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REPORT
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ABSTRACT
We previously reported real-time monitoring of cell cycle dynamics of cancer cells throughout a live tumor
intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI). Approximately 90% of cancer
cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time
FUCCI imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and,
in contrast, and had little effect on the quiescent cancer cells. Resistant quiescent cancer cells restarted
cycling after the cessation of chemotherapy. Thus cytotoxic chemotherapy which targets cells in S/G2/M, is
mostly ineffective on solid tumors, but causes toxic side effects on tissues with high fractions of cycling
cells, such as hair follicles, bone marrow and the intestinal lining. We have termed this phenomenon
tumor intrinsic chemoresistance (TIC). We previously demonstrated that tumor-targeting Salmonella
typhimurium A1-R (S. typhimurium A1-R) decoyed quiescent cancer cells in tumors to cycle from G0/G1 to
S/G2/M demonstrated by FUCCI imaging. We have also previously shown that when cancer cells were
treated with recombinant methioninase (rMETase), the cancer cells were selectively trapped in S/G2,
shown by cell sorting as well as by FUCCI. In the present study, we show that sequential treatment of
FUCCI-expressing stomach cancer MKN45 in vivo with S. typhimurium A1-R to decoy quiescent cancer cells
to cycle, with subsequent rMETase to selectively trap the decoyed cancer cells in S/G2 phase, followed by
cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy to kill the decoyed and trapped cancer cells
completely prevented or regressed tumor growth. These results demonstrate the effectiveness of the
praradigm of “decoy, trap and shoot” chemotherapy.
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Introduction

We previously reported intravitally monitoring of real-time cell
cycle dynamics of cancer cells throughout a live tumor using a fluo-
rescence ubiquitination cell cycle indicator (FUCCI) .1,2 In amature
tumor, approximately 90% of cancer cells in the center and 80% of
total cells of an established tumor are in G0/G1 phase. Longitudinal
real-time FUCCI imaging demonstrated that cytotoxic agents
killed only proliferating cancer cells at the surface and, in contrast,
had little effect on quiescent cancer cells, the vast majority of an
established tumor. Resistant quiescent cancer cells restarted cycling
after the cessation of chemotherapy.We have termed this phenom-
enon tumor intrinsic chemoresistance (TIC).1

We previously developed the tumor-targeting bacterial strain
Salmonella typhimurium A1-R (S. typhimurium A1-R).3 S. typhi-
muriumA1-R is auxotrophic for Leu—Arg, which prevents it from
mounting a continuous infection in normal tissues. S. typhimurium
A1-R was able to inhibit primary and metastatic tumor growth as
monotherapy in mouse models of major cancers,4 including

prostate,5,6 breast,7-9 lung,10,11 pancreatic,12-16 ovarian,17,18 stom-
ach,19 and cervical cancer,20 as well as sarcoma cell lines21-24 and
glioma,25,26 as well as on pancreatic cancer15 and sarcoma24

patient-derived orthotopic xenograft (PDOX) models, all of which
are highly aggressive tumormodels.

Time-lapse FUCCI imaging demonstrated that tumor-tar-
geting S. typhimurium A1-R decoyed quiescent cancer cells in
tumors growing in nude mice to cycle from G0/G1 to S/G2/M,
thereby acquiring chemosensitivity.19

We previously demonstrated a selective growth arrest of cancer
cells by depletion of their source of methionine in vitro. This
growth arrest resulted in a reduction in the percentage of mitotic
cells. Fluorescence-activated cell sorting demonstrated that the cells
were arrested in the S and G2 phases of the cell cycle.

27 Methionine
depletion of co-cultures of cancer and normal cells enabled the
selective elimination of the cancer cells by chemotherapy drugs.28

Subsequently we induced the tumor-specific cell cycle block
in S/G2 in vivo by depriving Yoshida sarcoma-bearing nude

CONTACT Robert M. Hoffman, Ph.D all@anticancer.com AntiCancer Inc., 7917 Ostrow Street San Diego, CA 92111; Toshiyoshi Fujiwara, M.D., Ph.D
toshi_f@md.okayama-u.ac.jp Dept. of Gastroenterological Surgery, Okayama University Grad. School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1

Shikata-cho, Kita-ku Okayama 700-8558, Japan.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kccy.
© 2016 Taylor & Francis

CELL CYCLE
2016, VOL. 15, NO. 13, 1715–1723
http://dx.doi.org/10.1080/15384101.2016.1181240

http://dx.doi.org/10.1080/15384101.2016.1181240


mice of dietary methionine. Methionine depletion caused the
tumor to eventually regress.29

Cancer cells treated with recombinant methioninase
(rMETase), were also selectively trapped in S/G2 as visualized
with FUCCI imaging. rMETase-induced S/G2-phase blockage
and sensitized the cancer cells to doxorubicin (DOX), cisplati-
num (CDDP), or 5-fluorouracil (5-FU).30 Cancer cells may be
generally methinoine dependent compared to normal cells.31-33

In the present study, we show that sequential treatment of
FUCCI-expressing MKN45 human stomach cancer in vivo
with S. typhimurium A1-R to decoy quiescent cancer cells to
cycle; rMETase to selectively trap the decoyed cancer cells in S/
G2 phase; and CDDP or paclitaxel (PTX), completely prevented
or regressed tumor growth, demonstrating the effectiveness of
the paradigm of “decoy, trap and shoot” chemotherapy.

Results and discussion

S. typhimurium A1-R decoys quiescent cancer cells to cycle
visualized by FUCCI imaging

S. typhimurium A1-R treatment significantly decoyed HeLa-
FUCCI cells in monolayer culture to cycle from G0/G1 to S/G2

phase (S. typhimurium A1-R treatment vs control: 62.3% vs 25.9%
in S/G2, respectively, p< 0.01) (Figs. 1A and 1B). In tumor spheres,
S. typhimurium A1-R treatment significantly decoyed MKN45-
FUCCI cells to cycle to S/G2 phase (S. typhimurium A1-R
treatment vs control: 62.5 % vs 6.3% in S/G2, respectively,
p < 0.01) (Figs. 1C and 1D). S. typhimurium A1-R significantly
decoyed MKN45-FUCCI cells in tumors in vivo to cycle to late-S/
G2 phase (S. typhimurium A1-R treatment vs control; 62.6 % vs
24.6% in S/G2, respectively, p< 0.01) (Figs. 1E and 1F).

Recombinant methionine (rMETase) trap of cancer cells
in S/G2 visualized by FUCCI imaging

ControlHeLa cells in vitro continue to divide. In contrast, rMETase
trapped HeLa-FUCCI cells in S/G2 phase before cell division
(Fig. 2A). rMETase continued to trap HeLa-FUCCI cells in S/G2

phase over time without entry intomitosis (Fig. 2B).

Decoy, trap and shoot chemotherapy with CDDP

MKN45 tumor-bearing mice were treated with CDDP; or
S. typhimurium A1-R; or S. typhimurium A1-R and CDDP

Figure 1. S. typhimurium A1-(R) decoyed quiescent cancer cells to cycle. S. typhimurium A1-R targeted quiescent cancer cells and decoyed cell cycle transit from G0/G1 to
S/G2/M phases. (A) Representative images of control HeLa-FUCCI cancer cells and HeLa-FUCCI cancer cells in monolayer culture treated with S. typhimurium A1-R. (B) His-
togram shows cell cycle distribution in control and S. typhimurium A1-R-treated cultures. Scale bar: 500 mm. (C) S. typhimurium A1-R stimulated cell-cycle transit from G0/
G1 to S/G2 phase in quiescent tumor spheres formed from MKN45-FUCCI cells in vitro. Representative images of control tumor spheres and and tumor spheres treated
with S. typhimurium A1-R. (D) Histogram shows cell-cycle distribution in control and S. typhimurium A1-R-treated tumor spheres. (E) S. typhimurium A1-R decoyed the
cell-cycle transit of quiescent cancer cells in MKN45-FUCCI tumors in vivo. Representative images of cross sections of FUCCI-expressing MKN45 tumor xenografts treated
with S. typhimurium A1-R or untreated control. (F) Histograms show the cell-cycle phase distribution of FUCCI-expressing cells within the tumors treated with S. typhimu-
rium A1-R or untreated control. The cells in G0/G1, S, or G2/M phases appear red, yellow, or green, respectively.
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or S. typhimurium A1-R, rMETase and CDDP. CDDP
inhibited tumor growth (p < 0.01). S. typhimurium A1-R
inhibited tumor growth more than CDDP (p < 0.01). S.
typhimurium A1-R and CDDP combined had a greater
inhibition of tumor growth (p < 0.01). The sequential
combination of S. typhimurium A1-R, rMETase and
CDDP prevented or regressed tumor growth more than S.
typhimurium A1-R or CDDP alone or the combination of
these two agents (p < 0.01) (Fig. 3).

rMETase induces mitotic catastrophe after late-S/G2 trap
visualized by FUCCI imaging

HeLa-FUCCI cells were treated with rMETase for more than
80 hours. HeLa-FUCCI cells trapped in late-S/G2 phase did not
divide and their nuclei turned red, after which they died
(Figs. 4A and 4B). These results showed that methionine was
indispensable for cell division, and therefore rMETase induced
mitotic catastrophe.34-36

8h 12h 16h4h0h

32h 36h 40h28h24h

Figure 2. rMETase traps cancer cells in S/G2 phase. Time-course imaging of HeLa-FUCCI cells treated with rMETase. After seeding on 35 mm glass dishes and culture overnight,
HeLa-FUCCI cells were treated with rMETase at a dose of 1.0 unit/ml. (A) Kinetics of rMETase trapping of cells in S/G2. (B) Maintenance of rMETase trap in S/G2 over time. All
images were acquired with the FV1000 confocal microscope (Olympus, Tokyo, Japan).81 The cells in G0/G1, S, or G2/M phases appear red, yellow, or green, respectively.

CELL CYCLE 1717



Decoy, trap and shoot chemotherapy with mitotic
inhibitor PTX paclitaxel (PTX)

Based on rMETase prevention of cell division, we tested decoy,
trap and shoot chemotherapy on MKN45 tumor bearing mice

with paclitaxel (PTX). PTX alone and S. typhimurium A1-R
alone significantly inhibited tumor growth (p < 0.05). S. typhi-
murium A1-R combined with PTX had a similar inhibition of
tumor growth compared with PTX alone or S. typhimurium
A1-R alone. The sequential combination of S. typhimurium

Figure 3. Decoy, trap and shoot chemotherapy with CDDP. (A) Treatment schedule. FUCCI-expressing MKN45 cells (5 £ 106 cells/mouse) were injected subcutaneously
into the left flank of nude mice. When the tumors reached approximately 8 mm in diameter (tumor volume, 300 mm3), mice were administered iv S. typhimurium A1-R
alone (5 £ 107 CFU/mouse, iv, qW £ 4); or cisplatinum (CDDP) alone (5 mg/kg, ip, q3d); or S. typhimurium A1-R followed by CDDP; or S. typhimurium A1-R, rMETase
(200 units/mouse, ip, q d for 3 d £ 4) and CDDP in that order. (B) Macroscopic photographs of FUCCI-expressing tumors: untreated control; S. typhimurium A1-R-treated;
CDDP-treated; S. typhimurium A1-R and CDDP-treated; or treated with the sequential combination of S. typhimurium A1-R, rMETase and CDDP. (C) Waterfall plot indicating
fold change in tumor volume: untreated control; CDDP-treated; S. typhimurium A1-R-treated; S. typhimurium A1-R and CDDP-treated; or treated with the sequential com-
bination of S. typhimurium A1-R, rMETase and CDDP. (D) Representative images of cross-sections of FUCCI-expressing MKN45 subcutaneous tumors: untreated control; S.
typhimurium A1-R-treated; CDDP-treated; S. typhimurium A1-R and CDDP-treated; or treated with the sequential combination of S. typhimurium A1-R, rMETase and CDDP.
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A1-R, rMETase and PTX prevented or regressed tumor growth
more than S. typhimurium A1-R or PTX alone or the combina-
tion of these two agents (p < 0.05).

Previously-developed concepts and strategies of highly
selective tumor-targeting37-48 can take advantage of bacterial
cell-cycle decoy and rMETase cell-cycle trap described in the
present and previous reports.1,49,50

Excess thymidine or its analogs have also been used to arrest
cancer cells in S-phase, where they are sensitized to S-phase
drugs, and after the release of the block, the cancer cells are sen-
sitive to M-Phase drugs.51-53

Cytosine arabinoside, methotrexate and hydroxyorea have been
used to block cancer cells in S-phase which can sensitize them to
anM-phase drug administered after the S-phase block is lifted.54-58

Mibefradil, a calcium channel blocker, has been used to syn-
chronize glioblastoma cells at the G1/S checkpoint sensitizing
them to temozolomide.59 Lovastatin can be used to synchronize
cancer cells in G1.

60,61 The cancer cells can be effectively treated
with an S-phase drug after the block is lifted.

PDO332991, a pyridopyrimidine, inhibits cyclin-dependent
kinases 4 and 6 and induced early-G1 arrest in myeloma cells in
vitro and in vivo where they become sensitive to cytotoxic
drugs.62 RO-3306, another cyclin-kinase inhibitor, arrests cancer
cells in G2 phase which become sensitive to M-phase drugs after
the block is lifted.63 EGF, G-CSF, and IL-6 can stimulate cancer
cell out of G0 and can sensitize them to cytotoxic chemother-
apy.64-66 Reviews on cell synchronization are available.67-70

The critical advantage of S. typhimurium A1-decoy and
rMETase trapping is that both are tumor specific, unlike the
methods listed above, and can overcome tumor intrinsic che-
moresistance (TIC).27,28,32,71-79

Materials and methods

FUCCI (Fluorescence ubiquitination cell cycle indicator)

The FUCCI probe was generated by fusing mKO2 (monomeric
kusabira orange2) and mAG (monomeric azami green) to the
ubiquitination domains of human Cdt1 and geminin, respec-
tively. These 2 chimeric proteins, mKO2-hCdt1and mAG-
hGem, accumulate reciprocally in the nuclei of transfected cells
during the cell cycle, labeling the nuclei of G1 phase cells orange
and nuclei of cells in S/G2/M phase green.1 Plasmids expressing
mKO2-hCdt1 (orange fluorescent protein) or mAG-hGem
(green fluorescent protein) were obtained from the Medical
and Biological Laboratory. Plasmids expressing mAG-hGem
were transfected into MKN45 cells using LipofectamineTM LTX
(Invitrogen). The cells were incubated for 48 h after transfec-
tion and were then trypsinized and seeded in 96-well plates at a
density of 10 cells/well. In the first step, cells were sorted into
green (S, G2, and M phase) cells using a cell sorter. The first-
step-sorted green-fluorescent cells were then re-transfected
with mKO2-hCdt1 (orange) and then sorted by orange
fluorescence.1,2

Figure 4. Prolonged administration of rMETase induced mitotic catastrophe after late S/G2 phase blocking. (A) Time-lapse imaging of HeLa-FUCCI cells treated with
rMETase. After seeding on 35 mm glass dishes and culture overnight, HeLa-FUCCI cells were treated with rMETase at a dose of 1.0 unit/ml for 80 hours. All images were
acquired with the FV1000 confocal microscope (Olympus, Tokyo, Japan). The cells in G0/G1, S, or G2/M phases appear red, yellow, or green, respectively. (B) High magnifi-
cent image of A. Arrowheads refer to a cell dying from mitotic catastrophe.
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Figure 5. Decoy, trap and shoot chemotherapy with PTX. A). Treatment schedule. FUCCI-expressing MKN45 cells (5 £ 106 cells/mouse) were injected subcutaneously into
the left flank of nude mice. When the tumors reached approximately 8 mm in diameter (tumor volume, 300 mm3), mice were administered S. typhimurium A1-R alone (5
£ 107 CFU/mouse, iv, qW £ 4), or PTX alone (6 mg/kg, ip, q3d £ 4); or S. typhimurium A1-R followed by PTX, or S. typhimurium A1-R, rMETase (200 units/mouse, ip, q d
for 3 d £ 4) and PTX sequentially. (B) Macroscopic photographs of FUCCI-expressing tumors: untreated control; S. typhimurium A1-R-treated; PTX-treated; S. typhimurium
A1-R in combination with PTX-treated; or treated with the sequential combination of S. typhimurium A1-R, rMETase and PTX. Scale bars, 10 mm. (C) Waterfall plot indicat-
ing fold change in tumor volume: untreated control; PTX-treated; S. typhimurium A1-R-treated; S. typhimurium A1-R in combination with PTX-treated; or treated with the
sequential combination of S. typhimurium A1-R, rMETase and PTX. (D) Representative images of cross-sections of FUCCI-expressing MKN45 subcutaneous tumors:
untreated control; S. typhimurium A1-R-treated; PTX-treated; S. typhimurium A1-R in combination with PTX-treated; or treated with the sequential combination of S. typhi-
murium A1-R, rMETase and PTX.
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Cells

MKN45 human stomach cancer cells were grown in RPMI
1640 medium with 10% fetal bovine serum and penicillin/strep-
tomycin.1 HeLa cells were grown in DMEM supplemented with
10% fetal bovine serum and penicillin/streptomycin.32

Mice

Athymic nu/nu nude mice (AntiCancer, Inc., San Diego, CA)
were maintained in a barrier facility under HEPA filtration and
fed with autoclaved laboratory rodent diet (Teklad LM-485;
Harlan). All animal procedures were performed under anesthe-
sia using s.c. administration of a ketamine mixture (10 ml keta-
mine HCl, 7.6 ml xylazine, 2.4 ml acepromazine maleate, and
10 ml PBS) (Henry-Schein). FUCCI-expressing MKN45 cells
were harvested from monolayer culture by brief trypsinization.
Single-cell suspensions were prepared at a final concentration
of 5 £ 106 cells and injected subcutaneously in the left flank of
nude mice. All animal studies were conducted in accordance
with the principles and procedures outlined in the National
Institute of Health Guide for the Care and Use of Animals
under Assurance Number A3873–1.19

Recombinant methioninase (rMETase)

Recombinant L-methionine a-deamino-g- mercaptomethane
lyase (methioninase, METase) [EC 4.4.1.11] from Pseudomonas
putida has been previously cloned and was produced in Escheri-
chia coli (AntiCancer, Inc.,). rMETase is a homotetrameric PLP
enzyme of 172-kDa molecular mass.30,80

Decoy, trap and shoot chemotherapy

When the tumors reached approximately 8 mm in diameter
(tumor volume, 300 mm3), mice were administered iv S. typhimu-
riumA1-R (5£ 107 CFU/mouse, iv, qW£ 4) alone or in combina-
tion with cisplatinum (CDDP) (5 mg/kg ip) or paclitaxel (PTX)
(6mg/kg ip) q 3 d£ 5 or the combination of S. typhimuriumA1-R
and either CDDP or PTX, or these combinations with rMETase
(200 units/mouse).19 Please see text and figure legends for dosing
schedules.
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