. 

 



3 
 

Media 
The Media root contains media objects managed by GHA 

Modules 
The Modules root contains the objects that can be used to create custom classes for GHA. 

Monitors 
The Monitors root contains objects that can provide status of various GHA components.  For example, 
scheduled tasks. 

Scenes 
The Scenes root contains objects that can control multiple objects collectively. 

Server 
The Server root contains objects that can define users and presence information for this installation of 
GHA. 

Home root classes 
There are several classes that can be used to create objects under the home hierarchy.  These typically 
include models for locations (i.e. rooms, hallways, etc.) and device abstractions (i.e. lighting, 
thermostats, media zones, etc.). 

Location 
Classes that inherit from the Location class implement the Occupancy Capability.  They include the 
following properties. 

Name Description 

LastOccupied The last time the location was occupied 

OccupancyCount The number of times the location has been occupied 

OccupancyDuration Occupancy timer duration.  When the area is occupied, an occupancy timer will 
start and run for the specified duration before declaring the area unoccupied.  If 
an occupancy trigger occurs while the timer is running, the timer will reset to the 
value specified by this property. 

Occupied Determines if location is occupied (true) or not (false) 
 

The classes below inherit from the Location class. 

Building 
Models structures that may be present on the property (e.g. external garage) 

Floor 
Models levels within a structure (e.g. First floor) 

House 
Models the enclosing living space (i.e. apartment, condo, house).  Should be the highest level node 
under Home. 



4 
 

Property 
Models the grounds on which structures are built. 

Room 
Base class to model locations within a structure. 

CommonArea 
Inherits from Room and models locations within a structure that can be used by multiple people 

Dining 
Models a dining room 

Family 
Models a family room 

Foyer 
Models a foyer 

Hallway 
Models a hallway 

Kitchen 
Models a kitchen 

Living 
Models a living room 

Staircase 
Models a stairway 

OutsideArea 
Inherits from Location and models areas outside of a structure 

Patio 
Models an exterior patio. 

Yard 
Models the various portions of the land on which structures reside (i.e. Front yard, back yard, etc.) 

PersonalArea 
Inherits from Room and models locations within a structure that are normally single use 

Bedroom 
Models a bedroom 

Master 
Models a master suite 

UtilityArea 
Inherits from Room and models locations within a structure that don’t cleanly fit in other categories 



5 
 

Garage 
Models an enclosed garage 

Theatre 
Models a home theatre 

Device classes 
Device classes under the home root are designed to be abstractions of actual devices.  They model 
device controls based on the Capabilities assigned to the device class.   Until they are bound to a device 
under the Devices root, they cannot control anything in the home environment.   

Appliance 
Models appliances 

GHAGarageDoorOpener 
Models garage door opener and defines the following properties. 

 Name Description 

BoundObject Object bound to this object 

State Sets or gets the state of the output 
 

AudioVideo 
 

Models various audio/video devices 

 

GHAMediaZone 
 

The Media zone is an object the abstracts media devices.   The concept is that devices are bound to a 
media zone and the underlying drivers implement control of those bound devices.  The MediaZone 
defines the following properties. 

Name Description 

Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 

Bass Low-end Bass level between 0.0 and 1.0 

BoundObject Object bound to this object 

CanQueue Bound object supports built-in queuing mechanism 

Content Content currently selected for playing by the media zone 

CurrentTrack Currently playing track 

Duration Duration of the media currently loaded on the transport 

Loudness Sets Loudness response between 0.0 and 1.0 



6 
 

MediaFinishedPlaying Momentary. Raised when currently selected media is finished playing and the 
play state of the device is true 

Mute Immediately set volume to zero when set to true and return to previous level 
when set to false 

Pause Temporarily suspends playback when set to true, resumes playback from current 
media position when set to false 

Play Initiates playback when set to true, stops transport when set to false 

Progress Percentage of current media processed by the transport 

SupportedMedia List of supported media types separated by commas. MIME types 

TransportCommand Sets desired state for the underlying transport 

Treble High-end Treble level between 0.0 and 1.0 

Volume Sound pressure level between 0.0 and 1.0 
 

 

GHAMatrixSwitcher 
Models a matrix switcher device.  A matrix switcher establishes connections between inputs and 
outputs.  The GHA Matrix switcher model implements a unique capability that can automatically select 
an input based on the type of media being played.  The model implements the following properties. 

Name Description 

NumberOfInputs Number of matrix switcher inputs 

NumberOfOutputs Number of matrix switcher outputs 
 

GHAMatrixSwitcherInput 
Models the input of the matrix switcher. 

GHAMatrixSwitcherZone 
Models the output of a matrix switcher and defines the following properties. 

Name Description 

Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 

Bass Low-end Bass level between 0.0 and 1.0 

BoundObject Object bound to this object 

CurrentInput Input currently associated with this output 

CurrentTrack Media currently loaded into the transport 

Duration Duration of the media currently loaded on the transport 

IsQueueEmpty Determines if que is empty (true) or populated (false) 

Loudness Sets Loudness response between 0.0 and 1.0 



7 
 

MediaFinishedPlaying Momentary. Raised when currently selected media is finished playing and the 
play state of the device is true 

Mute Immediately set volume to zero when set to true and return to previous level 
when set to false 

Pause Temporarily suspends playback when set to true, resumes playback from current 
media position when set to false 

Play Initiates playback when set to true, stops transport when set to false 

PowerState Power state, On if true, Off if false 

Progress Percentage of current media processed by the transport 

SupportedMedia List of supported media types separated by commas. MIME types 

TransportCommand Sets desired state for the underlying transport 

Treble High-end Treble level between 0.0 and 1.0 

Volume Sound pressure level between 0.0 and 1.0 

ZoneNumber Number identifying the zone 
 

HVAC 
Models various environmental control capabilities 

GHAThermostat 
Models a thermostat device with the following properties. 

Name Description 

BoundObject Object bound to this object 

CoolingSetPoint Gets or sets the requested temperature for the cooling subsystem 

CurrentSetPoint Gets or sets the currently reqeusted temperature of the HVAC system 

FanControl Gets or sets the fan state (true=on, false=off) 

FanStatus Gets the current fan running status (true=on, false = off) 

HeatingSetPoint Gets or sets the requested temperature for the heating subsystem 

HeatingStatus Gets the status of the heating component 

Mode Get schedule status for the HVAC 

OutdoorTemperature Gets the outdoor temperature 

SetbackMode Gets or sets the setback mode 

SetbackOffset Gets or sets the offset for the setback 

State Gets or sets the system state 

Temperature Gets the measured temperature 

TemperatureMode Gets or sets the temperature mode 

UserHold Gets or sets the command to freeze temperature at the current set point 



8 
 

 

 

InputOutput 
Models various input/output devices 

GHASerialPortBase 
For more information on this class, please see the GHA Developers guide 

Lighting 
This is the base class for all GHA Light device models and implements the PowerState Capability. 

Name Description 

PowerState Power state, On if true, Off if false 
 

Light 
Inherits from lighting and implements the Dimmable Capability. 

Name Description 

BoundObject Object bound to this object 

Brightness Level of lighting between 0.0 and 1.0 

PowerState Power state, On if true, Off if false (Inherited from Lighting.) 

PresetDimLevel Level to set lighting when the PowerState is true between 0.0 and 1.0 

RampRate Rate in seconds at which to get desired lighting level 
 

MultiColorLight 
Inherits from Lighting and implements the ColoredLighting Capability. 

Name Description 

BlueLevel Blue component of the desired color 

BoundObject Object bound to this object (Inherited from Light.) 

Brightness Level of lighting between 0.0 and 1.0 (Inherited from Light.) 

GreenLevel Green component of the desired color 

PowerState Power state, On if true, Off if false (Inherited from Lighting.) 

PresetDimLevel Level to set lighting when the PowerState is true between 0.0 and 1.0 (Inherited from 
Light.) 

RampRate Rate in seconds at which to get desired lighting level (Inherited from Light.) 

RedLevel Red component of the desired color 
 



9 
 

OnOffLight 
Inherits from Lighting and implements a basic on/off light. 

Name Description 

BoundObject Object bound to this object 

PowerState Power state, On if true, Off if false (Inherited from Lighting.) 
 

Safety 
Models safety-related devices 

GHACODetector 
Implements the carbon dioxide detector device model. 

Name Description 

BoundObject Object bound to this object 

CODetected Determines if Carbon monoxide is present (true) or not (false) 
 

GHASmokeDetector 
Implements the smoke detector device model. 

Name Description 

BoundObject Object bound to this object 

SmokeDetected Determines if smoke is present (true) or not (false) 
 

GHAWaterSensor 
Implements the water sensor device model. 

Name Description 

BoundObject Object bound to this object 

WaterDetected Determines if water is present (true) or not (false) 
 

Security 
Implements various security-related device models 

GHAGarageDoorSensor 
Implements the garage door sensor device model. 

Name Description 

BoundObject Object bound to this object 

GarageDoorOpened Opened if true, closed if false 
 



10 
 

GHAMotionDetector 
Implements the motion detector device model 

Name Description 

BoundObject Object bound to this object 

LastTimeTriggered The date/time the last time motion was detected 

MotionDetected Determines if motion has been detected (true) within the sampling period or not 
(false) 

 

GHAPresenceZone 
Implements the Presence zone device model 

Name Description 

BoundObject Object bound to this object 

LastPresenceChanged The date/time the last presence changed occurred 

PresenceChanged Set when the detected entities has changed 

UsersPresent Users detected in this presence Zone 
 

GHASecurityCamera 
Implements the security camera device model 

Name Description 

BoundObject Object bound to this object 

Uri Uri to access the camera video H.264 stream 

ThumbnailUri Optional Uri to access the thumbnail picture of the camera video 

FPS Stream frame rate in frames per second 

IsAudioCapable True if the camera stream includes an audio sub-stream 

Width Width of the camera image in pixels 

Height Height of the camera image in pixels 

NewAlerts Number of new alerts detected by the camera.  “New” is defined by the 
underlying driver 

LastAlert Date/Time of the last alert 

IsOnline State of the camera as reported by the underlying driver 

Error Last error reported by the camera 

MpegUri Uri to access the camera MPEG 2 stream 

Preferred Stream Selects the stream preferred by UI devices.  GHA Mobile apps for Android 
and iOS require the MPEG stream 

  



11 
 

  



12 
 

GHA Capability Definitions 
IBindable 
 
The IBindable type exposes the following members. 

Properties 
 Name Description 

 BoundObject Object bound to this object 
 

ILocationInfo 
Defines the location info capability 

The ILocationInfo type exposes the following members. 

Properties 
 Name Description 

 City City for the location 

 Latitude Latitude of the location 

 Longitude Longitude of the location 

 State State of the location 

 ZipCode Zip code for the location 
 

IObjectReference 
Defines the object reference capability 

The IObjectReference type exposes the following members. 

Properties 
 Name Description 

 ObjectReference Object reference 
 

IQuartzScheduler 
Defines the Quartz Scheduler capability 

The IQuartzScheduler type exposes the following members. 

Properties 
 Name Description 

 Error Last error encountered by the scheduler 

 Running Determines running state of the schedule (true if running) 

 RunningSince Date time the scheduler was started 



13 
 

 Version Version of the Quartz scheduler 
 

Methods 
 Name Description 

 GetJobs Returns jobs currently managed by the scheduler 
 

IShutdown Interface 
Defines the Shutdown capability 

The IShutdown type exposes the following members. 

Methods 
 Name Description 

 Shutdown Implementation specificc shutdown method. Implementors should deal with any class 
specific shutdown processing here 

 

IClimateControl 
Defines the Climate Control capability 

The IClimateControl type exposes the following members. 

Properties 
 Name Description 

 FanControl Gets or sets the fan state (true=on, false=off) 

 FanStatus Gets the current fan running status (true=on, false = off) 

 HeatingStatus Gets the status of the heating component 

 Mode Get schedule status for the HVAC 

 State Gets or sets the system state 

 TemperatureMode Gets or sets the temperature mode 
 

ITemperatureController 
Defines the Temperature Controller capability 

The ITemperatureController type exposes the following members. 

Properties 
 Name Description 

 CoolingSetPoint Gets or sets the requested temperature for the cooling subsystem 

 CurrentSetPoint Gets or sets the currently requested temperature of the HVAC system 

 HeatingSetPoint Gets or sets the requested temperature for the heating subsystem 

 OutdoorTemperature Gets the outdoor temperature 



14 
 

 UserHold Gets or sets the command to freeze temperature at the current set point 
 

ITemperatureSensor 
Defines the Temperature sensor capability 

The ITemperatureSensor type exposes the following members. 

Properties 
 Name Description 

 Temperature Gets the measured temperature 
 

IThermostat 
Defines the Thermostat capability 

 
The IThermostat type exposes the following members. 

Properties 
 Name Description 

 CoolingSetPoint Gets or sets the requested temperature for the cooling subsystem (Inherited 
from ITemperatureController.) 

 CurrentSetPoint Gets or sets the currently reqeusted temperature of the HVAC system 
(Inherited from ITemperatureController.) 

 FanControl Gets or sets the fan state (true=on, false=off) (Inherited from 
IClimateControl.) 

 FanStatus Gets the current fan running status (true=on, false = off) (Inherited from 
IClimateControl.) 

 HeatingSetPoint Gets or sets the requested temperature for the heating subsystem (Inherited 
from ITemperatureController.) 

 HeatingStatus Gets the status of the heating component (Inherited from IClimateControl.) 

 Mode Get schedule status for the HVAC (Inherited from IClimateControl.) 

 OutdoorTemperature Gets the outdoor temperature (Inherited from ITemperatureController.) 

 SetbackMode Gets or sets the setback mode (Inherited from ITemperatureSetback.) 

 SetbackOffset Gets or sets the offset for the setback (Inherited from ITemperatureSetback.) 

 State Gets or sets the system state (Inherited from IClimateControl.) 

 Temperature Gets the measured temperature (Inherited from ITemperatureSensor.) 

 TemperatureMode Gets or sets the temperature mode (Inherited from IClimateControl.) 

 UserHold Gets or sets the command to freeze temperature at the current set point 
(Inherited from ITemperatureController.) 

 



15 
 

IDigitalOutput 
Defines the single digital input/output capability 

The IDigitalOutput type exposes the following members. 

Properties 
 Name Description 

 State Sets or gets the state of the output 
 

IInfraredOutput 
When implemented, provides infrared output capability 

The IInfraredOutput type exposes the following members. 

Properties 
 Name Description 

 ContinuousSend Continuously send TXData until set to false 

 Send Momentary, initiates send when set to true 

 TxData IR data in Pronto (CCF) remote control format to be sent 

 TxRepeat Number of times to repeat the transmitted codes 
 

Methods 
 Name Description 

 Transmit Sends the encoded CCF string to an IR transmitter device 
 

ISerialPort 
Defines the Serial Port capability 

The ISerialPort type exposes the following members. 

Properties 
 Name Description 

 BaudRate Defines the speed (baud rate) for the serial port 

 BytesAvailable Number of bytes available in the read stream 

 CTS Sets the Clear to send bit 

 DataBits Defines the number of data bits to use for the serial port 

 DataReceived Momentary, set when new data is available from the serial port. 

 DSR Sets the Data Set Ready bit 

 DTR Sets the Data Terminal Ready bit 

 EndOfMessageMarker Defines the character that the driver will use to determine if a received 
message is complete 



16 
 

 ErrorReceived Momentary, set when the serial port detects an error 

 FlowControl Defines the desired flow-control for the serial port 

 IsOpen Determines if serial port is in-use (true) or available (false) 

 IsTextOriented Determines if the serial port exclusively sends standard printable characters 
(true) versus binary (false) 

 Parity Defines the parity setting for the serial port 

 Reset Momentary, initiates a reset of the port 

 RTS Sets the request to send bit 

 StatusCTS Reads the status of the Clear to send bit 

 StatusDSR Reads the status of the Data set ready bit 

 StatusRing Reads the status of the Ring bit 

 StopBits Defines the number of stop bits for the serial port 
 

Methods 
 Name Description 

 Close Closes the serial port 

 Open Opens the serial port 

 Read Reads data from the serial port 

 ReadLine Reads a line of text from the serial port 

 Write(String) Writes a line of text without a terminator character 

 Write(Byte[], Int32, Int32) Writes a byte buffer to the serial port 

 WriteLine Writes a line of text to the serial port with a termination character 
 

IColoredLighting 
Defines lighting capable of displaying multiple colors 

The IColoredLighting type exposes the following members. 

Properties 
 Name Description 

 BlueLevel Blue component of the desired color 

 GreenLevel Green component of the desired color 

 RedLevel Red component of the desired color 
 

IDimmable 
Defines the dimmer capability 

The IDimmable type exposes the following members. 



17 
 

Properties 
 Name Description 

 Brightness Level of lighting between 0.0 and 1.0 

 PresetDimLevel Level to set lighting when the PowerState is true between 0.0 and 1.0 

 RampRate Rate in seconds at which to get desired lighting level 
 

IAudioControl 
Defines the audio control capability 

The IAudioControl type exposes the following members. 

Properties 
 Name Description 

 Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 

 Bass Low-end Bass level between 0.0 and 1.0 

 Loudness Sets Loudness response between 0.0 and 1.0 

 Mute Immediately set volume to zero when set to true and return to previous level when set to 
false 

 Treble High-end Treble level between 0.0 and 1.0 

 Volume Sound pressure level between 0.0 and 1.0 
 

IAV_Component 
Defines the AV component capability 

 

IAvailability 
Defines the Availability capability 

The IAvailability type exposes the following members. 

Properties 
 Name Description 

 CurrentUse Resource currently allocating this device 
 

IAVInput 
Defines the AV input capability 

The IAVInput type exposes the following members. 



18 
 

Properties 
 Name Description 

 Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 
(Inherited from IAudioControl.) 

 Bass Low-end Bass level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 BoundObject Object bound to this object (Inherited from IBindable.) 

 CurrentTrack Media currently loaded into the transport (Inherited from 
ITransportControl.) 

 CurrentUse Resource currently allocating this device (Inherited from IAvailability.) 

 Duration Duration of the media currently loaded on the transport (Inherited from 
ITransportControl.) 

 Loudness Sets Loudness response between 0.0 and 1.0 (Inherited from IAudioControl.) 

 MediaFinishedPlaying Momentary. Raised when currently selected media is finished playing and 
the play state of the device is true (Inherited from IMediaPlayer.) 

 Mute Immediately set volume to zero when set to true and return to previous level 
when set to false (Inherited from IAudioControl.) 

 Pause Temporarily suspends playback when set to true, resumes playback from 
current media position when set to false (Inherited from ITransportControl.) 

 Play Initiates playback when set to true, stops transport when set to false 
(Inherited from ITransportControl.) 

 Progress Percentage of current media processed by the transport (Inherited from 
ITransportControl.) 

 SupportedMedia List of supported media types separated by commas. MIME types (Inherited 
from ISupportedMedia.) 

 TransportCommand Sets desired state for the underlying transport (Inherited from 
ITransportControl.) 

 Treble High-end Treble level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 Volume Sound pressure level between 0.0 and 1.0 (Inherited from IAudioControl.) 
 

Methods 
 Name Description 

 Next Commands the transport to play the next media item (Inherited from ITransportControl.) 

 Previous Commands the transport to play the previous media item (Inherited from 
ITransportControl.) 

 

IFader 
Defines the Fader capability 

The IFader type exposes the following members. 



19 
 

Properties 
  Name Description 

  Fade Sets front to back ratio for the playback (0.0 full front, 1.0 full back) 
 

IMatrixSwitcher 
Defines the matrix switcher capability 

The IMatrixSwitcher type exposes the following members. 

Properties 
 Name Description 

 NumberOfInputs Number of matrix switcher inputs 

 NumberOfOutputs Number of matrix switcher outputs 
 
Methods 
 Name Description 

 GetAvailableInputs Returns the unallocated inputs that are capable of playing the 
specified media item 

 GetAvailableInputsForContent Returns the unallocated inputs that are capable of playing the 
specified Content Note that content is a collection of media items. 

 GetCurrentlyMappedInput Returns the input currently mapped to the specified output 

 GetCurrentlyMappedOutput Returns the currently mapped output to the specified input 

 Map Maps an input to an output 

 RegisterInput Registers an input to the matrix switcher 

 RegisterOutput Register an output to the matrix switcher 

 SendMessageToZone For hardware that supports it, sends a message to a switcher zone 
that can be ultimately displayed to the end user 

 

IMatrixSwitcherZone 
Defines the matrix switcher zone capability 

The IMatrixSwitcherZone type exposes the following members. 

Properties 
 Name Description 

 Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 
(Inherited from IAudioControl.) 

 Bass Low-end Bass level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 BoundObject Object bound to this object (Inherited from IBindable.) 



20 
 

 CurrentTrack Media currently loaded into the transport (Inherited from 
ITransportControl.) 

 Duration Duration of the media currently loaded on the transport (Inherited from 
ITransportControl.) 

 Loudness Sets Loudness response between 0.0 and 1.0 (Inherited from IAudioControl.) 

 MediaFinishedPlaying Momentary. Raised when currently selected media is finished playing and 
the play state of the device is true (Inherited from IMediaPlayer.) 

 Mute Immediately set volume to zero when set to true and return to previous level 
when set to false (Inherited from IAudioControl.) 

 Pause Temporarily suspends playback when set to true, resumes playback from 
current media position when set to false (Inherited from ITransportControl.) 

 Play Initiates playback when set to true, stops transport when set to false 
(Inherited from ITransportControl.) 

 PowerState Power state, On if true, Off if false (Inherited from IPowerState.) 

 Progress Percentage of current media processed by the transport (Inherited from 
ITransportControl.) 

 SupportedMedia List of supported media types separated by commas. MIME types (Inherited 
from ISupportedMedia.) 

 TransportCommand Sets desired state for the underlying transport (Inherited from 
ITransportControl.) 

 Treble High-end Treble level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 Volume Sound pressure level between 0.0 and 1.0 (Inherited from IAudioControl.) 
 

Methods 
 Name Description 

 Disconnect Disconnect any input associated with this zone 

 FindAndConnect Finds an input compatible with the current media and connects it to the output 

 Next Commands the transport to play the next media item (Inherited from 
ITransportControl.) 

 Previous Commands the transport to play the previous media item (Inherited from 
ITransportControl.) 

 

IMediaPlayer 
Defines the Media player capability 

The IMediaPlayer type exposes the following members. 



21 
 

Properties 
 Name Description 

 Balance Left-right levels between 0.0(full-left) and 1.0(full-right). Centered at 0.5 
(Inherited from IAudioControl.) 

 Bass Low-end Bass level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 CurrentTrack Media currently loaded into the transport (Inherited from 
ITransportControl.) 

 Duration Duration of the media currently loaded on the transport (Inherited from 
ITransportControl.) 

 Loudness Sets Loudness response between 0.0 and 1.0 (Inherited from IAudioControl.) 

 MediaFinishedPlaying Momentary. Raised when currently selected media is finished playing and 
the play state of the device is true 

 Mute Immediately set volume to zero when set to true and return to previous level 
when set to false (Inherited from IAudioControl.) 

 Pause Temporarily suspends playback when set to true, resumes playback from 
current media position when set to false (Inherited from ITransportControl.) 

 Play Initiates playback when set to true, stops transport when set to false 
(Inherited from ITransportControl.) 

 Progress Percentage of current media processed by the transport (Inherited from 
ITransportControl.) 

 SupportedMedia List of supported media types separated by commas. MIME types (Inherited 
from ISupportedMedia.) 

 TransportCommand Sets desired state for the underlying transport (Inherited from 
ITransportControl.) 

 Treble High-end Treble level between 0.0 and 1.0 (Inherited from IAudioControl.) 

 Volume Sound pressure level between 0.0 and 1.0 (Inherited from IAudioControl.) 
 

Methods 
 Name Description 

 Next Commands the transport to play the next media item (Inherited from ITransportControl.) 

 Previous Commands the transport to play the previous media item (Inherited from 
ITransportControl.) 

 

IMediaQueue 
Implements the media queuing capability 

The IMediaQueue type exposes the following members. 



22 
 

Properties 
 Name Description 

 IsQueueEmpty Determines if que is empty (true) or populated (false) 
 

Methods 
 Name Description 

 AddItem Adds an item to the queue 

 ClearQueue Clears the queue 

 GetQueue() Returns the current queue 

 GetQueue(Int32) Return the specified item in the queue 

 IsQueueable Determines if the implemented device can queue the specified media 

 RemoveItem Remove item from queue 
 

ISupportedMedia 
Defines the supported media capability 

The ISupportedMedia type exposes the following members. 

Properties 
 Name Description 

 SupportedMedia List of supported media types separated by commas. MIME types 
 

ITransportControl 
Implements the transport control capability 

The ITransportControl type exposes the following members. 

Properties 
  Name Description 

  CurrentTrack Media currently loaded into the transport 

  Duration Duration of the media currently loaded on the transport 

  Pause Temporarily suspends playback when set to true, resumes playback from 
current media position when set to false 

  Play Initiates playback when set to true, stops transport when set to false 

  Progress Percentage of current media processed by the transport 

  TransportCommand Sets desired state for the underlying transport 
 



23 
 

Methods 
 Name Description 

 Next Commands the transport to play the next media item 

 Previous Commands the transport to play the previous media item 
 
 

 

ITuner 
Defines the tuner capability 

The ITuner type exposes the following members. 

Properties 
 Name Description 

 Frequency Sets the frequency to which to set the tuner 

 RDSMessage Returns the currently available Radio Data Service (RDS) message 

 TunerBand Sets the tuner band 

 TunerCommands Sets the tuner command 
 
Methods 
 Name Description 

 GetPreset Returns a preset 

 GetPresetFrequency Returns the requency of a preset 

 GetPresets Returns all current presets 

 SetPreset(TunerPreset) Creates a preset using the preset class 

 SetPreset(Int32, Double) Creates a preset 
 
 

IPowerState 
Defines PowerState capability 

The IPowerState type exposes the following members. 

Properties 
 Name Description 

 PowerState Power state, On if true, Off if false 
 

ICODetector 
Defines Carbon Monoxide detector capability 



24 
 

The ICODetector type exposes the following members. 

Properties 
 Name Description 

 CODetected Determines if Carbon monoxide is present (true) or not (false) 
 

ISmokeDetector 
Defines the Smoke Detector capability 

The ISmokeDetector type exposes the following members. 

Properties 
 Name Description 

 SmokeDetected Determines if smoke is present (true) or not (false) 
 

IWaterSensor 
Defines the Water sensor capability 

The IWaterSensor type exposes the following members. 

Properties 
 Name Description 

 WaterDetected Determines if water is present (true) or not (false) 
 
 

IGarageDoorSensor 
Defines the garage door sensor 

The IGarageDoorSensor type exposes the following members. 

Properties 
  Name Description 

  GarageDoorOpened Opened if true, closed if false 
 

IMotionDetector 
Implements the motion detector capability 

The IMotionDetector type exposes the following members. 

Properties 
 Name Description 

 LastTimeTriggered The date/time the last time motion was detected 



25 
 

 MotionDetected Determines if motion has been detected (true) within the sampling period or 
not (false) 

 

IPresenceDetector 
Defines the presence detector capability 

The IPresenceDetector type exposes the following members. 

Properties 
 Name Description 

 LastPresenceChanged The date/time the last presence changed occurred 

 PresenceChanged Set when the detected entities has changed 
 
Methods 
 Name Description 

 GetDetections List of presence detections 
 

ITTSStream 
Defines the Text to speech stream capability 

The ITTSStream type exposes the following members. 

Methods 
 Name Description 

 Play Plays the specified IO stream 
 

ITTSText 
Defines the Text to Speech text capability 

The ITTSText type exposes the following members. 

Methods 
 Name Description 

 Speak Converts the specified text to an audio stream and plays 
 

IAlarmControl 
Defines the Alarm control capability 

 

The IAlarmControl type exposes the following members. 

 



26 
 

Properties 

  Name Description 

 

AlarmCode Code used to disarm the alarm system 

 

Armed Determines if the controller will trigger an alarm if it detects a 
zone event 

 

PanicButton Triggers an alarm regardless of Armed setting 

 
Methods 

  Name Description 

 

SetSiren Tells a bound object to trigger an audible alarm (if able) 

 

Signal Called by a bound driver to indicate a security event has occurred 

 
 

  

http://localhost:12345/html/P_GHASchema_Classes_Capabilities_Security_IAlarmControl_AlarmCode.htm
http://localhost:12345/html/P_GHASchema_Classes_Capabilities_Security_IAlarmControl_Armed.htm
http://localhost:12345/html/P_GHASchema_Classes_Capabilities_Security_IAlarmControl_PanicButton.htm
http://localhost:12345/html/M_GHASchema_Classes_Capabilities_Security_IAlarmControl_SetSiren.htm
http://localhost:12345/html/M_GHASchema_Classes_Capabilities_Security_IAlarmControl_Signal.htm


27 
 

  



28 
 

Disclaimers 
 

General 
 

THE SOFTWARE IS PROVIDED "AS IS" AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 
GEORGECO PROFESSIONAL SERVICES, LLC (GEORGECO) AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES AND 
CONDITIONS OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, AND 
ANY WARRANTIES AND CONDITIONS ARISING OUT OF COURSE OF DEALING OR USAGE OF TRADE. NO 
ADVICE OR INFORMATION, WHETHER ORAL OR WRITTEN, OBTAINED FROM OR ELSEWHERE WILL 
CREATE ANY WARRANTY OR CONDITION NOT EXPRESSLY STATED IN THIS AGREEMENT. 

GeorgeCo does not warrant that the Products and Services are defect or error free, or that the 
operation of the Products and Services will be uninterrupted or 100% available.  The Products and 
Services rely in part on factors outside of GeorgeCo’s control, including the transmission of data through 
your local area network (LAN), third-party cloud services, mobile devices, and internet access.  These 
factors may result in the Products and Services being unreliable or unavailable.  GeorgeCo does not 
guarantee that you will receive notifications when expected or at all.  GeorgeCo cannot provide specific 
information related to a situation in your home or elsewhere.  It is your responsibility to educate 
yourself on how to respond to an emergency according to the specifics of your situation.   

 
Alarm controller, Konnected hardware and Noonlight monitoring 
 

A valid Noonlight subscription must be purchased and product key provided for the GHA Noonlight 
driver to function.  This driver is provided as-is without guarantees or warranties of any kind. Using 
Noonlight with George Home Automation involves multiple service providers and potential points of 
failure, including (but not limited to) your home network, your internet service provider, 3rd party cloud 
services such as Microsoft Azure, Amazon Web Services, services operated by GeorgeCo Professional 
Services, LLC and Noonlight.  

You must read and understand the Noonlight terms of use (https://www.noonlight.com/terms) which 
includes important limitations of liability and use. 

Use of this driver constitutes your understanding and acceptance of these and other terms that are 
found in your George Home Automation License Agreement. 

If you choose to not utilize a third-party monitoring service, your use of this product constitutes your 
agreement to the following statement:  THE PROUDCTS AND SERVICES ARE PROVIDED FOR 
INFORMATIONAL PURPOSES ONLY, AND ARE NOT A SUBSTITUTE FOR A THIRD-PARTY MONITORED 
EMERGENCY NOTIFICATION SYSTE.   

https://www.noonlight.com/terms

	Introduction
	Key Concepts
	GHA Hierarchy
	GHA Objects
	The Home node
	The Devices Node
	The Binding
	Scenes
	Schedules
	Customizations
	Security Alarm Controller
	Speech Recognition Framework

	Getting Started
	Installing GHA Server
	Install GHA Configurator
	Basic GHA configuration

	Built-in Devices
	Configuring Devices for use
	ZWave Devices
	Universal Devices ISY
	Sonos
	Computer Audio
	Barix Exstreamer
	Blue Iris Webcam and Security Software
	Google Chrome Cast
	Universal Plug and Play
	Global Cache GC-100
	CHIYU BF-430 Network Serial Port
	Legrand Nuvo Concerto Whole Home Audio System
	MQTT
	Phillips Hue Lighting
	Konnected Alarm Panel
	SmartThings
	Amazon Echo and Alexa speech recognition
	Amazon Echo notifications
	Amazon Alexa Speech Recognition

	User Interfaces
	GHA Built-in Classes
	Base class
	Root classes
	Home
	Devices
	Information Sources
	Media
	Modules
	Monitors
	Scenes
	Server

	Home root classes
	Location
	Building
	Floor
	House
	Property
	Room
	CommonArea
	Dining
	Family
	Foyer
	Hallway
	Kitchen
	Living
	Staircase

	OutsideArea
	Patio
	Yard

	PersonalArea
	Bedroom
	Master

	UtilityArea
	Garage
	Theatre



	Device classes
	Appliance
	GHAGarageDoorOpener

	AudioVideo
	GHAMediaZone
	GHAMatrixSwitcher
	GHAMatrixSwitcherInput
	GHAMatrixSwitcherZone

	HVAC
	GHAThermostat

	InputOutput
	GHASerialPortBase

	Lighting
	Light
	MultiColorLight
	OnOffLight

	Safety
	GHACODetector
	GHASmokeDetector
	GHAWaterSensor

	Security
	GHAGarageDoorSensor
	GHAMotionDetector
	GHAPresenceZone


	GHASecurityCamera


	GHA Capability Definitions
	IBindable
	Properties

	ILocationInfo
	Properties

	IObjectReference
	Properties

	IQuartzScheduler
	Properties
	Methods

	IShutdown Interface
	Methods

	IClimateControl
	Properties

	ITemperatureController
	Properties

	ITemperatureSensor
	Properties

	IThermostat
	Properties

	IDigitalOutput
	Properties

	IInfraredOutput
	Properties
	Methods

	ISerialPort
	Properties
	Methods

	IColoredLighting
	Properties

	IDimmable
	Properties

	IAudioControl
	Properties

	IAV_Component
	IAvailability
	Properties

	IAVInput
	Properties

	IMatrixSwitcher
	Properties
	Methods

	IMatrixSwitcherZone
	Properties
	Methods

	IMediaPlayer
	Properties
	Methods

	IMediaQueue
	Properties
	Methods

	ISupportedMedia
	Properties

	ITransportControl
	Properties
	Methods

	ITuner
	Properties
	Methods

	IPowerState
	Properties

	ICODetector
	Properties

	ISmokeDetector
	Properties

	IWaterSensor
	Properties

	IGarageDoorSensor
	Properties

	IMotionDetector
	Properties

	IPresenceDetector
	Properties
	Methods

	ITTSStream
	Methods

	ITTSText
	Methods

	IAlarmControl
	Properties
	Methods


	Disclaimers
	General
	Alarm controller, Konnected hardware and Noonlight monitoring


