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RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2024
University of California, Irvine Irvine, California, USA

Graduate Research Assistant 2018
Cranfield University Bedford, England, UK

TEACHING EXPERIENCE

Teaching Assistant 2023–2024
University of California, Irvine Irvine, California, USA

PROFESSIONAL EXPERIENCE

Solutions Engineer 2024
Applied Dynamics International Long Beach, California, USA

Applied Scientist Intern 2023
Amazon AI Labs Pasadena, California, USA

Quality Engineer 2019
Safran Electronics & Defense Mexicali, Mexico

Test Engineer 2015-2017
Honeywell Aerospace Mexicali, Mexico

Test Engineer Intern 2014
Max Planck Institute of Physics Munich, Germany

x



REFEREED JOURNAL PUBLICATIONS

Certified Vision-based State Estimation using Geomet-
ric Generative Models

2024

IEEE Transactions on Robotics (IEEE T-RO), Submitted.

Ulices Santa Cruz Leal, Mahmoud ElFar and Yasser Shoukry

REFEREED CONFERENCE PUBLICATIONS

Certified Vision-based State Estimation for Au-
tonomous Landing Systems

Jul 2023

62nd IEEE Conference on Decision and Control (CDC)

Ulices Santa Cruz Leal and Yasser Shoukry

NNLander-VeriF: A Neural Network Formal Verifica-
tion Framework for Vision-Based Autonomous Aircraft
Landing

Mar 2022

14th NASA Formal Methods International Symposium

Ulices Santa Cruz Leal and Yasser Shoukry

Safe-by-Repair: A Convex Optimization Approach for
Repairing Unsafe Two-Level Lattice Neural Network
Controllers

Jul 2022

61st IEEE Conference on Decision and Control (CDC)

Ulices Santa Cruz Leal, James Ferlez and Yasser Shoukry

Provably Safe Model-Based Meta Reinforcement Learn-
ing: An Abstraction-Based Approach

Jul 2021

60th IEEE Conference on Decision and Control (CDC)

Xiaowu Sun, Wael Fatnassi, Ulices Santa Cruz Leal and Yasser Shoukry

Orbit modeling for simultaneous tracking and naviga-
tion using LEO satellite signals

Jul 2019

32nd International Technical Meeting of the Satellite Division of the Institute of Navi-
gation (ION GNSS+ 2019)

Joshua J. Morales, Joe Khalife, Ulices Santa Cruz and Zaher M. Kassas

Networked and distributed cooperative attitude control
of fractionated small satellites

Jul 2018

69th International Astronautical Congress

Florian Kempf, Ulices Santa Cruz Leal, Julian Scharnagl and Klaus Schilling

xi



ABSTRACT OF THE DISSERTATION

Formal Verification of Vision-Based AI-Controlled Cyber-Physical Vehicles

By

Ulices Santa Cruz Leal

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2024

Associate Professor Yasser Shoukry, Chair

The autonomous landing of small airplanes remains a significant challenge in aviation safety,

with the Federal Aviation Administration (FAA) reporting an average of three crashes per

day in the United States. While autonomous landing systems for large commercial airplanes

exist, accessible technology for small airplanes is lacking, necessitating alternative solutions.

Vision-based perception using cameras, coupled with artificial neural networks (NN), of-

fers a promising approach by leveraging structural information to infer the vehicle’s pose

and surrounding environment, enabling safe and reliable landings. This research addresses

key challenges in ensuring the safety and reliability of vision-based closed-loop systems for

autonomous landings.

A central issue is the absence of robust mathematical models that accurately capture the

relationship between system states, camera images, and the NN controller. Existing NN

model checkers also fall short in verifying complex closed-loop systems. This Ph.D. thesis

proposes NNLander-VeriF, a specialized framework for model-checking vision-based NN con-

trollers in autonomous landing scenarios. The framework re-models the camera’s physical

model as a perception network, augmenting it with the NN controller to simplify closed-loop

dynamics. This approach enables encoding closed-loop verification as robustness queries,

leveraging state-of-the-art NN model checkers.

xii



The research also focuses on designing certified vision-based state estimators using a gen-

erative NN model to enhance scene feature representation and aircraft state estimation.

This model’s mixed-monotonicity property aids in performing reachability analysis, provid-

ing guarantees on estimation accuracy and certifiable error bounds. Experimental results

using real-world images from event-based cameras demonstrate significant improvements in

state estimation accuracy and reliability.

Lastly, the research introduces a repair algorithm for NN controllers to address unsafe closed-

loop behavior in certain states. By formulating the repair problem as convex optimization

problems, the algorithm e↵ectively repairs unsafe behavior while preserving safety for other

states. The proposed framework enhances trust in autonomous landing systems through

closed-loop verification, certified state estimation, and safe-by-repair techniques. This work

aims to reduce crash rates in small airplanes, paving the way for safer autonomous landings

and broader operational opportunities in aviation.
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Chapter 1

Introduction

Autonomous landing of small airplanes presents a pressing challenge in the field of aviation

safety, with an alarming frequency of crashes reported by the Federal Aviation Administra-

tion (FAA) averaging three per day in the United States alone. While autonomous landing

systems have been developed for large commercial airplanes in international airports, the lack

of accessible technology for small airplanes has necessitated exploring alternative solutions.

To address this, vision-based perception, utilizing a camera to perceive the world, coupled

with artificial neural networks (NN), has emerged as a promising approach. By leveraging

the structural information captured by the camera, valuable insights can be inferred about

the vehicle’s pose and the surrounding scenario, enabling safe and reliable landings. How-

ever, several key challenges must be addressed to ensure the e↵ectiveness of such vision-based

systems in this context.

This research aims to address the safety and reliability of vision-based closed-loop systems in

the context of aircraft autonomous landing using artificial intelligence. A central challenge

lies in the absence of robust mathematical models that accurately capture the intricate

relationship between system states, the images processed by a camera, and the vision-based
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NN controller. Furthermore, existing NN model checkers are limited in their ability to reason

about complex properties beyond simple input-output robustness. These limitations create

a gap between the capabilities of the model checkers and the need to verify closed-loop

systems while considering the dynamic behavior of the aircraft, the perception, and the

NN controller. Current state-of-the-art artificial intelligence techniques, such as machine

learning, relies on training a NN by using data (e.g., imitation learning) or reward functions

(e.g., reinforcement learning). This is insu�cient because it lacks mathematical guarantees

in terms of correctness, generalization and interpretability. This becomes even more critical

when the NN is used in a closed loop. This Ph.D. thesis proposes a design-verify-repair

framework to design a correct-by-design NN as explained below.

Formal Verification of Perception Based AI Controllers: This research proposes

NNLander-VeriF, an innovative and specialized framework explicitly tailored for model-

checking vision-based NN controllers in autonomous landing scenarios. The framework

leverages geometric models of perspective cameras to establish a comprehensive mathemati-

cal framework that accurately captures the intricate relationship between aircraft states and

the inputs to the NN controller. The key contribution of the framework involves re-modeling

the physical model of the camera as a neural network, which we refer to as the percep-

tion network. By augmenting the perception NN with the original NN controller, we create

an augmented NN that simplifies the closed-loop dynamics. This augmentation enables us

to encode closed-loop verification as a series of robustness queries, facilitating the use of

state-of-the-art NN model checkers in the verification process.

To verify the performance of the augmented NN, the proposed framework partitions the state

space into regions; each region is represented as a ball with a center and a radius. Within

each region, the framework computes the set of allowable control actions by leveraging the

properties of the dynamical system.

2



The framework then uses existing NN model checkers to ensure that the augmented NN

satisfies the desired safety property (e.g., smooth aircraft landing). This property requires

that for every state within a region, the augmented NN produces control actions within the

corresponding set of allowable actions, providing an exhaustive formal verification of the

vision-based autonomous landing system.

Training of Probably Correct Perception Based AI Models: In parallel to the ver-

ification aspect, this research also focused on the design of certified vision-based state esti-

mators. Building upon the NNLander-VeriF framework, we introduced a certified NN-based

generative model capable of producing N-polygon figures that describe the scene features and

their relation to the aircraft states. Integrating this NN-based generative model within the

training of the state estimator o↵ers several advantages. Firstly, it provides a comprehensive

and detailed representation of the scene features, allowing for a more accurate estimation

of the aircraft’s relative position with respect to the runway. By capturing the intricate de-

tails of the environment, the generative neural network enhances the system’s understanding

of the surrounding context, leading to more reliable and precise state estimation (e.g., 3D

position and orientation of the aircraft with respect to the airport runway).

Moreover, this research showed that the certified generative model enjoys several mathemat-

ical properties, like the so-called mixed-monotonicity property. This benign property plays a

crucial role in performing reachability analysis, allowing us to reason about the relationship

between sets of aircraft states and sets of possible images. By leveraging this property, we

can provide guarantees on the estimation accuracy and certifiable error bounds, enhancing

the overall reliability and trustworthiness of the autonomous landing system. To validate

the e↵ectiveness of the proposed approach, comprehensive experiments are conducted using

real-world images collected from event-based cameras. The experimental results demonstrate

the significant improvement achieved in state estimation accuracy and the reliability of the

generative neural network’s output.

3



Repair of Faulty AI Models: Finally, this research focused on a critical challenge as-

sociated with repairing NN controllers. In real-world scenarios, NN controllers can exhibit

unsafe closed-loop behavior in certain states, posing a significant risk of catastrophic conse-

quences, such as an unavoidable aircraft crash given specific speed and position conditions.

To tackle this issue, we introduced an innovative repair algorithm that e↵ectively separates

the local and global tension in modifying ReLU neural networks. This algorithm systemati-

cally and e�ciently repairs the observed unsafe closed-loop behavior in known unsafe states,

while ensuring closed-loop safety for a separate set of states. By formulating the repair prob-

lem as two distinct convex optimization problems, we successfully repaired a NN controller

trained for an aircraft dynamical model, preserving the safety achieved during the initial

data training phase.

In conclusion, the proposed framework enhances trust in autonomous landing systems by

incorporating closed-loop verification, certified vision-based state estimation, and safe-by-

repair techniques. This research tackles the challenge of high crash rates in small airplanes,

paving the way for safer and more reliable autonomous landings. Further research in this

direction could revolutionize aviation safety and expand opportunities for small airplane

operations in di↵erent contexts, ensuring secure and e�cient airspace.
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Part I

Formal Verification of
Perception Based AI Controllers
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Chapter 2

NNLander-VeriF: A Neural Network

Formal Verification Framework for

Vision-Based Autonomous Aircraft

Landing

In this chapter, we consider the problem of formally verifying a Neural Network (NN) based

autonomous landing system. In such a system, a NN controller processes images from a

camera to guide the aircraft while approaching the runway. A central challenge for the

safety and liveness verification of vision-based closed-loop systems is the lack of mathematical

models that captures the relation between the system states (e.g., position of the aircraft) and

the images processed by a perception-based NN controller. Another challenge is the limited

abilities of state-of-the-art NN model checkers. Such model checkers can reason only about

simple input-output robustness properties of neural networks. This limitation creates a gap

between the NN model checker abilities and the need to verify a closed-loop system while

considering the aircraft dynamics, the perception-based components, and the NN controller.

6



To this end, this chapter presents NNLander-VeriF, a framework to verify vision-based NN

controllers used for autonomous landing. NNLander-VeriF addresses the challenges above

by exploiting geometric models of perspective cameras to obtain a mathematical model that

captures the relation between the aircraft states and the inputs to the NN controller. By

converting this model into a NN (with manually assigned weights) and composing it with

the NN controller, one can capture the relation between aircraft states and control actions

using one augmented NN. Such an augmented NN model leads to a natural encoding of the

closed-loop verification into several NN robustness queries, which state-of-the-art NN model

checkers can handle. Finally, we evaluate our framework to formally verify properties of a

trained NN and we show its e�ciency.

2.1 Introduction

Machine learning models, like deep neural networks, are used heavily to process high-

dimensional imaging data like LiDAR scanners and cameras. These data driven models

are then used to provide estimates for the surrounding environment which is then used to

close the loop and control the rest of the system. Nevertheless, the use of such data-driven

models in safety-critical systems raises several safety and reliability concerns. It is unsur-

prising the increasing attention given to the problem of formally verifying Neural Network

(NN)-based systems.

The work in the literature of verifying NNs and NN-based systems can be classified into

component-level and system-level verification. Representatives of the first class, namely

component-level verification is the work on creating specialized decision procedures that can

reason about input-output properties of NNs [26, 25, 9, 3, 31, 12, 14, 43, 45]. In all these

works, the focus is to ensure that inputs of the NN that belong to a particular convex set will

result in NN outputs that belong to a defined set of outputs. Such input-output specification

7



allows designers to verify interesting properties of NN like robustness to adversarial inputs

and verify the safety of collision avoidance protocols. For a comparison between the details

and performance of these NN model checkers, the reader is referred to the annual competition

on verification of neural networks [1]. Regardless of the improvements observed every year

in the literature of NN model checkers, verifying properties of perception and vision-based

system as a simple input-output property of NNs is still an open challenge.

On the other hand, system-level verification refer to the ability of reasoning about the tem-

poral evolution of the whole system (including the NNs) while providing safety and liveness

assurance. A central challenge to verify systems that rely on vision-based systems and

other high-bandwidth signals (e.g., LiDARs) is the need to explicitly model the imaging

process, i.e., the relation between the system state and the images created by cameras and

LiDARs [38]. While first steps were taken to provide formal models for LiDAR based sys-

tems [38], very little attention is given to perception and vision-based systems. In particular,

current state-of-the-art aims to avoid modeling the perception system formally, and instead

focus on the use of abstractions of the perception system [27, 21]. Unfortunately, these ab-

stractions are only tested on a set of samples and lacks any formal guarantees in their ability

to model the perception system formally. Other techniques uses the formal specifications to

guide the generation of test scenarios to increase the chances of finding a counterexample

but without the ability to formally prove the correctness of the vision-based system [17].

Motivated by the lack of formal guarantees of the abstractions of perception components [27,

21], we argue in this chapter for the need to formally model such perception components.

Fortunately, such models were historically investigated in the literature of machine vision

before the explosion of using data-driven approaches in machine learning [32, 10]. While these

physical/geometrical models of perception were shown to be complex to design vision-based

systems with high performance, we argue that these models can be used for verification.
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In other words, we employ the philosophy of data-driven design of vision-based systems and

model-based verification of such systems.

In this chapter, we employ our philosophy of data-driven design and model-based verifica-

tion of vision-based autonomous systems to the problem of designing a NN that controls an

aircraft while approaching runways to perform autonomous landing. Such problem enjoys ge-

ometric nature that can be exploited to develop geometrical/physical model of the perception

system, yet represent an important real-world problem of interest to the autonomous systems

designers. In particular, we present NNLander-VeriF, a framework for formal verification of

vision-based autonomous aircraft landing. This framework provides several contributions to

the state of the art:

• The proposed framework exploits the geometry of the autonomous landing problem to

construct a formal model for the image formation process (a map between the aircraft

states and the image produced by the camera). This formal model is designed such

that it can be encoded as a neural network (with manually chosen weights) that we

refer to as the perception NN. By augmenting the perception NN along with the NN

controller (which maps camera images into control actions), we obtain a formal relation

between the aircraft states and the control action that is amenable to verification.

• The proposed framework uses symbolic abstraction of the physical dynamics of the

aircraft to divide the problem of model checking the system-level safety and liveness

properties into a set of NN robustness queries (applied to the augmented NN obtained

above). Such robustness queries can be carried e�ciently using the state-of-the-art

component-level NN model checkers.

• We evaluated the proposed framework on a NN controller trained using imitation

learning.
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Figure 2.1: Main coordinate frames: Runaway (RCF), Camera (CCF) and Pixel (PCF).

2.2 Problem Formulation

Notation. We will denote by N, B, R and R+ the set of natural, Boolean, real, and non-

negative real numbers, respectively. We use ||x||1 to denote the infinity norm of a vector

x 2 Rn. Finally, we denote by Br(c) the infinity norm centered at c with radius r, i.e.,

Br(c) = {x 2 Rn
|||c� x||1  r}.

Aircraft Dynamical Model. In this chapter, we will consider an aircraft landing on a

runaway. We assume the states of the aircraft to be measured with respect to the origin of

the Runaway Coordinate Frame (shown in Figure 2.1(left)), where positions are: ⇠x is the

axis across runaway; ⇠y is the altitude, and ⇠z is the axis along runaway. We consider only one

angle ⇠✓ which represents the pitch rotation around x axis of the aircraft. The state vector

of the aircraft at time t 2 N is denoted by ⇠(t) 2 R4 = [⇠(t)
✓
, ⇠

(t)

x , ⇠
(t)

y , ⇠
(t)

z ]T and is assumed to

evolve over time while being governed by a general nonlinear dynamical system of the form

⇠
(t+1) = f(⇠(t), u(t)) where u(t)

2 Rm is the control vector at time t. Such nonlinear dynamical

system is assumed to be time-sampled from an underlying continuous-time system with a

sample time equal to ⌧ .
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Runaway Parameters. We consider runaway that consists of two line segments L and

R. Each line segment can be characterized by its start and end point (measured also

in the Runaway Coordinate Frame) i.e. L = [(Lx, 0, Lz), (Lx + rw, 0, Lz + rl)] and R =

[(Rx, 0, Rz), (Rx + rw, 0, Rz + rl)] where rw and rl refers to the runaway width and length

(standard international runaways are designed with rw = 40 meters wide and rl = 3000

meters.

Camera Model. We assume the aircraft is equipped with a monochrome camera C that

produces images of q ⇥ q pixels. Since the camera is assumed to be monochromatic, each

pixel in the image I takes a value of 0 or 1. The image produced by the camera depends

on the relative location of the aircraft with respect to the runaway. In other words, we can

model the camera C as a function that maps aircraft states into images, i.e., C : R4
! Bq⇥q.

Although the images created by the camera depend on the runaway parameters, for ease of

notation, we drop this dependence from the notation C.

We utilize an ideal pinhole camera model [32] to capture the image formation process of this

camera. In general, a point p in the Runaway Coordinate Frame (RCF) is mapped into a point

p
0 on the Camera Coordinate Frame (CCF) using a translation and rotation transformations

defined by [20]:

2

66666664

p
0
xCCF

p
0
yCCF

p
0
zCCF

1

3

77777775

=

2

66666664

1 0 0 x

0 cos ✓ sin ✓ y

0 � sin ✓ cos ✓ z

0 0 0 1

3

77777775

2

66666664

px

py

pz

1

3

77777775

(2.1)

The camera then converts the 3-dimensional point p0 on the camera coordinate frame into

two-dimensional point p00 on the Pixel Coordinate Frame (PCF) as:

p
00 =

�
p
00
xPCF

, p
00
yPCF

�
=

✓�
qxPCF

qzPCF

⌫
,

�
qyPCF

qzPCF

⌫◆
(2.2)
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where:

2

66664

qxPCF

qyPCF

qzPCF

3

77775
=

2

66664

⇢w 0 u0

0 �⇢h v0

0 0 1

3

77775

2

66664

f 0 0 0

0 f 0 0

0 0 1 0

3

77775

2

66666664

p
0
xCCF

p
0
yCCF

p
0
zCCF

1

3

77777775

(2.3)

and f is the focal length of the camera lens, W is the image width (in meters), H is the

image width (in meters), WP is the image Width (in pixels), HP is the image height (in

pixels), and u0 = 0.5 ⇤ (WP),v0 = 0.5 ⇤ (HP), ⇢w = WP

W
, ⇢h = HP

H
. The values of each pixel in

the final image I can be computed directly by checking if the point p00 lies within the area

of the pixel and assigning 1 to such pixels accordingly [20].

What is remaining is to map the coordinates of p00 =
�
p
00
xPCF

, p
00
yPCF

�
into a binary assignment

for the di↵erent q ⇥ q pixels. But first, we need to check if p00 is actually inside the physical

limits of the Pixel Coordinate Frame (PCF) by checking:

visible =

8
>><

>>:

yes |p
00
xPCF

| 
W

2
_ |p

00
yPCF

| 
H

2

no otherwise

(2.4)

Whenever the point p00 is within the limits of PCF, then the pixel I[i, j] should be assigned

to 1 whenever the index of the pixel matches the coordinates
�
p
00
xPCF

, p
00
yPCF

�
, i.e.:

I[i, j] =

8
>><

>>:

1 (p00
xPCF

== i� 1) ^ (p00
yPCF

== j � 1) ^ visible

0 otherwise

(2.5)

for i, j 2 (1, 2, 3...WP). Where for simplicity, we set HP = WP for square images. This

process of mapping a point p in the Runaway Coordinate Frame (RCF) to a pixel in the

image I is summarized in Figure 2.1 (right).
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Neural Network Controller. The aircraft is controlled by a vision based neural network

NN controller that maps the images I created by the camera C into a control action, i.e.,

NN : Bq⇥q
! Rm. We confine our attention to neural networks that consist of multiple

layers and where Rectified Linear Unit (ReLU) are used as the non-linear activation units.

Problem Formulation. Consider the closed-loop vision based system ⌃ defined as:

⌃ :

⇢
⇠
(t+1) = f(⇠(t),NN (C(⇠(t)))).

A trajectory of the closed loop system ⌃ that starts from the initial condition ⇠0 is the

sequence {⇠
(t)
}
1
t=0,⇠(0)=⇠0

. Consider also a set of initial conditions X0 ⇢ R4. We denote by

⌃X0 the trajectories of the system ⌃ that starts from X0, i.e.,

⌃X0 =
[

⇠02X0

{⇠
(t)
}
1
t=0,⇠(0)=⇠0

.

We are interested in checking if the closed-loop system meets some specifications that are

captured using Linear Temporal Logic (LTL) (or a Bounded-Time LTL) formula '. Examples

of such formulas may include, but are not limited to:

• '1 := ⌃{⇠✓ = 0 ^ ⇠y = 0} which means that the aircraft should eventually reach an

altitude of zero while the pitch angle is also zero. Satisfying '1 ensures that the aircraft

landed on the ground.

• '2 := ⇤{⇠z  3000} which ensures the aircraft will always land before the end of the

runaway (assuming a runaway length that is equal to 3000 meters).

For the formal definition of LTL and Bounded-Time LTL formulas syntax and semantics,

we refer the reader to [6]. Given a formula ' that specifies safe landing, our objective is to

design a bounded model checking framework that verifies if all the trajectories ⌃X0 satisfy

' (denoted by ⌃X0 |= ').
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2.3 Framework

The verification problem described in Section 2.2 is challenging because it needs to take into

account the nonlinear dynamics of the aircraft f , the image formation process captured by

the camera model C, and the neural network NN .

Figure 2.2: Main elements of the proposed NNLander-VeriF framework: (A): construction
of the augmented neural network that captures both perception and control, (B:) symbolic
analysis of aircraft trajectories, (C:) neural network verification.

Our framework starts by re-modeling the pinhole camera model as a ReLU based neural

network (with manually designed weights) that we refer to as the vision neural network

NN C. To facilitate this re-modeling, we need first to apply a change of coordinates to the

states of the dynamical systems. We refer to the states in the new coordinates as ⇣, i.e.,

⇣ = h(⇠). By augmenting NN C along with the the neural network controller NN , one can

obtain an augmented neural network NN aug : Rn
! Rm defined as NN aug = NN �NNC

and a simplified closed-loop dynamics, in the new coordinates, written as:

⌃ :

⇢
⇣
(t+1) = g(⇣(t),NN aug(⇣(t))).
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Now, assume that we are given (i) a region ⌅ in the new coordinate system and (ii) the

maximal set of control actions (denoted by U⌅) that can be applied at ⌅ while ensuring the

system adhere to the specification '. Given this pair (⌅,U⌅) one can always ensure that the

augmented neural network NN aug will produce actions in the set U⌅ whenever its inputs are

restricted to ⌅ by checking the following property:

8⇣ 2 ⌅.
�
NN aug(⇣) 2 U⌅

�
(2.6)

which can be easily verified using existing neural network model checkers [26, 31, 12]. In

other words, checking the augmented neural network against the property above ensures that

all the images produced within the region ⌅ will force the neural network controller NN to

produce control actions that are within the set of allowable actions U⌅.

To complete our framework, we need to partition the state-space into regions (⌅1,⌅2, . . .).

Each region is a ball parameterized by a center ⇣i and a radius ✏. For each region, our frame-

work will compute the set of allowable control actions at each of these regions (U⌅1 ,U⌅2 , . . .).

Our framework will also parameterized each set U⌅i as U⌅i = {u 2 R4
| ku� cik  µi} where

ci is the control action taken at the center of ⌅i and µi is the maximum ball around ci such

that the control actions U⌅i guarantees satisfaction of the property '. The computations of

the pairs (⌅i,U⌅i) can be carried out using the knowledge of the aircraft dynamics f .

In summary, and as shown in Figure 2.2, our framework will consist of the following steps:

• (A) Compute the augmented neural network: Using the physical model of the

pinhole camera, our framework will re-model the pinhole camera C as a neural network

that can be augmented with the neural network controller to produce a simpler model

that is amenable for verification.

• (B) Compute the set of allowable control actions: We use the properties of the

dynamical system f to compute the parameter µi and hence the set U⌅i .
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• (C) Apply the neural network model checker: We use the neural network model

checkers to verify that NN aug satisfy (2.6) for each identified pair (⌅,U⌅i).

The remainder of this chapter is devoted to providing details for the steps required for each

of the three phases above.

2.4 Neural Network Augmentation

In this section, we focus on the problem of using the geometry of the runaway to develop a

di↵erent mathematical model for the camera C. As argued in the previous section and shown

in Figure 2.3, our goal is to obtain a model with the same structure as a neural network (i.e.,

consists of several layers and neurons) and contains only ReLU activation units. We refer to

this new model as NN C.

The main challenge to construct such a model NN C is the fact that ReLU based neural net-

works can only represent piece-wise a�ne (or linear) functions [34]. Nevertheless, the camera

model C is inherently nonlinear due to the optical projection present in any camera. Such

non-linearity can not be expressed (without any error) via a piece-wise a�ne function. To

solve this problem, we propose a change of coordinates to the aircraft states h. Such change

of coordinates is designed to eliminate part of the camera’s non-linearity while allowing the

remainder of the model to be expressed as a piece-wise a�ne transformation.

Figure 2.3: Augmented network NN aug maps the output ⇣ to control action u.
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Change of Coordinates: Recall the runaway consists of line segments L and R (defined in

Section 2.2). Instead of measuring the state of the aircraft by the vector ⇣ = [⇠✓, ⇠x, ⇠y, ⇠z], we

propose measuring the state of the aircraft by the projections of the end points of the lines

L and R on the Pixel Coordinate Frame PCF. Formally, we define the change of coordinates

as:

⇣ = hr,C(⇠) =

2

6666666666666666666666664

⇣1

⇣2

⇣3

⇣4

⇣5

3

7777777777777777777777775

=

2

6666666666666666666666664

⇢wf
Lx+⇠x

Lzcos(⇠✓)+⇠z
+ u0

�⇢hf
Lzsin(✓)+⇠y

Lzcos(⇠✓)+⇠z
+ v0

⇢wf
(Lx+rw)+⇠x

(Lz+rL)cos(⇠✓)+⇠z
+ u0

�⇢hf
(Lz+rL)sin(⇠✓)+⇠y

(Lz+rL)cos(⇠✓)+⇠z
+ v0

⇣1⇣4 � ⇣2⇣3

3

7777777777777777777777775

(2.7)

where f, ⇢h, ⇢w, v0, u0 are the camera physical parameters as defined in Section 2.2 . In other

words, the pair (⇣1, ⇣2) is the projection of the start point of the runaway (Lx, 0, Lz) onto

the Pixel Coordinate Frame PCF (while ignoring the flooring operator for now). Similarly,

the pair (⇣3, ⇣4) is the projection of the endpoint of the runaway (Lx + rw, 0, Lz + rL) onto

the PCF frame. Indeed, we can define a similar set of variables for the other line segment of

the runaway, R. The dependence of this change of coordinates on the camera parameters

(e.g., the focal length f) and the runaway parameters (the length and width of the runaway)

justifies the subscripts in our notation hr,C. We refer to the new state-space as ⌅.

Before we proceed, it is crucial to establish the following result.

Proposition 2.1. The change of coordinates function hr,C is bijective.
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The proof of such proposition is based on ensuring that the inverse function h
�1

r,C exists. For

brevity, we will omit the details of this proof. Since hr,C is bijective, we can re-write the

closed-loop dynamics of the system as:

⌃⇣ :

⇢
⇣
(t+1) = hr,C � f

�
h
�1

r,C(⇣
(t)),NN (C(h�1

r,C(⇣
(t))))

�
(2.8)

Indeed, if ⌃⇣ satisfies the property ' then do the original system ⌃ and vice versa, thanks

for the fact that hr,C is bijective as captured by the following proposition:

Proposition 2.2. Consider the dynamical systems ⌃ and ⌃⇣. Consider a set of initial states

X0 and an LTL formula ', the following holds:

⌃X0 |= '() ⌃⌅0
⇣

|= '

where ⌅0 = {hr,C(⇠)|⇠ 2 X0}.

Neural Network-based Model for Perception: While the model of the pinhole camera

(defined in equation (2.1)-(2.5)) focuses on mapping individual points into pixels, we aim

here to obtain a model that maps the entire runaway lines R and L into the corresponding

binary assignment for each pixel in the image. Therefore, it is insu�cient to analyze the

values of ⇣1, . . . , ⇣4 which encodes the start point (⇣1, ⇣2) and the endpoint (⇣3, ⇣4) of the

runaway line segments on the PCF. To correctly generate the final image I 2 Bq⇥q, we need

to map every point between (⇣1, ⇣2) and (⇣3, ⇣4) into the corresponding pixels.

While the pinhole camera (defined in equation (2.1)-(2.4)) uses the information in the Pixel

Coordinate Frame (PCF) to compute the values of each pixel, we instead rely on the informa-

tion in the Camera Coordinate Frame (CCF) to avoid the nonlinearities added by the flooring

operator in (2.2) and the logical checks in (2.4)-(2.5). For each pixel, imagine a set of four

line segments AB,BC,CD,DA in the Pixel Coordinate Frame (PCF) that defines the edges

of each pixel (see Figure 2.4 for an illustration).
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To check if a pixel should be set to zero or one, it is enough to check the intersection between

the line segment (⇣1, ⇣2)�(⇣3, ⇣4) and each of the lines A�B,B�C,C�D,D�A. Whenever

an intersection occurs, the pixel should be assigned to one.

To intersect one of the pixel edges, e.g., the edge A�B = (Ax, Ay)� (Bx, By), with the line

segment (⇣1, ⇣2)�(⇣3, ⇣4), we proceed with the standard line segment intersection algorithm [7]

which compute four values named O1, O2, O3, O4 as:

O1 = ⇣1(Ay � By) + ⇣2(Bx � Ax) + AxBy � AyBx (2.9)

O2 = ⇣3(Ay � By) + ⇣4(Bx � Ax) + AxBy � AyBx (2.10)

O3 = �⇣1(Ay) + ⇣2(Ax) + ⇣3(Ay)� ⇣4(Ax) + ⇣5 (2.11)

O4 = �⇣1(By) + ⇣2(Bx) + ⇣3(By)� ⇣4(Bx) + ⇣5 (2.12)

The line segment algorithm [7] detects an intersection whenever the following condition holds:

(sign(O1) 6= sign(O2)) ^ (sign(O3) 6= sign(O4)) (2.13)

Luckily, we can organize the equations (2.9)-(2.13) in the form of a neural network with a

Rectifier Linear Activation Unit (ReLU). ReLU nonlinearity takes the form of ReLU(x) =

max{x, 0}. To show this conversion, we first note that the values of Ax, Ay, Bx, By are

constant and well defined for each pixel. So assuming the input to such a neural network is

the vector ⇣, one can use equations (2.9)-(2.12) to assign the weights to the input layer of

the neural network (as shown in Figure 2.4). To check the signs of O1, . . . , O4, we recall the

well-known identity for numbers of the same sign:

sign(a) = sign(b)() |a+ b|� |a|� |b| = 0 (2.14)

The absolute function can be implemented directly with a ReLU using the identity:

|x| = max{x, 0}+max{�x, 0}. (2.15)
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Figure 2.4: Line-segment intersection algorithm: The runaway line (in red) as seen by the
camera intersects the pixel edge A�B (in blue), this single edge intersection is detected by
using a layer of six ReLU’s.

The pixel check process has to be repeated four times (to account for all edges A� B,B �

C,C�D,D�A of a pixel). Finally, we need to check that at least one intersection occurred,

which can be computed by taking the minimum across the results from all the intersections.

Calculating the minimum itself can be implemented directly with a ReLU using the identity:

min{a, b} =
a+ b

2
�

|a� b|

2
. (2.16)

The overall neural network requires 68⇥q⇥q ReLU neurons for each projected line segment.

The final architecture is shown in Figure 2.5. We refer to the resulting neural network as

NN C(⇣(t)).

It is direct to show that the constructed neural network NN C(⇣(t)) will produce the same

images obtained by the pinhole camera model C, i.e.,

C(h�1

r,C(⇣
(t))) = NN C(⇣

(t))

Finally, by substituting in (2.8), we can now re-write the closed-loop dynamics as:

⌃⇣ :

⇢
⇣
(t+1) = g

�
h
�1

r,C(⇣
(t)),NN aug(⇣(t))

�
(2.17)

where NN aug = NN �NN C and g = hr,C � f .
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Figure 2.5: NN C checks the intersection between line segment (⇣1, ⇣2)� (⇣3, ⇣4) and all edges
of a each cell pixel of the final image.

2.5 Identifying the allowable control actions using sym-

bolic abstractions

As shown in Section 2.3, our framework aims to split the verification of the dynamical

system (2.17) into several NN model checking queries. Each query will verify the correctness

of the closed-loop system within a region (or a symbol) ⌅i of the state space. To prepare for

such queries, we need to compute a set of input/output pairs (⌅i,U⌅i) with the guarantee that

all the control inputs inside each U⌅i will create trajectories that satisfy the specifications '.

In this section, we provide details of how to compute the pairs (⌅i,U⌅i).

State Space Partitioning: Given a partitioning parameter ✏, we partition the new coor-

dinate space of ⇣ into regions ⌅1,⌅2, . . . ,⌅L such that each ⌅i is an infinity-norm ball with

radius ✏ and center ci. For simplicity of notation, we keep the radius ✏ constant within all

the regions ⌅i. However, the framework is generic enough to account for multi-scale par-

titioning schemes similar to those reported in the literature of symbolic analysis of hybrid

systems [23].
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Obtain Symbolic Models: Given the regions ⌅1,⌅2, . . ., the next step is to construct a

finite-state abstraction for the closed loop system (2.17). Such finite state abstraction will

take the form of a finite state machine ⌃q = (Sq, �q) where Sq is the set of finite states and

�q : Sq ! 2Sq is the state transition map of the finite state machine, defined as:

Sq = {1, 2, . . . L} and j 2 �q(i)() g
�
h
�1

r,C(ci),NN aug(ci)
�
2 ⌅j. (2.18)

In other words, the finite state machine has a number of states L that is equal to the number

of regions ⌅i, i.e., each finite state symbolically represent a region. A transition between the

state i and j is added to the state transition map �q whenever applying the NN controller

to the center of the region i (i.e, ci) will force the next state of the system to be within the

region ⌅j. The value of g
�
h
�1

r,C(ci),NN aug(ci)
�
can be directly computed by evaluating the

neural network NN aug at the center ci followed by evaluating the function g.

So far, the state transition map �q accounts only for actions taken at the center of the

region. To account for the control actions in all the states i 2 ⌅i, we need to bound the

distance between the trajectories that start at the center of the region ci and the trajectories

that start from any other state ⇣i 2 ⌅i. For such bound to exist, we enforce an additional

assumption on the dynamics of the aircraft model f (and hence g = hr,C �f) named � forward

complete (�-FC) [47]. Given a center of the region ci and an arbitrary state ⇣i 2 ⌅i, the �-FC

assumption bounds the distance between the trajectories that starts at ⇣i and the center ci,

denoted by �⇣ as:

�⇣  �(✏, ⌧) + �(||NN aug(ci)�NN aug(⇣i)||1, ⌧) (2.19)

where ⌧ is the sample time used to obtain the dynamics f (as explained in Section 2.2) and

� and � are class K1 functions that can be computed from the knowledge of the dynamics

f . Such �-FC is shown to be mild and does not require the aircraft dynamics to be stable.
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For technical details about the �-FC assumption and the computation of the functions � and

�, we refer the reader to [46]. Given the inequality (2.19), we can revisit the definition of

the state transition map �q to account for all possible trajectories as:

j 2 �q(i)() g
�
h
�1

r,C(ci),NN aug(ci)
�
+ �⇣ 2 ⌅j. (2.20)

With such a modification, one is direct to show that following result:

Proposition 2.3. Consider the dynamical systems ⌃⇣ and ⌃q. Consider also a set of initial

conditions ⌅0 and a specification '. The following holds:

⌃S0
q
|= ') ⌃⌅o

⇣
|= '

where S0 = {i 2 {1, . . . , L}|9⇣0 2 ⌅0, ⇣i 2 ⌅i}.

This proposition follows directly from Theorem 4.1 in [47].

Compute the set of allowable control actions: Unfortunately, computing the norm

||NN aug(ci)�NN aug(⇣i)||1 (and hence �⇣) is challenging. As shown in [24], computing such

norm is NP-hard and existing tools in the literature focus on computing an upper bound for

such norm. Nevertheless, the bounds given by the existing literature constitute large error

margins that will render our approach severely conservative.

To alleviate the problem above, we use the inequality (2.19) in a “backward design approach”.

We first search for the maximum value of �⇣ that renders ⌃q compatible with the specification.

For that end, we substitute the norm ||NN aug(ci) � NN aug(⇣i)||1 with a dummy variable

µ. By iteratively increasing the value of µ, we will obtain di↵erent ⌃q, one for each value of

µ. We use a bounded model checker for each value of µ to verify if the resulting ⌃q satisfies

the specification. We keep increasing the value of µ until the resulting ⌃q no longer satisfies

'. We refer to this value as µmax.
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What is remaining is to ensure that the neural network indeed respects the bound:

||NN aug(ci)�NN aug(⇣i)||1  µmax

To that end, we define the set of allowable control actions U⌅i as:

U⌅i = Bµmax(NN aug(ci))

It is then direct to show the following equivalence:

||NN aug(ci)�NN aug(⇣i)||1  µmax () 8⇣ 2 ⌅i.
�
NN aug(⇣) 2 U⌅i

�

where U⌅i = Bµmax(NN aug(ci)). Luckily, the right-hand side of this equivalence is precisely

what neural network model checkers are capable of verifying. Algorithm 1 summarizes

this discussion. The following result captures the guarantees provided by the proposed

framework:

Proposition 2.4. The LanderNN-VeriF algorithm (Algorithm 1) is sound but not complete.
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input : ⌅, ⌅0, ', ✏, ⌧ , �, �, NN aug, T , µ, µ, f , h, h�1

output: STATUS

1 {⌅1,⌅2, . . . ,⌅L} = Partition into regions(⌅, ✏)
2 µ = µ

3 statusFSM  UNSAT
4 while statusFSM == UNSAT do
5 ⌃q = Create FSM(f, h, h�1

, ⌧, �, �,NN aug, {⌅1, . . . ,⌅L}, µ)
6 statusFSM = Check FSM (', ⌃q, T )
7 if µ  µ then
8 µ = Increase MU(µ)
9 end

10 end
11 for i = 1 to L do
12 STATUS NN[i] = NN Verifier (NN aug, ⌅i, µ)
13 if STATUS NN[i] == SAT then
14 STATUS = UNSAFE
15 return STATUS

16 end
17 end
18 STATUS = SAFE
19 return STATUS

Algorithm 1: LanderNN-VeriF

2.6 Numerical Example

We illustrate the results in this chapter on a Vision-Based Aircraft landing system. For a

fixed-wing aircraft defined using the guidance kinematic model [4], where orientations (in

Rads) are defined by the course angle � (rotation around yCCF axis), pitch angle ✓ (rotation

around xCCF axis) and Vg denotes the total Aircraft velocity relative to the ground. We further

simplify the system by keeping the course angle pointing towards the runaway (� = 0),

similarly velocity is kept as constant. Moreover, ✓̇ (Rad/s) is regarded as control input u.
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The state vector of the aircraft at time t 2 N is denoted by ⇠(t) = [⇠(t)
✓
, ⇠

(t)

x , ⇠
(t)

y , ⇠
(t)

z ]T and is

assumed to evolve over time while being governed by the dynamical system [4]

⇠
(t+1)

z
= ⇠

(t)

z
+ Vg⌧ cos (⇠

(t)

✓
) (2.21)

⇠
(t+1)

y
= ⇠

(t)

y
+ Vg⌧ sin (⇠

(t)

✓
) (2.22)

⇠
(t+1)

✓
= ⇠

(t)

✓
+ u

(t)
⌧ (2.23)

where ⌧ is the sampling time. For our simulations we consider Vg = 25m

s
and ⌧ = 0.1.

Moreover based on Airport Standards we consider the Runaway segments (in meters) defined

by L = [(Lx, 0, Lz), (Lx, 0, Lz + rl)] and R = [(Rx, 0, Rz), (Rx, 0, Rz + rl)] where Rx = 20,

Lx = �20, Rz = 0, Lz = 0, rl = 3000. For the Camera parameters we consider images of

16⇥ 16 pixels and Focal Length of 400 mm.

We note that the system dynamics (2.21)-(2.23) is a �-FC system. In particular, by using

the method [46] and the �-FC Lyapunov function V(⇠(t), ⇠(t)0) = (⇠(t)� ⇠(t)0)2 one can show:

�(⇣1, ⇣2, ⇣3, ⌧) =
p

8
q
⇣2
1
+ ⇣2

2
+ ⇣2

3
e
⌧ (2.24)

�(µ, ⌧) =
q
Vg(e2⌧ � 1)µ (2.25)

We work on the output space set D = [⇣1 ⇥ ⇣2 ⇥ ⇣3] = [0, 16]⇥ [0, 16] ⇥ [0, 16] of ⌃⇣ with a

precision ✏ = 1, thus our discretized grid consists of 16⇥ 16⇥ 16 cubes.

We used Imitation Learning to train a fully connected ReLU Neural Network controller

(NN ) of 2 layers with 128 Neurons each. Trajectories from di↵erent initial conditions were

collected and used to train the network. Our objective is to verify that the aircraft landing

using the trained NN aug satisfies the safety specification � = ⇤¬qunsafe where qunsafe = [⇠z =

800, ⇠y = 200, ⇠✓ = 1] which corresponds to an unsafe region while landing.
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In what next, we report the execution time to verify the trained network.All experiments

were executed on an Intel Core i7 processor with 50 GB of RAM. First, we implemented our

Vision Network (NN C) for images of 16⇥ 16 pixels using Keras.

Similarly we used Keras composition libraries to merge the controller and perception net-

works into the augmented network (NN aug), a landing trajectory using NN aug is shown in

Figure 2.6 and its corresponding camera view is shown in Figure 2.7.

Figure 2.6: Aircraft landing using augmented controller NN aug. Left: aircraft position
(⇠y, ⇠z); Middle: aircraft angle (⇠✓); Right: aircraft control (u = NN aug).

Figure 2.7: Landing camera view using 16⇥ 16 pixels resolution. Left: ⇠1 = [1000, 1000, ⇡
4
],

Middle: ⇠300 = [400, 300, ⇡
8
], Right: ⇠1000 = [5, 5, 0].

We used a Boolean SAT solver named SAT4J [5] to implement the Check FSM function in

Algorithm 1. The finite state machine ⌃q was encoded using a set of Boolean variables

and our implementation performed a bounded model checking for the generated FSMs (the

bounded model checking horizon was set to 20). We constructed FSMs with the following µ

values µ = [0.1, 0.2, 0.3, 0.6, 0.8, 0.9, 1.1] until a value of µmax = 1.1 was found. The execution

time for creating ⌃q and verifying its properties with the bounded model checker increased

monotonically from 2000 seconds for µ = 0.1 to 7000 seconds for µ = 1.1.
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As expected, the higher the value of µ, the higher the number of transitions in ⌃q, and the

higher the time needed to create and verify.

Finally, we used the PeregriNN [31] as the NN model checker. Figure 2.8 reports the execu-

tion time for verifying the neural network property in 100 random regions, and Figure 2.9

in regions 1 to 500. The average execution time was 75 seconds and the NN was found to

be safe and satisfying the specification '.

Figure 2.8: Execution time for verifying the neural network property in 100 random regions.

Figure 2.9: Execution time for verifying the neural network property in regions 1 to 500.

28



Part II

Training of Probably
Correct Perception Based AI Models
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Chapter 3

Certified Vision-based State

Estimation for Autonomous Landing

Systems using Reachability Analysis

This chapter studies the problem of designing a certified vision-based state estimator for

autonomous landing systems. In such a system, a neural network (NN) processes images

from a camera to estimate the aircraft’s relative position with respect to the runway. We

propose an algorithm to design such NNs with certified properties in terms of their ability

to detect runways and provide accurate state estimation. At the heart of our approach is

the use of geometric models of perspective cameras to obtain a mathematical model that

captures the relation between the aircraft states and the inputs. We show that such geometric

models enjoy mixed monotonicity properties that can be used to design state estimators

with certifiable error bounds. We show the e↵ectiveness of the proposed approach using an

experimental testbed on data collected from event-based cameras.
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3.1 Introduction

Machine learning models, like deep neural networks, are increasingly used to control dynam-

ical systems in safety-critical applications. These black-box models trained using data are

used heavily to process high-dimensional imaging data like LiDAR scanners and cameras

to produce state estimates to low-level, model-based controllers. While these deep Neural

Networks (NNs) provide empirically accepted results, they lack certified guarantees in terms

of their ability to process complex scenes and provide estimates of the location of di↵erent

objects within the scene. It is then unsurprising the increasing number of reported failures

of these deep NNs in building reliable autonomous systems.

In this chapter, we will consider the safety of deep neural networks that control aircraft while

approaching runways to perform an autonomous landing. Such a problem enjoys geometric

nature that can be exploited to develop a geometrical/physical model of the perception

system. Yet, it represents a significant real-world problem of interest to the designers of

the autonomous system. In particular, we present a novel neural network-based filter that

can process complex scenes along with estimates of the state of the aircraft—computed by

unverified complex deep neural networks—and output a state estimate of the aircraft with

a certified error bound. That is, akin to the “control shields” in the reinforcement learning

literature [11, 2], the proposed filter can be thought of as a “shield” that can filter out

incorrect estimates of the aircraft and replaces them with ones with certified error bounds.

In contrast, the correct estimates pass this filter (or shield) unaltered.

A central challenge to designing such a filter is the need to explicitly model the imaging

process, i.e., the relation between the system state and the images created by the camera [35].

An early result on the application of formal verification for vision-based dynamical systems

controlled with neural networks [39] focused only on the usage of LiDARs.
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Figure 3.1: Coordinate frames: Runway (RCF), Camera (CCF) and Pixel (PCF).

The first steps in formally modeling the imaging process for camera-based systems have

been recently studied in [22, 28, 19]. In particular, the work in [22, 28] proposes the use

of abstractions of the perception system as a formal model of perception. Unfortunately,

these abstractions are only tested on a set of samples and lack guarantees in their ability

to model the perception system formally. The work in [19] extends the notion of imaging-

adapted partitions, originally defined for LiDAR images [39], to the notion of image-invariant

regions, which are regions within which the captured images are identical. Unfortunately, the

work in [19] focuses only on simple scenes that can be modeled as a collection of triangles that

represent the triangulated faces of objects in the environment. The work in [41] considers the

problem of estimating the pose of di↵erent objects in the scene. Given a partial point cloud

of an object, the goal is to estimate the object’s pose and provide a certificate of correctness

for the resulting estimate. While capable of handling complex objects, the framework in [41]

is sound but not complete, meaning that if it can identify the object’s pose, it will generate

a certificate. Still, not all poses of the object will be identified, even if the object of interest

exists in the scene. Other techniques include classification that uses targeted inputs with

the aim of finding counterexamples that violate safety [36]. However, such techniques do not

provide formal guarantees regarding the ability to find all counterexamples.
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In this chapter, we build on our recent results [35] that exploit the geometry of the au-

tonomous landing problem to construct a formal model for the image formation process (a

map between the aircraft states and the image produced by the camera). This physics-based

formal model is designed such that it can be encoded as a neural network (with manually

chosen weights) that we refer to as the Runway Generative Model neural network. Thanks

to the recent development in computing the reachable sets of neural networks (the set of all

possible outputs of the network) [44, 16, 42], we can characterize the set of all possible images

for the runway. We use such reachability analysis to design novel filters that can remove

all the other objects in the scene by matching the spatial and geometrical properties of the

runway to those in the computed reachable set. Moreover, as a by-product of this design,

the proposed filter identifies the set of possible state estimates of the aircraft. This set of

possible state estimates can then be used to cross-check the ones computed by unverified

neural network estimators and provide certifiable error bounds on the final state estimate.

3.2 Preliminaries

3.2.1 Notation

We denote by N, B, R and R+ the set of natural, Boolean, real, and non-negative real

numbers, respectively. We use ||x||1 to denote the infinity norm of a vector x 2 Rn. We

denote by Br(c) the infinity norm centered at c with radius r, i.e., Br(c) = {x 2 Rn
|||c �

x||1  r}. We use the notation A[i,j] to denote the element in the ith row and j
th column of

A. Analogously, the notation A[i,:] denotes the ith row of A, and A[:,j] denotes the jth column

of A; when A is a vector instead, both notations return a scalar. Let 0n,m be an (n ⇥ m)

matrix of zeros, and 1n,m be the (n ⇥ m) matrix of ones. Finally, the symbols � and ⌦

denote element-wise addition and multiplication of matrices.
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3.2.2 Aircraft State Space

In this paper, we consider an aircraft landing on a runway. We assume the states of the

aircraft to be measured with respect to the origin of the Runway Coordinate Frame (shown

in Figure 3.1 (left)), where positions are: ⇠x is the axis across runway; ⇠y is the altitude

and ⇠z is the axis along the runway. We consider only one angle ⇠✓, representing the pitch

rotation around the x axis of the aircraft. The state vector of the aircraft at time t 2 N is

denoted by ⇠(t) = [⇠(t)
✓
, ⇠

(t)

x , ⇠
(t)

y , ⇠
(t)

z ]T .

3.2.3 Runway Parameters

We consider a runway that consists of two border line segments, L and R. Each line segment

can be characterized by its start and end point (also measured in the Runway Coordinate

Frame) i.e., L = [(Lx, 0, Lz), (Lx + rw, 0, Lz + rl)] and R = [(Rx, 0, Rz), (Rx + rw, 0, Rz + rl)]

where rw and rl refers to the runway width and length (e.g. standard international runways

are designed with rw = 40 meters wide and rl = 3000 meters).

3.2.4 Camera Model

We assume the aircraft is equipped with a monochrome camera C that produces images of

a ⇥ b pixels. Since the camera is assumed to be monochromatic, each pixel in the image

I takes a value of 0 or 1. The image produced by the camera depends on the relative

location of the aircraft with respect to the runway and the other objects in the scene. In

other words, we can model the camera C as a function that maps aircraft states into images,

i.e., C : R4
! Ba⇥b. Although the images created by the camera depend on the runway

parameters and the other objects in the scene, we drop this dependence from the notation

C for ease of notation.
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Figure 3.2: Monochromatic images generated using state-of-the-art event-based cameras.
The full image I to the left can be decomposed into one that contains only the runway
image Ir (center) and the remaining objects/noise In (right), i.e., I = Ir + In.

We utilize an ideal pinhole camera model [32] to capture the image formation process of this

camera. In general, a point p in the Runway Coordinate Frame (RCF) is mapped into a point

p
0 on the Camera Coordinate Frame (CCF) using a translation and rotation transformations

defined by [20]:

2

66666664

p
0
xCCF

p
0
yCCF

p
0
zCCF

1

3

77777775

=

2

66666664

1 0 0 x

0 cos ✓ sin ✓ y

0 � sin ✓ cos ✓ z

0 0 0 1

3

77777775

2

66666664

px

py

pz

1

3

77777775

(3.1)

The camera then converts the 3-dimensional point p0 on the camera coordinate frame into

two-dimensional point p00 on the Pixel Coordinate Frame (PCF) as:

p
00 =

�
p
00
xPCF

, p
00
yPCF

�
=

✓�
qxPCF

qzPCF

⌫
,

�
qyPCF

qzPCF

⌫◆
(3.2)

where:

2

66664

qxPCF

qyPCF

qzPCF

3

77775
=

2

66664

⇢w 0 u0

0 �⇢h v0

0 0 1

3

77775

2

66664

f 0 0 0

0 f 0 0

0 0 1 0

3

77775

2

66666664

p
0
xCCF

p
0
yCCF

p
0
zCCF

1

3

77777775

(3.3)
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and f is the focal length of the camera lens, W is the image width (in meters), H is the

image height (in meters), a is the image Width (in pixels), b is the image height (in pixels),

and u0 = 0.5a, v0 = 0.5b, ⇢w = a

W
, ⇢h = b

H
. The values of each pixel in the final image I

can be computed directly by checking if the point p
00 lies within the area of the pixel and

assigning 1 to such pixels accordingly [20].

What is remaining is to map the coordinates of p00 =
�
p
00
xPCF

, p
00
yPCF

�
into a binary assignment

for the di↵erent a⇥ b pixels. But first, we need to check if p00 is actually inside the physical

limits of the Pixel Coordinate Frame (PCF) by:

visible =

8
>><

>>:

yes |p
00
xPCF

| 
W

2
_ |p

00
yPCF

| 
H

2

no otherwise

(3.4)

Whenever the point p00 is within the limits of PCF, then the pixel I[k,l] should be assigned to

1 whenever the index of the pixel matches the coordinates
�
p
00
xPCF

, p
00
yPCF

�
, i.e.:

I[k,l] =

8
>><

>>:

1 (p00
xPCF

== k � 1) ^ (p00
yPCF

== l � 1) ^ visible

0 otherwise

(3.5)

for k 2 (1, 2, 3...a) and l 2 (1, 2, 3...b). This process of mapping a point p in the Runway

Coordinate Frame (RCF) to a pixel in the image I is summarized in Figure 3.1 (right).

Since the scene contains both a runway and other unknown objects (see Figure 3.2), we

define the final image I 2 Ba⇥b captured by the camera as:

I(⇠) = Ir(⇠) + In(⇠) (3.6)

where Ir 2 Ba⇥b is the image corresponding to the existence of the runway in the scene and

In 2 Ba⇥b is the image corresponding to the existence of other objects/noise in the scene.
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3.2.5 Neural Network Estimator

We are interested in designing a Neural Network (NN)-based estimator that can process an

image I(⇠) = Ir(⇠) + In(⇠) to produce an estimate of the aircraft state ⇠. An F -layer NN is

specified by composing F layer functions (or just layers). A layer ! with i! inputs and o!

outputs is specified by a weight matrix W
!
2 Ro!⇥i! and a bias vector b! 2 Ro! as follows:

L✓! : z 7! �(W !
z + b

!), (3.7)

where � is a nonlinear function, and ✓
! , (W !

, b
!) for brevity. Thus, an F -layer NN is

specified by F layer functions {L✓! : ! = 1, . . . , F} whose input and output dimensions are

composable: that is, they satisfy i! = o!�1, ! = 2, . . . , F . Specifically:

NN (I) = (L✓F � L✓F�1 � · · · � L✓1)(I). (3.8)

As a common practice, we allow the output layer L✓F to omit the nonlinear function �.

3.2.6 Problem Formulation

Problem 3.1. Given an image I(⇠) = Ir(⇠)+ In(⇠) that contains the projection of a runway

and other unknown objects and an estimation error ✏ > 0, design a neural network estimator

NN such that ||NN (Ir + In)� ⇠|| < ✏.
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Figure 3.3: Overall framework elements: Spatial filter, Geometrical filter, NNF and NN e

3.3 Framework

Classical machine learning approaches to solve Problem 3.1 entail training neural networks on

large labeled data sets that contain di↵erent possibilities of runway positions and surrounding

objects. Since ensuring the correctness of the resulting NN is challenging, we propose a

framework in which we manually design a NN filter NNF that is guaranteed to “filter out”

the noise In, i.e., NNF(Ir+In) = Ir. Moreover, such a filter NNF also computes a certified

bound on the possible states of the aircraft ⌅̂. The size of this possible set of states ⌅̂ is chosen

to guarantee the ✏ bound in Problem 3.1. The resulting filtered-out image NNF(Ir + In) is

then passed into a neural network estimator NN e that is trained using existing techniques

in machine learning.
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Finally, the outcome of NN e is checked against the certified bounds ⌅̂ to provide the final

estimate as:

⇠̂ =

8
>><

>>:

NN e (NNF(I)) if NN e (NNF(I)) 2 ⌅̂

center(⌅̂) otherwise

(3.9)

where center(⌅̂) is well defined whenever the set ⌅̂ is a hypercube. In other words, the cer-

tified bounds ⌅̂ are used to replace the incorrect state estimates with ones with guaranteed

error bound from within the set ⌅̂. This process is depicted in Figure 3.3. Steps to man-

ually design the NN filter NNF and its theoretical guarantees are given in the subsequent

subsections.

3.3.1 Physics-based Generative Model for Runway Images

Our prior work in [35] developed a physics-based generative model that can generate all

possible images containing runways Ir(⇠) based on the physical parameters of the camera

f, ⇢h, ⇢w, v0, u0 (discussed in Section 3.2). Crucially, this physics-based generative model

was shown to be mathematically equal to a change of coordinates h : R4
! R4 and a neural

network NN r(h(⇠)) with carefully selected weights and parameters (this network is depicted

in Figure 3.4), i.e.,

Ir(⇠) = NN r(h(⇠)).

The change of coordinates h maps the state of the aircraft into the projections of the end-

points of the lines L and R on the Pixel Coordinate Frame (PCF).

The generative model is made of two components: A change of coordinates h and a ReLU-

based Neural Network for Line Generation NN r as captured by the following definitions.
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Definition 3.1 (Change of Coordinates). We define the change of coordinates as:

⇣ = h(⇠) =

2

666666666666666664

⇣1

⇣2

⇣3

⇣4

3

777777777777777775

=

2

666666666666666664

⇢wf
Lx+⇠x

Lzcos(⇠✓)+⇠z
+ u0

�⇢hf
Lzsin(✓)+⇠y

Lzcos(⇠✓)+⇠z
+ v0

⇢wf
(Lx+rw)+⇠x

(Lz+rL)cos(⇠✓)+⇠z
+ u0

�⇢hf
(Lz+rL)sin(⇠✓)+⇠y

(Lz+rL)cos(⇠✓)+⇠z
+ v0

3

777777777777777775

(3.10)

where f, ⇢h, ⇢w, v0, u0 are the camera physical parameters as defined in Section 3.2.

In other words, the pair (⇣1, ⇣2) is the projection of the start point of the runway (Lx, 0, Lz)

onto the Pixel Coordinate Frame PCF (while ignoring the flooring operator for now). Simi-

larly, the pair (⇣3, ⇣4) is the projection of the endpoint of the runway (Lx + rw, 0, Lz + rL)

onto the PCF frame. Indeed, we can define a similar set of variables for the other line segment

of the runway, R. We refer to the new state space as ⌅.

Definition 3.2 (Runway Generative Model). We define the Runway Generative Model NN r

of a⇥ b pixels as:

Ir(⇠) = NN r(h(⇠)) (3.11)

for simplicity let’s consider ⇣ = h(⇠), then:

NN r(⇣) = ReLU(�Min(�Abs(�Lin(⇣,�Det(⇣))))) (3.12)

where:

⇣det = �Det(⇣) = ⇣1⇣4 � ⇣2⇣3 (3.13)
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⇣
1 = �Lin(⇣, ⇣det) = W [⇣1, ⇣2, ⇣3, ⇣4, ⇣det]

T (3.14)
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⇣
3 = �Min(⇣

2) =
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66664

min(⇣2
[1]
, ⇣

2

[2]
)

...
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[7]
, ⇣

2

[8]
)

3

77775
(3.16)

where �Det : R4
! R, �Lin : R5

! R16⇥q, �Abs : R16⇥q
! R8⇥q, �Min : R8⇥q

! R4⇥q and

ReLU : R4⇥q
! Rq, where q = a ⇥ b is the number of pixels in the image to be generated,

weight matrix W 2 R16⇥5 contains fixed weights fully decribed by camera parameters [35].

We refer to Ir(⇠) as the image containing solely the runway defined by ⇣.

We refer the reader to [35] for detailed analysis of the correctness of this generative model.

3.3.2 Design of spatial filters using output reachability analysis

Given a partitioning parameter �, we partition the state space ⌅ ⇢ R4 into L regions

⌅1, . . . ,⌅L such that each ⌅i is an infinity-norm ball with radius �. For each of these par-

titions, we aim to design a spatial filter that matches the spatial properties of the runway

images that can be produced by states within such a partition. To that end, consider the

following filter S⌅i 2 Ba⇥b defined as:

S
⌅i =

O

h(⇠)2⌅i

Ir(⇠) =
O

h(⇠)2⌅i

NN r(h(⇠)). (3.17)
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Figure 3.4: Physics-based generative model for runway images Ir(⇠) captured mathematically
as a neural network [35].

Recall that all images Ir(⇠) are monochromatic (i.e., each pixel can take only a value of 0 or

1), then the following result follows directly from the definition above.

Proposition 3.1. Consider the filter S
⌅i. The following holds:

(i)⇠ 2 ⌅i, 8⇠ 2 ⌅i.[In(⇠)⌦NN r(h(⇠)) = 0a,b]

=) [Ir(⇠) + In(⇠)]⌦ S
⌅i =Ir(⇠) (3.18)

(ii)⇠ /2 ⌅i, In(⇠) /2 I
⌅i
r

=) [Ir(⇠) + In(⇠)]⌦ S
⌅i 6= Ir(⇠) (3.19)

where I
⌅i
r

= {Ir(⇠) 2 Ba⇥b
|h(⇠) 2 ⌅i}.

Note that the condition 8⇠ 2 ⌅i.[In(⇠)⌦NN r(h(⇠)) = 0a,b] is equivalent to In(⇠)⌦S⌅
i
= 0a,b.

That is, the filter S⌅i is capable of removing all noise in the image as long as the noise image

In(⇠) does not a↵ect pixels that are �/⇢w away from the runway image Ir(⇠).
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Figure 3.5: Spatial filtering focuses attention on di↵erent regions.

Figure 3.5 shows an example of such a filter. Specifically, equations (3.18)-(3.19) imply

that the filter will accurately process the filtered image, provided that the noise does not

resemble the pattern of runways. Additionally, the filter must be applied to the specific

region corresponding to the state responsible for generating such a runway. Furthermore,

it is reasonable to assume that as we increase the geometric complexity of the runway, the

likelihood of noise resembling runway patterns diminishes. In other words, the more intricate

the entity we are examining, the safer it is to rely on our assumptions.

What is remaining is to provide an algorithm that can compute the filter S⌅i for each par-

tition ⌅i. Thanks to the fact that the physics-based generative model NN r(⇠) is captured

as a neural network, one can use output reachability algorithms to compute an overapproxi-

mation of the reach set (set of all possible images) for the runway image Ir(⇠). For that end,

we leverage Mixed-monotonicity reachability analysis of neural networks [33] by leveraging

the following result:

Proposition 3.2. (from [33]) Given a neural network NN : Ri
! Ro and an interval

[J, J ] ✓ Ro⇥i bounding the derivative of NN for all input ⇣ 2 [⇣, ⇣]. Let us denote the

center of the interval as J⇤ and for each output dimension i 2 {1, ..., o}, define input vectors

⇣
[i,:]

, ⇣
[i,:]
2 Ri and a row vector ↵i

2 R1⇥i such that for all j 2 {1, ..., i} the following holds:
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( 
[i,j]

, 
[i,j]

,↵[i,j]) =
8
>><

>>:

(⇣
[:,j]

, ⇣
[:,j]

,min(0, J
[i,j]

)) if J⇤
[i,j]
� 0

(⇣
[:,j]

, ⇣
[:,j]

,max(0, J [i,j])) if J⇤
[i,j]
 0

(3.20)

Then for all neural network input ⇣ 2 [⇣, ⇣] and i 2 {1, ..., o}, we have:

NN (⇣)[i,:] 2 [NN ( 
[i,:]
� ↵[i,:]( 

[i,:]
�  

[i,:]
)),

NN ( 
[i,:]

+ ↵[i,:]( 
[i,:]
�  

[i,:]
))] (3.21)

To implement the method in Proposition 3.2, we define the input vectors as ⇣ = center(⌅i)+
�

2

and ⇣ = center(⌅i)�
�

2
. Additionally, we compute the bounds on the Jacobian matrix of the

neural network NN r to find the bounds [J, J ].

We compute the bound on the Jacobian matrix of the Runway Generative Model as follows:

J�Det =

2

66666664

⇣4

�⇣3

�⇣2

⇣1

3

77777775

(3.22)

J�Lin =

2

66664

W[1,1] W[2,1] . . .

...
. . .

W[1,5] W[16,5]

3

77775
(3.23)
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J�Abs
bounds are:

J
�Abs

=

2

666666666666666664

�2 0 . . .

�2 0 . . .

0 �2 . . .

0 �2 . . .

...
. . .

0 �2

0 �2

3

777777777777777775

; J�Abs
=

2

666666666666666664

2 0 . . .

2 0 . . .

0 2 . . .

0 2 . . .

...
. . .

0 2

0 2

3

777777777777777775

(3.24)

Such bounds are well defined, provided that all inputs ⇣1, ⇣2, ⇣3, ⇣4 > 0, which is the case for

all practical applications.

J�Min bounds are:

J
�Min

= 08,4 ; J�Min = 18,4 (3.25)

Such bounds come from the fact that:

@(Min(⇣i, ⇣j))

@⇣i
=

8
>><

>>:

0 ⇣i  ⇣j

1 otherwise

(3.26)

These bounds on the output of NN r identifies which pixels are equal to zero for all the

images generated by the states in each ⌅i, which can be used to compute the filters in (3.17).

45



3.3.3 Design of Geometric Filters using Hough Transform

The spatial filters S
⌅i can be used to focus the attention on di↵erent regions of the state

space. Although these filters provide a guarantee of the output of the filter that satisfies

⇠ 2 ⌅i it does not provide any guarantee on the output of the filters for which ⇠ /2 ⌅i.

Therefore, it is necessary to augment the spatial filters with another filter that aims to

detect whether the output follows the geometrical structure of the runway images.

To achieve this, consider the following filters:

H
⌅i(I) =

8
>><

>>:

1 if 9⇠ 2 ⌅i such that I = NN r(h(⇠))

0 otherwise

(3.27)

Such filter can be e�ciently computed using the classical Hough-space transformation [40].

In this transformation, a straight line is represented by a normal line that passes through

the origin and is orthogonal to that straight line. The equation of the normal line is given by

⇢ = ⇣1 cos (✓) + ⇣2 sin ✓, where ⇢ is the length of the normal line and ✓ is the angle between

the normal line and the x-axis of the Pixel Coordinate Frame. By using the projections of

the endpoints of the runway lines edges obtained from h(⇠) = [⇣1, ⇣2, ⇣3, ⇣4] as P1 = (⇣1, ⇣2)

and P2 = (⇣3, ⇣4), we can solve for ✓ and ⇢ for the generated image as:

✓ = tan�1 (
⇣1 � ⇣3

⇣4 � ⇣2
) (3.28)

⇢ = ⇣1 cos (✓) + ⇣2 sin (✓) (3.29)

Given a partition ⌅i, we can obtain the range of ⇢, ✓ for all runway images as follows.

First, recall that each partition ⌅i is an infinity ball with a radius equal to � around

a center point center(⌅i) 2 R4. The two points P1 = (center(⌅i)[1], center(⌅i)[2]) and

P2 = (center(⌅i)[3], center(⌅i)[4]) represent 2-dimensional points in the Pixel Coordinate
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Frame that corresponds to the center of ⌅i (see Figure 3.6 for illustration). Following the

2-dimensional geometry of the Pixel Coordinate Frame, it is direct to show that:

(⇣ci
1
, ⇣

ci
2
, ⇣

ci
3
, ⇣

ci
4
) = center(⌅i) (3.30)

✓
⌅i
max

=

8
>><

>>:

tan�1

⇣
⇣
ci
1 �⇣

ci
3 +2�

⇣
ci
4 �⇣

ci
2 +2�

⌘
, if ⇣

ci
4 �⇣

ci
2

⇣
ci
3 �⇣

ci
1

> 0

tan�1

⇣
⇣
ci
1 �⇣

ci
3 +2�

⇣
ci
4 �⇣

ci
2 �2�

⌘
, otherwise

(3.31)

✓
⌅i
min

=

8
>><

>>:

tan�1

⇣
⇣
ci
1 �⇣

ci
3 �2�

⇣
ci
4 �⇣

ci
2 �2�

⌘
, if ⇣

ci
4 �⇣

ci
2

⇣
ci
3 �⇣

ci
1

> 0

tan�1

⇣
⇣
ci
1 �⇣

ci
3 �2�

⇣
ci
4 �⇣

ci
2 +2�

⌘
, otherwise

(3.32)

⇢
⌅i
min

= b
�

p
1 +m2

m+ 1

m

(3.33)

⇢
⌅i
max

= b�

p
1 +m2

m+ 1

m

(3.34)

where m, b�, b� are defined as

m =
⇣
ci
4
� ⇣

ci
2

⇣
ci
3
� ⇣

ci
1

(3.35)

b� = (⇣ci
2
+ �)�m(⇣ci

1
+ �) (3.36)

b
�
= (⇣ci

2
� �)�m(⇣ci

1
� �) (3.37)

Equations (3.30)-(3.34) define the reachable set of the runway images within the Hough space

(the ⇢�✓ space). Moreover, the discretization introduced in the Pixel Coordinate Frame (the

flooring operation in (3.2)) introduces a discretization over the range of ⇢ and ✓ computed by

equations (3.30)-(3.34) which existing implementations of Hough transformation algorithms

take into account. We denote by L
⌅i = {(⇢⌅i

max
, ✓
⌅i
max

), . . . , (⇢⌅i
min

, ✓
⌅i
min

)} the discrete set of

the allowable values of ⇢ and ✓ within the partition ⌅i.
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Figure 3.6: Feasible range of angles and distances in Hough Space.

For each possible (⇢j, ✓j) in L
⌅i , we define the filter R⌅i(⇢j, ✓j) 2 Ba⇥b as:

R
⌅i(⇢j, ✓j)[k,l] =

8
>><

>>:

1 if l � 1 < �
cos ✓j

sin ✓j
k + ⇢j

sin ✓j
< l

0 otherwise

(3.38)

For each filter R⌅i(⇢j, ✓j) we can define a mismatching score that computes how far the input

image I is from the expected output of this filter as:

M(I,R⌅i(⇢j, ✓j)) =

����� I �R
⌅i(⇢j, ✓j)

����
1

(3.39)

That is, M is equal to zero whenever the input image I matches exactly the line represented

by R
⌅i(⇢j, ✓j) and non-zero otherwise. Finally, we can implement the filter H⌅i in (3.27) as:

H
⌅i(I) =

8
>>>>>><

>>>>>>:

1 if argmin{M(I,R⌅i(⇢⌅i
max

, ✓
⌅i
max

)), . . . ,

M(I,R⌅i(⇢⌅i
min

, ✓
⌅i
min

))} = 0

0 otherwise

(3.40)

In other words, the filter H⌅i produces 1 whenever any of the filters

R
⌅i(⇢⌅i

max
, ✓
⌅i
max

), . . . ,R⌅i(⇢⌅i
min

, ✓
⌅i
min

) were able to match its input image. The following

proposition follows directly from the definition of H⌅i(I) above.
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Proposition 3.3. Consider the filter H
⌅i defined in (3.40). The following holds:

H
⌅i(I) = 1() 9⇠ 2 ⌅i such that I = NN r(h(⇠)) (3.41)

3.3.4 Design of the NN filter NNF

The final filterNN F consists of processing the images I using all the spatial filters S⌅1 , . . . ,S
⌅l

followed by the geometric filtersH⌅1 , . . . ,H
⌅l . Finally, the filterNN F identifies the partition

⌅̂ for which the geometric filter returns 1 to produce its final outputs as follows:

⌅̂ = argmax{H⌅1(I ⌦ S
⌅1), . . . ,H⌅l(I ⌦ S

⌅l)} (3.42)

Îr = I ⌦ S
⌅̂ (3.43)

The following result captures the correctness of the NN F .

Theorem 3.1. Consider a noisy image I(⇠) = Ir(⇠)+In(⇠), a partitioning of the state space

⌅ into infinity balls of radius � namely ⌅1, . . . ,⌅l. Denote by ⌅⇤ the partition for which the

aircraft state ⇠ belongs, i.e., h(⇠) 2 ⌅⇤. Under the following assumptions:

(i)In(⇠) /2 {NN r(h(⇠)) | h(⇠) 2 ⌅} (3.44)

(ii)8⇠ 2 ⌅⇤
.[In(⇠)⌦NN r(h(⇠)) = 0a,b] (3.45)

then the following holds:

⌅̂ = ⌅⇤ (3.46)

Îr = Ir(⇠) (3.47)

k⇠ � ⇠̂k  4Lh� 8⇠̂ 2 ⌅̂ (3.48)

where (⌅̂, Îr) = NN F (I(⇠)) and Lh is the Lipschitz constant of h�1.
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Proof. We start by proving (3.46) as follows. For the sake of contradiction, we assume that

there exists a partition ⌅†
6= ⌅̂ such that which the aircraft state ⇠ satisfies h(⇠) 2 ⌅†. It

follows from Proposition 3.1 and assumptions (3.44) and (3.45) that:

I ⌦ S
⌅̂
6= Ir(⇠), I ⌦ S

⌅
†
= Ir(⇠)

and hence Proposition 3.3 entails that:

H
⌅̂(I ⌦ S

⌅̂) = 0, H
⌅
†
(I ⌦ S

⌅
†
) = 1

Nevertheless, this contradicts the fact that:

⌅̂ = argmax{. . . ,H⌅̂(I ⌦ S
⌅̂), . . . ,H⌅

†
(I ⌦ S

⌅
†
), . . .}

which proves that h(⇠) 2 ⌅̂.

Equation (3.47) follows directly from (3.46) and Proposition 3.1. Similarly, equation (3.48)

follows from the fact that the partition ⌅̂ is an infinity ball of radius � and hence for any

⇠̂ 2 ⌅̂:

kh(⇠)� h(⇠̂)k1 = kh(⇠) + center(⌅̂)� center(⌅̂)� h(⇠̂)k1

 kh(⇠)� center(⌅̂)k1 + kcenter(⌅̂)� h(⇠̂)k1  2�

Hence from the relation between the 2-norm and the infinity norm, we conclude that:

kh(⇠)� h(⇠̂)k 
p

4kh(⇠)� h(⇠̂)k1  4�

from which we conclude that:
k⇠ � ⇠̂k  4Lh�

which concludes the proof.
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Before we conclude this section, it is essential to interpret the assumptions (3.44) and (3.45)

in Theorem 3.1. In particular, the assumption in (3.44) entails that the noise In can not be

generated using the runway generative model NN r. In other words, this assumption ensures

that the noise does not look like a runway and hence only one image of the runway exists

in the scene. The assumption in (3.45) asks that the pixels that are � close to the runway

are not a↵ected by the noise. It is crucial to note that assumption (3.45) is required to be

satisfied in ⌅⇤ only and does not a↵ect other partitions.

3.4 Experimental Evaluation

We present the results of a vision-based aircraft landing system that uses a target runway. We

consider two runway segments, L = [(Lx, 0, Lz), (Lx, 0, Lz+rl)] andR = [(Rx, 0, Rz), (Rx, 0, Rz+

rl)] where Rx = 0.1, Lx = �0.1, Rz = 0, Lz = 0, rl = 0.3 (in meters).

To generate monochromatic images, we utilized the SilkyEvCam event-based camera with a

resolution of 640 ⇥ 480 pixels, a focal length of 8 mm, and a pixel size of 15 µm ⇥ 15 µm.

We measured the ground-truth states of the vehicle using Vicon motion capture cameras

to track optical markers attached to the camera envelope, and the centroid of the camera

was defined as the camera coordinate frame (CCF) origin. Similarly, we defined the runway

target as the runway coordinate frame (RCF) from which all measurements were made.

We partitioned the state space ⌅ ⇢ R4 into 27 regions ⌅1, . . . ,⌅27 using a partitioning

parameter � = 0.1. These regions correspond to the range of states [⇠y ⇥ ⇠z ⇥ ⇠✓] = [0.8, 1]⇥

[1.6, 1.8] ⇥ [0.5, 0.7] (we fix ⇠x = 0 in our experiments). We then implemented the runway

generative model neural network NN r for a resolution of 640⇥ 480 pixel images, the filter

NN f , and the corresponding application of the spatial S⌅i and geometric filters H⌅i on all

partitions to create the binary weights needed using PyTorch libraries.
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This process took approximately 20 minutes per partition, resulting in a total of approxi-

mately 9 hours to generate the neural network weights for all 27 partitions using an Apple

M1 Pro processor with 32 GB of RAM.

Next, the filter NN F was used to process images collected from the SilkyEvCam event-based

camera. We operated the camera for several minutes resulting in a total of 1320 images using

25 frames per second. Figure 3.7 and Figure 3.8 show two instances of the images collected

and processed during our experiments. As seen from the two figures, the scene contains one

runway and several objects, and noisy pixels. The neural network NN F is used to filter these

images and remove all objects except for the runway. Figure 3.7(right) and Figure 3.8(right)

show the outputs of the 4 di↵erent spatial filters S⌅i . As can be observed in the two figures,

the result of these filters focuses the attention on specific segments of the scene. Some of

these filtered images contain the runway (or segments of it) while others contain only parts

of the noise image In. Next, we execute the geometric filters H⌅i to identify the images that

match the geometric structure of the runways. We highlight the partition with the smallest

mismatch scoreM with a green box in Figure 3.7 and Figure 3.8. In particular, in Figure 3.7,

the output corresponding to partition 1 contains leads to the smallest mismatch score while

partition 24 corresponds to the one with the smallest mismatch score in Figure 3.8.

Finally, we used o↵-the-shelf algorithms to process the filtered image and produce the final

state estimate. For the test reported in Figure 3.7, the resulting state error is 0.0777 while

for the test reported in Figure 3.8 the resulting error is 0.045, both are below the threshold

of 4�Lh and hence no further processing is required.

Additionally, for comparison purposes, we applied an o↵-the-shelf standard Hough transformation-

based filter that can discover line segments in the scene with the aim to identify the

runway without our proposed filter. Figure 3.9 shows the output of the standard Hough

transformation-based filter when operated on the same input image used in Figure 3.7.
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Figure 3.7: Test 1: Framework application on image #1 delivers correct filtered runway (in
Green) found on Partition #1.

The dashed lines in Figure 3.9 correspond to the line segments that were detected by the

standard filter. As can be appreciated from Figure 3.9, the standard filter leads to several

false line detections that do not match the runway due to the noise and the other objects

in the scene. Fortunately, our proposed filter does not su↵er from such an issue and comes

with provable guarantees.
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Figure 3.8: Test 2: Framework application on image #2 delivers correct filtered runway (in
Green) found on Partition #24.

Figure 3.9: Filtering using only Hough filter without geometrical constraints.
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Part III

Repair of Faulty AI Models
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Chapter 4

Safe-by-Repair: A Convex

Optimization Approach for Repairing

Unsafe Two-Level Lattice Neural

Network Controllers

In this chapter, we consider the problem of repairing a data-trained Rectified Linear Unit

(ReLU) Neural Network (NN) controller for a discrete-time, input-a�ne system. That is

we assume that such a NN controller is available, and we seek to repair unsafe closed-loop

behavior at one known “counterexample” state while simultaneously preserving a notion of

safe closed-loop behavior on a separate, verified set of states. To this end, we further assume

that the NN controller has a Two-Level Lattice (TLL) architecture, and exhibit an algorithm

that can systematically and e�ciently repair such an network. Facilitated by this choice,

our approach uses the unique semantics of the TLL architecture to divide the repair problem

into two significantly decoupled sub-problems, one of which is concerned with repairing the

un-safe counterexample – and hence is essentially of local scope – and the other of which
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ensures that the repairs are realized in the output of the network – and hence is essentially

of global scope. We then show that one set of su�cient conditions for solving each these

sub-problems can be cast as a convex feasibility problem, and this allows us to formulate

the TLL repair problem as two separate, but significantly decoupled, convex optimization

problems. Finally, we evaluate our algorithm on a TLL controller on a simple dynamical

model of a four-wheel-car.

4.1 Introduction

The proliferation of Neural Networks (NNs) as safety-critical controllers has made obtaining

provably correct NN controllers vitally important. However, most current techniques for

doing so involve a repeatedly training and verifying a NN until adequate safety properties

have been achieved. Such methods are not only inherently computationally expensive (be-

cause training and verification of NNs are), their convergence properties can be extremely

poor. For example, when verifying multiple safety properties, such methods can cycle back

and forth between safety properties, with each subsequent retraining achieving one safety

property by undoing another one.

An alternative approach obtains safety-critical NN controllers by repairing an existing NN

controller. Specifically, it is assumed that an already-trained NN controller is available that

performs in a mostly correct fashion, albeit with some specific, known instances of incorrect

behavior. But rather than using retraining techniques, repair entails systematically altering

the parameters of the original controller in a limited way, so as to retain the original safe

behavior while simultaneously correcting the unsafe behavior. The objective of repair is to

exploit as much as possible the safety that was learned during the training of the original

NN parameters, rather than allowing re-training to unlearn safe behavior.
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Despite these advantages, the NN repair problem is challenging because it has two main

objectives, both of which are at odds with each other. In particular, repairing an unsafe

behavior requires altering the NN’s response in a local region of the state space, but changing

even a few neurons generally a↵ects the global response of the NN – which could undo the

initial safety guarantee supplied with the network. This tension is especially relevant for

general deep NNs, and repairs realized on neurons in their latter layers. This is especially

the case for repairing controllers, where the relationship between specific neurons and their

importance to the overall safety properties is di�cult to discern. As a result, there has been

limited success in studying NN controller repair, especially for nonlinear systems.

In this chapter, we exhibit an explicit algorithm that can repair a NN controller for a discrete-

time, input-a�ne nonlinear system. The cornerstone of our approach is to consider NN

controllers of a specific architecture: in particular, the recently proposed Two-Level Lattice

(TLL) NN architecture [13]. The TLL architecture has unique neuronal semantics, and those

semantics greatly facilitate finding a balance between the local and global trade-o↵s inherent

in NN repair. In particular, by assuming a TLL architecture, we can separate the problem of

controller repair into two significantly decoupled problems, one consisting of essentially only

local considerations and one consisting of essentially only global ones.

Related Work: Repairing (or patching) NNs can be traced to the late 2000s. An early

result on patching connected transfer learning and concept drift with patching [29]; another

result established fundamental requirements to apply classifier patching on NNs by using

inner layers to learn a patch for concept drift in an image classifier network [30]. Another

approach based on a Satisfiability Modulo Theory (SMT) formulation of the repair problem

was proposed by [37] where they changed the parameters of a classifier network to comply

with a safety specification, i.e. where the designer knows exactly the subset of the input

space to be classified. This prior work nonetheless is heuristic-based and so not guaranteed

to produced desired results, which was noticed by [18] who cast the problem of patching
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(minimal repair) as a verification problem for NNs (including Deep ones). However, this

work focused on a restricted version of the problem in which the changes in weights are

limited to a single layer. Finally, [8] proposed a verification-based approach for repairing

DNNs but not restricted to modifying the output; instead, proposed to identify and modify

the most relevant neurons that causes the safety violation using gradient guidance.

4.2 Preliminaries

4.2.1 Notation

We will denote the real numbers by R. For an (n⇥m) matrix (or vector), A, we will use the

notation JAKi,j to denote the element in the i
th row and j

th column of A. Analogously, the

notation JAKi,· will denote the ith row of A, and JAK·,j will denote the jth column of A; when

A is a vector instead of a matrix, both notations will return a scalar corresponding to the

corresponding element in the vector. Let 0n,m be an (n ⇥m) matrix of zeros. We will use

bold parenthesis 6 · 7 to delineate the arguments to a function that returns a function. We

use the functions First and Last to return the first and last elements of an ordered list (or

a vector in Rn). The function Concat concatenates two ordered lists, or two vectors in Rn

and Rm along their (common) nontrivial dimension to get a third vector in Rn+m. Finally,

B(x; �) denotes an open Euclidean ball centered at x with radius �. The norm k·k will refer

to the Euclidean norm.
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4.2.2 Dynamical Model

In this chapter, we will consider the general case of a discrete-time input-a�ne nonlinear

system ⌃ specified by:

⌃ :

⇢
xi+1 = f(xi) + g(xi)ui

(4.1)

where x 2 Rn is the state, u 2 Rm is the input. In addition, f : Rn
! Rn and g : Rn

! Rn

are continuous and smooth functions of x.

Definition 4.1 (Closed-loop Trajectory). Let u : Rn
! Rm. Then a closed-loop trajec-

tory of the system (4.1) under u, starting from state x0, will be denoted by the sequence

{⇣
x0
i
(u)}1

i=0
. That is ⇣x0

i+1
(u) = f(⇣x0

i
(u)) + g(⇣x0

i
(u)) · u(⇣x0

i
(u)) and ⇣x0

0
(u) = x0.

Definition 4.2 (Workspace). We will assume that trajectories of (4.1) are confined to a

connected, compact workspace, Xws with non-empty interior, of size ext(Xws) , sup
x2Xws

kxk.

4.2.3 Neural Networks

We will exclusively consider Rectified Linear Unit Neural Networks (ReLU NNs). A K-

layer ReLU NN is specified by composing K layer functions, each of which may be either

linear and nonlinear. A nonlinear layer with i inputs and o outputs is specified by a (o⇥ i)

real-valued matrix of weights, W , and a (o ⇥ 1) real-valued matrix of biases, b as follows:

L✓ : z 7! max{Wz + b, 0} with the max function taken element-wise, and ✓ , (W, b). A

linear layer is the same as a nonlinear layer, only it omits the nonlinearity max{·, 0}; such a

layer will be indicated with a superscript lin, e.g. Llin

✓
. Thus, a K-layer ReLU NN function

as above is specified by K layer functions {L
✓(i) : i = 1, . . . , K} that are composable: i.e.

they satisfy ii = oi�1 : i = 2, . . . , K.
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We will annotate a ReLU function NN by a list of its parameters ⇥ , (✓|1, . . . , ✓|K)1. The

number of layers and the dimensions of the matrices ✓|i = ( W |i
, b

|i ) specify the architecture

of the ReLU NN. Therefore, we will denote the architecture of the ReLU NN NN ⇥ by

Arch(⇥) , ((n, o1), (i2, o2), . . . , (iK ,m)).

4.2.4 Special NN Operations

Definition 4.3 (Sequential (Functional) Composition). Let NN ⇥1 and NN ⇥2 be two NNs

where Last(Arch(⇥1)) = (i, c) and First(Arch(⇥2)) = (c, o). Then the functional compo-

sition of NN ⇥1 and NN ⇥2, i.e. NN ⇥1 �NN ⇥2, is a well defined NN, and can be represented

by the parameter list ⇥1 �⇥2 , Concat(⇥1,⇥2).

Definition 4.4. Let NN ⇥1 and NN ⇥2 be two K-layer NNs with parameter lists:

⇥i = ((W |1
i
, b

|1
i
), . . . , (W |K

i
, b

|K
i
)), i = 1, 2. Then the parallel composition of NN ⇥1 and

NN ⇥2 is a NN given by the parameter list

⇥1 k ⇥2 ,
�✓

W
|1
1

W
|1
2

�
,


b
|1
1

b
|1
2

�◆
, ...,

✓
W

|K
1

W
|K
2

�
,


b
|K
1

b
|K
2

�◆�
. (4.2)

That is ⇥1k⇥2 accepts an input of the same size as (both) ⇥1 and ⇥2, but has as many

outputs as ⇥1 and ⇥2 combined.

Definition 4.5 (n-element min/max NNs). An n-element min network is denoted by the

parameter list ⇥minn. NN6⇥minn7 : Rn
! R such that NN6⇥minn7(x) is the minimum from

among the components of x (i.e. minimum according to the usual order relation < on R). An

n-element max network is denoted by ⇥maxn, and functions analogously. These networks

are described in [13].

1That is ⇥ is not the concatenation of the ✓(i) into a single large matrix, so it preserves information about
the sizes of the constituent ✓(i).
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4.2.5 Two-Level-Lattice (TLL) Neural Networks

In this chapter, we will be especially concerned with ReLU NNs that have the Two-Level

Lattice (TLL) architecture, as introduced with the AReN algorithm in [13]. Thus we define

a TLL NN as follows.

Definition 4.6 (TLL NN [13, Theorem 2]). A NN that maps Rn
! R is said to be TLL

NN of size (N,M) if the size of its parameter list ⌅N,M can be characterized entirely by

integers N and M as follows.

⌅N,M ,⇥maxM�
�
(⇥minN �⇥S1)k ...k(⇥minN �⇥SM)

�
�⇥` (4.3)

where

• ⇥` , ((W`, b`));

• each ⇥Sj has the form ⇥Sj =
�
Sj,0M,1

�
; and

• Sj = [ JIN K◆1,·
T

... JIN K◆N,·
T ]T for some sequence ◆k 2 {1, . . . , N}, where IN is the (N ⇥N)

identity matrix.

The matrices ⇥` will be referred to as the linear function matrices of ⌅N,M . The matrices

{Sj|j = 1, . . . ,M} will be referred to as the selector matrices of ⌅N,M . Each set sj ,

{k 2 {1, . . . , N}|9◆ 2 {1, . . . , N}.JSjK◆,k = 1} is said to be the selector set of Sj.

A multi-output TLL NN with range space Rm is defined using m equally sized scalar TLL

NNs. That is we denote such a network by ⌅(m)

N,M
, with each output component denoted by

⌅i

N,M
, i = 1, . . . ,m.
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4.3 Problem Formulation

The main problem we consider in this chapter is one of TLL NN repair. In brief, we take as a

starting point a TLL NN controller that is “mostly” correct in the sense that is provably safe

under a specific set of circumstances (states); here we assume that safety entails avoiding

a particular, fixed subset of the state space. However, we further suppose that this TLL

NN controller induces some additional, unsafe behavior of (4.1) that is explicitly observed,

such as from a more expansive application of a model checker; of course this unsafe behavior

necessarily occurs in states not covered by the original safety guarantee. The repair problem,

then, is to “repair” the given TLL controller so that this additional unsafe behavior is

made safe, while simultaneously preserving the original safety guarantees associated with

the network.

The basis for the problem in this chapter is thus a TLL NN controller that has been designed

(or trained) to control (4.1) in a safe way. In particular, we use the following definition to

fix our notion of “unsafe” behavior for (4.1).

Definition 4.7 (Unsafe Operation of (4.1)). Let Gu be an (Ku ⇥ n) real-valued matrix, and

let hu be an (Ku ⇥ 1) real vector, which together define a set of unsafe states Xunsafe ,

{x 2 Rn
|Gux � hu}.

Then, we mean that a TLL NN controller is safe with respect to (4.1) and Xunsafe in the

following sense.

Definition 4.8 (Safe TLL NN Controller). Let Xsafe ⇢ Rn be a set of states such that

Xsafe \Xunsafe = ;. Then a TLL NN controller u , NN6⌅(m)

N,M
7 : Rn

! Rm is safe for (4.1)

on horizon T (with respect to Xsafe and Xunsafe) if:

8x02Xsafe, i2{1, ..., T}.
�
⇣
x0
i
(NN6⌅(m)

N,M
7) 62Xunsafe

�
. (4.4)
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That is NN6⌅(m)

N,M
7 is safe (w.r.t. Xsafe) if all of its length-T trajectories starting in Xsafe

avoid the unsafe states Xunsafe.

The design of safe controllers in the sense of Definition 4.8 has been considered in a number

of contexts; see e.g. [43]. Often this design procedure involves training the NN using data

collected from an expert, and verifying the result using one of many available NN verifiers

[43].

However, as noted above, we further suppose that a given TLL NN which is safe in the sense

of Definition 4.8 nevertheless has some unsafe behavior for states that lie outside Xsafe. In

particular, we suppose that a model checker (for example) provides to us a counterexample

(or witness) to unsafe operation of (4.1).

Definition 4.9 (Counterexample to Safe Operation of (4.1)). Let Xsafe ⇢ Rn, and let u ,

NN6⌅(m)

N,M
7 be a TLL controller that is safe for (4.1) on horizon T w.r.t Xsafe and Xunsafe. A

counter example to the safe operation of (4.1) is a state xc.e. 62 Xsafe such that

f(xc.e.) + g(xc.e.) · u(xc.e.) = ⇣
xc.e.
1

(u) 2 Xunsafe. (4.5)

That is starting (4.1) in xc.e. results in an unsafe state in the next time step.

We can now state the main problem of this chapter.

Problem 4.1. Let dynamics (4.1) be given, and assume its trajectories are confined to

compact subset of states, Xws (see Definition 4.2). Also, let Xunsafe ⇢ Xws be a specified set

of unsafe states for (4.1), as in Definition 4.7. Furthermore, let u = NN6⌅(m)

N,M
7 be a TLL

NN controller for (4.1) that is safe on horizon T with respect to a set of states Xsafe ⇢ Xws

(see Definition 4.8), and let xc.e. be a counterexample to safety in the sense of Definition 4.9.
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Then the TLL repair problem is to obtain a new TLL controller u = NN6⌅(m)

N,M
7 with the

following properties:

(i) u is also safe on horizon T with respect to Xsafe;

(ii) the trajectory ⇣xc.e.
1

(u) is safe – i.e. the counterexample xc.e. is “repaired”;

(iii) ⌅
(m)

N,M
and ⌅(m)

N,M
share a common architecture (as implied by their identical architectural

parameters); and

(iv) the selector matrices of ⌅
(m)

N,M
and ⌅(m)

N,M
are identical – i.e. Sk = Sk for k = 1, . . . ,M ;

and

(v) kW ` �W`k2 + kb` � b`k2 is minimized.

In particular, iii), iv) and v) justify the designation of this problem as one of “repair”. That

is the repair problem is to fix the counterexample while keeping the network as close as

possible to the original network under consideration. Note: the formulation of Problem 4.1

only allows repair by means of altering the linear layers of ⌅(m)

N,M
; c.f. (iii) and (iv).

4.4 Framework

The TLL NN repair problem described in Problem 4.1 is challenging because it has two

main objectives, which are at odds with each other. In particular, repairing a counterex-

ample requires altering the NN’s response in a local region of the state space, but changing

even a few neurons generally a↵ects the global response of the NN – which could undo the

initial safety guarantee supplied with the network. This tension is especially relevant for

general deep NNs, and repairs realized on neurons in their latter layers. It is for this reason

that we posed Problem 4.1 in terms of TLL NNs: our approach will be to use the unique
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semantics of TLL NNs to balance the trade-o↵s between local NN alteration to repair

the defective controller and global NN alteration to ensure that the repaired

controller activates at the counterexample. Moreover, locally repairing the defective

controller at xc.e. entails a further trade o↵ between two competing objectives of its own:

actually repairing the counterexample – Problem 4.1(ii) – without causing a violation of the

original safety guarantee for Xsafe – i.e. Problem 4.1(i). Likewise, global alteration of the

TLL to ensure correct activation of our repairs will entail its own trade-o↵: the alterations

necessary to achieve the correct activation will also have to be made without sacrificing the

safety guarantee for Xsafe – i.e. Problem 4.1(i).

We devote the remainder of this section to two crucial subsections, one for each side of this

local/global dichotomy. Our goal in these two subsections is to describe constraints on

a TLL controller that are su�cient to ensure that it accomplishes the repair described in

Problem 4.1. Thus, the results in this section should be seen as optimization constraints

around which we can build our algorithm to solve Problem 4.1. The algorithmic details and

formalism are presented in Section 4.5.

4.4.1 Local TLL Repair

We first consider in isolation the problem of repairing the TLL controller in the vicinity of the

counterexample xc.e., but under the assumption that the altered controller will remain the

active there. The problem of actually guaranteeing that this is the case will be considered in

the subsequent section. Thus, we proceed with the repair by establishing constraints on

the alterations of those parameters in the TLL controller associated with the a�ne controller

instantiated at and around the state xc.e.. To be consistent with the literature, we will refer

to any individual a�ne function instantiated by a NN as one of its local linear functions.
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Definition 4.10 (Local Linear Function). Let f : Rn
! R be CPWA. Then a local linear

function of f is a linear function ` : Rn
! R if there exists an open set O such that

`(x) = f(x) for all x 2 O.

The unique semantics of TLL NNs makes them especially well suited to this local repair task

because in a TLL NN, its local linear functions appear directly as neuronal parameters. In

particular, all of the local linear functions of a TLL NN are described directly by parameters

in its linear layer; i.e. ⇥` = (W`, b`) for scalar TLL NNs or ⇥

`
= (W 

`
, b



`
) for the th output

of a multi-output TLL (see Definition 4.6). This follows as a corollary of the following

relatively straightforward proposition, borrowed from [15]:

Proposition 4.1 ([15, Proposition 3]). Let ⌅N,M be a scalar TLL NN with linear function

matrices ⇥` = (W`, b`). Then every local linear function of NN6⌅N,M7 is exactly equal to

`i : x 7! JW`x+ b`Ki,· for some i 2 {1, . . . , N}.

Similarly, let ⌅(m)

N,M
be a multi-output TLL, and let ` be any local linear function of NN6⌅(m)

N,M
7.

Then for each  2 {1, . . . ,m}, the th component of ` satisfies J`K,· = x 7! JW 

`
x + b



`
Ki,·

for some i 2 {1, . . . , N}.

Corollary 4.1. Let ⌅(m)

N,M
be a TLL over domain Rn, and let xc.e. 2 Rn. Then there exist

m integers actk 2 {1, . . . , N} for k = 1, . . . ,m and a closed, connected set with non-empty

interior, Ra ⇢ Rn such that

• xc.e. 2 Ra; and

• JNN6⌅(m)

N,M
7Kk = x 7! JW k

`
x+ b

kKactk on the set Ra.

Proof. It is straightforward to see that every point x in the domain of NN6⌅(m)

N,M
7 belongs to

the closure of some open set D, on which NN6⌅(m)

N,M
7 is a�ne (i.e. equal to one of its local

linear functions). For if this weren’t the case, then there would be an open subset of the
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domain of NN6⌅(m)

N,M
7, where it wasn’t a�ne, thus contradicting the CPWA property of a

ReLU NN.

Thus, let Dxc.e. be such an open set that includes xc.e. in its closure, and let ` : Rn
! Rm

be the local linear function of NN6⌅(m)

N,M
7 on Dxc.e. . We can further assume that Dxc.e. is

connected without loss of generality, so set Ra = Dxc.e. .

By Proposition 4.1, there exists indices {act}m=1
such that

J`Kact = x 7! JW 

`
x+ b



`
Kact . (4.6)

But by the definition of ` and the above, we also have that

8x 2 Dc.e. . JW 

`
x+ b



`
Kact = JNN6⌅(m)

N,M
7(x)Kact . (4.7)

Thus, the conclusion of the corollary holds on Dxc.e. ; it holds on Ra = Dxc.e. by continuity of

NN6⌅(m)

N,M
7.

Corollary 4.1 is actually a strong statement: it indicates that in a TLL, each local linear func-

tion is described directly by its own linear-function-layer parameters and those parameters

describe only that local linear function.

Thus, as a consequence of Corollary 4.1, “repairing” the problematic local controller (local

linear function) of the TLL controller in Problem 4.1 involves the following steps:

1. identify which of the local linear functions is realized by the TLL controller at xc.e.

– i.e. identifying the indices of the active local linear function at xc.e. viz. indices

act 2 {1, . . . , N} for each output  as in Corollary 4.1;

2. establish constraints on the parameters of that local linear function so as to ensure re-
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pair of the counterexample; i.e. altering the elements of the rows JW 

`
Kact,· and Jb

`
Kact

for each output  such that the resulting linear controller repairs the counterexample

as in Problem 4.1(ii); and

3. establish constraints to ensure the repaired parameters do not induce a violation of the

safety constraint for the guaranteed set of safe states, Xsafe, as in Problem 4.1(i).

We consider these three steps in sequence as follows.

1) Identifying the Active Controller at xc.e.: From Corollary 4.1, all of the possible linear

controllers that a TLL controller realizes are exposed directly in the parameters of its linear

layer matrices, ⇥

`
. Crucially for the repair problem, once the active controller at xc.e. has

been identified, the TLL parameters responsible for that controller immediately evident.

This is the starting point for our repair process.

Since a TLL consists of two levels of lattice operations, it is straightforward to identify which

of these a�ne functions is in fact active at xc.e.; for a given output, , this is can be done

by evaluating W


`
xc.e. + b



`
and comparing the components thereof according to the selector

sets associated with the TLL controller. That is the index of the active controller for output

, denoted by act, is determined by the following two expressions:

µ


k
, argmin

i2S
k

JW 

`
xc.e. + b



`
Ki (4.8)

act , arg max
j2{µ

k |k=1,...,M}
JW 

`
xc.e. + b



`
Kj (4.9)

These expressions mirror the computations that define a TLL network, as described in Def-

inition 4.6; the only di↵erence is that max and min are replaced by arg max and arg min,

respectively, so as to retrieve the index of interest instead of the network’s output.

2) Repairing the A�ne Controller at xc.e.: Given the result of Corollary 4.1, the parameters

of the network that result in a problematic controller at xc.e. are readily apparent. Moreover,
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since these parameters are obviously in the linear layer of the original TLL, they are alterable

under the requirement in Problem 4.1 that only linear-layer parameters are permitted to be

used for repair. Thus, in the current context, local repair entails simply correcting the

elements of the matrices JW k

`
Kactk and Jbk

`
Kactk . It is thus clear that a “repaired” controller

should satisfy

f(xc.e.) + g(xc.e.)

" JW 1
` xc.e.+b

1
` Kact1

...
JWm

` xc.e.+b
m
` Kactm

#
62 Xunsafe. (4.10)

Then (4.10) represents a linear constraint in the local controller to be repaired, and this

constraint imposes the repair property in Problem 4.1(ii). That is provided that the repaired

controller described by {act} remains active at the counterexample; as noted, we consider

this problem in the global stasis condition subsequently.

3) Preserving the Initial Safety Condition with the Repaired Controller: One unique aspect

of the TLL NN architecture is that a�ne functions defined in its linear layer can be reused

across regions of its input space. In particular, the controller associated with the parameters

we repaired in the previous step – i.e. the indices {act} of the linear layer matrices –

may likewise be activated in or around Xsafe. The fact that we altered these controller

parameters thus means that trajectories emanating from Xsafe may be a↵ected in turn by

our repair e↵orts: that is the repairs we made to the controller to address Problem 4.1(ii)

may simultaneously alter the TLL in a way that undoes the requirement in Problem 4.1(i) –

i.e. the initial safety guarantee on Xsafe and NN6⌅(m)

N,M
7. Thus, local repair of the problematic

controller must account for this safety property, too.

We accomplish this by bounding the reach set of (4.1) for initial conditions in Xsafe, and for

this we employ the usual strategy of bounding the relevant Lipschitz constants.
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Naturally, since the TLL controller is a CPWA controller operated in closed loop, these

bounds will also incorporate the size of the TLL controller parameters kJW 

`
Kik and kJb` Kik

for  2 {1, . . . ,m} and i 2 {1, . . . , N}.

In general, however, we have the following proposition.

Proposition 4.2. Consider system dynamics (4.1), and suppose that the state x is confined

to known compact workspace, Xws (see Definition 4.2). Also, let T be the integer time horizon

from Definition 4.8. Finally, assume that a closed-loop CPWA  : Rn
! Rm is applied to

(4.1), and that  has local linear functions L = {x 7! wkx+ bk|k = 1, . . . , N}.

Moreover, define the function � as

�(kwk, kbk) , sup
x02Xsafe

⇣
kf(x0)� x0k+

kg(x0)k · kwk · ext(Xws) + kg(x0)k · kbk
⌘

(4.11)

and in turn define

�max( ) , �
�

max
w2{wk|k=1,...,N}

kwk, max
b2{bk|k=1,...,N}

kbk
�
. (4.12)

Finally, define the function L as in (4.11), and in turn define

Lmax( ) , L
�

max
w2{wk|k=1,...,N}

kwk, max
b2{bk|k=1,...,N}

kbk
�
. (4.2)

L(kwk, kbk) , Lf + Lg · sup
x02Xsafe

kwk · kx0k+ sup
x02Xsafe

kwk · kg(x0)k+ Lg · kbk (4.11)
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Then for all x0 2 Xsafe, i 2 {1, . . . , T}, we have:

k⇣
x0
T
( )� x0k �max( ) ·

TX

k=0

Lmax( )
k
. (4.3)

Lemma 4.1. Let F : x 7! g(x) · u(x) for Lipschitz continuous functions g : Rn
! R(n·m)

(with output an (n ⇥m) real-valued matrix) and u : Rn
! Rm with Lipschitz constants Lg

and Lu, respectively.

Then on compact subset X ⇢ Rn, F is Lipschitz continuous with Lipschitz constant LF =

Lg · supx2Xku(x)k+ Lu · supx2Xkg(x)k.

Proof. This follows by straightforward manipulations as follows.

Let x, x0
2 X and note that:

kg(x)u(x)� g(x0)u(x0)k

= kg(x)u(x) + (�g(x0) + g(x0))u(x)� g(x0)u(x0)k

= k(g(x)� g(x0))u(x) + g(x0)(u(x)� u(x0))k

 kg(x)� g(x0)k · ku(x)k+ ku(x)� u(x0)k · kg(x0)k


�
Lg · ku(x)k+ Lu · kg(x

0)k
�
· kx� x

0
k


�
Lg · sup

x2X
ku(x)k+ Lu · sup

x02X
kg(x0)k

�
· kx� x

0
k.

Proof. (Proposition 4.2) We will expand and bound the quantity on the left-hand side of the

conclusion, (4.3).

k⇣
x0
T
( )� x0k

= k⇣x0
T
( )� ⇣x0

T�1
( ) + ⇣

x0
T�1

( )� x0k

 k⇣
x0
T
( )� ⇣x0

T�1
( )k+ k⇣x0

T�1
( )� x0k (4.4)

72



We then bound the first term as follows:

k⇣
x0
T
( )� ⇣x0

T�1
( )k

 kf(⇣x0
T�1

( ))� f(⇣x0
T�2

( ))k

+
���g(⇣x0

T�1
( )) ·

⇥
w(⇣x0

T�1
( )) · ⇣x0

T�1
( ) + b(⇣x0

T�1
( ))

⇤

� g(⇣x0
T�2

( )) ·
⇥
w(⇣x0

T�2
( )) · ⇣x0

T�2
( ) + b(⇣x0

T�2
( ))

⇤ ��� (4.5)

where the functions w : Rn
! Rn and b : Rn

! R return a (unique) choice of the linear

(weights) and a�ne (bias) of the local linear function of  that is active at their argument.

Now, we collect the w(·) and b(·) terms in right-hand side of (4.5). That is:

k⇣
x0
T
( )� ⇣x0

T�1
( )k

 kf(⇣x0
T�1

( ))� f(⇣x0
T�2

( ))k

+
���g(⇣x0

T�1
( ))w(⇣x0

T�1
( ))⇣x0

T�1
( )

� g(⇣x0
T�2

( )w(⇣x0
T�2

( ))⇣x0
T�2

( )
��

+
���g(⇣x0

T�1
( ))b(⇣x0

T�1
( ))� g(⇣x0

T�2
( )b(⇣x0

T�2
( ))

��

The first term in the above can be directly bounded using the Lipschitz constant of f .

Also, since there are only finitely many local linear function of  , b(·) takes one of finitely

many values across the entire state space, and we may bound the associated term using this

observation. Finally, we can Lemma 4.1 to the second term, noting that the linear function

defined by w(·) has Lipschitz constant kw(·)k and there are only finitely many possible values
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for this quantity (one for each local linear function). This yields the following bound:

k⇣
x0
T
( )� ⇣x0

T�1
( )k

 Lf · k⇣
x0
T�1

( )� ⇣x0
T�2

( )k

+
�
Lg · sup

x2Xws

kw(x) · xk+max
k

kwkk sup
x2Xws

kg(x)k
�

· k⇣
x0
T�1

( )� ⇣x0
T�2

( )k

+max
k

kbkk · Lg · k⇣
x0
T�1

( )� ⇣x0
T�2

( )k

If we simplify, then we see that we have

k⇣
x0
T
( ) � ⇣x0

T�1
( )k  Lmax( ) · k⇣

x0
T�1

( ) � ⇣x0
T�2

( )k (4.6)

with Lmax( ) as defined in the statement of the Proposition.

Now, we expand the final term of (4.4) as

k⇣
x0
T�1

( ) � x0k  k⇣
x0
T�1

( ) � ⇣x0
T�2

( )k + k⇣x0
T�2

( ) � x0k (4.7)

so that (4.4) can be rewritten as:

k⇣
x0
T
( )� x0k  (Lmax( ) + 1) · k⇣x0

T�1
( )� ⇣x0

T�2
( )k+ k⇣x0

T�2
( )� x0k. (4.8)

But now we can proceed inductively, applying the bound (4.6) mutatis mutandis to the

expression k⇣x0
T�1

( )� ⇣x0
T�2

( )k in (4.8). This induction can proceed until the factor to be

expanded using (4.6) has the form k⇣x0
T�(T�1)

( )� ⇣x0
T�(T )

( )k, which will yield the bound:

k⇣
x0
T
( )� x0k  k⇣

x0
1
( )� x0k ·

TX

k=0

Lmax( )
k
. (4.9)
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Thus it remains to bound the quantity k⇣x0
1
( )� x0k. We proceed to do this in a relatively

straightforward way:

k⇣
x0
1
( )� x0k

= kf(x0) + g(x0) [w(x0)x0 + b(x0)]� x0k

 kf(x0)� x0k+ kg(x0)k · kw(x0)k · kx0k

+ kg(x0)k · kb(x0)k. (4.10)

Finally, since we’re interested in bounding the original quantity, k⇣x0
T
( ) � x0k, over all

x0 2 Xsafe, we can upper-bound the above by taking a supremum over all x0 2 Xsafe. Thus,

sup
x2Xsafe

k⇣
x0
T
( ) � x0k  sup

x2Xsafe

k⇣
x0
1
( ) � x0k ·

TX

k=0

Lmax( )
k (4.11)

where the sup on the right-hand side does not interact with the summation, since Lmax( )

is constant with respect to x0. The final conclusion is obtained by observing that

sup
x2Xsafe

k⇣
x0
1
( )� x0k  �max( ) (4.12)

with �max( ) as defined in the statement of the proposition.

Proposition 4.2 bounds the size of the reach set for (4.1) in terms of an arbitrary CPWA

controller,  , when the system is started from Xsafe. This proposition is naturally applied

in order to find bounds for safety with respect to the unsafe region Xunsafe as follows.

Proposition 4.3. Let T , Xws,  and L be as in Proposition 4.2, and let �max and Lmax be

two constants s.t. for all �x 2 Rn

k�xk  �max ·

TX

k=0

Lmax
k =) 8x0 2 Xsafe.

�
x0 + �x 62 Xunsafe

�
(4.13)
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If �max( )  �max and Lmax( )  Lmax, then trajectories of (4.1) under closed loop controller

 are safe in the sense that

8x0 2 Xsafe8i 2 {1, . . . , T} . ⇣
x0
t ( ) 62 Xunsafe. (4.14)

Proof. This is more or less a straightforward application of Proposition 4.2.

Indeed, by Proposition 4.2 and the assumption of this proposition, we conclude that

k⇣
x0
T
( )� x0k  �max( ) ·

TX

k=0

Lmax( )
k

 �max ·

TX

k=0

Lmax

k
.

Hence, �x = ⇣
x0
T
( )� x0 triggers the implication in (4.13), and we conclude that

8x0 2 Xsafe . x0 + �x = ⇣
x0
T
( ) 62 Xunsafe (4.15)

as required.

In particular, Proposition 4.3 states that if we find constants �max and Lmax that satisfy

(4.13), then we have a way to bound the parameters of any CPWA controller (via � and

L) so that that controller is safe in closed loop. This translates to conditions that our

repaired controller must satisfy in order to preserve the safety property required in Problem

4.1(i). Formally, this entails particularizing Proposition 4.2 and 4.3 to the TLL controllers

associated with the repair problem.

Corollary 4.2. Again consider system (4.1) confined to workspace Xws as before. Also, let

�max and Lmax be such that they satisfy the assumptions of Proposition 4.3, viz. (4.13).

Now, let ⌅(m)

N,M
be the TLL controller as given in Problem 4.1, and let ⇥

`
= (W 

`
, b



`
) be
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its linear layer matrices for outputs  = 1, . . . ,m as usual. For this controller, define the

following two quantities:

⌦W , max
w2[m

=1{JW
` Kj |j=1,...,N}

kwk (4.16)

⌦b , max
b2[m

=1{Jb` Kj |j=1,...,N}
kbk (4.17)

so that �max(⌅
(m)

N,M
) = �(⌦W ,⌦b) and Lmax(⌅

(m)

N,M
) = L(⌦W ,⌦b). Finally, let indices {act}m=1

specify the active local linear functions of ⌅(m)

N,M
that are to be repaired, as described in Subsec-

tion 4.4.1.1 and 4.4.1.2. Let w

act and b


act be any repaired values of JW 

`
Kact,· and Jb

`
Kact,

respectively.

If the following four conditions are satisfied

�(kw

actk, kb


actk)  �max (4.18)

�max(⌅
(m)

N,M
)  �max (4.19)

L(kw

actk, kb


actk)  Lmax (4.20)

Lmax(⌅
(m)

N,M
)  Lmax (4.21)

then the following hold for all x0 2 Xsafe:

k⇣
x0
T
(⌅(m)

N,M
)� x0k �max ·

TX

k=0

Lmax
k (4.22)

and hence

8i 2 {1, . . . , T} . ⇣
x0
i
(⌅(m)

N,M
) 62 Xunsafe. (4.23)
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Proof. Corollary 4.2 is simply a particularization of Proposition 4.3 to the repaired TLL

network, ⌅(m)

N,M
. It is only necessary to note that we have separate conditions to ensure that

conclusion of Proposition 4.3 applied both to the original TLL network (i.e. (4.19) and

(4.21)), as well as the repaired TLL parameters (i.e. (4.18) and (4.20)).

The conclusion (4.22) of Corollary 4.2 should be interpreted as follows: the bound on the

reach set of the repaired controller, ⌅(m)

N,M
, is no worse than the bound on the reach set of

the original TLL controller given in Problem 4.1. Hence, by the assumptions borrowed from

Proposition 4.3, conclusion (4.23) of Corollary 4.2 indicates that the repaired controller

⌅(m)

N,M
remains safe in the sense of Problem 4.1(i) – i.e. closed-loop trajectories emanating

from Xsafe remain safe on horizon T . For the subsequent development of our algorithm,

(4.18) and (4.20) will play the crucial role of ensuring that the repaired controller respects

the guarantee of Problem 4.1(i).

4.4.2 Global TLL Alteration for Repaired Controller Activation

In the context of local repair, we identified the local linear function instantiated by the TLL

controller, and repaired the parameters associated with that particular function – i.e. the

repairs were a↵ected on a particular, indexed row of W 

`
and b



`
. We then proceeded under

the assumption that the a�ne function at that index would remain active in the output of

the TLL network at the counterexample, even after altering its parameters. Unfortunately,

this is not case in a TLL network per se, since the value of each local linear function at

a point interacts with the selector matrices (see Definition 4.6) to determine whether it is

active or not. In other words, changing the parameters of a particular indexed local linear

function in a TLL will change its output value at any given point (in general), and hence

also the region on which said indexed local linear function is active.
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Analogous to the local alteration consider before, we thus need to devise global constraints

su�cient to enforce the activation of the repaired controller at xc.e..

This observation is manifest in the computation structure that defines a TLL NN: a particular

a�ne function is active in the output of the TLL if and only if it is active in the output

of one of the min networks (see Definition 4.6), and the output of that same min network

exceeds the output of all others, thereby being active at the output of the final max network

(again, see Definition 4.6). Thus, ensuring that a particular, indexed local linear function is

active at the output of a TLL entails ensuring that that function

(a) appears at the output of one of the min networks; and

(b) appears at the output of the max network, by exceeding the outputs of all the other

min networks.

Notably, this sequence also suggests a mechanism for meeting the task at hand: ensuring

that the repaired controller remains active at the counter example.

Formally, we have the following proposition.

Proposition 4.4. Let ⌅(m)

N,M
be a TLL NN over Rn with output-component linear function

matrices ⇥

`
= (W 

`
, b



`
) as usual, and let xc.e. 2 Rn.

Then the index act 2 {1, . . . , N} denote the local linear function that is active at xc.e. for

output , as described in Corollary 4.1, if and only if there exists index sel 2 {1, . . . ,M}

such that

(i) for all i 2 S


sel and any x 2 Ra,

JW 

`
x+ b



`
Kact,·  JW 

`
x+ b



`
Ki,· (4.24)
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i.e. the active local linear function “survives” the min network associated with selector

set S

sel; and

(ii) for all j 2 {1, . . . ,M}\{sel} there exists an index ◆
j
2 {1, . . . , N} s.t. for all x 2 Ra

JW 

`
x+ b



`
K◆j ,·  JW 

`
x+ b



`
Kact,· (4.25)

i.e. the active local linear function “survives” the max network of output  by exceeding

the output of all of the other min networks.

This proposition follows calculations similar to those mentioned before.

Proof. The “if” portion of this proof is suggested by the computations in Section 4.4.4.1, so

we focus on the “only if” portion.

Thus, let {act}m=1
2 {1, . . . , N}

m be a set of indices, and assume that there exists an index

{sel}m=1
2 {1, . . . ,M}

m for which the “only if” assumptions of the proposition are satisfied.

We will show that the local linear function with indices {act}m=1
is in fact active on Ra.

This will follow more or less directly by simply carrying out the computations of the TLL

NN on Ra. In particular, by condition (i), we have that NN6⇥minN� ⇥S

sel
� ⇥

`
7 = x 7!

JW 

`
x + b



`
Kact for all x 2 Ra,  = 1, . . . ,m. Then, by condition (ii) we have that for all

j 2 {1, . . . ,M}\{sel} and x 2 Ra

NN6⇥minN�⇥S

sel
�⇥

`
7(x)  NN6⇥minN�⇥S


sel
�⇥

`
7(x). (4.26)

The conclusion thus follows immediately from (4.26) and the fact that the min groups for

the input to the final layer of the output’s TLL, ⇥maxM .
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The “only if” portion of Proposition 4.4 thus directly suggests constraints to impose such

that the desired local linear function act is active on its respective output. In particular,

among the non-active local linear functions at xc.e., at least one must be altered from

each of the selector sets sj : j 2 {1, . . . ,M}\{sel}. The fact that these alterations must

be made to local linear functions which are not active at the counterexample warrants the

description of this procedure as “global alteration”.

Finally, however, we note that altering these un-repaired local linear functions – i.e. those

not indexed by act – may create the same issue described in Section 4.3. Thus, for any of

these global alterations additional safety constraints like (4.18) and (4.20) must be imposed

on the altered parameters.

4.5 Main Algorithm

Problem 4.1 permits the alteration of linear-layer parameters in the original TLL controller

to perform repair. In Section 4.4, we developed constraints on these parameters to perform

• first, local alteration to ensure repair of the defective controller at xc.e.; and

• subsequently, global alteration to ensure that the repaired local controller is activated

at and around xc.e..

The derivations of both sets of constraints implies that they are merely su�cient conditions

for their respective purposes, so there is no guarantee that any subset of them are jointly

feasible. Moreover, as a “repair” problem, any repairs conducted must involve minimal

alteration – Problem 4.1(v).

Thus, the core of our algorithm is to employ a convex solver to find the minimally altered

TLL parameters that also satisfy the local and global constraints we have outlined for suc-
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cessful repair with respect to the other aspects of Problem 4.1. The fact that the local repair

constraints are prerequisite to the global activation constraints means that we will employ

a convex solver on two optimization problems in sequence: first, to determine the feasibility

of local repair and e↵ectuate that repair in a minimal way; and then subsequently to deter-

mine the feasibility of activating said repaired controller as required and e↵ectuating that

activation in a minimal way.

4.5.1 Optimization Problem for Local Alteration (Repair)

Local alteration for repair starts by identifying the active controller at the counterexample,

as denoted by the index act for each output of the controller, . The local controller for

each output is thus the starting point for repair in our algorithm, as described in the prequel.

From this knowledge, an explicit constraint su�cient to repair the local controller at xc.e. is

specified directly by the dynamics: see (4.10).

Our formulation of a safety constraint for the locally repaired controller requires additional

input, though. In particular, we need to identify constants �max and Lmax such that the

non-local controllers satisfy (4.19) and (4.21). Then Corollary 4.2 implies that (4.18) and

(4.20) are constraints that ensure the repaired controller satisfies Problem 4.1(i). For this

we take the naive approach of setting �max = �(⌅(m)

N,M
), and then solving for the smallest

Lmax that ensures safety for that particular �max. In particular, we set

Lmax= inf{L0
> 0 | �max ·

TX

k=0

L
0k = inf

xs2Xsafe
xu2Xunsafe

kxs � xuk}. (4.27)
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Given this information the local repair optimization problem can be formulated for a multi-

output TLL as:

Local : min
w
act

,bact

mX

=1

kJW 

`
Kact� w



act
k+kJb

`
Kact� b



act
k

s.t. f(xc.e.) + g(xc.e.)

2

4
w

1
act1

xc.e.+b
1
act1

...
w

m
actm

xc.e.+b
m
actm

3

5 62 Xunsafe

8 = 1, . . . ,m . L(kw

act
k, kb



act
k)  Lmax

8 = 1, . . . ,m . �(kw

act
k, kb



act
k)  �max

8 = 1, . . . ,m . L(⌅(m)

N,M
)  Lmax

Note: the final collection of constraints on L(⌅(m)

N,M
) is necessary to ensure that (4.21) is

satisfied and Corollary 4.2 is applicable (equation (4.19) is satisfied by definition of �max).

4.5.2 Optimization Problem for Global Alteration (Activation)

If the optimization problem Local is feasible, then the local controller at xc.e. can successfully

be repaired, and the global activation of said controller can be considered. Since we are

starting with a local linear function we want to be active at and around xc.e., we can retain

the definition of act from the initialization of Local. Moreover, since Problem 4.1 preserves

the selector matrices of the original TLL controller, we will define the selector indices, sel,

in terms of the activation pattern of the original, defective local linear controller (although

this is not required by the repair choices we have made: other choices are possible).

Thus, in order to formulate an optimization problem for global alteration, we need to de-

fine constraints compatible with Proposition 4.4 based on the activation/selector indices

described above. Part (i) of the conditions in Proposition 4.4 is unambiguous at this point:

it says that the desired active local linear function, act, must have the minimum output
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from among those functions selected by selector set ssel . Part (ii) of the conditions in Propo-

sition 4.4 is ambiguous however: we only need to specify one local linear function from each

of the other min groups to be “forced” lower than the desired active local linear function. In

the face of this ambiguity, we select these functions using indices ◆
j
: j 2 {1, . . . ,M}\{act}

that are defined as follows:

◆


j
, argmin

i2sj
JW 

`
xc.e. + b



`
Ki. (4.28)

That is we form our global alteration constraint out of the non-active controllers which

are have the lowest outputs among their respective min groups. We reason that these local

linear functions will in some sense require the least alteration in order to satisfy Part (ii) of

Proposition 4.4, which requires their outputs to be less than the local linear function that

we have just repaired. Thus, we can formulate the global alteration optimization problem

as follows:

Global : min
W

` ,b`

mX

=1

kW


`
�W `k+kb



`
� b`k

s.t. 8 = {1, . . . ,m} . JW 

`
Kact,· = w



act

8 = {1, . . . ,m} . Jb
`
Kact,· = b



act

8 = {1, . . . ,m} 8i 2 ssel . w


act
xc.e. + b



act

 JW 

`
xc.e. + b



`
Ki

8 = {1, . . . ,m}

8j 2 {1, . . . ,M}\{sel} . JW 

`
xc.e. + b



`
K◆j

 w


act
xc.e. + b



act

where of course w


act
and b



act
are the repaired local controller parameters obtained from

the optimal solution of Local. Note that the first two sets of equality constraints merely

ensure that Global does not alter these parameters.
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4.5.3 Main Algorithm

A pseudo-code description of our main algorithm is shown in Algorithm 2, as repairTLL.

It collects all of the initializations from Section 4.4, Subsection 4.5.1 and Subsection 4.5.2.

Only the functions FindActCntrl and FindActSlctr encapsulate procedures defined in this

paper; their implementation is nevertheless adequately described in Subsection 4.4.1.1 and

Proposition 4.4, respectively. The correctness of repairTLL follows from the results in those

sections.

4.6 Numerical Examples

We illustrate the results in this chapter on a four-wheel car described by the following model:

x(t+ 1) =

2

66664

x1(t) + V cos(x3(t)) · ts

x2(t) + V sin(x3(t)) · ts

x3(t)

3

77775
+

2

66664

0

0

ts

3

77775
v(t) (4.29)

where the state x(t) = [px(t) py(t)  (t)]T for vehicle position (px py) and yaw angle  ,

and the control input v is the vehicle yaw rate. The parameters are the translational speed

of the vehicle, V (meters/sec); and the sampling period, ts (sec). For the purposes of our

experiments, we consider a compact workspace Xws = [�3, 3] ⇥ [�4, 4] ⇥ [�⇡, ⇡]; a safe set

of states Xsafe = [�0.25, 0.25]⇥ [�0.75,�0.25]⇥ [�⇡

8
,
⇡

8
], which was verified using NNV [43]

over 100 iterations; and an unsafe region Xunsafe specified by [0 1 0] ·x > 3. Furthermore, we

consider model parameters: V = 0.3 m/s and ts = 0.01 seconds.

All experiments were executed on an Intel Core i5 2.5-GHz processor with 8 GB of memory.

We collected 1850 data points of state-action pairs from a PI Controller used to steer the car
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over Xws while avoiding Xunsafe. Then, to exhibit a NN controller with a counterexample, a

TLL NN with N = 50 and M = 10 was trained from a corrupted version of this data-set:

we manually changed the control on 25 data points close to Xunsafe so that the car would

steer into it. We simulated the trajectories of the car using this TLL NN controller for

di↵erent x0 and identified xc.e. = [0 2.999 0.2] as a valid counterexample for safety after

two time steps. Finally, to repair this faulty NN, we found all the required bounds for both

system dynamics and NN parameters and a horizon of T = 7. We found the required safety

constraints �max = 0.0865 and Lmax = 1.4243. Then, from xc.e. we obtained the controller

K = [Kw Kb] where Kw = [�0.1442, �0.5424, �0.425] and Kb = [2.223].

Next, we ran our algorithm to repair the counterexample using CVX (convex solver). The

result of the first optimization problem, Local, was the linear controller: K̄w = [�0.0027 �

0.0487 � 0.0105] and K̄b = [�9.7845]; this optimization required a total execution time

of 1.89 sec. The result of the second optimization problem, Global successfully activated

the repaired controller, and had an optimal cost of 8.97; this optimization required a total

execution time of 6.53 sec. We also compare the original TLL Norms ||W || = 6.54 and

||b|| = 5.6876 with the repaired: ||W || = 11.029 and ||b|| = 5.687.

Finally, we simulated the motion of the car using the repaired TLL NN controller for 50

steps. Shown in Fig. 1 are the state trajectories of both original faulty TLL controller and

repaired TLL Controller starting from the xc.e. In the latter the TLL controller met the

safety specifications.
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Figure 4.1: System starting from xc.e. goes directly into Xunsafe and Repaired xc.e. produces
a safe trajectory. Red area is Xunsafe, Red Cross is xc.e. and Black Cross shows state after 2
steps.

Figure 4.2: Initial Safe set before and after repair for 20 steps. Red area is Xunsafe; Red Cross
is xc.e.; Xws = [�3, 3]⇥ [�4, 4]
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input : f, g system dynamics (4.1)
Xws workspace set
⌅(m)

N,M
TLL controller to repair

T safety time horizon
Xsafe set of safe states under ⌅(m)

N,M

xc.e. counterexample state
output: ⌅(m)

N,M
repaired TLL controller

1 function repairTLL(f, g,Xws,⌅
(m)

N,M
,T ,Xsafe,xc.e.)

2 gMaxSafe  sup
x02Xsafe

kg(x0)k
3 beta (w,b) := sup

x02Xsafe
kf(x0)� x0k

4 + gMaxSafe * w * ext(Xws) + gMaxSafe * b
5 L (w,b) := Lf + Lg * w * sup

x02Xsafe
kx0k

6 + w * gMaxSafe + Lg * b
7 ⌦W  maxw2[m

=1{JW
` Kj |j=1,...,N}kwk

8 ⌦b  maxb2[m
=1{Jb` Kj |j=1,...,N}kbk

9 betaMax  beta( ⌦W , ⌦b)
10 dSafe  inf xs2Xsafe

xu2Xunsafe

kxs � xuk

11 Lmax  inf
�
L
0
| betaMax *

P
T

k=0
L
0k =dSafe

 

12 {act}m=1
 FindActCntrl(⌅(m)

N,M
, xc.e.)

13 {sel}m=1
 FindActSlctr(⌅(m)

N,M
, xc.e.)

14 Initialize(Local,{f, g,⌅(m)

N,M
, xc.e.,L,Lmax, beta,betaMax,{act}m=1

, Xunsafe})

15 sol  Solve(Local )
16 if not sol.feasible() then
17 return False
18 else
19 {(w

, b)}m
=1
 sol.optimalValue()

20 end

21 for  in 1, . . . ,m do
22 for j in {1, . . . ,M}\{sel} do
23 ◆



j
 argmini2sjkJW 

`
xc.e. + b



`
Kik

24 end
25 end

26 Initialize(Global,{f, g,⌅(m)

N,M
, xc.e.,L,Lmax,

beta,betaMax,{act}m=1
, {◆



j
},j, {(w

, b)}})
27 sol  Solve(Global )
28 if not sol.feasible() then
29 return False
30 else
31 {(W

,B)}m
=1
 sol.optimalValue()

32 end

33 return ⌅(m)

N,M
.setLinLayer({(W

,B)}m
=1

)

34 end

Algorithm 2: repairTLL.
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