

Methionine Addiction: The Fundamental Hallmark of Cancer

Dr. Robert M. Hoffman

December 15, 2020

@enagoacademy

About the Speaker

Dr. Robert Hoffman

- President, Chairman of Board and CEO at AntiCancer, Inc.
- Professor in the Department of Surgery at the University of California, San Diego
- Veteran scientist with 55+ years of experience in cancer research, 1100+ publications and 52283 citations
- Editorial Board member of Clinical Cancer Research, Journal of Fluorescence Guided Surgery, In Vitro Cellular and Developmental Biology, and Anticancer Research

Agenda

Source: European Pharmaceutical Review

Introduction to the Hoffman Effect – Methionine Addiction of Cancer

Status of Cancer Research in Early 1970s – When Methionine Addiction was Discovered by Dr. Hoffman

Methionine Dependence of Cancer

Evidence from cancer-based studies:

(Sugimura and colleagues, 1959)

<u>Experiment</u> – Tumor-bearing rats fed with amino acid restricted diets

<u>Observation</u> – Tumor growth and proliferation significantly affected by *methionine-restricted diet.*

(Chello and colleagues, 1973)

<u>Experiment</u> – Growth characteristics of Leukemia cells supplemented with methionine and homocysteine

<u>Observation</u> – Leukemia cells *failed to proliferate in growth media where methionine was substituted* with its metabolic precursor, *homocysteine*.

Addiction of cancer cells to exogenously provided methionine is not due to their failure to synthesize methionine from homocysteine but is due to **an increased demand for trans-methylation by cancer cells**

'Hoffman effect'

Source: A*Star Research

Role of Transmethylation

Methionine addiction is the fundamental and general hallmark of cancer!

Overuse of methionine – METHIONINE ADDICTIONresults from cancer cells performing excessive transmethylation reactions

"Over-methylation of *histone H3 lysine* is necessary for methionine addiction of cancer- thereby promoting MALIGNANCY"

PET imaging of cancer with [C¹¹] methionine in the clinic gives a stronger signal than [¹⁸F] deoxyglocose showing that "Hoffman effect is stronger than the Warburg effect"

Methionine Addiction as a Pan-Cancer Therapeutic

Cancer patients with *solid tumors* do not respond to drugs effectively as the cells in their tumors are mostly *non-dividing*, and therefore *resistant to drugs*. They must be treated differently!

Development of methioninase to target methionine addiction

- Dietary methionine restriction has shown some promising results - significantly suppress tumor growth in multiple models including both solid tumors and blood cancers.
 However, patients cannot tolerate well the methioninerestricted diets.
- Methionine restriction may synergistically enhance response to chemotherapy
- Combination of methionine restriction and 5-fluorouracil has shown a remarkable effect on tumor pathology in preoperative high-stage gastric cancer patients

- Recombinant methioninase (rMETase) was cloned from Pseudomonas putida (chemical name: I-methionine α-deamino-γ-mercaptomethane lyase)
- *rMETase* tested in mouse models of human pancreatic cancer and macaque monkeys and a pilot Phase I trial of human cancer patients
 rMETase can also be given orally.
- Sequential combination therapy Most promising application of rMETase therapy - Cancer cells within a tumor are trapped in S/G₂ by methioninase treatment and then treated with chemotherapeutic agents active against cells in S/G₂

Source: Labiotech

Post Your Queries!

•:enago[•]academy

Thanking our Media Partners

Thank You!

