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In recent years dietary interventions have become a promising tool in cancer
treatment and have demonstrated a powerful ability to alter metabolism and
tumor growth, development, and therapeutic response. However, because the
mechanisms underlying dietary therapeutics are poorly understood, they are fre-
quently ignored as a potential line of treatment for cancer. We discuss the
proposed mechanisms behind the anticancer effects of various diets and their
development for clinical use. This review aims to provide researchers and
clinicians in the field of oncology with a complete overview of the contemporary
landscape of nutritional interventions and precision nutrition as cancer therapeu-
tics, and offers a perspective on the steps necessary to establish nutritional
interventions as a standard line of treatment.

Dietary interventions as a promising approach to cancer therapy
Despite large strides taken over the past century in the fight against cancer, it remains amajor source
of death and public health costs, and an estimated one in five people are diagnosedwith cancer be-
fore the age of 75 years, and half of those diagnosed die from the disease [1]. Contemporary preven-
tion, diagnosis, and treatment tools have revolutionized cancer treatment, and have reversed the
upward trend of cancer deaths over the past century [2]. Despite this, there remain many cancers
with a poor prognosis owing to the lack of effective treatment options; therefore, new approaches
to treat cancer or improve current therapies will be crucial for reducing cancer mortality.

The physiological adaptations to dietary intake have widespread effects that can influence cancer
incidence, growth, and development (Figure 1), and current estimates suggest that a third of the
most common cancers are preventable, at least in part, through changes in diet [3–5]. In recent
years evidence from preclinical models and early clinical studies has shown that some dietary pat-
terns have a powerful role in the prevention and treatment of cancer by preventing tumorigenesis,
delaying tumor growth, and synergizing with a variety of anticancer therapies [5–7].

Despite promising results, the lack of robust mechanistic evidence and the limitations of large-
scale clinical trials of nutritional therapeutics has resulted in dietary interventions (see
Glossary) being largely overlooked in the clinic, particularly in the context of cancer treatment.
The lack of well-controlled studies to evaluate diet in patients, as well as complications in current
studies owing to ambiguous criteria for the enrolment and grouping of patients with heteroge-
neous metabolic and tumor profiles, have likely obscured the efficacy of nutritional therapeutics
in patients who can benefit from them. Nevertheless, the push toward nutritional therapeutics
in oncology has been set in motion, and an increased scientific effort is underway to characterize
the mechanisms underlying the effects of dietary interventions in cancer. The resulting knowledge
is being used to inform extensive randomized clinical trials to evaluate the effects of diet on tumor
growth, progression, and therapy, with the goal of applying specific personalized dietary regimes
to improve cancer outcomes through precision nutrition (see Outstanding questions).

Highlights
Although the link between dietary intake
and cancer has been studied for de-
cades, the data on the anticancer ef-
fects of dietary interventions remain
inconsistent.

Recent studies have demonstrated the
powerful potential of particular diets
in preventing tumorigenesis, delaying
tumor growth, and improving the effec-
tiveness of existing cancer treatments.

Understanding the interactions between
cancer and diet is crucial for establishing
diet as a line of treatment, and can un-
cover new mechanisms to target in the
design of anticancer therapies.

Given the heterogeneous nature of can-
cer and host metabolism, several diets
have been designed to target specific
vulnerabilities. The approach of precision
nutrition aims to design diets tailored to
each individual and their condition, with
the goal of maximizing effectiveness
while limiting adverse effects.
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In this review we provide an overview of state-of-the-art nutritional therapeutics in translational
oncology. We outline the current evidence for diet–cancer interactions and describe the known
axes through which dietary interventions can influence the process of tumorigenesis, including
nutrient metabolism, growth signaling, antitumor immunity, diet–microbiota interactions, and
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Figure 1. Multiple axes of diet–cancer interactions. Different aspects of dietary intake (e.g., energy intake, macro- and
micro-nutrients, meal frequency) influence (blue) a variety of body systems, including nutrient metabolism (nutrient availability,
breakdown of macronutrients, metabolite synthesis), nutrient-sensitive signaling (insulin signaling, steroid hormone produc-
tion, oxidative stress responses), and the gut microbiome and immunity, and can self-regulate through hunger and satiety
signaling. These systems are highly integrated and can influence cancer (red) at essentially all stages, altering incidence in
the population and disease outcomes in affected individuals. Abbreviation: OXPHOS, oxidative phosphorylation.
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Glossary
Anaplerotic reactions: compensatory
chemical reactions that can lead to the
production of metabolites from the citric
acid cycle when these are not available
through canonical processes.
Atkins diet: a dietary intervention
developed by cardiologist Robert C.
Atkins to promote weight loss and
cardiovascular health. A variation of the
KD, this approach aims to limit
carbohydrates, but promotes high-
protein as well as high-fat intake.
Caloric restriction (CR): a dietary
regimen aimed at reducing average daily
energy intake by 20–40% without
causing malnutrition.
Cancer metabolism: modifications to
nutritional homeostasis in tumors that
promote and satisfy the energy
demands of unregulated growth.
Dietary intervention: modifications to
food intake with a planned goal – it is
usually applied in the context of
metabolic disease or to improve the
general health of a subject.
Dietary restriction: partial or absolute
avoidance of specific nutrients or food
products.
Dysbiosis: imbalance, functional
changes, or shifts in the distribution of
the gut microbial community that are
associated with disease.
Fasting: severe (>50%) or complete
abstinence from caloric intake for a
period of time.
Fasting-mimicking diet (FMD): a
regimen aimed at reproducing the
metabolic adaptations to fasting without
abstaining from food intake; the most
common approaches combine a high-
fat diet with at least 50% reduction in
caloric intake over a period of 5 days.
Intermittent fasting (IF): periodic
abstinence from caloric intake, which
can involve using multiple approaches,
including time-restricted eating, twice-a-
week fasting, or alternate day fasting.
Ketogenic diet (KD): a fasting-
mimicking intervention based on maximal
restriction of carbohydrate intake, with
very high fat and adequate protein
content. This approach aims to reduce
circulating glucose levels to induce energy
production through fatty acid oxidation
and ketogenesis.
Mediterranean diet: a regimen based
on the regional eating habits of
individuals living around the
Mediterranean Sea. Prompted by
observational studies showing
reductions in all-cause mortality, this diet
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inflammation (Figure 1). We also provide insight into the main dietary regimes proposed to have
anticancer effects, such as caloric restriction (CR), the ketogenic diet (KD), and intermit-
tent fasting (IF), and explore the rationale behind their selection and the preclinical data
supporting their therapeutic value. Finally, we give our perspective on the current state of nutri-
tional therapeutics in clinical usage by reviewing recent trials exploring the safety and feasibility
of dietary interventions, as well as ongoing and future trials that aim to determine the effects of
these interventions on the clinical outcomes of patients with cancer.

Through this work we aim to provide researchers and clinicians in the field of oncology with a
complete overview of the contemporary landscape of nutritional interventions as cancer thera-
peutics, and we offer a perspective on the steps necessary to establish them as a standard line
of treatment. This information has the potential to inform and aid in the design and progress of
future translational and clinical studies, thus advancing the development of a novel and promising
approach to the treatment of cancer.

Current evidence for diet–cancer interactions
The widespread effects of diet on health and physiology suggest that there are many axes through
which dietary interventions can mediate antitumor effects. Diets can directly target cancer
metabolism by depriving tumors of their preferred nutrients, or they can modulate other relevant ele-
ments of cancer survival and progression such as growth signaling, oxidative stress, and immunity. In
this section we describe the main proposed mechanisms that mediate diet–cancer interactions.

Nutrient metabolism
First observed byOttoWarburg in the early 20th century, the importance of metabolic reprogram-
ming as one of the defining hallmarks of cancer is now undeniable [8–10]. This phenomenon
enables tumors tomaximize energy and nutrient availability to facilitate their growth andmigration.
The genetic heterogeneity of tumors and the different metabolic profiles of their tissues of origin
cause cancer cells to favor particular nutrients, making them vulnerable to changes in nutrient in-
take as a therapeutic intervention.

Under normal conditions, tissues utilize glucose to generate ATP by coupling glycolysis and ox-
idative phosphorylation. Cancer cells typically metabolize glucose through aerobic glycolysis
and ferment glucose to lactate regardless of oxygen availability and mitochondrial function. This
is an inefficient way to obtain ATP per unit of glucose compared to mitochondrial respiration;
however, it allows a much faster rate of glucose metabolism. Glycolysis also generates waste
products such as lactate which contribute to cancer growth and progression and can be incor-
porated into tricarboxylic acid cycle intermediates to fuel tumors [11]. Consequently, cancer
cells commonly favor glucose as a primary nutrient for energy production, making glucose me-
tabolism a fundamental element of cancer progression and a promising therapeutic target [12].

Fructose is another monosaccharide associated with cancer growth. Genes of the polyol pathway
are known to be strongly correlated with epithelial-to-mesenchymal transition (EMT) in human lung
cancer samples and EMT-driven colon cancer models in mice [13]. Fructose has also been found
to be a potent inducer of transketolase in pancreatic cancer cells and induces cell proliferation
through the phosphate pentose pathway [14]. Overall, there is a link between dietary intake of sim-
ple carbohydrates and tumor incidence and growth, both through directly fueling existing tumors
and through metabolic reprogramming to facilitate unregulated cellular growth [15].

Amino acids are another nutrient related to tumorigenesis because cancer cells have high
demands for protein synthesis to satisfy growth and proliferation. In addition, because some
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is based on fish and lean meats,
legumes, olive oil, fruits, and vegetables,
and has been studied
thoroughly for its health benefits.
Precision nutrition: a therapeutic
approach aiming to combine data from
high-throughput screening strategies
with nutritional therapeutics to design
and implement highly specific and
individualized dietary regimes to
improve overall health and therapeutic
effectiveness in specific disease states.
Time-restricted feeding: an intermit-
tent fasting approach aimed at
limiting dietary intake to a specific time-
window, typically consisting of 12–16 h
of fasting and 8–12 h of feeding.
Vegan diet: a dietary approach that
involves completely abstaining from the
consumption of animal-derived
products.
Vegetarian diet: a dietary approach
focused on abstaining from meat,
poultry, and seafood, and that focuses
on the consumption of plant-based
foods.
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cancers are dependent on exogenous sources of non-essential amino acids to fuel growth, they can
be considered to be conditionally essential. The Hoffman effect describes the common phenomenon
by which cancer cells are often unable to synthesize methionine from its metabolic precursor, homo-
cysteine, and instead rely on exogenous intake of methionine for growth [16,17]. Similarly,
argininosuccinate synthetase, an enzyme essential for arginine synthesis, is often not expressed in
high-grade neuroendocrine carcinoma of the urinary bladder [18]. Serine and glycine metabolism
has also been shown to be important in cancer proliferation, and dietary restrictions inhibit
tumor growth and extend survival in mouse models of intestinal cancer and lymphoma [19]. Further-
more, inhibition of the glutamate transporter ASCT2 has been shown to reduce the growth of gastric
cancer, triple-negative breast cancer, and prostate cancer in various mouse models [20–22]. These
data suggest that some cancersmay strongly rely on dietary sources of specific amino acids tomain-
tain growth. In addition, there is evidence to suggest that somemetabolites obtained fromamino acid
catabolism, such as polyamines and kynurenine derived from arginine and tryptophan, respectively,
support cancer growth and migration [23,24].

Lipids are the main component of biological membranes, serve as the main energy stores of the
body, and are influential in metabolism and hormone synthesis. Therefore, it is not surprising that
altered lipid metabolism is another commonly observed feature in cancer [25]. Cancer cells often
display upregulated expression of lipid receptors and transporters. Indeed, increased expression
of CD36, a fatty acid receptor, correlates strongly with poor prognosis in squamous cell lung
carcinoma and in bladder and breast cancers. CD36 also appears to boost cancer progression
andmetastatic potential in oral squamous cell carcinoma and ovarian cancer in response to lipids
provided through adipocytes, making it an attractive target for cancer treatment and prevention
[26–28]. Some dietary lipids, such as palmitic acid, have been shown to stimulate long-term me-
tastasis in a CD36-dependent manner through transcriptional and chromatin changes that lead
to intratumoral Schwann cell activation [26,29]. Increased lipid uptake through CD36 has also
been reported to drive CD8+ T cell dysfunction in multiple models, thus creating an immunosup-
pressive tumor microenvironment and enhancing metastasis initiation [28]. High expression of
low-density lipoprotein receptor (LDLR) in human breast cancers is associated with shorter
recurrence-free and overall survival, and mouse models of breast cancer display LDLR upregula-
tion to generate resistance against endocrine therapy and chemotherapy [30]. In addition, lipid
trafficking through fatty acid-binding proteins (FABPs) favors ovarian cancer metastasis to the
omentum, where cancer cells can use adipocyte-derived lipids for tumor growth through
FABP4 upregulation [31].

Hormone signaling and oxidative stress
Dietary interventions can produce adaptations that are antagonistic to tumor formation and de-
velopment that extend beyond cellular nutrition. Dietary patterns can produce systemic changes
in growth signaling that promote a more proliferative or conservative state so as to optimize en-
ergy and nutrient availability. Many of the pathways involved in cancer proliferation and survival
are modulated through nutrient-sensitive hormones such as leptin, insulin, insulin-like growth
factor 1 (IGF-1), and steroid hormones, which play a significant role in the anticancer effects of
dietary interventions.

Increased circulating levels of glucose and amino acids increase growth factor signaling through in-
sulin and IGF-1. Their downstream cascades (the PI3K/AKT/mTOR and Ras/MAPK pathways) are
major modulators of survival and proliferation, and are some of the most commonly overexpressed
pathways in cancer [32,33]. Dietary interventions can also regulate the tumor-suppressor p53
through modulation of aldolase A and its downstream effector, DNA-dependent protein kinase
(Figure 2) [33,34].
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Steroid hormones such as estrogens and androgens are known to connect cancer incidence to
metabolic disease. Adipose tissue is involved in the conversion of androgens to estrogen in men
and postmenopausal women through the production of aromatase in adipocytes. Increased es-
trogen signaling is thought to be one of the mechanisms linking obesity to cancer because it pro-
motes tumor growth by enhancing proliferation signaling and inducing angiogenesis [35].

Modulation of oxidative stress signaling is another factor that plays a role in the effect of dietary inter-
ventions. AKT is an inhibitor of FOXO transcription factors which transactivate oxidative stress resis-
tance programs through enzymes such as heme oxygenase 1 (HO1), superoxide dismutase (SOD),
and catalase [36,37]. High blood glucose levels negatively regulate AMPK through protein kinase A
signaling, thereby preventing the expression of early growth response protein 1, a stress-resistance
factor (Figure 2) [38]. β-Hydroxybutyrate (βOHB), a product of ketogenesis, inhibits histone
deacetylases, thus increasing the acetylation of oxidative stress-resistance factors FOXO3A and
MT2 [39] (Figure 2). In addition, βOHB can suppress tumor growth directly through the induction
of Hopx in mouse models of colorectal cancer (CRC) [40].

The gut microbiome and its derived metabolites
The large population of microbes in the intestinal tract, termed the gut microbiome, is one of the
major players in the interaction between dietary intake and health. The microbiome is one of the
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Figure 2. Low circulating glucosemediates the effects of caloric restriction (CR), fasting, and fasting-mimicking
diets. Many of the most effective dietary interventions aim to reduce circulating glucose, which leads to mobilization and
catabolism of glycogen, and subsequent lipid mobilization and catabolism following depletion of glycogen stores. This
results in the accumulation of acetyl-CoA and the production of ketone bodies [e.g., β-hydroxybutyrate (BOHB), acetone,
acetoacetate] through ketogenesis. Lowered circulating glucose mediates some of the mechanisms observed in these
diets through reduced insulin signaling, activation of tumor-suppressor genes, and inhibition of glycolysis; however, ketone
bodies can induce stress-resistance factors and inhibit the growth of some cancers regardless of glucose levels. Moreover,
many observed effects, such as improvements in immunosurveillance, remain mechanistically unknown and may be associ-
ated with a metabolic shift towards more energy-conserving states during nutrient or caloric restriction.
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first points of contact for orally ingested substances such as nutrients and drugs, and interacts
with these in a profound manner. The gut microbiome maintains the homeostasis of body en-
ergy, intestinal development andmucosal barrier, and immunity, and dysbiosis of the intestinal
microbiota has strong links with many disorders including metabolic syndrome, neurological,
and cardiovascular disorders, and some types of cancer [41–44].

Many of the oncogenic effects attributed to the gut microbiome are consequences of its
importance in inflammation of the digestive tract and other related tissues. Indeed, populations
of specific bacterial strains are linked to chronic inflammation associated with cancers of the
gallbladder, bile duct, and stomach [45–47], and some can act as genotoxic agents that directly
alter genomic integrity and growth signaling in gut cells [47]. General gut dysbiosis through partial
depletion of microbiota during recurrent use of antibiotics has also been associated with an
increased risk of various cancers, including colon, gastric, and lung cancer [48–50], highlighting
the close relationship between the microbiome and health (Box 1).

Over the past decade the gut microbiota has emerged as a powerful mediator of tumor
immunosurveillance, and the gut microbiome can modulate the efficacy of immunotherapy
[51–53]. Althoughmost of these effects have been demonstrated through fecal microbial trans-
plantation, dietary modulation of the microbiome appears to be another effective approach for
improving antitumor immunity. A microbiome-dependent boost in immunosurveillance via the
production of acetate has been shown to be one of the main mechanisms for the antitumor
effects of CR, but not of other energy-restricted interventions such as IF [54]. In addition, sup-
plementation with inosine, a microbiome-derived nucleoside, has been shown to improve the
effectiveness of anti-PD-L1 and anti-CTLA-4 therapeutics in mice by enhancing T cell function

Box 1. The microbiome as a mediator of diet-driven disease
Themicrobiome is a major driving force in metabolism because it can signal to cells within the intestinal mucosa, which can
then relay these signals to the rest of the body through synthesis of metabolic hormones. Through this system, the ecology
of the microbiome can affect key processes such as insulin and glucose metabolism, hunger and satiety signaling, and
adipose tissue dynamics, thus contributing to the metabolic phenotype of an individual, including obesity and associated
metabolic disorders [147]. Dysbiosis can therefore link the gut microbiome to several diseases.

The microbiota modifies dietary components as they travel through our digestive tract and produces metabolites that can
influence cancer. The production of short-chain fatty acids (SCFAs), such as butyrate, acetate, and propionate, through
the digestion of dietary fiber by colonic microorganisms has been linked to the induction of apoptosis by cancer cells, expres-
sion of tumor-suppressor genes, and improved regulation of glucose metabolism [148,149]. Fiber–microbiota interactions
have also been shown to modulate the mucus layer of the intestine in a SCFA-independent manner in animal models, and
can alter mucous production and the immune state towards a tumor-suppressive profiles through reduction of chronic in-
flammation [42,149]. However, studies have suggested that dietary intake of soluble fiber can induce several liver diseases
[150] such as cirrhosis, cholestasis, and hepatocellular carcinoma (HCC) in dysbiotic mice through an increase in fermenta-
tion metabolites and bile acids [151,152]. The gut microbiota may be a key mediator in the cancer-related effect of nutrients
such asω3 fatty acids andmany plant-derived secondary metabolites [149], and is likely to contribute to inflammation-driven
cancers in dysbiotic environments.

Malnutrition can alter the intestinal flora to induce HCC [153] and, conversely, some gut microbes can drive HCC for-
mation through malnutrition, affecting nutrient metabolism during dysbiosis, and leading to liver disease and cancer.
Degradation of tryptophan by gut bacteria can limit its availability in the kynurenine pathway, leading to insufficient
NAD+ synthesis. Insufficient NAD+ production increases cancer risk, which can be reversed through daily supplemen-
tation with NAD+ precursors in populations with tryptophan deficiency [154]. Moreover, non-alcoholic steatohepatitis
(NASH)-induced HCC as well as pancreatic cancer can be prevented and abolished in preclinical mouse models
treated with nicotinamide riboside, a NAD+ booster [58,155]. In line with these findings, a recent study reported that
indole-3-acetic acid (3-IAA), a microbiota-derived tryptophan metabolite, is enriched in pancreatic ductal adenocarci-
noma (PDAC) chemotherapy responders, and that increases in 3-IAA through dietary manipulation boosts the effec-
tiveness of PDAC chemotherapy in mouse models [156].
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[55], and dietary intake of the prebiotics mucin and inulin appears to control tumor growth
through a microbiome-dependent enhancement of antitumor immunity [56].

Given the notable importance of the microbiome in health and disease, and the ecological vari-
ability observed between individuals, it is evident that mapping the gut microbiome of patients,
characterizing dysbiosis, and identifying specific detrimental bacteria implicated in disease devel-
opment or therapeutic responses would be of assistance in precision nutrition.

The immune system and tumor immunosurveillance
One of the main determinants of tumor growth and therapeutic response is the interaction be-
tween cancer cells and immunity. Immunosurveillance is a key mechanism in preventing cancer
growth, and when tumors develop mechanisms to avoid it, or when immune dysregulation com-
promises surveillance, tumors are more likely to arise and/or be resistant to therapy. Nutrition is a
known modulator of immune function by supporting the energy and metabolic requirements
needed for optimal immune function, as illustrated by the clear connection between malnutrition
and poor immune function during famines in developing countries. The lion's share of immune
cells in the body are present throughout the gut-associated lymphoid tissue as a defensive barrier
against orally ingested compounds and invasive pathogens. Some dietary components can elicit
significant immune responses, and overnutrition has been shown to lead to adipocyte-induced
chronic low-grade inflammation through the interleukin 17 (IL-17) axis [57], which can lead to
poor immune function and drive the formation of tumors [58].

Specific micronutrients and metabolites are of also particular importance to immune function. For
example, arginine metabolism is crucial for M1/M2 macrophage polarization and the production
of nitric oxide; selenium is an important regulator of T cell immunity through its selenoprotein-
mediated role in redox homeostasis [59,60]. Many vitamins have been shown to support immune
function and boost immunity: vitamins A and D can induce anti-inflammatory IL-10 production by
regulatory T cells in the gut to prevent inflammation after feeding, while vitamin C has shown to
accumulate in B and T lymphocytes through sodium-dependent vitamin C transporters to sup-
port T cell maturation and B cell expansion [61–63]. Overall, immunity has strong links to dietary
intake, and adequate nutrition is crucial to ensure that pro- and anti-inflammatory signaling is
tightly regulated. Dietary interventions have also been shown to boost immunity through meta-
bolic adaptations to specific dietary regimens in a microbiome-independent manner, thus en-
hancing disease outcomes [64]. Enhanced antitumor immunity has been shown to be a
significant factor in the effects of dietary interventions, particularly those focused on energy re-
striction approaches; however, the underlying mechanisms of their interaction and the degree
of microbiota involvement remain unclear [65–68].

Dietary interventions in cancer treatment: what works?
The study of dietary interventions in cancer has led to numerous philosophies regarding their de-
sign. Interventions can focus on restrictions to overall dietary intake, caloric content, and/or the
timing of meals, with limited focus on the content of the diet itself, such as in CR, fasting, and
time-restricted feeding. Others prioritize nutrient content, favoring specific ratios of different
macronutrients to achieve specific metabolic states that promote health. Some strategies focus
on dietary supplementation or restriction of micronutrients to achieve antitumor effects, whereas
others are based on regional and cultural dietary patterns associated with longevity and health,
such as plant-based diets andMediterranean diets. In this section we discuss the main dietary
interventions that are currently proposed to promote health and therapeutic outcomes in cancer,
their observed effects in preclinical models and early clinical data, and the mechanisms proposed
to be responsible for their anticancer effects. A summary of the evidence can be found in Table 1.
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Table 1. Preclinical studies supporting dietary interventions in cancera

Intervention(s) Year Cancer model(s) Reported results Refs

Serine and glycine restriction 2017 Genetic-driven CRC (loss of APC), lymphoma (Myc activation), pancreatic and
intestinal cancer (Kras-driven)

↑ Survival [19]

KD, BOHB supplement 2022 Carcinogen-induced CRC (AOM/DSS) and genetic-driven CRC (loss of APC) ↓ Tumor burden [40]

CR, fasting, acetate
supplement

2023 Syngeneic CRC (MC38) and BC (4T1) xenografts ↓ Tumor burden (all)
↓ Metastasis (CR)

[54]

Inosine supplement 2020 Genetic-driven intestinal cancer (Msh2 loss), bladder cancer (MB49) and melanoma
(B16_F10) xenografts

↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[55]

Prebiotic supplement 2020 Genetic-driven melanoma (BRAF) and melanoma (YUMM1.5) xenografts ↓ Tumor burden
↑ Antitumor
immunity

[56]

KD, BOHB supplement 2022 Syngeneic CRC (MC38 and CT26) xenografts ↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[66]

KD, BOHB supplement 2021 Genetic-driven melanoma (RET) ↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[67]

CR 2017 Carcinogen-induced HCC (DEN) ∅ Tumor formation
↓ Steatosis and
inflammation

[74]

CR, FMD 2021 Syngeneic BC (4T1) xenografts ↓ Tumor burden
↓ Metastasis
↑ Antitumor
immunity

[75]

CR 2018 Syngeneic CRC (CT26) xenografts ↓ Tumor burden
↓ Cachexia

[76]

FMD 2020 Syngeneic CRC (HCT116 and CT26) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[82]

FMD 2021 Syngeneic BC (4T1) xenografts ↓ Tumor burden
↓ Metastasis

[83]

Fasting 2012 Syngeneic BC (4T1), melanoma (B16), and glioma (GL26) xenografts ↓ Tumor burden
↓ Metastasis
↑ Survival
↑ Chemotherapy
efficacy

[84]

Fasting 2020 Syngeneic lung cancer (393P, LLC, Lacun3) xenografts ↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[85]

Fasting 2016 Syngeneic fibrosarcoma (MCA205) xenograft ↓ Tumor burden
↑ Antitumor
immunity
↑ Chemotherapy
efficacy

[86]

FMD, fasting 2020 Syngeneic BC (MCF7, ZR-75-1, T47D) xenografts ↓ Tumor burden
↑ Hormone therapy
efficacy

[88]

FMD, fasting 2016 Syngeneic BC (4T1) xenografts ↓ Tumor burden
↑ Antitumor
immunity
↑ Chemotherapy

[89]
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Table 1. (continued)

Intervention(s) Year Cancer model(s) Reported results Refs

efficacy

KD 2015 Carcinogen-induced HCC (DEN) ↓ Tumor burden
↓ Steatosis and
inflammation

[93]

KD 2018 Syngeneic CRC (CT26) xenografts ↓ Tumor burden
↓ Cachexia

[94]

KD 2018 Syngeneic pancreatic cancer (K8484) xenografts ↓ Tumor burden
↑ PI3Ki efficacy

[95]

KD, CR 2015 Syngeneic neuroblastoma (SH-SY5Y, SK-N-BE) xenografts ↓ Tumor burden
↑ Survival

[96]

KD 2017 Syngeneic neuroblastoma (SH-SY5Y, SK-N-BE) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[97]

KD 2016 Syngeneic glioblastoma (GL261–luc2) xenografts ↓ Tumor burden
↑ Antitumor immunity

[98]

KD 2015 Syngeneic glioblastoma (GL261–luc2) xenografts ↓ Tumor burden [100]

KD 2010 Syngeneic glioblastoma (GL261–luc2) xenografts ↓ Tumor burden
↑ Survival
↓ Reactive oxygen
species

[101]

Protein restriction 2013 Syngeneic prostate (LuCaP23.1) and breast (WHIM16) xenografts ↓ Tumor burden [106]

Protein restriction, fasting 2015 BC (WHIM16) xenografts ↓ Tumor burden
↓ IGF/mTORC1

[107]

Protein restriction 2018 Syngeneic prostate (LRP-B6–Myc) and kidney (RENCA) cancer xenografts ↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[108]

Protein restriction 2018 Syngeneic lymphoma (Eμ–Myc), CRC (CT26) and melanoma (B16) xenografts ↓ Tumor burden
↑ Antitumor
immunity

[109]

Low CHO and high protein 2011 Syngeneic SCC (SCCVII) and human CRC (HCT-116) xenografts, genetically driven
BC (HER2/Neu–ovalbumin)

↓ Tumor burden
∅ Tumor formation

[110]

Whey supplement 2018 Carcinogen-induced CRC (AOM/DSS) ↓ Tumor burden
↑ mTORC1

[111]

Methionine restriction 2023 Syngeneic CRC (CT26, MC38) xenografts ↓ Tumor burden
↑ Antitumor
immunity
↑ ICI efficacy

[112]

Methionine restriction 2019 Human CRC (CRC119, CRC240) xenografts, genetically driven (KrasG12D/+;
Tp53−/−) soft-tissue sarcoma

↓ Tumor burden
↑ Chemotherapy
efficacy
↑ Radiotherapy
efficacy

[113]

Methionine restriction 2016 Human BC (MCF10AT1) xenografts ↓ Tumor burden [114]

Serine restriction 2013 Human CRC (HCT-116) xenografts ↓ Tumor burden
metabolic
remodeling

[115]

Serine and glycine restriction 2014 Syngeneic CRC (MC38) xenografts ↓ Tumor burden
↑ Biguanides
efficacy

[116]

Leucine restriction 2016 Syngeneic BC (MDA-MV-231, MCF-7) xenografts ↓ Tumor burden [117]

(continued on next page)
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CR, fasting, and fasting-mimicking approaches
CR interventions aim to restrict caloric intake by~10–40%while maintaining a balanced nutrient intake
to prevent malnutrition. CR has been shown to extend lifespan and health span in manymodel organ-
isms [69–72], and to prevent or reduce the onset of many inflammation- and age-related diseases
such as type 2 diabetes, neurodegenerative disease, and cancer. CR leads to reductions in blood glu-
cose and a consequent mobilization of glycogen stores. When carbohydrate stores are depleted, the
body relies on catabolism of lipids through fatty acid oxidation (FAO) in hepatocytes to obtain energy.
This leads to the generation of large amounts of acetyl-CoA and ketone bodies, mainly acetoacetate,
acetone, and βOHB, which tissues such as the heart, brain, and muscle can utilize as fuel (Figure 2).

The positive effects of CR as an anticancer intervention in preclinical models are very clear. First
observed more than 100 years ago [73], CR has been shown to prevent cancer incidence,
slow tumor growth [74], inhibit metastasis, improve antitumor immunity [75], attenuate symptoms
such as cachexia [76], and can even completely block tumor growth in models where chemical
carcinogens normally induce 100% cancer penetrance.

The benefits of CR appear to occur through a series of metabolic adaptations related to lower
levels of blood glucose; these include a decrease in growth factor signaling through reduced
IGF-1 and insulin signaling, upregulation of antioxidant programs leading to decreased DNA dam-
age, reduction in inflammation through reduced circulation of proinflammatory cytokines, and im-
proved host immunosurveillance [77]. Despite considerable evidence that CR is one of the most
effective treatments against cancer in mice, it remains largely ignored by clinicians, and no cur-
rently established lines of treatment prescribe a CR diet as a means to combat cancer.

Fasting aims to cut caloric intake entirely for shorter periods, leading to depletion of circulating
glucose and glycogen stores after~24 h and consequent lipid mobilization and FAO in the liver.
This process leads to many of the same adaptations observed with CR, including reductions in
glucose, insulin, and leptin, and increases in glucagon, adiponectin, and ketone bodies, as well
as reductions in IGF-1 signaling and improvements in resistance to reactive oxygen species

Table 1. (continued)

Intervention(s) Year Cancer model(s) Reported results Refs

Asparagine restriction 2018 Syngeneic BC (4T1, MDA-MB-231) xenografts ↓ Tumor burden
↓ Metastasis

[118]

3-IAA supplement 2023 Syngeneic PDAC (KPC) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[156]

CR 2013 Syngeneic lymphoma (Eμ–Myc) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[163]

Fasting 2015 Human lung adenocarcinoma (H3122), CRC (HCT116) xenografts ↓ Tumor burden
↑ TKI efficacy

[164]

Fasting 2015 Syngeneic pancreatic cancer (BxPC-3, MiaPaca-2, Panc-1) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[165]

Mannose supplement 2018 Human osteosarcoma (U2OS), pancreatic cancer (KP-4) xenografts ↓ Tumor burden
↑ Chemotherapy
efficacy

[168]

aSymbols and abbreviations: ↑, increased; ↓, decreased;∅, arrest of the process; BC, breast cancer; BOHB, β-hydroxybutyrate; CHO, carbohydrate; CR, caloric restriction;
CRC, colorectal cancer; FMD, fasting-mimicking diet; HCC, hepatocellular carcinoma; HER2/Neu-ovalbumin, human epidermal growth factor receptor 2/Neu-ovalbumin; 3-
IAA, indole-3-acetic acid; ICI, immune checkpoint inhibitor; KD, ketogenic diet; PDAC, pancreatic ductal adenocarcinoma; PI3Ki, phosphoinositide 3-kinase inhibitor; SCC,
squamous cell carcinoma; TKI, tyrosine kinase inhibitor.
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[36]. Despite its apparent safety [78,79], prolonged abstinence from caloric intake (also known as
'water fasting') as a therapeutic intervention is difficult to implement because it is often challenging
for patients to comply with and may lead to adverse events and malnutrition in diseased patients.
For these reasons many current approaches utilize dietary strategies to reproduce fasting and
trigger matching metabolic adaptations.

IF is a widely used approach to mimic the effects of fasting. The goal of these approaches
is to sustain a fasted state for long enough to induce the metabolic switch towards FAO
and ketosis, thus triggering the same positive adaptations observed in fasting but in a
more conservative manner to aid with compliance and prolong feasibility [36,80]. A cyclical
IF approach was found to inhibit tumor initiation and delay growth, and synergized with
therapy in settings with different caloric intakes, diet compositions, and bodyweights
[81–86]. The IF approach used depends on the length and periodicity of the fasting win-
dow, and these include time-restricted feeding, 5:2 or twice per week fasting, and alter-
nate day fasting.

Fasting-mimicking diets (FMDs) are another means to exploit the benefits of fasting via amore
feasible regimen. FMDs are diets that have very strong CR (>50%), are high in fat and low in pro-
teins, and are typically supplemented with micronutrients to prevent malnutrition. These diets are
typically applied for 5 consecutive days every 3–4 weeks. Treatment with a FMD promotes
healthy aging and metabolic health [87], has antitumor effects in a variety of cancer models,
and synergizes with various cancer therapies [82,88,89].

KDs, or very low carbohydrate diets, are one of the most promising interventions in the
current landscape of cancer treatment. KDs are an alternative to FMDs, with a focus on
maximally limiting the intake of carbohydrates to ensure chronic limitation of glucose avail-
ability to trigger many of the same adaptations observed in CR and fasting. Maintaining iso-
caloric intake while strongly restricting carbohydrates is a promising concept to capitalize on
the metabolic adaptations of cancer and to maximize the benefits of FAO and ketosis over
longer periods of time, which may not be achievable through CR or fasting. The premise
of the KD lies largely on the restriction of carbohydrates; however, there are different
formulations based on fat and protein contents. The standard KD is based on intake
of~80% fat, 10% protein, and <1% of carbohydrates by weight (95% of calories derived
from fats), supplemented with a mix of vitamins and minerals to avoid malnutrition [90,91].
However, variations such as the high-fat/high-protein and Atkins diet-like KDs typically
have higher amounts of protein, accounting for 30–40% of the total caloric intake [91,92].
The composition of non-carbohydrate macronutrients in a KD is important because adapta-
tions to carbohydrate-restricted diets can trigger a series of compensatory anaplerotic
reactions and de novo synthesis of glucose from glucogenic amino acids. Therefore, the
amino acid composition of these diets must be carefully considered to ensure the induction
of a glucose-restricted physiological state.

Standard KDs have been extensively studied in preclinical models of cancer, and produce
anticancer effects in models of hepatocellular carcinoma (HCC) [93], CRC [40,66,94], and
pancreatic cancer [95], and have shown particularly promising results in models of malignant
glioma [96–102].

The evidence for these approaches as anticancer interventions in preclinical models is solid; how-
ever, the mechanisms underlying the effects of CR, fasting, and FMDs remain largely unknown,
and this has limited their applicability (Box 2).
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Dietary restriction approaches
Evidence that amino acids can enable cancer biosynthesis and growth has generated interest in
protein-restricted diets. However, the role of protein intake in the context of cancer initiation and de-
velopment remains controversial. Evidence from population studies suggests that protein restriction
has a positive influence on longevity and healthspan; however, these benefits appear to be exclusive
to the population under 65 years of age [103,104]. The findings of a recent study suggested that pro-
tein intake of >20% of total calories leads tomajor increases in cancer risk andmortality compared to
a diet with <10% of calories gained from proteins [105]. However, there is a lack of robust evidence
linking protein consumption to cancer, and protein consumption has been hypothesized to act as a
'double-edged sword“ by fueling established tumors through amino acids but having a preventative
role in the formation of tumors by sustaining tissue homeostasis.

Research in preclinical mousemodels has also provided controversial results. Some studies sug-
gest that low-protein diets inhibit tumor growth by downregulating the IGF/mTOR pathway
[106,107] and by enhancing immunosurveillance through reprogramming of tumor-associated
macrophages [108] and inositol-requiring transmembrane kinase/endoribonuclease 1α
(IRE1α)-dependent activation of the unfolded protein response [109]. Other studies have
shown that protein-rich diets protect against tumor growth and initiation [110] and can prevent
colitis-induced CRC through amino acid-mediated activation of mTOR [111]. Therefore, it is likely
that tumors have heterogeneous responses to protein restriction, driving growth signaling and
tissue biosynthesis in some cases, but supporting tissue homeostasis to disrupt tumor growth
in others.

Box 2. How do fasting-related diets work against cancer?
It was widely believed that these approaches target the nutritional dependency of tumor cells, particularly their reliance on
glucose and other metabolites to fuel energy production and biosynthesis. However, cancer cells are known to activate
protective functions and survival mechanisms under selective pressure and metabolic stress, particularly when reduced
and defective vasculature leads to compromised nutrient delivery [157], to ensure that their metabolic demands are satis-
fied through anaplerosis. Therefore, it is likely that there are many mechanisms beyond glucose starvation that influence
the observed pathological response following adherence to fasting-related diets.

Many studies implicate ketones, mainly βOHB, as the agents behind the antitumor effects of these diets, particularly
the KD [67,93,99]. Ketone catabolism varies across tissues because the liver lacks the rate-limiting enzyme SCOT
(succinyl-CoA-3-oxaloacid CoA transferase) and is unable to use ketones as fuel [158]. Tumors can also display
different levels of enzymes involved in ketone catabolism such as SCOT and O-hydroxy-butyrate dehydrogenase
(3-HBDH) [67,159]. This heterogeneity in the ability of tissues to catabolize ketone bodies may explain why ap-
proaches such as the KD are not effective for all tumor types [95,160] and, even if they are effective, their mecha-
nisms of action might extend beyond βOHB. Overall, it is unlikely that ketone bodies alone play a causal role in the
antitumor effects of dietary interventions because there is evidence that other factors, such as growth signaling, in-
flammation, immunosurveillance, mitochondrial metabolism, and angiogenesis, are modified during these ap-
proaches [5,36,158,161] (Figure 2).

It is worth noting that, despite their mechanistic commonalities, these approaches have unique features which may make
them more suitable to treat specific tumors, be more effective in combination with specific therapies, or improve their fea-
sibility and effectiveness in different patient scenarios. In addition, the protective effect of CR and fasting-related diets
against DNA damage in healthy cells [162] has made them an attractive subject to study to improve quality of life and
the effectiveness of chemotherapy during treatment.

In preclinical mouse models, various forms of CR, fasting, and fasting-mimicking diets sensitize cancer cells to chemothera-
peutic interventions such as gemcitabine, tyrosine kinase inhibitors, βOHB, mimetics, tamoxifen, and fulvestrant, and also
reduce side effects caused by toxicity to healthy tissues, thus improving overall treatment performance [86,88,163–165].
These results have accelerated the push for these diets to be implemented as adjuvant therapies that synergize with
established treatments and perhaps overcome therapeutic resistance, which is currently one of the biggest obstacles in
cancer therapy.
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Diets that restrict specific amino acids have also been studied for their anticancer effects, with a
focus on commonly found amino acid synthesis deficiencies. Indeed, inhibition of one-carbon
metabolism through depletion of dietary methionine, serine, cysteine, and glycine was shown
to reduce tumor growth in various preclinical models [19,112–116]. Restriction of other
amino acids, such as leucine and asparagine, also produced antitumor effects in preclinical
models [117,118]. Amino acid composition may be a powerful element in the context of
nutritional interventions because cancers could be evaluated for their specific amino acid me-
tabolism, and diets that restrict particular amino acids could then be used to target specific
tumor types.

Low-fat diets (LFDs) are a commonly used interventions to reduce adiposity and improve met-
abolic health. LFDs typically restrict fat intake to <30% of daily calorie intake and promote the
intake of plant-based foods and fiber. LFDs do not produce reductions in glycemic load or in-
creases in ketone bodies; however, they are effective at promoting loss of body weight and
body fat [119,120]. Dietary and adipocyte-derived lipids have been shown to contribute to
tumor progression and facilitate metastasis [26,29], and it has been proposed that limiting
lipid consumption might have antitumor effects, although there are currently no conclusive
data from preclinical models.

The beneficial effects of LFDs are largely due to the low caloric density of carbohydrates and
proteins compared to lipids (4 kcal/g for proteins and carbohydrates vs. 9 kcal/g for fats),
leading to a passive form of CR, reduced adiposity, improvements in metabolic health,
and consequently improved cancer outcomes. Studies comparing LFDs to diets higher in
fat have found that patients undergoing a LFD have a spontaneous reduction in caloric in-
take of up to 800 kcal/day [120,121].

Alternative dietary approaches
An array of dietary patterns are being studied for their role in aging and cancer. These include
approaches based on adding key supplements to otherwise normal diets (Box 3), regional
diets such as Mediterranean diets, which focus on intake of fruits and vegetables, whole grains,
and fish and plant-sourced protein and unsaturated fats; and vegetarian diets or vegan

Box 3. Supplementation: the optimal approach to nutritional therapy?
Supplementation with specific micronutrients or metabolites is a promising approach to dietary interventions because it
requires a much reduced commitment from patients than altering their diet in a strict and specific manner. With our in-
creasing knowledge on cancer and metabolism, we are uncovering a series of key metabolites that can act as antitumoral
agents, and supplementing an otherwise unrestricted diet with thesemetabolites may be a viable option to improve cancer
outcomes. Many of these metabolites have been characterized through mechanistic studies on diet–cancer interactions,
as is the case in SCFAs that are produced during fermentation of dietary fibers by microbiota, and β-hydroxybutyrate pro-
duced during ketogenesis. These have both been shown to be effective in reducing CRC growth and may be viable sup-
plements in the treatment and management of colon cancer [40,166]. Microbiota-derived acetate has been shown to be
an anticancer agent in caloric restriction and can delay tumor growth when supplemented into an otherwise regular diet
[54]. Supplements to improve the efficacy of existing therapies are also being explored because increases in different me-
tabolites through dietary manipulation, such as tryptophan, 3-IAA, histidine, and mannose, have been shown to improve
the effectiveness of chemotherapy in a variety of cancer models [156,167,168]. Interestingly, boosting NAD+ levels by nic-
otinamide riboside can improve cancer therapeutic treatment and protect from chemotherapy-induced toxicity [169]. Diets
aimed at improving microbial health in the digestive tract through supplementation represent another research area of in-
terest. This can be achieved in multiple ways, including the intake of prebiotics (e.g., dietary fibers) to nourish beneficial
bacteria growth, or probiotics –microorganisms taken through the diet that can colonize the digestive tract. Our increasing
knowledge of how the microbiota interacts with immunity, and how it can modulate immunity to enhance the effect of im-
munotherapies, makes these approaches an attractive strategy to treat cancers that are unresponsive to immunotherapy.
Because the interactions underlying these effects remain to be fully characterized, we do not yet have a clear pattern of
'anticancer microbiota' that could be promoted through dietary interventions.
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diets, which exclude meat and other animal products in favor of plant-based foods. These
diets generally promote healthy body compositions to improve cardiovascular and metabolic
health, although their effects on cancer remain to be explored, largely because of the difficulty
in implementing these 'ingredient-based' diets in preclinical models [122–124].

Development of dietary interventions for clinical use
Despite gaps in our mechanistic knowledge of dietary interventions in the context of cancer treat-
ment, the results of preclinical studies have advanced clinical research using dietary interventions
as a cancer treatment, particularly as adjuvant therapies, with the goal of improving the effective-
ness of current treatments. Ongoing clinical trials using dietary interventions as a cancer treat-
ment are outlined in Table 2.

The focus on dietary interventions in cancer is largely based on 'nutrient-restricted' approaches
that combine CR, fasting, and glucose restriction, and which aim to provide relatively simple
and easy-to-follow guidelines while maximizing the benefits of fasting/CR. However, other dietary
interventions are also being explored in smaller trials. These include essential amino acid restric-
tion, Mediterranean diet-based KD variants, and dietary supplements which may widen the arse-
nal of tools to implement nutritional therapeutics in the clinic. Although data from trials applying
these interventions to larger populations of patients with cancer remain limited, they have pro-
vided a solid base to develop these interventions in larger clinical trials.

Completed clinical trials
Most completed clinical trials have aimed to establish feasible and safe protocols for dietary inter-
ventions. Because dietary habits are strongly rooted in the personal and cultural preferences and
education of each individual, drastically changing the diet of an individual to a treatment is very dif-
ficult, and dropout rates from clinical trials usually account for one in three participants enrolled,
even when the participants are well-informed andmotivated [125–128]. To encourage adherence
to the treatment, many trials offer added assistance such as preformulatedmeals, which are often
provided by the institution itself, as well as dietary counseling and frequent follow-ups with a die-
tician to maintain communication and keep participants engaged. Despite the typically high drop-
out rates, dietary interventions have showed sufficient safety and feasibility, and side effects such
as low-grade fatigue, digestive issues, hypoglycemia, and acidosis have been relatively common
as a result of adaptations to the diet, but severe side effects were rare and were usually associ-
ated with older patients and comorbidities.

Short-term fasting trials have produced improvements in quality of life and cancer risk factors
such as decreased adiposity, fasting glucose, insulin, IGF-1, and leptin levels, as well as
successful induction of ketogenesis by fasting [129,130], FMD [87], and KD interventions
[131–134]. Pilot studies for short-term fasting in combination with chemotherapy have re-
ported improved quality of life, reduced fatigue, and decreased frequency and severity of
chemotherapy-related side effects [135,136], albeit with no conclusive evidence pointing to im-
proved therapeutic responses.

Notably, FMDs have been shown to modulate immunity towards signatures that are typically
associated with improved clinical outcomes [65]. However, 'DIRECT', a multicenter, open-
label, randomized Phase 2 trial for FMD in combination with chemotherapy for patients with
stage II–III human epidermal growth factor receptor 2 (HER2)-negative breast cancer,
assessed the percentage of patients with grade III/IV toxicity, as well as the percentage of path-
ological complete responses over 4 years, and reported a lack of strong clinical improvements
in patients who used an FMD before chemotherapy. However, it also reported that the FMD-

Trends in Molecular Medicine

502 Trends in Molecular Medicine, July 2023, Vol. 29, No. 7

CellPress%20logo


Table 2. Clinical trials evaluating dietary interventions in cancera,b

Dietary intervention
class

Dietary intervention Therapeutic
intervention

Cancer type Identifier

Fasting Fasting 48 h before and 24 h after immunotherapy Immunotherapy Advanced and metastatic
malignant skin neoplasm

NCT04387084

Caloric restriction
and fasting

TRE (feeding 12:00 pm – 8:00 pm) vs. 25% CR None Colorectal cancer NCT05114798

Fasting TRE (16 h fast) for 12 weeks None Colorectal cancer NCT04722341

Fast-mimicking diet FMD, 5 days in 3-week cycles + metformin Chemotherapy Breast cancer NCT04248998

Caloric restriction Short-term CR (4 weeks) Chemotherapy Non-Hodgkin lymphoma NCT05376709

Fasting TRE (14 h fast) Chemotherapy Breast cancer NCT05327608

Caloric restriction 75% CR Surgery Breast, endometrial, and
prostate cancer

NCT02983279

Caloric restriction 6–12 weeks 75% CR Radiotherapy Breast cancer NCT04959474

Fasting TRE (16 h fast) for 12 weeks Chemotherapy Breast cancer NCT05259410

Fasting TRE (16 h fast) for 6 weeks None Endometrial cancer NCT04783467

Fast-mimicking diet Postoperative FMD (800–1000 kcal high-fat diet) for four
cycles

None Colorectal cancer NCT05384444

Fasting TRE (14–16 h fast) for 8 weeks None Endometrial cancer NCT04763902

Caloric restriction 50% CR and aerobic exercise 48 h before
chemotherapy

Chemotherapy Breast cancer NCT03131024

Caloric restriction CR 3 days pre- and 2 days post-chemotherapy for
12 weeks

Chemotherapy Breast cancer and prostate
cancer

NCT01802346

Caloric restriction 15% CR with~25/55/20% kcal in
fat/carbohydrates/protein and moderate exercise

Chemotherapy Hematological cancers NCT05082519

Ketogenic diet 75% Fat KD for 12 weeks Chemotherapy Breast cancer NCT05234502

Ketogenic diet Two-week KD Aromatase inhibitor ER+ breast cancer NCT03962647

Ketogenic diet Isocaloric 3:1 KD None Endometrial cancer NCT03285152

Ketogenic diet Calorie-unrestricted 3:1 KD Chemotherapy Pediatric brain tumor NCT03591861

Ketogenic diet KD 7 days before the first treatment cycle and
continuous after the second cycle

PI3K inhibitors Follicular lymphoma and
endometrial cancer

NCT04750941

Ketogenic diet Macronutrient intake: <30 g/day carbohydrates and
1.5 g/kg/day protein

Chemotherapy Pancreatic ductal
adenocarcinoma

NCT04631445

Ketogenic diet KD for 12 weeks during PI3K inhibitor treatment PI3K inhibitors Breast cancer NCT05090358

Ketogenic diet Isocaloric or protein-restricted KD for~10 days before
surgery

Surgery Breast cancer NCT04469296

Ketogenic diet Energy restricted KD (20–25 kcal/kg/day) for 6 weeks
after radiotherapy

Radiotherapy Glioblastoma NCT01535911

Ketogenic diet Classic KD for 3+ months None Brain cancer NCT05564949

Ketogenic diet KD through prepared meals for 12 weeks None Mantle cell lymphoma NCT04231734

Ketogenic diet Standard of care procedure with or without an adjuvant
KD up to 16 weeks

Not specified Brain metastases NCT05428852

Fasting 72 h fasting cycle before biopsy/resection Surgery Brain cancer NCT04461938

Ketogenic diet Modified Atkins KD (>20 g carbohydrates/day) Radiotherapy Glioblastoma NCT03278249

Ketogenic diet Carbohydrate-restricted diet (>20 g carbohydrates/day)
for 6 months

None Prostate cancer NCT03679260

Ketogenic diet KD for 4 months Radiotherapy and
chemotherapy

Glioblastoma NCT03451799

(continued on next page)
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treated group had no more grade III/IV adverse events than those who did not follow the diet,
despite not being prescribed dexamethasone alongside chemotherapy [137]. Nevertheless,
more recent reports have shown exceptional tumor responses in patients undergoing FMD cy-
cles alongside standard therapy, and advanced tumors with a typically poor prognosis showed
complete and long-lasting responses to therapy [138].

Past trials of KDs in patients with cancer have mostly consisted of pilot studies focusing on safety
and tolerance to the diet, and there have been few randomized controlled trials [139–143]. The
ERGO2 randomized pilot trial applied 3-day cycles of fasting followed by 3 days of a calorie-re-
stricted KD combined with re-irradiation for patients with recurrent glioblastoma or gliosarcoma,
andmeasured the rate of progression-free survival over 6 months as well as secondary measures
related to safety, tolerability, and patient quality of life. The study showed good adherence and
safety, no adverse effects were attributable to the diet, and successful reduction in blood glucose
and induction of ketosis were reported after 6 days of treatment. However, no significant differ-
ences in progression-free or overall survival were observed, partly owing to the short length of
the schedule reported in the trial [144]. Moreover, a randomized, controlled open-label pilot trial
for patients with locally advanced and metastatic breast cancer studied the safety and tolerability
of a medium-chain triglyceride-based KD on breast cancer treated-patients, as well as body
composition changes and overall survival rates. This trial reported similarly good patient involve-
ment, lack of adverse effects, and improvement in physiological parameters, as well as improved
survival rate in the intervention group, although the study was conducted in a small and highly het-
erogeneous group of patients, which compromises the veracity of the results [134].

Studies on CR and LFDs in cancer have mostly targeted lifestyle changes to mitigate the inci-
dence and recurrence of cancers associatedwith obesity, such as breast cancer andCRC, rather
than as a direct therapeutic approach. The Women's Health Initiative randomized controlled trial
conducted a thorough investigation into the use of LFDs as an intervention to improve the

Table 2. (continued)

Dietary intervention
class

Dietary intervention Therapeutic
intervention

Cancer type Identifier

Ketogenic diet Continuous or cyclical (15 days on/15 days off) KD
(<40 g/day CHO)/βOHB supplementation

Immunotherapy Renal cell carcinoma NCT05119010

Ketogenic diet KD + metformin PI3K inhibitor Glioblastoma NCT05183204

Ketogenic diet Isocaloric 2:1 KD for six 4-week cycles None Glioma NCT05373381

Fast-mimicking diet 4-day low-calorie, low-protein, vegetarian diet 3 days
before chemotherapy

Chemotherapy Breast cancer (HR+, HER2−) NCT05503108

Fast-mimicking diet FMD, 5 days in 3 week cycles + metformin Chemotherapy Lung adenocarcinoma NCT03709147

Low protein diet 10% Protein intake vs. a 20% protein intake control Immunotherapy General NCT05356182

Ketogenic and
low-protein diet

Isocaloric KD (65% lipids) vs. 20% protein reduction
from usual intake

Surgery Breast cancer NCT04469296

Mediterranean diet Low-carbohydrate Mediterranean diet (35% CHO) vs.
low-fat Mediterranean diet (10% fat)

None Prostate cancer NCT05590624

Amino acid restriction Nonessential amino acid restriction Chemotherapy Metastatic pancreatic cancer NCT05078775

Amino acid restriction Nonessential amino acid restriction Chemotherapy Metastatic colorectal cancer NCT05183295

Mediterranean diet
and low-fat diet

Mediterranean diet supplemented with extra-virgin olive
oil or low-fat diet

None Breast cancer NCT04174391

aTrials listed at clinicaltrials.gov as of April 2023.
bAbbreviations: βOHB, β-hydroxybutyrate; CR, caloric restriction; FMD, fasting-mimicking diet; KD, ketogenic diet; PI3K, phosphoinositide 3-kinase; TRE, time-restricted
eating.
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outcomes of women suffering from breast cancer. The results showed similar rates of breast can-
cer incidence but an overall lower incidence of death in the intervention group [145].

Previous clinical studies have highlighted the feasibility and safety of dietary interventions, but pa-
tients with cancer are not typically given specific dietary advice and are encouraged to consume
a caloric excess to maintain their bodyweight through treatment cycles. However, the data on im-
proved disease outcomes as a direct consequence of dietary interventions are inconsistent.
Extracting valid and reproducible results will require greater effort, and current and upcoming stud-
ies are aiming to use large-scale, controlled randomized trials to evaluate disease progression and
survival in cancer after applying diets in combination with specific therapeutic interventions.

Current and future clinical trials
Owing to the efforts of early trials, most ongoing studies focus on the effect that dietary interven-
tions have on specific physiological parameters and, most importantly, on pathologic responses
(Table 1).

Ongoing and upcoming trials largely focus on fasting, fasting-mimicking, and CR approaches
applied to cancers with poor prognosis. This is highlighted by the notable focus on the KD
as a treatment for glioblastoma and other brain cancers (NCT01535911i, NCT03278249ii,
NCT05373381iii, and NCT03451799iv). These cancers have a dismal prognosis owing to their
aggressiveness and the lack of effective lines of treatment, and promising preclinical results for
a KD on brain tumor development have prompted clinicians to promote ketogenic and fasting ap-
proaches as a means to enhance therapy and extend lifespan (Table 1).

Other dietary approaches being studied include the implementation of nonessential amino acid-
restricted diets for the management of metastatic pancreatic and CRC alongside chemotherapy
(NCT05078775v and NCT05183295vi), or Mediterranean diet variations to prevent the recurrence
of breast cancer (NCT04174391vii).

Furthermore, the principles of precision nutrition are being used to identify specific diet/drug com-
binations that would boost the effectiveness of existing drugs and overcome resistance. One of
the most promising combinations is that of KDs and phosphoinositide 3-kinase (PI3K) inhibitors.
PI3K inhibitors target hyperactivation of the PI3K pathway which is a frequent metabolic driver of
cancer in humans. However, this therapeutic approach is inconsistent owing to insulin feedback-
mediated resistance mechanisms. Suppression of insulin feedback through carbohydrate-
restricted diets such as the KD has been shown to improve PI3K inhibitor efficacy in preclinical
models [95], and ongoing trials are aiming to establish the KD as an effective adjuvant therapy
for PI3K inhibitors in various tumors (NCT04750941viii, NCT05090358ix, and NCT05183204x)
(Table 1). The positive effects of fasting and a KD on anticancer immune responsiveness has
also led clinicians to begin to evaluate dietary interventions to boost the effects of immune check-
point inhibitors (NCT05356182xi and NCT04387084xii) given that many cancers fail to respond to
this powerful therapeutic approach [146]. Given the heterogeneity between different types of can-
cers, further exploration of specific cancer–drug–diet synergies will be essential for the further de-
velopment of the field, and establishing specific lines of treatment for each cancer and patient will
be crucial to improve therapeutic effectiveness.

Overall, dietary interventions have beenwell studied in the context of cardiovascular disease, can-
cer, and metabolic diseases, and have shown sufficient safety and feasibility when applied to
humans. Despite this, effective anticancer effects are often inconsistent, and current and upcom-
ing clinical trials will be essential to evaluate the efficacy of these interventions alongside
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Clinician’s corner
Diet is one of the most significant risk
factors for cancer, and a substantial
proportion of preventable cancer
incidence can be attributed to poor
and toxic dietary habits. Animal
models have demonstrated that diet
plays a crucial role not only in cancer
prevention but also in cancer
progression and treatment.

Several types of dietary interventions
have shown promising therapeutic
effects in preclinical mouse models
of cancers. Despite ongoing trials
to determine the clinical utility of
dietary interventions, these are
rarely prescribed by clinicians for
treating cancer, partly because of
the lack of mechanistic insights and
precise, well-controlled studies in
humans.

Dietary interventions are a holistic
approach to cancer treatment that is
affordable, highly customizable, and
generally associated with few or
modest adverse effects. Although
there are currently insufficient data
from large-scale clinical studies to
support widespread implementation
of these diets as a primary treatment
for cancer, there is a growing effort
to characterize their effects on cancer
and incorporate them into clinical
practice.

Dietary interventions require drastic
behavioral changes, which may
severely compromise adherence to
treatment, and their effects in cancer
treatment may depend on the health
status (diabetes, obesity etc.),
disposition, and cancer type of each
patient. Moreover, many people find
prolonged caloric restriction or fasting
difficult to maintain because of diverse
side effects (e.g., fatigue, headache,
nausea, constipation, hypoglycemia).
Finding metabolites that can prevent
cancer would be a solution to
circumvent these difficulties.

Precision nutrition approaches
tailored to specific patient and
cancer scenarios, such as dietary
interventions or supplementation
with key micronutrients and
metabolites, are a promising
strategy in the current oncology
landscape. These approaches may
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established therapies. Furthermore, commonly observed adverse effects, such as low-grade fa-
tigue, digestive issues, hypoglycemia, and acidosis, which occur as a result of adaptation to a
new dietary regimen, can result in inflammation of the liver and pancreas and excessive circulating
triglycerides and cholesterol [5]. Therefore, these adverse effects require careful and personalized
approaches to ensure that dietary interventions do not deteriorate the condition of a patient or
disrupt their treatment.

The precision nutrition approach aims to employ specific dietary regimens informed by specific
tumor profiles and patient considerations to maximize treatment efficacy while limiting toxicity
and possible complications. In addition, introducing dietary interventions into the clinic requires
the establishment of consistent and effective protocols to determine dietary content in terms of
caloric intake, macronutrient shares of calories, micronutrients, and possible supplements. The
periodicity and duration of these interventions, as well as their combination with other treatments,
are other important aspects that remain to be defined. Creating uniform and streamlined guide-
lines for dietary therapeutics will aid in designing powerful and productive large-scale clinical trials
that will help to refine and accelerate their development.

The future of dietary interventions in the treatment of cancer
As we have highlighted throughout this review, diet is a powerful modulator of many of the axes
involved in cancer, including growth signaling, immunity, and the microbiome. The study of die-
tary interventions in the context of disease is a mechanistically young and rapidly expanding
field. However, over the coming years the information obtained from these studies will contribute
to an in-depth characterization of cancer–nutrient interactions, and will help to refine the method-
ology and approaches to cancer treatment through dietary interventions.

Given the broad-spanning impact of nutrition on health, there are many considerations re-
garding the applicability of nutritional therapies to individuals; it is therefore essential to
apply specific regimes based on the unique scenario of each patient. For example, high
lipid density diets such as KDs may be unsuitable for patients with atherosclerosis,
carbohydrate-rich diets may be unsuitable for diabetic patients, and CR or fasting may be
unsuitable for underweight patients. Tumor nutritional preferences, inflammatory status,
and microbiota interactions are also key considerations when aiming to optimize antitumor
effects. Indeed, 'glucose hungry' tumors, which have undergone a major shift towards gly-
colysis, will suffer more from carbohydrate restriction, whereas those that rely on lipids (e.
g., triple-negative breast cancers and ovarian cancers) may be more effectively treated
with a LFD. The same could be applied to cancers with deficiencies in specific pathways
of amino acid metabolism – where restriction of foods containing specific amino acids may
be a valid strategy during treatment. Synergies between specific treatments and diets are
another important factor to consider because tumors that develop weak responses to immu-
notherapy may benefit most from diets that improve immunosurveillance.

Implementing lifestyle changes at a societal level is a difficult task. Dietary intervention trials suffer
from relatively high dropout rates, typically in the range of 20–40% of participants [125–128]. In
addition, the feasibility of some of these diets can be a strong limiting factor because interventions
such as strong CR, fasting, or KD are difficult to implement for long periods. It is therefore crucial
to understand the mechanisms of action of each diet (although they may have similarities) to es-
tablish personalized treatments through precision nutrition, and transform cancer treatment from
a one-size-fits-all approach to bespoke interventions for specific cancer types and patients. It is
also essential to identify small molecules and therapeutic targets to establish novel lines of treat-
ment that could circumvent the need for dietary interventions.
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soon become a new pillar in cancer
treatment, given their apparent
effectiveness, flexibility, and synergy
with existing therapies.
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Concluding remarks
The advent of molecular oncology – the ability to analyze tumors in depth and classify them based on
their molecular profile – has shifted the philosophy of treatment from generalized treatments for most
cancer types towards specific approaches tailored to each cancer type and stage. This approach has
not only led to major improvements in the outcomes of patients suffering from cancer but can also be
applied to nutrition, combining clinical data with microbiome screens, nutrigenomics, molecular diag-
nostics, and metabolomics to develop dietary regimes aimed at targeting specific cancer abnormal-
ities while maintaining or improving patient metabolic health (Figure 3).

This approach will require a more thorough characterization of cancer–nutrition interactions,
combined with clinical data to validate these observations and standardized high-throughput
metabolic and microbiome screens. Owing to the promising potential of precision nutrition as a
future therapeutic approach, it will be crucial to further study dietary interventions to understand
how they affect host health and disease states. In-depth understanding of dietary interventions
will allow us to produce more refined treatments by designing specific diets for individuals
based not only on their disease state but also on their metabolism and pre-existing conditions,
to maximize tolerability and safety and improve patient health. Given the powerful effects that di-
etary interventions have shown in preclinical data and early clinical trials, this approach represents
the advent of a new era in cancer therapy which has the potential to treat many difficult cancers by
embracing metabolic interventions alongside existing treatment (see Outstanding questions).
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Outstanding questions
Are dietary interventions a viable
strategy for the treatment of cancer?
How can dietary interventions
improve cancer outcomes?

What are the mechanisms underlying
the positive effects of dietary
interventions in preclinical and early
clinical data? How does diet impact
on metabolism, microbiota, immunity,
and other aspects of health?

Which patients could benefit from
dietary interventions, and how can
these interventions be tailored based
on the health and status, cancer type,
and metabolic profile of each patient?
Precision nutrition is a crucial aspect
of developing nutritional therapeutics.
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