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Methionine restriction of glioma does not induce MGMT and greatly 
improves temozolomide efficacy in an orthotopic nude-mouse model: A 
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A B S T R A C T   

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy 
for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in 
MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers 
in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing 
DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining 
methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine re-
striction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ 
combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth 
without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more 
than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine- 
deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the 
combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in 
MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved 
outcome of a currently incurable disease.   

1. Introduction 

Glioma is the most prevalent and recalcitrant malignant brain and 
central-nervous tumor, accounting for half of all malignant brain tumors 
in the United States [1]. The incidence of glioma is low, at 3.22 per 100, 
000 people, but mortality is high; the 5-year survival rate is only 6.8 % 
[2]. 

Temozolomide (TMZ), an alkylating agent, is first-line chemotherapy 
for glioma. TMZ is more effective in patients whose tumors do not ex-
press the DNA-repair protein O6-methylguanine-DNA methyltransferase 
(MGMT) than in those whose tumors do express it [3]. MGMT expression 
is thought to be suppressed by promoter methylation of the MGMT gene, 
since approximately 45 % of glioma patients have promoter methylation 
in their tumors [3]. 

All cancer types are addicted to methionine and is termed the 

Hoffman effect [4–9]. A number of studies [10–16] have shown that 
glioma cells are methionine addicted which was first discovered 50 
years ago by us [4]. Although methionine addiction is an attractive 
target to treat glioma and other cancers in combination with chemo-
therapy [16,17], it was thought that methionine restriction would 
induce MGMT in cells [18]. Methionine restriction, including with re-
combinant methioninase, is synergistic with many 
cancer-chemotherapy drugs. Since methionine restriction selectively 
arrests cancer cells in the S/G2-phase of the cell cycle [19–22,35,36], 
alkylating agents similar to TMZ showed synergistic efficacy when used 
in combination with methionine restriction on mouse models of brain 
cancer [16,23]. 

In the present study, we determined the efficacy of methionine re-
striction in combination with TMZ on a MGMT-negative glioma in vitro 
and vivo, and found that methionine restriction greatly improved TMZ 
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efficacy on an MGMT-negative glioma, without induction of MGMT. 

2. Material and methods 

2.1. Cell culture 

Human glioma cell lines U87 and LN18 were obtained from the 
American Type Culture Collection (Manassas, VA, USA). A green fluo-
rescent protein (GFP)-containing lentivirus was transfected into U87 
cells as previously described [24]. Dulbecco’s modified Eagle’s medium 
(DMEM), with 10 % fetal bovine serum (FBS) and 100 IU/ml of pen-
icillin/streptomycin, was used to cultivate the cells. 

2.2. Recombinant methioninase (rMETase) production and formulation 

Recombinant methioninase (rMETase) was produced by fermenting 
recombinant Escherichia coli transformed with the methioninase gene 
from Pseudomonas putida. rMETase was purified using a 60-degree 
thermal step, polyethylene glycol precipitation, and diethylaminoethyl 
(DEAE)-Sepharose FF column chromatography [25,26]. 

2.3. Effect of rMETase and temozolomide on the viability of U87 cells 

The Cell Counting Kit-8 containing the WST-8 reagent (Dojindo 
Laboratory, Kumamoto, Japan) was used to count viable cells in culture. 
Cells were grown in 96-well plates by seeding 5.5 × 103 U87 cells per 
well in the medium described above. The next day, cells were treated 
with rMETase concentrations ranging from 0.01 U/ml to 8 U/ml and/or 
TMZ concentrations ranging from 12.5 μM to 800 μM. TMZ was obtained 
from MedChemExpress (Monmouth Junction, NJ, USA). Cell viability 
was measured after 72 h of treatment. IC50 values and sensitivity curves 
were calculated using ImageJ version 1.53 (National Institutes of 
Health, Bethesda, Maryland, USA). After calculating the IC50 of rMETase 
and TMZ, the synergistic efficacy of the combination of the drugs was 
examined using the IC50 concentration of each drug. Each experiment 

was conducted three times, in triplicate. 

2.4. Immunoblotting for determination of MGMT expression 

U87 cells (1.5 × 106) were cultured in 100 mm dishes in DMEM 
overnight. The following day, the cells were rinsed in PBS, and medium, 
with or without rMETase at its IC50 value, was added. The U87 cells were 
incubated with the rMETase-containing medium for 3 days (72 h) or 9 
days (216 h). At those time points the cells were lysed, and protein was 
extracted, using the RIPA Lysis and Extraction Buffer (Thermo Fisher 
Scientific, Waltham, MA, USA) with the 1 % Halt Protease Inhibitor 
Cocktail (Thermo Fisher Scientific). 

LN18 cells were used as an MGMT-positive control. LN18 cells (3.0 
× 106) were cultured in 100 mm dishes in DMEM and treated with 
rMETase similar to the U87 cells as described above. Protein extraction 
was performed 3 days (72 h) or 9 days (216 h) after the start of rMETase 
treatment. 

Protein-extract samples were placed on 10 % sodium dodecyl sulfate 
(SDS)-polyacrylamide gels for electrophoresis and transferred to 0.45 
μm polyvinylidene difluoride membranes (GE10600023; GE Healthcare, 
Chicago, Illinois, USA) after electrophoresis. The membranes were 
blocked with Bullet Blocking One for Western Blotting (Nakalai Tesque, 
Kyoto, Japan). Antibodies specific for MGMT (ab126770, 1:10,000; 
Abcam, Cambridge, United Kingdom) and for β-actin (20536-1-AP, 
1:1500; Proteintech, Rosemont, Illinois, United States) were used. 
β-actin was used as a loading control. Horseradish peroxidase- 
conjugated anti-rabbit IgG (SA00001-2, 1:20,000; Proteintech, Rose-
mont, IL, USA) was used as a secondary antibody. A UVP ChemStudio 
instrument (Analytik Jena, Upland, CA, USA) was used to visualize 
immunoreactivity with the Clarity Western ECL Substrate (Bio-Rad 
laboratories, Hercules, CA, USA). 

2.5. Mice 

Female athymic (nu/nu) mice, aged 4–6 weeks (AntiCancer Inc., San 

Fig. 1. Tumor transplantation procedure into the brain. A. Opening a skin flap over the brain. B. Making a hole in the cranial bone. C. Removal of the cranial bone. D. 
Suturing a U87-GFP tumor fragment to the brain. 
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Diego, CA, USA), were used in the present study. Mice were confined in a 
barrier facility equipped with a HEPA-filtered rack and 12 h light/dark 
cycles. During this study, mice were fed an autoclaved laboratory rodent 

diet. The AntiCancer Institutional Animal Care and Use Committee’s 
ethical committee approved the present mouse studies. All experiments 
were conducted according to Animal Research: Reporting of In Vivo 

Fig. 2. A. IC50 of TMZ and rMETase on U87 cells. B. The combination of rMETase and temozolomide (TMZ) is more effective on U87 cells in vitro than either 
agent alone. 

Fig. 3. Immune blotting of MGMT. A. U87 and LN18 cells were treated with rMETase for 3 days. The control lane was derived from untreated U87 cells. B. U87 cells 
and LN18 cells were treated with rMETase for 9 days. LN18 cells were used for positive control; β-actin was used as a loading control. 
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Experiments (ARRIVE) 2.0 criteria [27]. 

2.6. Orthotopic glioma nude-mouse model 

An orthotopic mouse model of human glioma was established using 
surgical orthotopic implantation (SOI) as described previously [28]. 
U87-GFP cells (1 × 106) were first subcutaneously injected in the flank 
of nude mice. The tumors were harvested 2 weeks after injection, when 
the tumor grew to 200–300 mm3. After removing necrotic tissue, viable 
tissue was cut with a scissors and minced into 4 mm3 fragments. Mice 

were anesthetized by injection of 0.02 ml 50 % ketamine, 38 % xylazine, 
and 12 % acepromazine maleate. A 1 cm long incision along the midline 
of the nude-mouse scalp (Fig. 1A) was made using a skin biopsy punch 
(Acuderm Inc.), and then a 4 mm diameter craniotomy was made to 
expose the parietal bone (Fig. 1B). The bone fragment was removed 
carefully in order not to injure the meninges and brain tissue (Fig. 1C). A 
skin flap in the scalp was made in order to image the U87-GFP tumor 
growing in the brain (Fig. 1D) as previously described [29]. 

2.7. Temozolomide treatment and methionine restriction in vivo 

Ten of 20 mice transplanted with U87 into the brain were chosen and 
divided into two groups of five mice. Group 1 mice were fed a normal 
diet and gavaged with TMZ (25 mg/kg, daily) for 5 days followed by 16 
days of rest. Group 2 mice were fed a methionine- and choline-deficient 
diet and gavaged with TMZ as in Group 1. Tumor size was determined 
using GFP fluorescence imaging, which was performed every 3 days 
until day 22. Fluorescent tumors were imaged with the FluorVivo 
version 2.0 (INDEC BioSystems, Santa Clara, CA, USA) Tumor size 
(mm3) was calculated with the following formula: length (mm) × width 
(mm) × width (mm) × 1/2. 

2.8. Statistics 

All statistical analyses were performed using GraphPad Prism 9.4.0 
(GraphPad Software, Inc., San Diego). The unpaired t-test was used for 
the parametric group comparison test. Mean and standard deviation are 
used to represent all data. A p-value ≦ 0.05 is considered significant. 

3. Results 

3.1. Methionine restriction using rMETase and TMZ inhibited MGMT- 
negative U87 cell growth in vitro and their combination was significantly 
more effective than either agent alone 

We first evaluated the sensitivity to rMETase and TMZ of U87 cells in 
vitro, and IC50 values were calculated. The IC50 doses of rMETase and 
TMZ were 1.14 U/ml and 60.13 μM, respectively (Fig. 2A). We then 
evaluated the combination efficacy of rMETase and TMZ. The concen-
trations used were 1 U/mL for rMETase and 60 μM for TMZ, determined 
from their respective IC50 values. The combination of rMETase and TMZ 
inhibited U87 cell growth significantly more compared to rMETase or 
TMZ alone (p < 0.0001) (Fig. 2B). 

3.2. MGMT expression was not induced by methionine restriction using 
rMETase 

MGMT expression of U87 and LN18 cells was determined after 
treatment with rMETase for 3 days or 9 days in vitro. rMETase con-
centrations were chosen by their IC50 concentrations, which are 1.1 U/ 
ml for U87 and 1.5 U/ml for LN18. MGMT expression was not detectable 
at either 3 days or 9 days after rMETase treatment of U87 cells. MGMT- 
expressing LN18 cells were used as a positive control (Fig. 3). 

3.3. Methionine restriction greatly increased TMZ efficacy on the 
orthotopic mouse model of U87 glioma 

In the orthotopic model of U87 glioma, the combination of TMZ and 
the methionine- and a choline-deficient diet (Group 2) significantly 
increased the inhibition of tumor growth compared to TMZ alone 
(Group 1). On day 22, the tumor size of the mice treated with TMZ and 
the methionine-deficient diet was significantly smaller than the mice 
treated only with TMZ (p = 0.0419) (Fig. 4). In the mice treated with the 
combination of TMZ and methionine-choline-deficient diet, 2 of 5 mice 
were cured. 

Fig. 4. Efficacy of TMZ and a methionine-restricted diet on an orthotopic 
mouse model of U87-GFP glioma. A. Tumor volume at day 22. B. Tumor size 
change during the treatment periods. GFP fluorescence was visualized with the 
FluorVivo version 2.0. 
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3.4. No mice died in the TMZ and TMZ + methionine-deficient diet group 

None of the 5 mice in either the TMZ or TMZ + methionine-deficient 
diet group died during the treatment period. 

4. Discussion 

Glioma is perhaps the most recalcitrant of all cancers, and is incur-
able with a 5-year survival of only 6.8 %. TMZ is first-line therapy for 
glioma but is not sufficiently effective. The present report demonstrates 
that methionine restriction greatly improves TMZ efficacy, resulting in a 
cure rate of 40 %. 

MGMT expression is thought to be regulated by the methylation of 
the CpG island in the promoter region of MGMT [30,31]. For example, 
methionine restriction has been shown to alter DNA methylation status, 
including global DNA methylation [32], as well as gene-specific 
methylation, including LINE-1 methylation [33,34]. 

Although older and as well as recent studies have shown that gliomas 
are methionine addicted [10–16], it was thought that 
methionine-restriction targeting of glioma may therefore induce MGMT 
activity by reducing its gene-promotor methylation and reduce the ef-
ficacy of TMZ. The present study, however, showed that methionine 
restriction did not induce MGMT expression in MGMT-negative U87 
glioma. Therefore, methionine restriction greatly improved the efficacy 
of TMZ. Notably, 2 of 5 mice were cured of glioma due to combining 
methionine restriction with TMZ. TMZ is effective for MGMT-negative 
glioma, but it is almost impossible to achieve a cure in the clinic. Our 
results are promising for increasing the efficacy of TMZ for 
MGMT-negative glioma by combining methionine restriction with TMZ, 
with potential for cure in the clinic. 
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