
EBioMedicine 43 (2019) 632–640

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomedic ine.com
Review
The impact of dietary protein intake on longevity and metabolic health
Munehiro Kitada a,b,⁎, Yoshio Ogura a, Itaru Monno a, Daisuke Koya a,b,⁎
a Department of Diabetology and Endocrinology, Kanazawa Medical University, Japan
b Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
branched-chainamino acids;MetR,methionine restriction;
reactive oxygen species; EAAs, essential amino acids; NEAA
elF2α, eukaryotic initiation factor 2α; ATF, activating trans
onineγ-lyase; NUPR1, nuclear protein 1; H2S, hydrogen su
activity towards the Rags 1 and 2; NADPH oxidase, nicotin
⁎ Corresponding authors at: Department of Diabetology

E-mail addresses: kitta@kanazawa-med.ac.jp (M. Kitad

https://doi.org/10.1016/j.ebiom.2019.04.005
2352-3964/© 2019 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 January 2019
Received in revised form 13 March 2019
Accepted 2 April 2019
Available online 8 April 2019
Lifespan and metabolic health are influenced by dietary nutrients. Recent studies show that a reduced protein
intake or low-protein/high-carbohydrate diet plays a critical role in longevity/metabolic health. Additionally,
specific amino acids (AAs), including methionine or branched-chain AAs (BCAAs), are associated with the regu-
lation of lifespan/ageing andmetabolism throughmultiplemechanisms. Therefore, methionine or BCAAs restric-
tion may lead to the benefits on longevity/metabolic health. Moreover, epidemiological studies show that a high
intake of animal protein, particularly red meat, which contains high levels of methionine and BCAAs, may be
related to the promotion of age-related diseases. Therefore, a low animal protein diet, particularly a diet low in
red meat, may provide health benefits. However, malnutrition, including sarcopenia/frailty due to inadequate
protein intake, is harmful to longevity/metabolic health. Therefore, further study is necessary to elucidate the
specific restriction levels of individual AAs that are most effective for longevity/metabolic health in humans.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

All organisms adapt and respond to the sources of nutrients that are
available in the environment. Cellular activities, such as the regulation
ofmetabolism, growth and ageing, aremodulated by a network of nutri-
ents and nutrient-sensing pathways. Dietary interventions, including
calorie restriction (CR), dietary restriction (DR), and protein restriction
(PR), have been investigated for their effects on longevity or the preven-
tion of age-related diseases through their effects onmetabolic health. CR
without malnutrition has been shown to extend the lifespan and im-
provemetabolic health in organisms [1]. However, recent evidence indi-
cates that the quantity, source and amino acid (AA) composition of
proteins are more strongly associated with longevity and metabolic
health than CR [2]. The macronutrient balance of diets, including low
protein/high carbohydrate (LPHC) diets, has been shown to have the
greatest significant impact on longevity and metabolic health [3–5].
Additionally, epidemiological studies indicate that the quantity of pro-
tein intake; the protein sources, including animal or plant protein; and
the intake of red meat or processed meat may affect mortality and
lead to awide range of diseases, including cancer, cardiovascular disease
(CVD) and chronic kidney disease (CKD) [6–9]. Moreover, the restric-
tion of specific AAs, such as branched-chain AAs (BCAAs) ormethionine,
promotes longevity and metabolic health, which possibly mediates the
benefits of PR [4,10–13]. In this review, we focus on the physiological
and molecular mechanisms underlying the promotion of ageing and
age-related metabolic impairment induced by amino acids and their
metabolites and discuss the current understanding of the effects of re-
duced dietary protein intake on longevity and metabolic health.

2. Mechanisms underlying the roles of AAs in longevity and meta-
bolic health

Recent findings have revealed that essential AAs (EAAs), such as
BCAAs andmethionine, are involved in the regulation of the ageing pro-
cess, longevity andmetabolic health throughmultiple physiological and
molecular mechanisms. In particular, the mechanisms underlying the
role ofmethionine in the regulation of ageing have beenwidely studied.

2.1. Mechanistic target of rapamycin complex1 (mTORC1) and autophagy

mTORC1, a subunit ofmTOR, is a serine/threonine kinase that acts as
a central regulator of cell growth and metabolism in response to nutri-
ents and growth factors [14].mTORC1 is activated by various factors, in-
cluding AAs [14,15] and is the primary modulator of protein, lipid, and
nucleotide synthesis; autophagy; and insulin signalling [14]. The phar-
macological inhibition of mTORC1 by rapamycin has been shown to ex-
tend the lifespan and exert beneficial effects on a set of ageing-related
traits in mice, indicating that mTORC1 may be related to lifespan regu-
lation [16–20]. Nutritional interventions, such as a LPD, also suppress
mTORC1 because AAs promote mTORC1 activation [15]. Several path-
ways responsible for sensing the AA levels in the regulation of
mTORC1 have been identified. Long-term AA deprivation induces
Sestrin production through the activation of activating transcription fac-
tor4 (ATF4). Under conditions of low leucine levels, Sestrin-2 interacts
with and inhibits GAP activity towards Rags2 (GATOR2), a GTPase-
activatingprotein of RagA/B and a positive regulator ofmTORC1, leading
to the suppression of mTORC1 [21](Fig. 1a). Leucine binds to Sestrin-2
and induces its dissociation from GATOR2, resulting in mTORC1 activa-
tion (Fig. 1b). Thus, Sestrin-2 is a leucine sensor in themTORC1 pathway
[21]. Similarly, arginine activatesmTORC1 by preventing the interaction
between the cytosolic arginine sensor of themTORC1 subunit (CASTOR)
1 and GATOR2 [22](Fig. 1b), and a low arginine level suppresses
mTORC1 via the interaction of CASTOR1 and GATOR2 (Fig. 1b). Thus,
since the presence of certain AAs activates mTORC1, the restriction of
protein/AAs suppresses mTORC1.
Autophagy, including macroautophagy and selective autophagy, is a
lysosomal degradation pathway and plays a crucial role in the removal
of protein aggregates and damaged or excess organelles, including mi-
tochondria, to maintain intracellular homeostasis [23]. Autophagy may
protect cells against various age-related stress conditions, including
hypoxia, endoplasmic reticulum stress and oxidative stress. AAs regu-
late autophagy through mTORC1 activity. Zhang et al. reported that he-
patic mTOR activation by BCAAs inhibited lipid-induced hepatic
autophagy and caused hepatic lipotoxicity [24]. Previously, we also
demonstrated that a LPD exerts a reno-protective effect by inducing au-
tophagy via the suppression of mTORC1 in rats with type 2 diabetes
mellitus (T2DM)/obesity [25].

2.2. Glycine N-methyltransferase (Gnmt) and S-adenosylmethionine
(SAM) metabolism

Methionine is converted to SAM in a reaction catalysed by the
enzyme methionine adenosyl transferase, and SAM is converted to
S-adenosylhomocysteine by Gnmt, a key SAM metabolism enzyme
that maintains intracellular SAM levels [26]. Recent reports have
shown that SAM, rather than methionine, may be the main contributor
to methionine restriction (MetR)-induced lifespan extension. Obata
et al. demonstrated that enhancing SAM catabolism by activating
Gnmt extends the lifespan in Drosophila [27]. Notably, SAM levels are
higher in old flies, even though Gnmt is transcriptionally induced in a
fork head boxO (FOXO)-dependentmanner [27]. However, overexpres-
sion of Gnmt suppresses the age-dependent increase in SAM and ex-
tends the lifespan.

How is the accumulation of SAM related to ageing? Nonnitrogen
starvation-induced autophagy is inhibited by high intracellular concen-
trations of methionine and SAM [28]. The methylation of the catalytic
subunit of protein phosphatase2A (PP2A) by Ppm1(leucine carboxyl
methyltransferase 1 (LCMT1) in mammals) is responsive to SAM con-
centrations [28,29](Fig. 1c). Methylated-PP2A can dephosphorylate
Npr2, a component of a negative regulatory complex of mTORC1, pro-
moting autophagy [28,29] (Fig. 1c). Additionally, SAMTOR has been
identified as a SAM sensor that links methionine to mTORC1 signalling
[30]. SAMTOR inhibitsmTORC1 signalling by interactingwithGAP activ-
ity towards Rag1 (GATOR1). The administration of SAM disrupts the
SAMTOR-GATOR1 complex by directly binding SAMTOR, leading to a
dissociation of the complex and resulting in mTORC1 activation
(Fig. 1c), while reduced SAM levels promote the association between
SAMTOR and GATOR1, leading to the inhibition of mTORC1 (Fig. 1d).

2.3. Fibroblast growth factor 21 (FGF21)

FGF21 is recognized as an endocrine signalling factor in PR and is as-
sociated with lifespan extension, metabolic control and organ protec-
tion [31–33]. Laeger et al. demonstrated that the serum levels of
FGF21 specifically increase upon exposure to a LPD regardless of the
overall caloric intake in both rodents and humans [31]. The reduced
consumption of dietary protein and reduced delivery of AAs to the
liver activates GCN2 (general AA control nonderepressible-2) and
leads to increased eIF2α (eukaryotic initiation factor-2α) phosphoryla-
tion and ATF4/5 activation (Fig. 2a). ATF4/5 binds AA responsive ele-
ments within the FGF21 promoter, leading to increased production of
FGF21 in the liver and increased circulating FGF21 [33] (Fig. 2a). The in-
creased circulating levels of FGF21 play a role in the regulation of glu-
cose/lipid homeostasis, mitochondrial activity, ketogenesis and energy
expenditure (EE), which could be expected to be beneficial for age-
related health. Additionally, GCN2, which phosphorylates eIF2α, senses
the absence of one or more AAs by directly binding uncharged cognate
transfer RNAs, thereby suppressing mTORC1 activity [34,35] (Fig. 2a).
Our previous data indicated that a LPD induced continuous high levels
of FGF21, which might be associated with improved glucose/lipid me-
tabolism and body/fat weight in rats with T2DM/obesity [25,36].
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Fig. 1. (a) Under conditions of reduced levels of leucine or arginine as a result of a LPD or a LPHCdiet, Sestrin-2 or CASTOR1 interactswith and inhibits GATOR2,which is a positive regulator
ofmTORC1, leading to the suppression ofmTORC1 activation. The suppression ofmTORC1 is associatedwith the induction of autophagy and improvement of insulin resistance, resulting in
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Maida et al. showed that dietary protein/AA dilution promotes meta-
bolic health in mice and humans with T2DM at least partially through
a select nonessential AA (NEAA) insufficiency–activated liver nuclear
protein1 (NUPR1)-FGF21 axis [37] (Fig. 2a). A LPD also enhances EE
by increasing sympathetic flux via β-adrenergic receptor signalling to
brown adipose tissue (BAT) with the consequent upregulation of
uncoupling protein-1 (UCP-1) expression [38–40] and increased
FGF21-mediated thermogenesis [33]. Additionally, PR increases UCP-1
and promotes the browning of white adipose tissue, and these effects
require FGF21 [33]. Moreover, UCP-1 is required for FGF21-mediated
improvements in glucose tolerance [41]. Our data showed that a LPD-
induced increase in FGF21 may be related to the overexpression of
UCP-1 in BAT, which is accompanied by improvement in glucose intol-
erance and dyslipidaemia in rats with T2DM/obesity [36]. However,
Maida et al. showed that the dietary protein dilution-mediated im-
provement in glucose homeostasis was independent of UCP-1 [37].
Moreover, similar effects of a LPD on FGF21-induced regulation of me-
tabolism have been reported in response to dietary MetR [42,43].
2.4. Growth hormone/insulin-like growth factor-1 (GH/IGF-1) signalling

Reduced GH/IGF-1 signalling is linked to survival duration and de-
creased incidence of cancer and T2DM in humans [44,45]. Reducing
IGF-1 signalling suppresses the ageing process through the activation
of FOXOs and mTORC1 inhibition, which occur as a result of Akt inac-
tivation (Fig. 2b). PR or restriction of particular AAs such as methio-
nine, may explain part of the effects of CR on longevity and disease
risk because PR and AA restriction can sufficiently reduce IGF-1 levels
and cancer incidence and extend the lifespan in model organisms in-
dependently of calorie intake [46]. Additionally, FGF21 exerts its effect
on lifespan extension by suppressing the GH/IGF-1 signalling pathway
[33,47] (Fig. 2b). Moreover, methionine interacts with the GH/IGF-1
pathway to extend the lifespan and improve metabolic health in
mice [48,49], and GH/IGF-1 represses Gnmt activity [50,51] (Fig. 2b).
Therefore, reduced methionine intake may be linked to mTORC1 sup-
pression by decreasing the GH/IGF-1-mediated Gnmt activation of
SAM (Fig. 2b).
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2.5. Hydrogen sulphate (H2S)

H2S has been identified as the third endogenous signalling gas fol-
lowing nitric oxide and carbon monoxide. H2S is produced endoge-
nously by organisms, including mammals, via the transsulfuration
pathway (TSP) via two key enzymes, i.e., cystathionine β-synthase
and cystathionine γ-lyase [52]. H2S can readily diffuse through tissues
and has pleiotropic and beneficial effects at the cellular, tissue and or-
ganismal levels with the potential to contribute to stress resistance by
exerting positive effects, including anti-oxidative/anti-inflammatory ef-
fects [53]. The restriction of dietary sulfur-containing AAs (SAAs), in-
cluding methionine, leads to stress resistance and longevity by
H2S↑

Met↓ Cys↓

CBS↑

CGL↑

LPD, LPHC

MetR

TSP ↑

An�-oxida�ve/inflammatory effects↑

mTORC1↓
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Met/CysR

BCAAs↓Oxida�ve stress↓ NADPH 
oxidase↓

Mitochondrial
oxida�ve stress↓

NF-kB↓

Fig. 3. Restriction of sulfur-containing AAs, such as Met or Cys, increases H2S production
through TSP pathway activation, including the activation of CBS and CGL. H2S exerts
anti-oxidative/anti-inflammatory effects. A LP/LPHC diet or MetR suppresses mTORC1,
which leads to TSP pathway activation, and reduces the overproduction of ROS from
mitochondria. BCAA restriction suppresses oxidative stress and inflammation through
inhibition of NADPH oxidase and NF-κB.
increasing TSP-mediated H2S production (Fig. 3). Hine et al. demon-
strated that 50% of the DR-induced liver protective effects against isch-
aemic reperfusion injury are abolished by the addition of SAAs,
including methionine and cysteine, through the suppression of DR-
induced H2S production [54]. Additionally, adult mice subjected to
long-term MetR for 4 months in addition to fasting every other day or
20–30%DR for 6 weeks exhibited increased H2S production capacity in
liver and kidney extracts compared to control mice fed a complete
diet ad libitum (AL) [54]. Moreover, in fruit flies, maximal H2S produc-
tion capacity was observed in whole-body extracts of flies subjected to
varying levels of DR andMetR [54], which are correlated with the max-
imal lifespan extension [55]. In C. elegans and S. cerevisiae, lifespan ex-
tension or chronological lifespan extension was observed in a H2S
production-dependentmanner [54]. The effect of DR on longevity isme-
diated through SAA restriction, leading to increased endogenous H2S
production via increased TSP activity, while the addition of specific
SAAs andmTORC1 activation inhibits TSP and the H2S production path-
way (Fig. 3).
2.6. Oxidative stress and inflammation

Mitochondria are recognized as major source of reactive oxygen
species (ROS), and the oxidative damage associated with mitochon-
dria is involved in mitochondrial dysfunction and cellular ageing.
Previous reports have shown the effects of CR, PR and MetR on oxi-
dative stress, particularly mitochondrial oxidative stress (Fig. 3). A
40%PR diet for 6–7 weeks without CR also decreases mitochondrial
ROS (MtROS) production, specifically in complex I, in the rat liver
[56]. Additionally, both 80% and 40% MetR without CR for
6–7 weeks decreased MtROS generation in the rat heart and liver
[57] and brain, kidney, liver and heart [58–60], respectively, which
is similar to the results observed for CR and PR. BCAAs also cause ox-
idative stress and inflammation in peripheral blood mononuclear
cells [61] and endothelial cells [62] via the activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, nuclear factor-κB
(NF-κB) and mTORC1.
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3. Relationships among dietary protein intake, longevity and meta-
bolic health

3.1. Basic studies

Recent evidence suggests that the macronutrient balance and single
nutrients, such as protein, play amore crucial role in longevity andmet-
abolic health than total calorie intake. The significance of the macronu-
trient balance for longevity and metabolic health is shown by the
Geometric Framework for Nutrition, which was developed to evaluate
the relationship between diet and outcomes such as lifespan across a
broad landscape of macronutrient and energy intakes [3]. In Drosophila
melanogaster, the Queensland fruit fly or cricket, LPHC diets result in
lifespan extension [63–66] (Table 1), while a high proportion of dietary
protein shortens the lifespan. In mice, Solon-Biet et al. demonstrated
that LPHC diets, but not high-protein and/or diluted diets that reduce
calorie intake, are associated with longevity and metabolic health, in-
cluding lower blood pressure, improved glucose tolerance, higher levels
of high-density lipoprotein, and reduced levels of low-density lipopro-
tein and triglycerides [4]. In the aforementioned study, over their life-
time, mice had AL access to 1 of 25diets differing in protein (5–60%),
fat (16–75%), carbohydrate (16–75%), and energy (8(Low), 13(Me-
dium), or 17(High) kJ/g of food) contents. The maximum lifespan was
observed in mice fed medium calorie food with 5% protein/75% carbo-
hydrate (Table 1). Additionally, mice fed a short-term (8 weeks) LPHC
(5%protein) diet exhibited benefits in glucose/lipid metabolism that
were similar to those observed in mice exposed to a 40%CR [5].
Additionally, LPHC (5%protein) diets are interestingly associated with
increased dendritic spines in dentate gyrus neurons and improved per-
formance in the Barnes maze and novel object recognition test, and the
effects are similar to those associated with 20%CR [67]. To stabilize pro-
tein intake, mice fed a LPD exhibit compensatory increased energy in-
take; however, the LPD exerted beneficial effects on metabolic health
due to increased EE [68].

3.2. Human studies

Levine et al. investigated the relationship between the level of pro-
tein intake and all-cause, cancer- and diabetes-related mortality in a
major nationally representative study of nutrition involving a United
States population (6381 individuals aged 50 years and over) [6]. The
Table 1
Relationships among dietary protein intake, longevity and metabolic health.

Effect of a LPHC diet on lifespan extension

Ratio or proportion of protein to carbohydrate
in food for lifespan extension

Drosophila melanogaster Increased
P:C ratio = 1:16

Drosophila melanogaster Increased
P:C ratio = 1:16

Queensland fruit flies Increased
P:C ratio = 1:21

Crickets Increased
P:C ratio = 1:3 (Male)
P:C ratio = 1:8 (Female)

Mice Increased
5% protein/75% carbohydrate, energy 13 kJ/g food

The effect of LP intake on mortality

Proportion of protein intake for reduced mortality

Humans Aged 50 years or older: Diabetes-related mortality↓
Aged 50–65 years: All-cause mortality↓, cancer-related mortality↓, LP intake is
effective than MP or HP intake.
Aged 66 years or older: All-cause mortality↑, Cancer mortality↓ HP intake is mo
effective than LP intake.
results were analysed using Cox proportional hazard models and re-
vealed that both the moderate protein (MP;10–19% of calories from
protein) and high protein (HP; ≥20% of calories from protein) intake
groups had higher risks of diabetes-related mortality than the partici-
pants in the low protein(LP; b10% of calories from protein) group
(Table 1). Among those aged 50–65 years, higher protein levels were
linked to significantly increased risks of all-cause and cancer-related
mortality (Table 1). In this age range, the HP intake group exhibited a
74% increase in their relative risk of all-cause mortality and were N4-
fold likely to die of cancer than those in the LP group. Additionally, the
higher risks of all-cause and cancer-related mortality in the HP intake
group compared to those in the LP intake group were further increased
among those who also had high levels of IGF-1 [6] (Table 1). However,
among those aged 66 years and older, the HP diet was associated with
the opposite effect on all-cause and cancer-related mortality (Table 1).
Compared to those in the LP group, the participants in the HP and MP
groups exhibited a 28% and 21% reduction in all-causemortality, respec-
tively. Additionally, compared to those in the LP group, HP consumption
resulted in a 60% reduction in cancer mortality. Thus, LP intake during
middle agemay be beneficial for the prevention of cancer and improve-
ment of overall mortality. However, among elderly people, avoiding LP
intake or consuming adequate dietary proteinmay be important to pre-
vent sarcopenia and frailty, thus potentially preventing an increase in
all-cause mortality.

Interestingly, on the Japanese island of Okinawa, many people ex-
hibit increased longevity, and the centenarian population is five times
larger than that in other developed nations [69]. The CVD and cancer
death rates in Okinawa were found to be only 60–70% of those in
other regions of Japan on average, and the all-cause mortality rate
among 60- to 64-year-olds was only half that of other Japanese popula-
tions. Based on the 1972 Japan National Nutrition Survey, Kagawa et al.
reported that the Okinawan adult population had a low caloric intake
(83% of the Japanese average) and documented that the anthropometric
and morbidity data of older Okinawans were consistent with CR [70].
Therefore, CR may be associated with the longevity observed in Oki-
nawa [71]. In addition to CR, many factors, including food, genes and
physical activity, contribute to longevity. The types of foods included
in the traditional Okinawan diet, which includes a high intake of green
leafy and yellow root vegetables, sweet potatoes (as a dietary staple),
and soy (as the principle protein) supplemented with small amounts
of fish and meat, are adequate in most nutrients [72,73]. The energy
Metabolic benefits of a LPHC diet or low protein intake Ref.

Not determined [63]

Not determined [64]

Not determined [65]

Not determined [66]

Insulin sensitivity↑, BP↓, HDL-C↑, TG↓, LDL-C↓, mTOR↓(liver),
plasma BCAAs↓, mitochondrial function↑

[3]

Metabolic benefits of low protein intake Ref.

Aged 50–65 years: Serum IGF-1↓ in LP intake group compared to IGF-1
in the HP intake group

[6]
more

Aged 66 years or older: No change in serum IGF-1 levels between LP
and HP intake groups.re
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obtained from theOkinawandiet is derived from9%protein and 85%car-
bohydrates [74]. Interestingly, the Okinawan values of dietary protein
and the protein to carbohydrate ratio (1:10) are very low and are re-
markably similar to those found to optimize the lifespan in recent ani-
mal studies investigating ageing.

4. Relationships among protein sources, longevity and metabolic
health

The protein source, including animal or plant protein, may be more
important for mortality risk than the level of protein intake. The associ-
ations between animal and plant protein intake and the risk ofmortality
were examined by a prospective US cohort study involving 131,342 par-
ticipants and 32 follow-up years [7]. Animal protein intake was related
to a higher risk of mortality, particularly CVD mortality. In contrast,
higher plant protein intake was associated with lower all-causemortal-
ity. The substitution of animal protein from a variety of food sources,
particularly processed red meat, with plant protein was associated
with a lower risk of mortality, indicating that the protein source is im-
portant for long-term health.

As described above, compared to LP intake in middle-aged humans,
HP intake is associated with increased all-cause mortality and cancer-
and diabetes-related mortality [6]. However, after controlling for the
percent of calories from animal protein, the association between the
level of protein intake and all-cause and cancer-related mortality was
eliminated or significantly reduced, suggesting that animal protein me-
diates a significant portion of those relationships. In contrast, after con-
trolling for the effect of plant protein, there was no change in the
association between protein intake and mortality, indicating not only
that high levels of animal proteins promote mortality but also that
plant proteins have a protective effect.

Among animal proteins, the consumption of redmeat and processed
meat is associated with the risk of developing chronic diseases, includ-
ing CVD, CKD, cancer and diabetes [8,9]. A meta-analysis indicated
that a high consumption of red meat tends to increase the risk of CVD
mortality and cancer and that a high consumption of processed meat
significantly increases the risk of cancer and CVDmortality and diabetes
[8]. Redmeat is an important dietary source of EAAs andmicronutrients,
including vitamins, iron and zinc, that perform many beneficial func-
tions. However, a high intake of red meat and processed meat results
in an increased intake of saturated fat, cholesterol, iron, salt, and phos-
phate; oxidative stress/inflammation; elevation of by-products of pro-
tein or AA digestion by the gut microbiota, such as trimethylamine
n-oxide or indoxyl sulfate; acid load; and protein/AA load, which are
possibly associated with increased risks of CVD mortality and CKD.

5. The impact of specific AAs on longevity and metabolic health

5.1. Role of BCAAs

Increased circulating BCAA levels or excess BCAAs may be harmful
for longevity and metabolic health. Solon-Biet et al. indicated that
BCAA levels were the lowest following LPHC diets, and these levels
were correlated with dietary treatments resulting in lifespan extension
and improvedmetabolic health inmice, as described above [4]. In a ran-
domized controlled trial, a moderate PR (7–9%protein) diet improved
markers of metabolic health in humans, and mice fed a reduced BCAA
diet exhibited improved glucose tolerance and body composition,
which were equivalent to those observed following a PR diet [12].
Reducing dietary BCAAs also leads to improvements in Western diet-
induced obesity and glucose intolerance in mice [10]. Additionally, the
supplementation of BCAAs abolishes the effect of PR on glucose metab-
olism and induces inflammation in visceral adipose tissue in mice [10].
In epidemiological studies, there is a positive relationship between in-
creased circulating BCAA levels and insulin resistance in obese and dia-
betic patients [75–77] and CVD patients [78–81]. Additionally, the
increased circulating BCAAs are possibly due to abnormal BCAAmetab-
olism associated with obesity resulting in an accumulation of toxic
BCAA metabolites that, in turn, trigger mitochondrial dysfunction,
which is associated with insulin resistance and T2DM [82].

However, BCAAs also have beneficial effects on health and are asso-
ciated with mitochondrial function. BCAA supplementation increases
the average lifespan of mice by increasing mitochondrial biogenesis
and reducing oxidative stress in cardiac and skeletal muscles [83]. Sev-
eral clinical studies have also shown that BCAA supplements reduce
sarcopenia in elderly people and exert beneficial effects on body fat
and glucosemetabolism, possibly by increasingmitochondrial biogene-
sis and muscle function [84].

Thus, the high intake of BCAAs due to excessive food intake in obese
people is harmful in terms of insulin resistance and T2DM. However, a
low level of BCAA intake in elderly people is also harmful in terms of
sarcopenia. Therefore, the appropriate intake of BCAAs for individuals
is necessary to maintain longevity and metabolic health.

5.2. Role of methionine and SAM

Dietary MetR has been demonstrated to extend the lifespan of or-
ganisms ranging from yeast to rodents such as mice and rats
[48,85–87]. As described above, Met is directly involved in promoting
the ageing process through multiple mechanisms. Metabolically, MetR
also decreases adiposity but acts through a paradoxical increase in
both energy intake and EE in rodents [49,88,89]. The increase in EE com-
pensates for the increased energy intake and effectively limits fat depo-
sition.Moreover,MetR increasesmetabolicflexibility andoverall insulin
sensitivity and improves lipid metabolism while decreasing systemic
inflammation [42,88,90]. Plaisance et al. investigated the effects of
MetR (2 mg methionine/kg body weight (BW)/day) in humans for
16 weeks by exploring the EE, body composition and metabolism of in-
dividuals who were fed a MetR diet compared to the same parameters
in obese adults with metabolic syndrome who were fed a control diet
(33 mg methionine/kg BW/day) [91]. Although insulin sensitivity im-
proved and EE was unaffected in both groups, MetR produced a signifi-
cant increase in fat oxidation and a reduction in intrahepatic lipid
content [91]. Additionally, Virtanen et al. reported that the relative
risk of an acute coronary event in individualswith a highmethionine in-
take (N2.2 gmethionine/day) was higher than that of individuals with a
lowmethionine intake (b1.7 g methionine/day) in a prospective cohort
study (1981 men, aged 42–60 years at baseline, average 14.0 years of
follow-up) [92].

Additionally, plasma SAM concentrations were associated with
higher fasting insulin levels, homeostasis model assessment of insulin
resistance and tumour necrosis factor-α in a cross-sectional study in-
volving 118 subjects with metabolic syndrome [93]. Another report
demonstrated that plasma SAM, but not methionine, is independently
associated with fat mass and truncal adiposity in a cross-sectional
study involving 610 elderly people [94], while overfeeding increases
serum SAM in proportion to the fat mass gained [95]. Thus, increased
SAM related to overfeeding ormetabolic dysfunctionmay be associated
with whole body metabolic impairment.

6. Conclusions, future prospective and outstanding questions

We presented the quantity, source and specific AA compositions of
proteins, including the levels of BCAAs and methionine, that are associ-
ated with longevity andmetabolic health. Among dietary interventions,
MetR may be a candidate intervention for longevity and metabolic
health (Fig. 4). Food sources of animal protein, such as beef, lamb, fish,
pork and eggs, contain higher levels of methionine than plant food
sources, including nuts, seeds, legumes, cereals, vegetables and fruits
[96]. Therefore, an individual may need to eat less animal-based food
to achieve MetR. For example, the Mediterranean diet [97] or the Die-
tary Approaches to Stop Hypertension (DASH) diet [98] may be useful
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Fig. 4. MetR may be a candidate dietary intervention for longevity and metabolic health
through its effects that are exerted via multiple mechanisms. A Mediterranean diet or
the DASH diet may be useful for reducing the consumption of animal protein,
particularly red meat, to achieve MetR.
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for decreasing the consumption of animal protein, particularly redmeat
(Fig. 4). However, red meat is an important dietary source of
micronutrients, including vitamins, iron and zinc; therefore, an appro-
priate intake is necessary to avoid malnutrition.

This review focuses on the detrimental effects of proteins; however,
reduced protein intake does not decrease the potentially negative ef-
fects of certain types of carbohydrates and fats. Clinical studies compar-
ing lifespan, mortality and metabolic health between groups randomly
assigned to either LP or HP diets or specific AA restriction diets are nec-
essary to identify diets that minimize the burden on the population
while maximizing the protective effects. However, it is difficult to per-
form such randomized clinical trials; therefore, additional detailed epi-
demiological studies may be necessary. Furthermore, elucidating the
detailed mechanism underlying the effect of protein or specific AA re-
striction on longevity and metabolic health could guide the develop-
ment of novel therapies replacing dietary interventions.

7. Search strategy and selection criteria

Data for this review were collected through PubMed. The following
search terms were used: low protein diet, low protein and high carbo-
hydrate diet, protein dilution, Geometric Framework for Nutrition, me-
thionine restriction, branched-chain amino acid, red meat, longevity,
lifespan extension, mTORC1, FGF21, oxidative stress, IGF-1, SAM,
Gnmt, H2S. Only articles published in English were included.
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