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Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against
many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in
mammals. L-Methionase producing bacterial strain(s) can be isolated by 5,5-dithio-bis-(2-nitrobenzoic acid) as a screening dye.
L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis
due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation
due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na2+, Ca2+, K+,
and Cl− become overexpressed. Further, the 𝛼-subunit of ATP synthase plays a role in cancer cells growth and development by
providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along
with enzyme methionase that converts prodrug into active toxic chemical(s) that causes death of cancerous cells/tissue. More
recently, fusion protein (FP) consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins
have advantage that they have specificity only for cancer cells and do not harm the normal cells.

1. Introduction

L-Methionine-𝛾-lyase (EC 4.4.1.11; MGL), also known as
methionase, methioninase, L-methionine-𝛾-demethiolase,
and L-methionine methanethiol-lyase (deaminating), is a
pyridoxal phosphate (PLP) dependent enzyme. PLP reduces
the energy for conversion of amino acids to a zwitterionic
carbonion [1] and substantially the apoenzyme catalyzes the
cleavage of substrate bond yielding the product [2]. MGL
is a cytosolic enzyme inducibly formed by addition of L-
methionine to the culture medium [3]. MGL has a molecular
weight (Mr) of about 149 kDa to 173 kDa and consists of four
subunits with identical Mr of about 41 kDa to 45 kDa each
except MGL purified to homogeneity from Pseudomonas
putida (ovalis) whichwas found to consist of twononidentical
subunits of 40 kDa and 48 kDa [4].

L-Methionine must be incorporated into the human diet
in order to biosynthesize L-cysteine (Figure 1) by trans-
sulfuration pathway [5]. In yeast, methionine and cysteine

supplementation was required in order to biosynthesize
cysteine or methionine, respectively. The microorganisms
can synthesize the sulphur containing amino acids by uti-
lizing inorganic sulphate via the de novo cysteine biosyn-
thesis pathway [6]. Escherichia coli and plants utilize the
forward trans-sulfuration pathway such that methionine
is biosynthesized from cysteine or they may utilize inor-
ganic sulphate via de novo cysteine biosynthesis [7, 8].
There are different kinds of methionine biosynthesis path-
ways in different organisms as described in the MetaCyc
database. E. coli K-12 methionine biosynthesis-I pathway
that involves methionine biosynthesis from homoserine,
methionine biosynthesis by transsulfuration. Arabidopsis
thaliana, methionine biosynthesis-II pathway that involves
methionine biosynthesis from homoserine-II. Corynebac-
terium glutamicum, Leptospira meyeri, and Saccharomyces
cerevisiae follow methionine biosynthesis-III pathway that
performs homoserine methionine biosynthesis and methio-
nine biosynthesis by sufhdrylation. Arabidopsis thaliana,
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Figure 1: General approach of methionine metabolism (modified from [46]). L-Methionine is mainly supplied exogenously from dietary
proteins. The enzymes involved in this pathway are (1) methionine adenosyltransferase; (2) S-adenosylmethionine methyltransferases; (3)
adenosylhomocysteinase; (4) 5-methyltetrahydrofolate-homocysteine methyltransferase (in mammals betaine-homocysteine methyltrans-
ferase or homocysteine methyltransferase); (5) cystathionine-𝛾-synthase; (6) cystathionine-𝛾-lyase; (7) 𝛼-ketoacid dehydrogenase.

Bacillus subtilis, Klebsiella oxytoca, Klebsiella pneumonia,
Lupinus luteus, andOryza sativa follow methionine salvage-I
pathway while Homo sapiens and Rattus norvegicus possess
methionine salvage-II system. Bacillus subtilis, Corynebac-
terium glutamicum, Leptospira meyeri, Pseudomonas aerug-
inosa, Pseudomonas putida and Saccharomyces cerevisiae
possess a unique superpathway of methionine biosynthesis
(by sulfhydrylation). On other hand, Arabidopsis thaliana,
Lupinus luteus, Oryza sativa, Plantago major, and Solanum
lycopersicum follow Yang cycle/MTA cycle [9]. E. histolytica
and T. vaginalis have a methionine catabolic pathway and
elements of a de novo sulphide biosynthetic pathway for
cysteine biosynthesis in E. histolytica. These differences in

cysteine metabolism between humans and parasites are of
particular interest, especially for the future development of
antiparasitic compounds. Currently, de novo engineering of
a human MGL has been followed for achieving systemic L-
methionine depletion in cancer therapy [10].

2. Sources of MGL

MGL is widely distributed in bacteria, especially in Pseu-
domonas spp. and is induced by the addition of L-methionine
to the culture medium. Crystal structures of MGL have
been reported from Pseudomonas putida (P. putida) [17,
18], Citrobacter freundii [47], Trichomonas vaginalis [3],
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Table 1: Potential sources for L-methionine 𝛾-lyase isolation.

Source Examples Reference(s)

Bacteria

Brevibacterium linens [11]
Clostridium sporogenes [12]
Citrobacter intermedius [13]
Citrobacter freundii [14]
Porphyromonas gingivalis [15]
Pseudomonas ovalis [16]
Pseudomonas putida [17, 18]
Treponema denticola [19]
Micrococcus luteus, Arthrobacter
sp., Corynebacterium glutamicum
and Staphylococcus equorum

[20]

Protozoa Trichomonas vaginalis [3]
Entamoeba histolytica [21–23]

Plant Arabidopsis thaliana [24]
Archaeon Ferroplasma acidarmanus [25]

Fungus

Aspergillus sp. RS-1a [26]
Geotrichum candidum [27]
Aspergillus flavipes

[28]

Scopulariopsis brevicaulis
A. carneus
Penicillium notatum
Fusarium solani

and Entamoeba histolytica [21, 22]. The MGL was isolated
from different sources such as bacterial, protozoans, fungal,
archaeon, and plants (Table 1).

3. MGL Isolation

The bacterial, protozons, archaeal, and plants produce intra-
cellular MGL and fungal sources produce extracellular MGL.
Therefore isolation of MGL from microbial sources required
cell disruption by chemical, enzymatic, and mechanical
methods. Fugal sources produce extracellular MGL; thus,
there is no need for cell disruption. Amongst above described
MGL sources, P. putida is reported to be the best source
for MGL production. P. putida cell pellets were disrupted
by passage through French press. The ammonium sulphate
precipitated crude cell lysate was applied on DEAE-cellulose
and Sephadex G200 column, respectively. The MGL specific
activity (Units/mg protein) from P. putida was 14.20 that
improved to 3,735 after column chromatography, whereas,
in case of Aspergillus flavipes, the specific activity (Units/mg
protein) was 12.58. A. flavipes required 10-day incubation
period for growth and 8 days for production time, whereas
P. putida needed 24–48 h incubation and production time
for growth [17, 28]. Microorganisms are most important
and convenient sources of commercial enzymes production.
Moreover, they have an advantage that they can be cultivated
by using inexpensive media and enzyme production occurs
in short time.

4. Biochemical Reaction Catalyzed by MGL

MGL catalyzes the conversion of L-methionine to 𝛼-keto-
butyrate, methanethiol, and ammonia by 𝛼, 𝛾-elimination
reaction (Figure 2).

5. Methionase Assay

The free sulphydryl group in solution could be quantita-
tively measured [48] by 5,5-dithio-bis-(2-nitrobenzoic acid)
(DTNB).TheDTNBwas used as screening dye in agar media
to detect methanethiol, which reduces DTNB to form yellow
coloured aryl mercaptan (2-nitro-5-thiobenzoate or TNB)
around the bacterial colony that is able to produce MGL
enzyme. DTNB has little absorbance, but when it reacts with
thiol (SH) groups on proteins under mild alkaline conditions
(pH 7-8), the 2-nitro-5-thiobenzoate anion (TNB2−) gives
an intense yellow color (Figure 3). Ellman’s reagent is useful
assay reagent because of its specificity for SH groups [49]
at neutral pH, high molar extinction coefficient, and short
reaction time. MGL activity was quantitatively assayed by 3-
methyl-2-benzothiazolone hydrazone (MBTH) which deter-
mines the amount of 𝛼-ketobutyrate produced spectropho-
tometricalIy at 320 nm.The 3-(4,5-dimethylthiazol-2-yl)-2,5-
dimethyl-tetrazolium bromide (MTT) assay [50] was used to
determine the in vitro growth inhibition of tumour cells by
MGL treatment.

6. Methionine Requirement in Cancer Cell

Tumours cells have uncontrolled rapid growth and prolifer-
ation as compared to the normal cells [51]. Many malignant
human cell lines have enhanced requirements of methionine
for high protein synthesis and regulation of DNA expression
in cancer cells [31, 52–57]. Methionine is converted to S-
adenosylmethionine and it becomes methyl donor for DNA
methylation, an epigenetic phenomenon [58–61] associated
with cancer (Figure 4). The high methionine diets were
associated with increased prostate cancer risk. The higher
availability of L-methionine leads to higher bioavailability
of S-adenosylmethionine to donate methyl groups to DNA,
resulting in DNA hypermethylation of regulatory regions,
including tumour suppressors [62, 63].

TheCpG is a cytosine-guanosine (CG) dinucleotideDNA
sequence, in which the cytosine undergoes chemical modifi-
cation to contain a methyl group.Themethyl binding protein
(MBP) primarily was involved in gene regulation of normal
cells to exert transcriptional control and also exploited by
cancer cells to escape such control [64]. DNA methylation
is essential for normal development but in some diseases,
such as cancer, gene promoter CpG islands acquire abnor-
mal hypermethylation. The transcriptional silencing due to
hypermethylation was inherited by daughter cells following
cell division. Alterations of DNA methylation have been
recognized to play important role in cancer development.
The CpG hypermethylation has been observed in cancer
cell lines such as breast, colon, lung, head and neck squa-
mous cell carcinomas, glioblastoma, acute myeloid leukemia,
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medulloblastoma, and testicular germ cells tumours [65].
UHRF1 (also known as ICBP90) and DNA methyltrans-
ferases (DNTs) are involved in maintenance of mammalian
DNA methylation. UHRF1 (ubiquitin-like, two zinc-finger
domains PHD, RING), also known as NP95 in mouse
and ICBP90 in human, is required for maintaining DNA
methylation. ICBP90 binds to the methylated retinoblastoma
gene (RB1) gene promoter in the G1 phase and allows cells to
smoothly enter the S phase [66, 67]. DNMT1 was found to be
the sole detectable DNA methyltransferase in all murine tis-
sues and cell types examined till date. Pyrosequencing assays
were used to measure the DNA methylation of CDKN2A,
RASSF1, CYGB, CDH13, DNMT1, DNMT3A, DNMT3B, and
UHRF1 promoters [68]. UHRF1 overexpression in zebrafish
hepatocytes causes DNA hypomethylation, Tp53-mediated
senescence, and hepatocellular carcinoma [69, 70]. Restric-
tion landmark genomic scanning (RLGS) was also used to
assess themethylation in humanmalignancies. L-Methionine
downregulates the genes belonging to protein kinase families
on MCF-7 breast cancer cells and LNCaP prostate cancer
cells and showed antiproliferative effect. L-Methionine also
activates some of the genes involved in cellular redox regu-
lation [71]. L-Methionine is required for the biosynthesis of
the polyamines spermine and spermidine, which are mainly
involved in cell proliferation [72]. The site-specific hyperme-
thylation of cancer-related genes and miRNAs (microRNAs)
hypomethylation occur in many cancers. Hypomethylation
of miRNAs result in genome instability and activation of
protooncogenes. The hypermethylation causes repression of
tumour suppressor miRNAs by hypermethylation of their
corresponding promoter loci. The miRNAs regulate gene
expression within a cell and in the neighboring cells [73–75].

The normal cells have methionine synthase and can form
methionine from homocysteine by methyl tetrahydrofolate
and betaine as methyl group donors [76]. Methionine-
dependent tumour cell lines present no or low levels of
methionine synthase [51]. The dependence of tumours
on methionine synthase for various cell lines in com-
parison to the normal cells has been previously reported
[77–79]. L-Methionine is required for the synthesis of
vitamins, antioxidants, DNA stabilizers, epigenetic DNA
modulators, coenzymes [61, 80, 81], proteins, polyamines
(proper cell development), antioxidative stress defense
(glutathione/trypanothione), iron-sulfur cluster biosynthesis
(energy metabolism), and methylation reactions and it also
regulates the gene expression [5–8, 78]. The L-methionine
is the first amino acid incorporated into many functional
proteins during translation and also serves as a precursor
for cysteine biosynthesis. Methionine dependence has been
observed in many human cancer cell lines and cancer
xenografts in animal models [82–84]. Methionine depen-
dence is a metabolic defect seen only in cancer cells and
such malignant cells do not grow in a medium in which
methionine is depleted [30, 85]. Thus, L-methionase has
received appreciable attention as a therapeutic agent against
various types ofmethionine dependent tumours [86].Dietary
factors and epigenetic regulator play essential roles in anti-
tumour activities [87]. Several approaches such as starvation
of the tumour cells for methionine using methionine-free

Table 2: Cancer cells lines that possess methionine dependency.

Methionine dependent cell line(s) References
PC-3 cell line human prostate [29]
Prostate cancer PC3; lung carcinoma SKLU-I;
fibrosarcoma
HT 1080

[30]

Lung adenocarcinoma A-549 and the
acute lymphoblastic leukemia CCRF-HSB-2, [31]

W 256 [32]
D-54, SWB77 (human glioblastomas) and Daoy
(human medulloblastoma) [33]

Human melanoma cell line MeWoLC1 [34]

diets display a reliable efficacy against various types of tumour
cells [88]. When tumour cells were deprived of methionine
in a homocysteine containing medium in vitro, they were
reversibly arrested in the late S/G

2
phase of the cell cycle

andfinally undergo apoptosis [89–91].Themethionine/valine
depleted, tyrosine lowered, and arginine enriched in the diet
were the most rationalized form of diet to achieve inhibition
of tumour growth [92, 93]. The methionine-free diet is
therapeutically not efficient due to economic and technical
considerations [88]. A breast cancer cell line MDAMB468
showed methionine dependence and this dependency was
due to SAM limitation [94].There are a few othermethionine
dependent cell lines (Table 2) reported in the literature.

Cancer cells showed Warburg effect that refers to an
increased utilization of glucose via glycolysis and was com-
mon in cancerous cells [95]. Glucose transport in cells is rate-
limiting step for glucose metabolism mediated by facilitative
glucose transporter (GLUT) proteins. The sugar transporters
become activated in cancer cells so they incorporate higher
amounts of sugar than normal cells. In tumour cells mem-
brane transporter and channel proteins enhance uptake
from outer sources and endogenous synthesis increases
amongst many transporters glucose transporters (GLUTs)
and sodium dependent sugar transporters (SGLT) play main
role [96, 97]. The SGLT transporters comprises the sodium-
glucose symporter SGLT2 expression was significantly higher
in liver and lymph node [98]. The tumour has increased
fatty acid synthesis and increased rate(s) of glutamine
metabolism. High degree of GLUT1 expression has been
reported in human hepatocellular carcinoma, oral cancer
[99] and human pancreatic carcinoma (PC) cell line [100–
105], andMKN45 (human gastric cancer).The glucose passes
through membrane by facilitated diffusion via GLUT or by
active transport through a SGLT [106]. Therefore cellular
metabolic enzymes such as glucose transporters, hexokinase,
pyruvate kinase, lactate dehydrogenase, pyruvate dehydroge-
nase kinase, fatty acid synthase, and glutaminase targeting
enhance the efficacy of common therapeutic agents [95].
GLUT-1 overexpression increased matrix metalloproteinase-
2 (MMP-2) promoter activity and was involved in binding
of p53 to the MMP-2 promoter [107]. Solute-linked carrier
family A1 member 5 (SLC1A5) mediates glutamine transport
was overexpressed an associated with squamous lung cancer
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[108]. CPT-1 transporter helps in fatty acids transport in
the form of acyl CoA and converted acetyl CoA. Acetyl
CoA enters the TCA cycle and produces NADH which fuels
the cell by oxidative phosphorylation [104]. AKT (protein
kinase B PKB), a serine/threonine specific protein kinase
activation, promotes cell growth, survival, and upregula-
tion of ER-UDP hydrolysis enzyme as observed in human
cancers. The ectonucleoside triphosphate diphosphohydro-
lase 5 (ENTPD5), an endoplasmic reticulum (ER) enzyme,
elevated lactate production under aerobic conditions [109].
ENTPD5 expression and AKT activation is common in
both cultured prostate cancer cell lines and primary human
prostate carcinoma. Lowered ATP/AMP ratio increases gly-
colysis, elevates lactate production, and provides glycolytic
intermediates for biomass production. The overexpressed 𝛼-
subunit of ATP synthase, in breast cancer, was involved in
the progression and metastasis of breast cancer [110, 111].
Periplocin downregulated the ATP synthase ecto-𝛼-subunit
(ATP5A1) and eukaryotic translation initiation factor 5A-1
(eIF5A) by periplocin mediated growth inhibition of A549
cells [112]. ATP synthase was upregulated in cancer cells
[113, 114]. Ion channels like Na2+, Ca2+, K+, and Cl− play
significant role in cells. The intracellular chloride channel
(CLIC) plays an essential role in cellular function, pH,
electrogenic balance and maintaining membrane potential
in organelles. The chloride channel (CLIC1-5) except CLIC4
became overexpressed in cancer cells. CLIC4 expression
reduced in tumour cells [115, 116] and ion channels used
to inhibit cancer cell growth [117]. The flow of potassium
ions plays important functions, such as cell proliferation,
angiogenesis or cell migration, which have also recently
been assessed [118, 119]. ABC transporters require energy
in the form of adenosine triphosphate (ATP) to translocate
substrates across cell membranes. This protein can transport
cationic or electrically neutral substrates as well as a broad
spectrum of amphiphilic substrates [120]. The ABCG2 (G-
subfamily of human ABC) transporter was downregulated
in cancer cells [121]. ABC transporters showed multidrug
resistance (MDR) in cancer cells by the overexpression of
ABC transporters which increased efflux of drugs from can-
cer cells, thereby decreasing intracellular drug concentration
[122, 123].

7. Utilization of MGL in Cancer Therapy

7.1. Combinational Therapy. Therapeutic exploitation of P.
putida MGL to deplete plasma methionine has been exten-
sively investigated [65, 66]. The MGL was tested as a potent
antiproliferative enzyme towards Lewis lung and human
colon carcinoma [124], glioblastoma [33], and neuroblastoma
[125]. The cancer cell targeted drugs, that is, small molecules,
are not fully effective because cancer stem cells are able
to expel the drugs before the cancer cells are destroyed
and the cancer cells are then able to renew and produce
relapse of the disease. A therapeutic approach to deplete
methionine from tumours is to treat the cells with recombi-
nant MGL from P. putida [PpMGL]. The growth of human
tumours in vivo and in vitro (xenographed in nude mice) is

reported to be inhibited upon treatment with recombinant
PpMGL when compared to normal cells [126]. Reduction
in cell growth is also achieved by integrating PpMGLgene
into human lung cancer cells by using a retroviral-based
vector. The treatment with exogenous recombinant PpMGL,
in order to deplete intracellular and extracellular methio-
nine (Figure 5) levels, has been attempted [38, 127]. MGL
alone or in combination with chemotherapeutic agents such
as cisplatin, 5-fluorouracil (5-FU), 1-3-bis(2-chloroethyl)-1-
nitrosourea (BCNU), and vincristine has shown efficacy and
synergy, respectively, in mouse models of colon cancer, lung
cancer, and brain cancer [41, 125, 128]. It was also reported
that MGL introduced by adenovirus vector inhibited the
growth of tumours in vitro. MGL, when combined with
selenomethionine [SeMET], a suicide prodrug substrate of
MGL, inhibited tumour growth in rodents and prolonged
their survivals [127].

The effect of prodrug [Selenomethionine] and the toxic
product [Methylselenol] synthesized in the tumour cells is
presented below:

Selenomethionine +H
2
O

𝐿-Methionase
→ 𝛼-Ketobutyrate

+ Ammonia +Methylselenol

(1)

The MGL gene product, 𝛼-methionine-𝛾-lyase converts
nontoxic SeMET to methylselenol that catalyzes oxidation of
thiols to generate toxic superoxide. Apoptosis occurs mainly
via a mitochondrial pathway [89]. Methylselenol readily
diffused to the surrounding nontransduced tumour cells,
destroying the mitochondrial membrane by the oxidative
stress [39]. Treatment of the transduced cells with exogenous
selenomethionine is found to inhibit tumour cell growth
[129].Themethylselenol is required in very low concentration
to induce cell cycle arrest and apoptosis [130]. Methylselenol
promotes the expression of matrix metalloproteinase (MMP)
and tissue inhibitor ofmetalloproteinase (TIMP) that inhibits
the migration of tumour cells [131]. Methylselenol induced
apoptosis reported in many cancer cells such as murine
melanoma B16F10 [132], fibrosarcoma cells HT1080 [130, 131,
133], colon cancer derivedHCT-116 [134], andhuman prostate
cancer cells LNCaP [135]. Methylselenol inhibits cell prolifer-
ation in the cancerous HCT116 cells as compared to normal
cells NCM460 [134].Methylselenol rapidly decreased cellular
prostate-specific antigen (PSA) level in LNCaP cells [135].
ROS promote cell proliferation in low concentration, whereas
increase of ROS can induce cell death. Therefore balance
between generation and elimination of ROS maintains the
proper function. Methylselenol catalyzes the oxidation of
thiols, generating toxic ROS causing mitochondrial swelling,
releasing cytochrome C, activating the caspase cascade, and
inducing the cell apoptosis and death [136]. Selenomethio-
nine is relatively nontoxic to the mammalian cells due to
their lack of L-methionase. The maximum antiprostate can-
cers activity was observed by selenomethionine methionase
treatment [137]. The sensitivity of tumour cells to selenome-
thionine was increased by 1,000-fold via transduction by ade-
novirus mediated methionase gene [138]. The combination
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Figure 5: A proposed mechanism of MGL/SeMET-induced apoptosis by combinational therapy method. MGL gene (PpMGL) along with
selenomethionine as prodrug was inserted inside the tumour cells. MGL gene product L-methionase catalyses the breakdown of methionine
from prodrug and synthesizes a toxic molecule “methylselenol” that produces reactive oxygen species (ROS). The ROS thereby causes
mitochondrial apoptosis by caspase activation.

of methionase gene, methionase, and selenomethionine are
effective against all methionine dependent tumours [39, 127].

7.2. Use of Fusion Proteins in Cancer Cell Targeting. The
oxidative stress in tumour cells caused exposure of phos-
phatidylserine on the surface of the vascular endothelium
of blood vessels in tumours but not on normal cells [139].
The fusion protein (FP) consisting of L-methionase linked
to human annexin-V injected into the bloodstream will
bind to the marker on vascular endothelial cells of the
tumour only. The FP catalyzed the conversion of nontoxic
prodrug selenomethionine into toxic methylselenol and also
prevented the methionine supplementation to the tumour
cells, thereby killing the tumour and/or inhibiting its growth
due to methionine restriction [140–142]. The great advantage
of FP is that it does not require to be delivered directly
to the tumour cells but only to the bloodstream. ATF-
methionase FP (amino-terminal fragment of urokinase) was
used to inhibit cancer cell proliferation andmigration, which
supports targeting L-methionase to the surface of the cancer
cells. The FP has potential as a selective therapeutic agent
for the treatment of various methionine-dependent cancers
[143].

8. Modifications of L-Methionase to Reduce Its
Side Effects

Tumour growth inhibitory effect of rMGL and PEG-MGL
on human cancer cells such as human lung, colon, kid-
ney, brain, prostate, and melanoma cancer cells and lung
cancer orthotopic model [38, 144]. It was reported that
administration of MGL resulted in a steady-state depletion
of plasma methionine to less than 2 𝜇M concentration. The

only manifested toxicity was a decreased food intake and a
slight weight loss. Serum albumin and red cell values declined
transiently during treatment, which might be related to
extensive blood sampling, although vomiting was frequently
observed in macaque monkeys [145]. To overcome this
problem, polyethylene glycol-conjugated MGL (PEG-MGL)
was prepared. Simultaneous coadministration of pyridoxal
5-phosphate and oleic acid or dithiothreitol treatment also
strengthened effectiveness of PEG-MGL. To improve the
MGL therapeutic potential, MGL was coupled to methoxy
polyethylene glycol succinimidyl glutarate-5000 (MEGC-
PEG-5000). The half-life due to pegylation increased 6 to 19
times while plasma methionine depletion efficacy decreased
8 to 48 times. Protective effect of high-level of pegylation
helps to remove PLP dependence. PEG-rMGL demonstrated
a significant decrease in antigenicity [146]. The specific
activity of PEG-MGL increased with DTT [147]. Although L-
methionase from bacterial (prokaryotic) origin has immuno-
genic issues that can be overcome by PEGylation and by other
methods such as deimmunization by combinational T-cell
epitope removal using neutral drift [148].

9. MGL Cloning

MGL was used for methionine depletion in vivo [149].
Bacterial enzymes from various sources have been purified
and tested as methionine depleting agents against cancer
cell lines. The P. putida (pMGL) source was selected for
therapeutic applications due to its high catalytic activity,
low 𝐾

𝑚
, and a relatively high 𝑘cat value [17]. The reaction

mechanism characterized by using site-directed mutagenesis
[150, 151].The gene(s) for MGL was/were cloned into suitable
host cells (Table 3).
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Table 3: Molecular cloning and functional characterization of MGL gene in various expression systems.

Gene from Host strain for expression Selectable marker References
P. putida E. coliMV1184 Ampicillin [35]
P. putida E. coli BL21 (DE3) Ampicillin [36]
P. putida ICR3460 E. coli JM109 Tetracycline [37]

P. putida Lung cancer cell line H460
GFP fluorescence,
Penicillin,
Streptomycin

[38]

P. putida Human lung adenocarcinoma
epithelial cell line (A549 cells) G418 (Geneticin) [39]

P. putida ICR3460 E. coli JM109 Tetracycline [40]
P. putida ICR3460 E. coli JM109 Tetracycline [41]

Trichomonas vaginalis E. coliM15pREP4 Ampicillin and
Kanamycin [42]

Trichomonas vaginalis E. coliM15[pREP4] Ampicillin and
Kanamycin [43]

Treponema denticola
ATCC35405 E. coli BL21 Ampicillin [19]

Entamoeba histolytica E. coli BL21 Ampicillin [22]
Kluyveromyces lactis
CLIB 640 E. coli DH10B Ampicillin [44]

Arabidopsis E. coli BL21 Carbenicillin [24]
Brevibacterium linens E. coli DH5𝛼 Ampicillin [45]

10. Future Prospective

The unique catalytic reaction of MGL and its limited
distribution in pathogens but not in human make this
enzyme a promising target to design novel chemothera-
peutic agents. Tumour cells show enhanced methionine
dependence/requirement in comparison to the normal cells.
The greater requirement of methionine by rapidly growing
tumour cells supports high protein synthesis and regulation
of DNA expression yet it can be exploited by the use of
methionase-based therapy to rapidly deplete the cancerous
cells. Thus the forced restriction of methionine may be an
important strategy in cancer growth control particularly in
malignant/cancers that exhibit dependence on methionine
for their survival and proliferation. Currently fusion proteins
(consisting of L-methionase linked to human annexin-V)
may have an advantage in comparison to other approaches
as they show application in specifically targeting tumour cells
without affecting the normal cells.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully acknowledge the financial support
provided by Department of Science & Technology, Ministry
of Science & Technology, Government of India, New Delhi,
for the award of an Inspire Fellowship [IF130378] to one of
the authors [BS] as well as Department of Biotechnology for

providing liberal funds as well as extending Bioinformatics
Facility to the authors.

References

[1] J. P. Richard and T. L. Amyes, “On the importance of being
zwitterionic: enzymatic catalysis of decarboxylation and depro-
tonation of cationic carbon,” Bioorganic Chemistry, vol. 32, no.
5, pp. 354–366, 2004.

[2] R. Wolfenden, “Benchmark reaction rates, the stability of
biological molecules in water, and the evolution of catalytic
power in enzymes,” Annual Review of Biochemistry, vol. 80, pp.
645–667, 2011.

[3] B. C. Lockwood and G. H. Coombs, “Purification and charac-
terization of methionine 𝛾-lyase from Trichomonas vaginalis,”
Biochemical Journal, vol. 279, no. 3, pp. 675–682, 1991.

[4] T. Nakayama, N. Esaki, K. Sugie, T. T. Beresov, H. Tanaka,
and K. Soda, “Purification of bacterial 𝐿-methionine 𝛾-lyase,”
Analytical Biochemistry, vol. 138, no. 2, pp. 421–424, 1984.

[5] M. H. Stipanuk, “Metabolism of sulfur-containing amino
acids.,” Annual review of nutrition, vol. 6, pp. 179–209, 1986.

[6] D. Thomas and Y. Surdin-Kerjan, “Metabolism of sulfur amino
acids in Saccharomyces cerevisiae,” Microbiology and Molecular
Biology Reviews, vol. 61, no. 4, pp. 503–532, 1997.

[7] S. Ravanel, B. Gakière, D. Job, and R. Douce, “The specific
features of methionine biosynthesis and metabolism in plants,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 95, no. 13, pp. 7805–7812, 1998.

[8] A. Sekowska, H. Kung, and A. Danchin, “Sulfur metabolism in
Escherichia coli and related bacteria: facts and fiction,” Journal
of Molecular Microbiology and Biotechnology, vol. 2, no. 2, pp.
145–177, 2000.



BioMed Research International 9

[9] R. Caspi, T. Altman, K. Dreher et al., “TheMetaCyc database of
metabolic pathways and enzymes and the BioCyc collection of
pathway/genome databases,”Nucleic Acids Research, vol. 40, no.
1, pp. D742–D753, 2012.

[10] E. Stone, O. Paley, J. Hu, B. Ekerdt, N. Cheung, and G.
Georgiou, “De novo engineering of a human cystathionine-𝛾-
lyase for systemic L-methionine depletion cancer therapy,”ACS
Chemical Biology, vol. 7, no. 11, pp. 1822–1829, 2012.

[11] B. Dias and B. Weimer, “Purification and characterization of L-
methionine 𝛾-lyase from Brevibacterium linens BL2,” Applied
and Environmental Microbiology, vol. 64, no. 9, pp. 3327–3331,
1998.

[12] W. Kreis and C. Hession, “Isolation and purification of L-
methionine-𝛼-deamino-𝛾-mercapto methane-lyase (L-methi-
onase) from Clostridium sporogenes,” Cancer Research, vol. 33,
pp. 1862–1865, 1973.

[13] N. G. Faleev, M. V. Troitskaya, E. A. Paskonova, M. B.
Saporovskaya, and V. M. Belikov, “L-Methionine-𝛾-lyase in
Citrobacter intermedius cells: stereochemical requirements with
respect to the thiol structure,” Enzyme and Microbial Technol-
ogy, vol. 19, no. 8, pp. 590–593, 1996.

[14] I. V. Manukhov, D. V. Mamaeva, E. A. Morozova et al., “L-
methionine 𝛾-lyase from Citrobacter freundii: cloning of the
gene and kinetic parameters of the enzyme,” Biochemistry, vol.
71, no. 4, pp. 361–369, 2006.

[15] M. Yoshimura, Y. Nakano, Y. Yamashita, T. Oho, T. Saito, and T.
Koga, “Formation of methyl mercaptan from L-methionine by
Porphyromonas gingivalis,” Infection and Immunity, vol. 68, no.
12, pp. 6912–6916, 2000.

[16] H. Tanaka, N. Esaki, T. Yamamoto, and K. Soda, “Purification
and properties of methioninase from Pseudomonas ovalis,”
FEBS Letters, vol. 66, no. 2, pp. 307–311, 1976.

[17] S. Ito, T. Nakamura, and Y. Eguchi, “Purification and character-
ization of methioninase from Pseudomonas putida,” Journal of
Biochemistry, vol. 79, no. 6, pp. 1263–1272, 1976.

[18] D. Kudou, S. Misaki, M. Yamashita et al., “Structure of the
antitumour enzyme L-methionine 𝛾-lyase from Pseudomonas
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