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Abstract
Surgical procedures such as tumor resection and biopsy are still the gold standard for diagnosis and (determination of) treat-
ment of solid tumors, and are prognostically beneficial for patients. However, growing evidence suggests that even a minor 
surgical trauma can influence several (patho) physiological processes that might promote postoperative metastatic spread and 
tumor recurrence. Local effects include tumor seeding and a wound healing response that can promote tumor cell migration, 
proliferation, differentiation, extracellular matrix remodeling, angiogenesis and extravasation. In addition, local and systemic 
immunosuppression impairs antitumor immunity and contributes to tumor cell survival. Surgical manipulation of the tumor 
can result in cancer cell release into the circulation, thus increasing the chance of tumor cell dissemination. To prevent these 
undesired effects of surgical interventions, therapeutic strategies targeting immune response exacerbation or alteration have 
been proposed. This review summarizes the current literature regarding these local, systemic and secondary site effects of 
surgical interventions on tumor progression and dissemination, and discusses studies that aimed to identify potential thera-
peutic approaches to prevent these effects in order to further increase the clinical benefit from surgical procedures.
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Abbreviations
FNAs  Fine needle aspirations
LMS  Leptomeningeal spread
SRS  Stereotactic radiosurgery
Tregs  Regulatory T cells
EMT  Epithelial to mesenchymal transition
CTCs  Circulatory tumor cells
NK  Natural killers
NETs  Neutrophil extracellular traps
HIF  Hypoxia inducible factors
RBCs  Red blood cells

Introduction

Tumor tissue resection and biopsy are still indispensable 
for diagnosis, cytoreduction and determination of subse-
quent treatment strategies of solid tumors and, importantly, 
to extend the patients’ lifespan or contribute to their cure. 
However, also a wide range of potential undesired effects 
have been associated with these procedures. Negative conse-
quences of tumor invasive procedures not only include post-
operative complications, such as hemorrhage, surgical site 
infections and venous-thromboembolic complications [1–3], 
but also changes affecting the remaining tumor cells, such 
as increased survival, proliferation and migration [4, 5]. An 
increasing body of evidence from clinical and experimental 
studies suggests that surgical trauma caused by biopsies or 
resections gives rise to a series of local and systemic events 
that can potentially promote tumor progression and meta-
static disease [4, 6–12]. Surgical interventions disrupt the 
tumor and the surrounding tissue and result in tumor cell dis-
placement to healthy tissue and release into the circulation. 
Moreover the inflicted surgical trauma initiates a wound 
healing response that activates a series of humoral and 
cellular cascades aimed at closing the wound [13]. While 
necessary for normal tissue repair, the local and systemic 
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alteration of the innate and adaptive immune responses can 
stimulate tumor cell malignant behavior, survival, angiogen-
esis and extravasation of circulating tumor cells.

These undesired effects have the potential to affect tumor 
progression and spread. However, this does not imply that 
surgical resection or biopsy should be abandoned since these 
effects may only hold true for a subset of patients and the 
prognostic benefit of these procedures still strongly outweigh 
their negative effects. Nevertheless, it will be important to 
fully understand their impact on tumor pathology in order 
to prevent these effects and develop adjuvant treatments that 
would make these procedures even safer and more beneficial 
for the patients.

In this review, we summarize existing data that illustrates 
the effects of surgery on tumor progression and discuss 
potential strategies to circumvent these undesired effects of 
surgical procedures.

Local effects of surgery

Biopsies and tumor cell seeding

Fine needle aspirations (FNAs), in which a thin fine-gauge 
needle is inserted into the core of the tumor to aspirate tumor 
cells, are commonly performed to obtain tissue for diagnosis. 
This procedure has been associated not only with standard 
surgical complications as surgical site infections and hemor-
rhage, but also with a risk of tumor cell seeding along the 
needle track into the adjacent tissues. This risk is inherent 
to the procedure in which a needle transgresses and disrupts 
the tumor and is withdrawn. Histological evidence suggests 
that upon FNA tumor cells can be found in adjacent tissues 
[14–16]. However, some studies question the viability of 
the remaining tumor cells. For example, in breast tumors 
undergoing biopsy the incidence of tumor cell seeding in 
the needle track seemed to decline as the time between the 
biopsy and the subsequent resection increased, suggesting 
that the displaced cells rarely survive [17].

The use of larger needles has also been associated with 
tumor seeding into the adjacent tissues. For example in brain 
malignancies, tumor cells could be found in the needle track 
after biopsy of gliomas [18, 19] (Fig. 1) or of brain metas-
tases [20, 21]. However, the incidence of viable tumors and 
tumor recurrences along the track is low and hard to quan-
tify. For hepatocellular carcinoma, a recent meta-analysis of 
the available literature showed that, overall the pooled esti-
mate of a patient with seeding per 100 patients is 0.027 and 
that, per year the pooled estimate of a patient with seeding 
per 100 patients is 0.009 [22]. For other cancers, where FNA 
is a common practice, such as thyroid cancer, needle track 
seeding is extremely rare and only a few cases have been 
reported [23]. Percutaneous FNA, performed on pancreatic 

tissue has also been associated with coelomic seeding [24]. 
However distinct studies present conflicting results on the 
incidence of seeding and its risk for tumor progression [25]. 
The use of endoscopic ultrasound-FNA allows a more accu-
rate lesion sampling and thus may eliminate the risk of coe-
lomic seeding [26]. The risk of tumor seeding after needle 
biopsy in retroperitoneal sarcoma is estimated to be 0.37%, 
based on pooled data from four tertiary care centers [27–29]. 
Even though the data is limited, few studies indicate that the 
use of vacuum assisted biopsy devices might reduce the risk 
of tumor seeding compared to the use of traditional devices 
[17, 30].

Effect of tumor resections on tumor cell seeding

For many solid tumor types, resection is part of the treat-
ment plan. Often, the aim of surgery is to completely resect 
a tumor (gross total resection), but partial resections are 
sometimes the only clinical option. Various tumors includ-
ing chordoma [31] and mixed epithelial stromal tumor of 
the kidney [32] have also shown evidence of tumor seeding 
as a result of partial resections. Unfortunately, even gross 
total resection of tumors can result in local dissemination of 
cells. For example, it has been shown that piece meal resec-
tion of brain metastases increases the risk of leptomeningeal 
spread (LMS) resulting in worse outcomes for patients [33]. 
In addition, recent evidence suggests that the risk of LMS 
is higher after surgery followed by stereotactic radiosurgery 
(SRS) than after SRS alone [34].

Other examples of tumor cell dissemination after resec-
tion include port-site recurrences after laparoscopic abdomi-
nal oncological surgeries, procedures with clear advantages 
associated with their minimally invasive character [35]. Var-
ious factors seem to contribute to tumor seeding in this con-
text. First, some factors might be tumor related. High-grade 
or high-stage tumors have been associated with a greater 
risk of seeding [36, 37]. Second, there might be wound 
related aspects that offer a tumor supportive environment. 
This process can contribute to tumor metastasis and will be 
discussed below. Third, there might be surgery-associated 
factors. For example, it has been suggested that the  CO2 
pneumoperitoneum plays a role in the development of these 
metastases as well as in the development of peritoneal car-
cinomatosis after laparoscopic surgery [38, 39]. Dry cold 
 CO2 might induce peritoneal damage facilitating metastases 
[40, 41], for example by creating a local immune suppressive 
micro-environment. Additionally, extensive manipulation of 
the tumor, has been associated with a higher risk of port 
site metastasis [42, 43]. Finally, not using a retrieval bag 
might facilitate port site metastasis [44]. To prevent these 
metastases, studies that aim to improve safety of surgery, for 
instance by identifying alternatives for the cold  CO2 insuf-
flation, like those performed in mice by Carpentiri et al., are 
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essential [45]. In addition, it is important that surgeons are 
aware of the impact of the techniques they use and that they 
are properly trained to minimize the risk of tumor seeding, 
especially since training seems to decrease the risk of these 
unwanted negative effects of surgery [46].

Immune suppressive micro‑environment

Next to effects on tumor cell seeding, surgical procedures 
induce changes in the local tumor microenvironment that 
can impact tumor cell gene expression and behavior. Tumors 
are largely infiltrated by immune cells that can exert both 
pro-tumoral and anti-tumoral effects. To escape immune 
surveillance exerted by anti-tumoral effectors, tumor cells 
often create an immunosuppressive microenvironment that 
favors tumor progression and metastatic spreading [47, 48]. 
Surgical procedures, as tumor resection and biopsy, can 
even further promote immunosuppressive infiltrates in the 
remaining tumor mass [49, 50].

Both the innate and the adaptive immune systems contrib-
ute to this immune suppressive environment. In an experi-
mental model of lung carcinoma, tumors that had undergone 
partial tumor resection were found infiltrated with immuno-
suppressive alternatively-activated macrophages and regula-
tory T cells (Tregs), which prevented CD8 T lymphocytes 
recruitment to the tumor and contributed to faster tumor 
recurrence [50]. Infiltration of these immunosuppressive 
cells was stimulated by high levels of TGF-β and COX-2 
found in the resection area [50]. A study of oral squamous 
cell carcinomas showed that the number of alternatively 
activated macrophages in the tumor correlates with the 
size of the surgical trauma, with animals undergoing tumor 
resection having higher numbers of alternatively activated 
macrophages than animals that underwent a biopsy [51]. 
Still, even small wounds to the tumor created by needle 
biopsy can rapidly promote pro-inflammatory factors such 
as S100A8, CXCL2, CCL3, and COX2 followed by a signifi-
cant increase in the number of myeloid derived suppressor 
cells in the tumor [49]. Eosinophils that controversially have 

Fig. 1  Evidence of tumor seeding after needle biopsy of a glioblastoma. Six weeks after a needle biopsy of a glioblastoma (blue arrow), MR-
imaging shows evidence of tumor seeding along the needle track (red arrow). (Color figure online)
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been reported as indicators of both favorable [52, 53] and 
poor prognosis [54, 55] have also been found to infiltrate the 
tumor after biopsy in breast cancer patients [56].

Tumor cell transformation and changes in tumor cell 
behavior

In addition to creating an immunosuppressive environment, 
infiltrating immune cells in response to surgical trauma are 
a source of inflammatory cytokines, chemokines and growth 
factors. These factors are known for their ability to promote 
tumor cell proliferation, differentiation and migration [57]. 
Numerous studies have found that tumor wounding by either 
resection or by biopsies stimulates tumor growth [4, 5, 56, 
58–61]. Interestingly, the impact of wounding on tumor 
growth is distinct between tumor subtypes. For instance, 
luminal A breast tumor showed more Ki67 upon core needle 
biopsy compared to luminal B-HER2-tumors [61].

Different mechanisms explaining the local recurrence of 
the tumor have been proposed. Increase in levels of VEGF 
and endostatin in the wounded tissue potentiate neoangio-
genesis, required for tumor growth [62, 63]. Mitogens, such 
as heparin-binding epidermal growth factor, platelet-derived 
growth factor, TGF-β, basic fibroblast growth factor present 
in the wound fluid support tumor growth rate [58, 59]. These 
growth factors can be secreted directly by the tumor cells, 
due to changes in their transcriptome [49]; or by recruited 
[4] and resident cells present in the wounded microenviron-
ment [60]. Surgical trauma caused by tumor resection of 
brain tumors promotes reactive astrogliosis, that can either 
directly induce tumor proliferation thought secretion of 
mitogens (e.g. SDF-1) [64] or either through the recruitment 
of inflammatory cells such as macrophages [65].

Mathenge et al. reported that tumor biopsy promotes epi-
thelial to mesenchymal transition (EMT) related changes in 
gene expression in the remaining tumor cells via an increase 
in TGF-β and SOX-4 production [49]. This fundamental 
process in embryonic development plays a crucial role in 
tumor cell invasion. In glioma, surgical resection and biopsy 
have shown to promote tumor cell proliferation through tran-
scriptome and secretome alterations of reactive astrocytes 
[60] and recruitment of pro-inflammatory monocytes to the 
operative site [4].

Besides increased growth rate, surgical trauma can also 
enhance tumor cells’ migratory capacity [4, 60, 66], a key 
process in tumor cell local and systemic dissemination [67, 
68]. The transition from epithelial to mesenchymal state that 
tumor cells can undergo upon biopsy [49], is reported to be 
necessary for tumor cells migratory behavior [4, 69]. Tumor 
cell migration and invasion in the surrounding tissue can be 
promoted by soluble factors as a consequence of changes in 
local tumor microenvironment [60] and the inflammatory 
cell influx [4] to the wounded site. The effects on local tumor 

cell invasive capacity are of particular importance for highly 
aggressive tumors such as high grade gliomas, in which local 
invasion prevents complete tumor resection and has a direct 
impact on patient’s outcome [70, 71]. For instance, reactive 
astrocytosis [60] as a result of surgical resection can promote 
tumor cell invasion via the secretion of distinct paracrine 
factors (e.g. TGF-α, CXCL12, S1P, GDNF, MMP-2, MMP-
9) [72–74].

The development of intravital microscopy (IVM) [75], a 
novel imaging technique that allows to visualize tumor cell 
behavior at single cell level in a living animal, has granted a 
deeper insight into the impact of small surgical interventions, 
such as biopsy, on tumor progression and determine the cel-
lular mechanisms behind this process [4, 66]. Using IVM, 
we have previously shown that biopsy-like injury induces 
migration and proliferation of tumor cells via recruitment 
of monocytes and their differentiation to macrophages [4]. 
Over the last decades it has been extensively reported that 
tumor associated macrophages are able to promote tumor 
cell migration thought secretion of matrix-remodeling pro-
teins, cytokines and chemokines (e.g. MMP-2, MMP-9, 
TNF-α, VEGF, TGF-β, EGF) [76–80]. Some of these fac-
tors and others can also stimulate tumor proliferation and 
survival (e.g. EGF, PDGF, TGF-β1, HGF and FGF-2) [79, 
81, 82]. Another study using IVM has shown that next to 
their ability to invade the surrounding tissue, human glioma 
cells have been shown to repopulate the surgical lesion area 
through directed migration to the wounded site [66]. In some 
models, it has been shown that this recolonization is at least 
in part mediated by tumor microtubes that form a tumor 
cell network and contribute to tumor cell invasion, prolifera-
tion in unlesioned tumor and to radiotherapy resistance [83]. 
Upon surgery, the neighboring tumor cells are able to extend 
new tumor microtubes and direct newly formed tumor cell 
nuclei towards the lesioned area to repopulate it [66].

Systemic effects of surgery

Tumor cell release

With the advance of successful treatments that target pri-
mary tumor sites, metastatic disease management and pre-
vention has become the main challenge for most solid tumor 
treatment strategies [84]. However, surgical trauma results 
in systemic and secondary site changes that might favor the 
formation of new metastases and potentiate the growth of 
pre-existent micrometastases.

Because tumor cell dissemination to distant organs occurs 
via shedding of circulatory tumor cells (CTCs) into the lym-
phatic and blood vasculature, high CTC numbers are closely 
associated with metastatic disease progression and survival 
[85, 86]. Numerous studies from different types of cancer 
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have reported cancer cell release into the circulation as a 
result of biopsy and surgical resection [49, 87–94].

Even non-invasive medical interventions such as external 
tumor palpation have been shown to lead to increased num-
bers of CTCs during and immediately after the procedure in 
subcutaneous models of melanoma and breast cancer [94], 
suggesting that tumor cells release into the circulation is 
susceptible to external manipulation. However, CTCs release 
upon surgery and its impact on patients’ prognosis is still 
controversial, since some studies show no increase in CTC 
counts before and after surgery [95], while others find that 
CTC counts after surgery are not associated with recurrence 
free survival or overall survival [96].

Interestingly, a time-course experiment over several 
weeks performed by Juralti et al. found that CTC dynamics 
increased immediately after punch biopsy and stayed ele-
vated for 6 weeks after the procedure [93], while complete 
tumor resection led to a decrease in CTC counts. This dif-
ference is likely to be due to the high efficiency of tumor cell 
resection that can be achieved in a subcutaneous pre-clinical 
model where the complete primary tumor can be eliminated, 
and thus the source of CTCs. However, in the clinic com-
plete tumor resection can be very challenging, making par-
tial or subtotal resections a reality [97–99]. In these cases 
the remaining tumor cells can be a source of CTCs. In line 
with this notion Juralti et al. found that incomplete tumor 
resection led to an increased number of CTCs [93].

The mechanisms of CTC mobilization in the blood upon 
surgical trauma have yet to be clarified. The immediate shed-
ding of CTCs in the bloodstream indicates passive intravasa-
tion due to mechanical pressure and vascular collapse [100]. 
However in later stages the local inflammatory response, 
described above, could also impact tumor cell capacity for 
active intravasation via changes in tumor cell gene expres-
sion [49] or changes in the microenvironment, that favor 
tumor cell migration [4] and vascular permeability [101].

Systemic inflammation potentiates tumor cell 
survival in circulation and extravasation

Next to CTC release, invasive surgical interventions trig-
ger changes in systemic inflammation that can impact the 
CTCs ability to survive and extravasate. Extensive evidence 
has shown that surgical interventions lead to an imbalance 
of the innate and adaptive immune regulatory mechanisms 
and impair immune functions [102–105]. One of the effects 
of surgery is systemic immunosuppression of cells that par-
ticipate in CTCs clearance [106, 107] and in the control of 
tumor cell dissemination [108, 109]: natural killers (NK) and 
phagocytic monocytes/macrophages. This process is trig-
gered by the activation of the hypothalamic–pituitary–adre-
nal axis in response to surgical trauma stress [110, 111]. NK 
cell numbers and cytotoxic activity experience a rapid and 

prolonged (up to 10–30 days) decrease due to surgical inter-
ventions [112, 113]. Additionally, monocytes/macrophages 
phagocytic and chemotactic functions and antigen recog-
nition mechanisms are compromised due to surgery [114, 
115] and even as a result of anesthesia [116, 117]. Likewise, 
suppression of NKs and macrophages in a model of hepatic 
metastasis has shown to potentiate tumor cell uptake and 
outgrowth in the liver [107].

An increase in neutrophil counts in blood [118, 119] is 
triggered by surgical trauma. As a result, tumor cell sur-
vival, via NK cell suppression, is promoted and tumor cell 
extravasation is stimulated through IL-1 and matrix metal-
loproteases secretion [120]. Moreover, in response to injury 
neutrophils expel granule and nuclear constituents (includ-
ing DNA and histones) mixed with a variety of cytokines, 
known as neutrophil extracellular traps (NETs) [121]. These 
structures sequester CTCs [122] from circulation and pro-
mote tumor cell invasion and metastatic outgrowth [123]. 
Post-operative NET formations in a cohort of patients with 
liver resection for metastatic colorectal cancer were associ-
ated with the extent of surgical resection and resulted in an 
increased risk of recurrence [124]. Indeed, NETs inhibition, 
described in a murine model of surgical stress, attenuates the 
development of metastasis triggered by the surgical interven-
tion [124].

Another systemic effect of surgery consists of an acute 
inflammatory response mediated by the release of inflam-
matory cytokines into circulation [104]. TNF-α and IL-1 are 
some of the earliest and most potent systemic mediators of 
inflammation known to stimulate tumor cell adhesion [125, 
126], invasion [127] and neoangiogenesis [128, 129] and 
potentiate metastasis formation [130, 131]. In addition to 
inflammatory cytokines, an increase in pro-angiogenic fac-
tors, such as VEGF and angiopoietin-2 in plasma has been 
reported after distinct surgical interventions [63, 132, 133].

In the peritoneal cavity tumor cell adhesion can be facili-
tated due to exposure of the extracellular matrix after meso-
thelial cell detachment in response to surgical trauma [134]. 
This mechanism of regulation of peritoneal inflammation 
[135] has been shown to lead to increased tumor cell adhe-
sion in non-traumatized areas of the peritoneal cavity [134].

Secondary site effects of surgery

Metastatic burden can be potentiated by surgical 
interventions

Apart from supporting the establishment of new metastases 
from CTCs, systemic effects of surgical trauma can potenti-
ate the progression of preexisting metastatic foci and con-
tribute to the creation of so called pre-metastatic niches. 
Over the last decades, numerous clinical and preclinical 
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reports strongly relate surgical interventions such as tumor 
resection and biopsy with an increased metastatic burden in 
different types of cancer [6–12]. Different aspects of surgi-
cal interventions at the primary site ultimately contribute 
to tumor outgrowth at distant sites, some of which, such as 
tumor cell shedding in circulation, extravasation, immune 
cell modulation and pro-tumoral effects of inflammatory 
cytokines, have been discussed above. Surgical interven-
tions to the primary tumor also exert direct effects on distant 
tumors. For instance, biopsy mediated acute inflammatory 
response promotes an increase in lung metastases, associ-
ated with neutrophils recruitment to the metastatic site that 
could be controlled with anti-inflammatory treatment or IL-6 
inhibition [10]. Recruited neutrophils induce metastatic pro-
gression thought activation of intracellular growth signaling 
pathways mediated by Toll-like receptor 9 and NETs [124]. 
Additionally, Al-Sahaf et al. showed that upon primary 
tumor resection lung metastasis acquired an invasive and 
proangiogenic phenotype and increased proliferation [6], 
indicating that humoral responses to surgical trauma can 
also directly alter secondary tumor gene expression. Some 
effects of surgical interventions on tumor progression seem 
to be unrelated to the primary tumor, but rather a direct con-
sequence of a normal wound healing response. In line with 
this, a wound to a tumor-free tissue has been shown to elicit 
systemic factors that promote tumor angiogenesis [136] and 
proliferation [58].

The potentiation of metastatic progression can also be a 
consequence of an alteration in the inhibitory control exerted 
by the primary tumor. The primary tumor secretes factors 
that control the growth of secondary metastasis; and surgi-
cal resection of the primary tumor releases this inhibitory 
control [137–139]. Regulation of angiogenesis plays a major 
role in this process. It is thought that both pro-angiogenic 
factors and inhibitors are secreted into the circulation by 
primary tumors, however inhibitors are more stable and can 
exert anti-angiogenic effects on distant micrometastases. 
As a result of primary tumor removal, angiogenesis inhibi-
tors levels drop, an angiogenic switch takes place at distant 
tumor sites and gives rise to tumor expansion. Studies done 
by Folkman have elucidated the molecular mechanisms 
responsible for this effect with angiostatin and endostatin 
as main regulators [137–139].

Pre‑metastatic niche formation as a consequence 
of surgery

Little is known about the effects of surgery on pre-meta-
static niche formation. However, the systemic inflamma-
tion elicited in response to surgery could also contribute 
to the alteration of the microenvironment at distant sites 
and create pre-metastatic niches. In line with this idea 
hepatic ischemia–reperfusion injury has shown to increase 

circulating bone marrow-derived progenitor cells accom-
panied by a marked microvascular density in the liver that 
resulted in a higher incidence of liver metastases, upon 
tumor cell injection after injury [140]. Hypoxic conditions 
at the primary tumor site created by decreased tissue perfu-
sion upon a surgical intervention are also likely to stimulate 
pre-metastatic niche formation at distant sites [141]. Con-
ditioned medium derived from hypoxic mammary tumor 
cells has been reported to increase bone marrow-derived 
cell infiltration into the lung and rise the metastatic burden 
at this site [142]. Future studies should focus on elucidat-
ing the mechanisms that contribute to the formation of pre-
metastatic niches in response to surgical interventions at the 
primary tumor site.

Prevention of undesired tumor promoting 
effects of surgical interventions

Extensive evidence links therapeutic and diagnostic invasive 
interventions with a stimulation of tumor progression. This 
does not imply however that the current cancer management 
protocols should be abandoned, as in most cases they allow 
for cure or extend lifespan of patients, that otherwise would 
not be possible. Instead the increasing knowledge of the cel-
lular and molecular mechanisms underlying this phenom-
enon offer a therapeutic possibility to prevent these adverse 
effects, making clinical interventions even more beneficial 
for the patient. Several prevention strategies have been pro-
posed (Fig. 2).

Since immune alteration plays a main role in surgery 
induced tumor progression perioperative immune-modula-
tors have been proposed to suppress undesired effects of 
surgery. For example, IL-2 treatment prior to surgery has 
shown to counteract surgery-induced immunosuppression 
and extend survival of colorectal cancer patients [143, 144]. 
Other modulators such as granulocyte macrophage-colony 
stimulating factor, IFN-α and TNF-α also improved postop-
erative immune functions [130, 145, 146]. Although IL-2 
and IFN-α treatments have shown severe side effects, some 
recent studies have reported that short-term administration 
schedules and drug delivery strategies induce only mild side-
effects, suggesting that the use of these therapies should be 
further investigated to evaluate their potential to safely pre-
vent surgery induced tumor progression [147, 148]. Another 
prospective strategy aimed to stimulate the adaptive immune 
response against the remaining tumor cells consists of the 
use of postoperative dendritic cell vaccines (DCV) [149, 
150]. In the last years the optimization of DCV for therapeu-
tic purposes has renewed the interest towards this approach 
and the number of clinical trials testing DCV is currently 
rising [151].
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An alternative approach is to utilize factors that would 
resolve the acute inflammation that is triggered by surgical 
procedures [152]. Perioperative treatment with dexametha-
sone, a potent anti-inflammatory drug, has shown to pre-
vent biopsy-induced tumor cell migration and proliferation 
by reducing monocytes recruitment to the injured site and 
reduced growth of biopsied tumors in multifocal glioblas-
toma patients [4]. Other mediators of inflammation resolu-
tion such as Resolvin D1, Lipoxin A4 [153] and 15-Epi-
lipoxin A4 [154] represent a therapeutic potential due to 
their capacity to attenuate systemic inflammation.

Stress induced by surgery triggers the activation of 
the hypothalamic–pituitary–adrenal axis that modulates 
the immune system response via neuroendocrine factors 
[110, 111]. Preclinical studies have shown that periopera-
tive blockade of neuroendocrine factors by COX-2 inhibi-
tors and β-blockers can prevent immune suppression and 
decrease surgery-induced local tumor growth and metastatic 
progression [155, 156]. This notion has been supported 
by recent clinical data that report, not only the safe use of 

these treatments in patients, but also their efficacy to inhibit 
inflammatory ligands (IL-6, C-reactive protein), preserve 
the levels of cytokines that enhance anti-tumor activity by 
NK and cytotoxic T cells (IL-12, IFN-γ), decrease tumor 
infiltration with pro-inflammatory monocytes and abrogate 
the activity of immune suppressive CD4 T cells [157, 158]. 
Importantly, in the excised tumor preoperative treatment 
showed to suppress molecular pathways related to metastatic 
progression [157]. Although the impact of these treatments 
on long-term clinical outcome after surgery still needs to be 
assessed, the potential benefit of this approach is supported 
by studies that show association between the use of COX-2 
inhibitors and β-blockers with progression-free survival in 
breast cancer patients [159, 160].

Tumor growth inhibition with preoperative [161, 162] 
or directly postoperative [163] chemotherapy or anti-
angiogenic [164] treatments has previously been studied 
and although in some cases these therapies have shown 
to improve long term-survival [165] their use remains 
controversial. This is due not only to other studies where 

Fig. 2  Surgical procedure impact on tumor cell progression and 
metastatic spread and prevention strategies. Surgical trauma induced 
immune-suppression, acute inflammation, pro-angiogenic factors 
release, and tumor architecture rupture contribute to tumor cell prolif-
eration, migration, EMT; release and survival in circulation; adhesion 
to the endothelial wall and extravasation; escape of immune surveil-
lance and angiogenic switch. Several therapeutic approaches show 
potential benefit to prevent these undesired effects: immune and neu-
roendocrine modulators, mediators of acute inflammation resolution 

and anti-angiogenic treatments. IL-2 interleukin 2, IFNα interferon 
alpha, TNFα tumor necrosis factor alpha, MΦ macrophages, Treg 
regulatory T cell, MDSC myeloid-derived suppressor cell, NK natural 
killer, COX-2 cyclooxygenase 2, CxCL2 chemokine (C–X–C motif) 
ligand 2, CCL3 chemokine (C–C motif) ligand 3, IL-1 interleukin 1, 
VEGF vascular endothelial growth factor, EMT epithelial–mesenchy-
mal transition, CTC  circulating tumor cell, HPA hypothalamic–pitui-
tary–adrenal
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chemotherapy showed no benefit [166], but also because in 
some cases it seemed to elicit unwanted effects, similar to 
surgical trauma, that can contribute to tumor progression 
and spreading [167]. Moreover the adverse side effects of 
chemotherapy such as a strong inflammatory response and 
impaired wound healing constitute an additional challenge 
for their wide use in the clinic.

Concluding remarks

Clinical and preclinical evidence indicate that both biopsies 
and tumor resections can have multiple effects that stimu-
late tumor progression, metastatic spreading and outgrowth. 
However, given the variety of surgical procedures, tumor 
types and stages that are encountered in the clinical practice, 
the conclusions drawn from these studies cannot be general-
ized. For instance, in early stage tumors, surgical procedures 
might have no impact on tumor progression because tumor 
cells still lack the genetic makeup necessary to acquire 
malignant features when a pro-inflammatory microenviron-
ment is induced [61].

Moreover, the benefit of these surgical procedures for 
appropriate diagnosis and extended survival is undeniable 
and outweighs the potential negative effects, advocating 
against their discontinuation. Instead, the described findings 
show the importance of future studies addressed to further 
elucidate the cellular and molecular mechanisms behind 
these processes. This will allow to develop novel approaches 
to mitigate the local and systemic undesired effects of surgi-
cal interventions and even further improve the clinical ben-
efit of these procedures.
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