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Combination treatment with recombinant methioninase enables 
temozolomide to arrest a BRAF V600E melanoma in a patient-
derived orthotopic xenograft (PDOX) mouse model

Kei Kawaguchi1,2,3, Kentaro Igarashi1,2, Shukuan Li1, Qinghong Han1, Yuying Tan1, 
Tasuku Kiyuna1,2, Kentaro Miyake1,2, Takashi Murakami1,2, Bartosz Chmielowski4, 
Scott D. Nelson5, Tara A. Russell6, Sarah M. Dry5, Yunfeng Li5, Michiaki Unno3, 
Fritz C. Eilber6 and Robert M. Hoffman1,2

1AntiCancer, Inc., San Diego, CA, USA
2Department of Surgery, University of California, San Diego, CA, USA
3Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
4Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
5Department of Pathology, University of California, Los Angeles, CA, USA
6Division of Surgical Oncology, University of California, Los Angeles, CA, USA

Correspondence to: Robert M. Hoffman, email: all@anticancer.com

Fritz C. Eilber, email: fceilber@mednet.ucla.edu
Keywords: recombinant methioninase, methionine dependence, metabolic targeting, temozolomide, melanoma
Received: June 06, 2017    Accepted: July 06, 2017    Published: August 12, 2017
Copyright: Kawaguchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

An excessive requirement for methionine termed methionine dependence, 
appears to be a general metabolic defect in cancer. We have previously shown that 
cancer-cell growth can be selectively arrested by methionine deprivation such as 
with recombinant methioninase (rMETase). The present study used a previously-
established patient-derived orthotopic xenograft (PDOX) nude mouse model of BRAF 
V600E-mutant melanoma to determine the efficacy of rMETase in combination with 
a first-line melanoma drug, temozolomide (TEM). In the present study 40 melanoma 
PDOX mouse models were randomized into four groups of 10 mice each: untreated 
control (n=10); TEM (25 mg/kg, oral 14 consecutive days, n=10); rMETase (100 
units, intraperitoneal 14 consecutive days, n=10); combination TEM + rMETase (TEM: 
25 mg/kg, oral rMETase: 100 units, intraperitoneal 14 consecutive days, n=10). All 
treatments inhibited tumor growth compared to untreated control (TEM: p=0.0081, 
rMETase: p=0.0037, TEM-rMETase: p=0.0024) on day 14 after initiation. However, 
the combination therapy of TEM and rMETase was significantly more efficacious than 
either mono-therapy (TEM: p=0.0051, rMETase: p=0.0051). The present study is the 
first demonstrating the efficacy of rMETase combination therapy in a PDOX model, 
suggesting potential clinical development, especially in recalcitrant cancers such as 
melanoma, where rMETase may enhance first-line therapy.
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INTRODUCTION

Melanoma becomes a recalcitrant cancer when it 
metastasizes to regional lymph nodes, with a 5-year survival 
rate of 29%; and 7% when it metastasizes to organs [1]. 
There is still no cure for stage III and IV melanoma due 
to drug resistance, tumor heterogeneity and an immune-
suppressed tumor microenvironment [1-5]. Temozolomide 
(TEM), an alkylating agent, is first-line chemotherapy 
for melanoma but with limited efficacy [1-5]. Targeted 
chemotherapy and immuno-therapy are also of limited 
efficacy in melanoma [1-5]. Melanin may also interfere 
with therapy [4,5]. Therefore, more effective approaches to 
melanoma treatment are needed.

Toward the goal of precision personalized oncology, our 
laboratory pioneered the patient-derived orthotopic xenograft 
(PDOX) nude mouse model with the technique of surgical 
orthotopic implantation (SOI), including pancreatic [6-9], 
breast [10], ovarian [11], lung [12], cervical [13], colon [14-
16], stomach [17], sarcoma [18-22] and melanoma [23-26].

Previously, a BRAF-V600E-mutant melanoma 
obtained from the right chest wall of a patient was transplanted 
orthotopically in the right chest wall of nude mice to establish 
a PDOX model [24-26]. Trametinib (TRA), an MEK inhibitor, 
caused tumor regression. In contrast, another MEK inhibitor, 
cobimetinib (COB) could slow but not arrest growth or cause 
regression of the melanoma PDOX. TEM could slow but not 
arrest tumor growth or cause regression [24].

Methionine dependence is a general metabolic defect 
in cancer. Methionine dependence is due to excess use of 
methionine for aberrant transmethylation reactions, termed 
the Hoffman effect, analogous to the Warburg effect for 
glucose in cancer [27-32]. The excessive and aberrant 
use of methionine in cancer is strongly observed in [11C]
methionine PET imaging, where high uptake of [11C]
methionine results in a very strong and selective tumor 
signal compared with normal tissue background. [11C]
methionine is superior to [18C] fluorodeoxyglucose (FDG)-
PET for PET imaging, suggesting methionine dependence 
is more tumor-specific than glucose dependence [33, 34].

A purified methionine cleaving enzyme, 
methioninase (METase), from Pseudomonas putida has 
been found previously to be an effective antitumor agent 
in vitro as well as in vivo [35-38]. For the large-scale 
production of METase, the gene from P. putida has been 
cloned in Escherichia coli and a purification protocol for 
recombinant METase (rMETase) has been established with 
high purity and low endotoxin [39-41]. 

It has been demonstrated that methionine 
deprivation arrests growth and induces a tumor-selective 
G2-phase cell-cycle arrest of cancer cells in vitro and in 
vivo [42-45].

MET depletion therapy, using rMETase, sensitized 
brain tumors to TEM in xenografts in nude mice [46].

We reported recently on the efficacy of rMETase 
against Ewing’s sarcoma in a PDOX model. rMETase 

effectively reduced tumor growth compared to untreated 
control. The methionine level both of plasma and 
supernatants derived from sonicated tumors was lower 
in the rMETase group [47].

In the present study, we tested a PDOX nude mouse 
model of BRAF V600E melanoma for sensitivity to 
rMETase in combination with TEM.

RESULTS AND DISCUSSION

All treatments inhibited tumor growth compared 
to untreated control (TEM: p=0.0081; rMETase: 
p=0.0037; TEM-rMETase: p=0.0024) on day 14 after 
initiation. Combination therapy of TEM and rMETase 
had significantly better efficacy than either therapy 
alone (TEM: p=0.0051, rMETase: p=0.0051). There was 
no significant difference between TEM and rMETase 
monotherapy (p =0.1282) (Figures 1 and 2).

Post-treatment L-methionine levels in tumors treated 
with rMETase alone or along with TEM significantly 
decreased compared to untreated control (p < 0.0001) 
(Figure 3). These results showed that the BRAF-V600E 
mutant melanoma PDOX is MET dependent and rMETase 
thereby suppresses its growth. The results also show that 
TEM similarly suppressed the melanoma PDOX. Future 
experiments will determine if there are any similarities in 
the mechanism of tumor inhibition of the two therapeutics.

Body weight loss was observed only in the treatment 
groups including TEM. rMETase alone did not cause body 
weight loss (Figure 4). There were no animal deaths in 
any group.

Histologically, the untreated control tumor was mainly 
comprised of viable cells. Epithelioid melanoma cells, devoid 
of melanin, with a high mitotic index, were observed [26]. In 
the tumors treated with rMETase only, there were still mitotic 
figures present indicating that rMETase did not completely 
arrest the tumor. The same degree of necrosis was observed 
in tumors treated with TEM and rMETase as monotherapy. 
Tumors treated with the combination of TEM and rMETase 
showed extensive necrosis, suggesting tumor necrosis is a 
major pathway of tumor growth arrest, but apoptosis may 
play a role as well (Figure 5).

TEM is a first-line chemotherapy for melanoma; 
however, with limited response. The present study has 
important implications since this is the first in vivo efficacy 
study of rMETase combination therapy on a patient tumor, 
in this case, a PDOX model of melanoma, a recalcitrant 
cancer. We had previously demonstrated that rMETase 
potentiates TEM in a mouse model of a human glioma 
cell line [46].

The first hint that methionine metabolism is perturbed 
in cancer came almost 60 years ago when Sugimura et al. 
[48] observed that rat tumor growth was slowed by giving 
the rats a defined diet depleted in methionine. Approximately 
45 years ago, it was observed that L5178Y mouse leukemia 
cells in culture required very high levels of methionine to 
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Figure 1: Macroscopic evaluation of therapeutic efficacy of TEM, rMETase and their combination on a BRAF V600E 
mutant melanoma. (A) Tumor in untreated control. (B) Temozolomide (TEM). (C) Recombinant methioninase (rMETase). (D) 
Combination of TEM and rMETase. Yellow arrows show PDOX tumor growing on right chest wall. Scale bar: 5 mm.

Figure 2: Time-coursed treatment efficacy of TEM, rMETase and their combination in the BRAF V600E mutant 
melanoma. Line graphs show relative tumor volume at each time point relative to the initial tumor volume. All treatments significantly 
inhibited tumor growth compared to untreated control (TEM: p=0.0081; rMETase: p=0.0037; TEM-rMETase: p=0.0024). In addition, TEM 
and rMET combination therapy was significantly more efficacious than either TEM (p=0.0051) or rMETase (p=0.0051) alone at day 14. 
There was no significantly difference between TEM and rMETase. **p < 0.01. Error bars: ± SD.
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Figure 3: Intra-tumor L-methionine levels after rMETase treatment. Bar graphs show L-methionine levels in each treatment 
group at rMETase or TEM pre- and post-treatment. rMETase significantly decreased intra-tumor L-methionine level. **p < 0.01.

Figure 4: Effect of rMETase or TEM on mouse body weight. Bar graphs show mouse body weight in each treatment group at 
pre- and post-treatment.
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proliferate [49]. Subsequently, most cancer cell lines were 
found to be methionine dependence [50, 51]. These cell 
lines were derived from various cancer types including liver, 
pancreatic ovarian, submaxillary, brain, lung, bladder, prostate, 
breast, kidney, cervical, colon, fibrosarcoma, osteosarcoma, 
rhabdomyosarcoma, leiomyosarcoma, neuroblastoma, 
glioblastoma and melanoma. The occurrence of methionine 
dependence among these diverse cancer types suggests that 
methionine dependence may be a general phenomena in cancer. 
Normal unestablished cell strains, thus far characterized, grow 
well in methionine-depleted medium [50].

Human patient tumors, including tumors of the 
colon, breast, ovary, prostate, and a melanoma, were 
also found to be methionine dependent in Gelfoam® 
histoculture [52]. 

For more about metabolic disturbances in 
melanoma, please see Slominski et al. [53].

Cell cycle analysis demonstrated that the cells are arrested 
in the S/G2 phases of the cell cycle upon methionine restriction 
[42, 43, 52, 54, 55]. This is in contrast to a G1-phase accumulation 
of cells, which occurs only in methionine-supplemented medium 
at very high cell densities and is similar to the G1 block seen in 
cultures of normal fibroblasts at high density.

Recently, a paper appeared with the title “The new 
anticancer era: tumor metabolism targeting” [56]. This 
“new anticancer era” started in 1959 with the observation 
of Sugimura et al. [48] that depriving animals of methionine 
arrested tumor growth. It is our hope that this era will 
continue and lead to more effective cancer treatment, 
especially for recalcitrant cancers such as melanoma.

Figure 5: Tumor histology in untreated and TEM and rMETase-treated BRAF-V600E mutant melanoma PDOX models. 
(A) Untreated control was comprised of viable cells without obvious necrosis. Epithelioid melanoma cells, devoid of melanin, with a high 
mitotic index are present. (B) Tumor treated with TEM showed partial necrosis. (C) Tumor treated with rMETase. Mitotic figures are present, 
indicating rMETase did not completely arrest the cell cycle. Tumor treated with rMETase showed partial necrosis similar to TEM. (D) Tumor 
treated with the combination of TEM and rMETase showed extensive necrosis. White allows: necrotic areas. Scale bars: 50 μm.
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MATERIALS AND METHODS

Mice

Athymic nu/nu nude mice (AntiCancer Inc., San 
Diego, CA), 4–6 weeks old, were used in this study. 
Mice were housed in a barrier facility in a high efficacy 
particulate arrestance (HEPA)-filtered rack under 
standard conditions of 12-hour light/dark cycles. The 
animals were fed an autoclaved laboratory rodent diet. 
All animal studies were conducted in accordance with 
the principles and procedures outlined in the National 
Institutes of Health Guide for the Care and Use of 
Animals under Assurance Number A3873-1. All mouse 
surgical procedures and imaging were performed with 
the animals anesthetized by subcutaneous injection 
of a ketamine mixture (0.02 ml solution of 20 mg/
kg ketamine, 15.2 mg/kg xylazine, and 0.48 mg/kg 
acepromazine maleate). The response of animals during 
surgery was monitored to ensure adequate depth of 
anesthesia. The animals were observed on a daily basis 
and humanely sacrificed by CO2 inhalation if they met the 
following humane endpoint criteria: severe tumor burden 
(more than 20 mm in diameter), prostration, significant 
body-weight loss, difficulty breathing, rotational motion 
and body temperature drop.

Patient-derived tumor

A 75-year-old female patient was previously 
diagnosed with a BRAF-V600E melanoma of the right 
chest wall. The tumor was previously resected in the 
Department of Surgery, University of California, Los 
Angeles (UCLA). Written informed consent was provided 
by the patient, and the Institutional Review Board (IRB) 
of UCLA approved this experiment [24-26].

Establishment of PDOX models of melanoma by 
surgical orthotopic implantation (SOI)

Subcutaneously-grown melanoma was harvested 
and cut into small fragments (3 mm3). After nude mice 
were anesthetized with the ketamine solution described 
above, a 5-mm skin incision was made on the right 
chest into the chest wall, which was split to make 
space for the melanoma tissue fragment. A single tumor 
fragment was implanted orthotopically into the space 
to establish the PDOX model. The wound was closed 
with a 6-0 nylon suture (Ethilon, Ethicon, Inc., NJ,  
USA) [24-26].

Recombinant methionase (rMETase) production

Recombinant L-metionine α-deamino-γ-mercapto-
methane lyase (recombinant methioninase, [rMETase]) 
[EC 4.4.1.11] from Pseudomonas putida has been 
previously cloned and was produced in Escherichia coli 

(AntiCancer, Inc.,). rMETase is a homotetrameric PLP 
enzyme of 172-kDa molecular mass [39].

Treatment study design in the PDOX model of 
melanoma

PDOX mouse models were randomized into four 
groups of 10 mice each: untreated control (n=10); TEM (25 
mg/kg, oral [p.o.], 14 consecutive days, n=10); rMETase 
(100 units, intraperitoneal [i.p.], 14 consecutive days, n=10); 
TEM + rMETase (TEM: 25 mg/kg, p.o., rMETase: 100 
units, i.p., 14 consecutive days, n=10). Tumor length and 
width were measured both pre- and post-treatment. Tumor 
volume was calculated with the following formula: Tumor 
volume (mm3) = length (mm) × width (mm) × width (mm) 
× 1/2. Data are presented as mean ± SD. The tumor volume 
ratio is defined at the tumor volume at post-treatment time 
point relative to pre-treatment tumor volume.

Imaging of the melanoma PDOX model

Imaging of the macroscopic tumor was performed 
with the OV100 Small Animal Imaging System (Olympus, 
Tokyo, Japan) [63].

Intra-tumor L-methionine level analysis

Each tumor was sonicated for 30 seconds on ice and 
centrifuged at 12,000 rpm for 10 minutes. Supernatants 
were collected and protein levels were measured using the 
Coomassie Protein Assay Kit (Thermo Scientific, Rockford, 
IL). Protein levels were calculated from a standard curve 
obtained with a protein standard, bovine serum albumin 
(BSA). L-methionine levels were determined with the HPLC 
procedure described previously [47, 64]. Standardized 
L-methionine levels were calculated per mg tumor protein.

Histological examination

Fresh tumor samples were fixed in 10% formalin 
and embedded in paraffin before sectioning and staining. 
Tissue sections (5 μm) were deparaffinized in xylene and 
rehydrated in an ethanol series. Hematoxylin and eosin 
(H&E) staining was performed according to standard 
protocols. Histological examination was performed with a 
BHS System Microscope (Olympus Corporation, Tokyo, 
Japan). Images were acquired with INFINITY ANALYZE 
software (Lumenera Corporation, Ottawa, Canada) [24-26].

Statistical analysis

JMP version 11.0 was used for all statistical 
analyses. Significant differences for continuous variables 
were determined using the Mann-Whitney U test. Line 
graphs expressed average values and error bars show SD. 
A probability value of P ≤ 0.05 was considered statistically 
significant [24-26].
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CONCLUSIONS

The present study has demonstrated high efficacy 
of rMETase in combination with TEM in a BRAF-
V600E mutant melanoma PDOX model. This is the first 
report to our knowledge in which rMETase combination 
therapy was tested on a patient-derived tumor in a mouse 
model. These results indicate the potential of rMETase  
combination therapy in the clinic and demonstrate the 
powerful precision of the PDOX model to identify active 
drugs and combination therapy on recalcitrant cancer.

Previously-developed concepts and strategies of 
highly-selective tumor targeting can take advantage of 
molecular targeting of tumors, including tissue-selective 
therapy which focuses on unique differences between 
normal and tumor tissues [57-62].
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