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a b s t r a c t

The aim of this study was to determine the efficacy of oral recombinant methioninase (o-rMETase) on a
colon cancer primary tumor using a patient-derived orthotopic xenograft (PDOX) nude mouse model.
Forty colon cancer primary tumor PDOX mouse models were divided into 4 groups of 10 mice each (total
40 mice) by measuring the tumor size. The groups were as follows: untreated control; 5-fluorouracil (5-
FU) (50mg/kg, once a week for two weeks, N¼ 10 mice) and oxaliplatinum (OXA) (6mg/kg, once a week
for two weeks, N¼ 10 mice); o-rMETase (100 units/day, oral 14 consecutive days, N ¼ 10 mice); com-
bination of 5-FU þ OXA and o-rMETase (N ¼ 10 mice). All treatments inhibited tumor growth compared
to the untreated control. The combination of 5-FU þ OXA and o-rMETase was significantly more effi-
cacious than other treatments. The present study demonstrates the efficacy of o-rMETase combination
therapy on a PDOX colon cancer primary tumor, suggesting potential clinical development of o-rMETase
in recalcitrant cancer.

Published by Elsevier Inc.
1. Introduction

Colorectal cancer is the third most common cancer diagnosed
worldwide. The American Cancer Society's estimates that 145,600
new cases of colorectal cancer and 51,020 people will die from this
disease in 2019 [1]. By 2030, it is estimated that globally more than
2.2 million new cases and 1.1 million deaths will occur because of
colorectal cancer. Most of the primary cancers arising in the colon
are adenocarcinomas. Current treatment strategies for colon cancer
mainly includes surgical resection, adjuvant chemotherapy and
immunotherapy.
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The elevated methionine (MET) requirement of cancer cells is
referred to as MET dependence or MET addiction [1] and appears
due to elevated use of MET for transmethylation reactions [2e5].
The elevated MET use in cancer MET-dependence/addiction is
called the “Hoffman effect” analogous to the Warburg effect of
excess glucose utilization by cancer cells [6]. Comparison of
radioactive MET and radioactive glucose PET imaging has shown a
stronger signal with MET [7] suggesting that the Hoffman effect is
more pronounced than the Warburg effect and maybe the most
important hallmark of cancer [8,9].

MET restriction (MR) by recombinant methioninase (rMETase)
targets MET-dependence/addiction of cancer and can inhibit the
growth of cancer cells in vitro and in vivo [8]. rMETase has been
used as a treatment strategy for various types of cancer [10e16].

Previous studies have shown that intra-peritoneal rMETase in-
jection (ip-rMETase) was effective against patient-derived ortho-
topic xenograft (PDOX) mouse models of recalcitrant cancer
[17e21]. Recently, we reported that oral recombinant methioninase

mailto:singhshr@mail.nih.gov
mailto:all@anticancer.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrc.2019.08.051&domain=pdf
www.sciencedirect.com/science/journal/0006291X
www.elsevier.com/locate/ybbrc
https://doi.org/10.1016/j.bbrc.2019.08.051
https://doi.org/10.1016/j.bbrc.2019.08.051
https://doi.org/10.1016/j.bbrc.2019.08.051


J.H. Park et al. / Biochemical and Biophysical Research Communications 518 (2019) 306e310 307
(o-rMETase) was significantly more effective than intraperitoneal
injection rMETase (ip-rMETase) indicating the potential wide-
spread use of rMETase for cancer treatment [22e24]. However, in
orthotopic models, it is difficult to visualize tumor growth and
metastasis. To address this problem of imaging such orthotopic
tumor grafts, we have recently developed the technology to
introduce fluorescent protein-expressing stroma into tumors by
passaging tumor grafts through transgenic nude mice expressing
fluorescent proteins [25].

The present report demonstrates the efficacy of o-rMETase using
a PDOX primary colon cancer nude mouse model with brightly
labeled red fluorescent protein (RFP)-expressing stroma for imag-
ing in a PDOX model.

2. Materials and methods

2.1. Mice

Four to six-week old athymic nu/nu nude mice and transgenic
RFP expressing athymic nu/numicewere obtained fromAntiCancer
Inc. (San Diego, CA). All surgical procedures and imaging were
performed in accordance with an AntiCancer Institutional Animal
Care and Use Committee (IACUC)-protocol specifically approved for
this study, and in accordance with the principles and procedures
outlined in the National Institutes of Health Guide for the Care and
Use of Animals under Assurance Number A3873-1. Mouse housing,
feeding, surgical process, and imaging were conducted, and mice
were humanely sacrificed as previously described [35].

2.2. Patient-derived tumor

The primary tumor was resected from a patient diagnosed with
colon cancer at the Division of Surgical Oncology, University of
California, San Diego (UCSD). A fresh sample of colon cancer was
obtained immediately after patient surgery with informed patient
consent and Institutional Review Board (IRB) approval. The tumor
was cut into fragments and initially implanted subcutaneously in
nudemice. The subsequent subcutaneous tumorwas harvested and
used for orthotopic implantation. We have previously reported the
establishment of an orthotopic model of patient-derived colon
cancer with the technique of surgical orthotopic implantation (SOI),
which was used in the present study [36].

2.3. Establishment of a PDOX mode of colon cancer with red
fluorescent stroma

Patient colon-cancer tumors growing in nude mice were har-
vested, cut into 5mm fragments, and implanted subcutaneously in
transgenic RFP-expressing nude mice (Fig. 1A). After two passages
in RFP-expressing nude mice, tumors stably containing RFP-
expressing stromal cells were obtained and cut into fragments.
After non-transgenic nude mice were anesthetized with ketamine,
1e2 cm skin incisions were made at the midline of the abdomen.
Surgical sutures (8-0 nylon) were used to implant tumor fragments
onto the cecum. Wounds were closed using 6-0 nylon sutures [36].

2.4. Production of rMETase

rMETase is a homotetrameric PLP enzyme of 172-kDa molecular
mass. Production of rMETase has been described [37].

2.5. Treatment study design in the PDOX model of colon cancer

Four weeks after surgical orthotopic implantation of colon
cancer RFP tumors, non-invasive external red fluorescent imaging
was performed in all mice (total 40 mice) and they were divided
into 4 groups (10 mice/per treatment group) by measuring the
tumor size and fluorescence intensity.

The first group served as a negative control and did not receive
treatment (N¼ 10 mice). Mice in the second group were treated
once a week for two weeks with intraperitoneal injection of 50mg/
kg 5-FU, and 6mg/kg OXA (N¼ 10 mice). Mice in the third group
received 100 units/day of o-rMETase by gavage for 2 weeks (N¼ 10
mice). Mice in the fourth group received the combination of all 3
drugs (N¼ 10 mice).
2.6. Fluorescence imaging of colon cancer and measurement of
tumor weight ad volume

Four weeks after implantation, mice were anesthetized for
measurement of tumor size and non-invasive external red fluo-
rescence imaging. External red fluorescence images were obtained
twice aweek. Fluorescence intensity weremeasured and calculated
using the UVP iBox® (Analytik Jena, Germany) and FluoroVivo
(INDEC System Inc., Santa Clara, CA). Six weeks after RFP-
expressing tumors were implanted, mice were then sacrificed for
direct measurements of tumor weight and volume. Frozen tissue
sections were observed for fluorescence with an FV1000 confocal
laser microscope (Olympus Corp, Tokyo Japan). Excitation wave-
length for RFP fluorescence was 559 nm. Tissues were viewed
under 10X and 60X objective lenses.
2.7. Intra-tumor L-MET level analysis

Each tumor was sonicated for 30 s on ice and centrifuged at
12,000 rpm for 10min. Supernatants were collected, and protein
concentrationwas measured using the Coomassie Protein Assay Kit
(Thermo Scientific, Rockford, IL) Protein concentrations were
calculated form a standard curve obtained with a protein standard,
bovine serum albumin (BSA). L-MET levels were determined with
the high-performance liquid chromatography (HPLC) procedure
described previously [38,39]. Standardized L-MET levels were
calculated per mg tumor protein.
2.8. Statistical analysis

Differences in the weight and volume of the tumors between
the groups were assessed for significance using an independent-
samples t tests. Pearson correlation coefficient and linear regres-
sion were used to assess the various possible relationships among
different variables. p-values of less than 0.05 was considered sta-
tistically significant.
3. Results

3.1. Non-invasive RFP images of the PDOX primary colon cancer
model

Fragments of a patient colon tumor were implanted in the
cecum of non-transgenic nude mice. These tumors contained red
fluorescent stroma from previous growth in RFP transgenic nude
mice. Non-invasive external fluorescence images and intravital
images via laparotomy of the RFP-expressing tumors were obtained
(Fig. 1B). Fluorescence intensity of the tumor visualized with lap-
arotomy had a strong statistical correlation with tumor volume
(r¼ 0.848, p< 0.01). (Fig. 1C). FV1000 confocal laser microscopy
showed strong association of the RFP expression within stroma
(Fig. 2).



Fig. 1. (A) Experimental schema used to develop imageable PDOX models of human colon cancer. (B) Non-invasive red fluorescent protein (RFP) images of the PDOX primary colon
cancer model (C) RFP image after laparotomy of a mouse after combination treatment (o-rMETase, 5-FU, OXA). (D) RFP image after laparotomy of a mouse in the untreated control
group. (E) Correlation of fluorescence intensity with tumor weight. N¼ 10 mice/per treatment group. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 2. FV1000® confocal laser microscope image of colon cancer in frozen section. (A) X 10, (B) x 60 and (C) Merged image, x 60.
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3.2. Treatment efficacy of the combination of 5-FU þ OXA þ o-
rMETase on the primary colon cancer PDOX model

At 6 weeks after implantation and completion of treatment,
tumor weight was as follows: untreated control: 522.9 ± 323.2 mg;
5-FU þ OXA: 255.6.9 ± 127.6 mg; o-rMETase: 296.1 ± 136.9 mg;
combination of 5-FU þ OXA with o-rMETase: 169.9 ± 80.3 mg 5-
FU þ OXA combined with o-rMETase was significantly more
effective than o-rMETase alone and the untreated control (p< 0.05)
(Fig. 3A). Relative tumor volume was as follows; untreated control:
3.54; 5-FU þ OXA: 2.09; o-rMETase: 1.79; combination of 5-
FU þ OXA with o-rMETase: 1.33 (Fig. 3B). All treatments inhibited
tumor growth compared to the untreated control group. 5-
FU þ OXA combined with o-rMETase was significantly more
effective than o-rMETase alone or 5-FU þ OXA alone (p< 0.05).

3.3. Tumor histology

Histologically, the untreated control tumor mainly comprised
viable carcinoma cells (Fig. 3A, A0). In contrast, tumors treated with
the combination of 5-FU, OXA and rMETase showed a great
reduction of cancer cells as well as necrosis (Fig. 3B, B’).
3.4. Intra-tumor MET levels

The intra-tumor MET levels of the untreated control group and
the combination of 5-FU, OXA and rMETase group were compared.
MET was significantly depleted by o-rMETase in combination with
5-FU and OXA (p< 0.01) (Fig. 4A). These results demonstrate that o-
rMETase could deplete tumor MET levels despite the multiple
sources of MET for the tumor including the diet, MET biosynthesis,
and necrosis-related proteolysis.

3.5. Body weight

Body weight loss was observed in the 5-FU and OXA groups
only. rMETase alone and the untreated control group did not have
statistically significant body weight loss (Fig. 4B).

4. Discussion

Recently, a paper was published with the title “The new anti-
cancer era: tumor metabolism targeting” [26]. However, this “new
anticancer era” started in 1959 where Sugimura et al. [27] observed
that depriving animals of METarrested tumor growth. TheWarburg



Fig. 3. Treatment efficacy of 5-FU þ OXA, o-rMETase and their combination in the primary colon cancer PDOX model (A) relative tumor volume of treatment groups (B) tumor
weight of treatment groups. *p< 0.05. Tumor histology. (C, C0) untreated control (D, D0) combination treatment with 5-FU, OXA and o-rMETase. N¼ 10 mice/per treatment group.

Fig. 4. (A) Intra-tumor MET levels. Bar graph show intra-tumor MET levels in control and 5-FU þ OXA þ o-rMETase combination groups. Error bars ± SD. *p < 0.05. (B) Effect of 5-
FU þ OXA, rMETase and their combination on mouse body weight. *p < 0.05. N¼ 10 mice/per treatment group.
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effect refers to the significantly increased uptaked glucose by can-
cer cells. In addition to glucose restriction, specific amino acid re-
striction has been studied in the past to treat cancer. Cancer cells
are more MET-dependent than normal cells, and simple dietary MR
has been shown to reduce the proliferation of numerous cancer cell
lines [28e31]. Recently,Wang et al. [1] demonstrated that highMET
cycle activity causes high MET consumption leading to addiction to
exogenous MET in cancer [1]. This is a phenomenon we discovered
more than 40 years ago [2e4]. The inhibition of the MET cycle was
enough to cripple the tumor-initiating capability [1]. Furthermore,
MR is known to extend the life-span of various rat strains, indi-
cating that basic health is not threatened by MR [32e34].

We have developed PDOX models of cancer for discovery of
transformative therapy and for individualized therapy. o-rMETase
could inhibit tumor growth in PDOX nude mouse models of various
types of cancer [22e24]. Moreover, rMETase administered orally
has little side effects. The present study suggests that o-rMETase
used in combination with 5-FU and OXA was much more effective
compared to any of these agents alone or rMETase has promise as a
novel cancer therapeutic in combination with conventional
chemotherapy for primary human colon cancer. Future studies will
test this and other combinations with o-rMETase against additional
important tumor types.
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