Fundamentals of Gear Repair Vibration Institute Raleigh, NC

Art Nelson, P.E. February 19, 2010

Repairing a gear built in the early 20th Century

Today's gear units are not that easy to repair and not all gear boxes we receive are in very good condition. Sometimes we find some big surprises:

Plastic imbedded in gear teeth and bearings

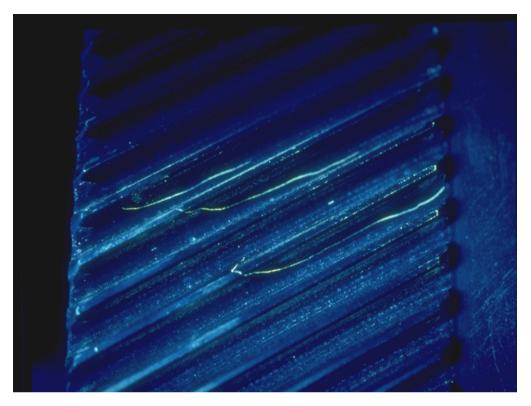
Remnants of Gearbox after Rocks used as Lubricant

Gear Repair Process

- Receipt of unit and clear expectations of the desired repair
- Disassemble unit and clean parts
- Inspection and evaluation
- Gear engineering overview as required
- Work order creation including QA requirements
- Manufacture necessary parts
- Assemble & test
- Prepare for shipment
- Documentation Compilation

Inspection and Evaluation

Some failures are pretty obvious

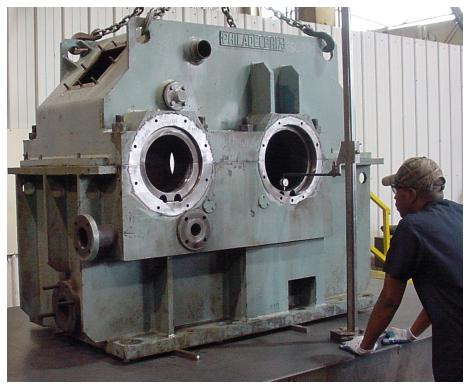


Inspections

- Visual tooth inspection
- Magnetic particle inspection
- "Dimensional" and "Run-out" checks on rotating elements
- Housing bore diameter and parallelism check
- Tooth profile, lead, pitch and spacing measurements if required

Magnetic Particle Inspection

• Parts coated with fluorescent particles are magnetized and viewed under black light.

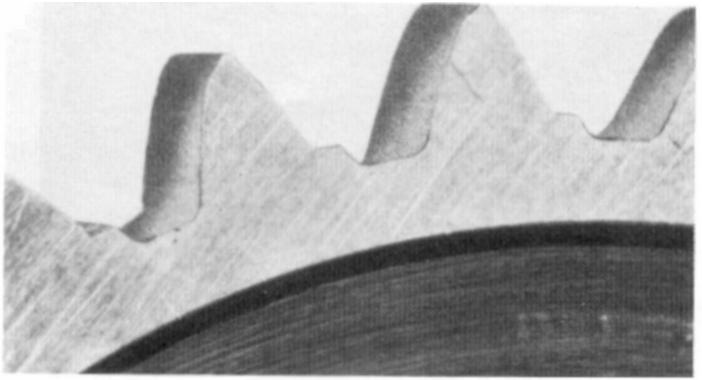

Dimensional & Run-out Check

 Rotors are placed in V-blocks and rotated. Measurements are made of bearing journals, and coupling fits.

Housing Inspection

• Housing bores are inspected for size and parallelism.

Housing Inspection



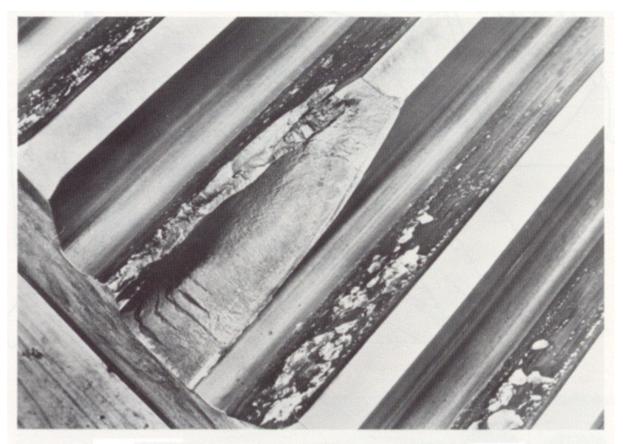
Visual Tooth Inspection

- Typical Gear Failure Modes
 - Wear
 - Pitting
 - Breakage
 - Scoring
- ANSI/AGMA 1010

Appearance of Gear Teeth-Terminology of Wear and Failure


Excessive Wear

Progressive pitting



Destructive Pitting

Tooth Breakage

Profile cracks originating from severe pitting

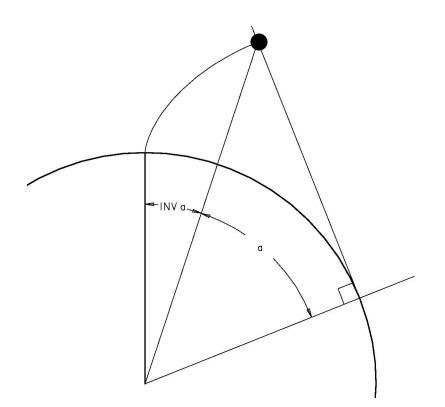
Gear Engineering Overview

Gear engineering overview

- Review Gear Rating
 - Strength rating
 - Durability rating
 - Deflection analysis
 - Lead modification
 - Lubricant analysis
- Bearing Design Review
- Shaft stress analysis
- Critical speed analysis if required

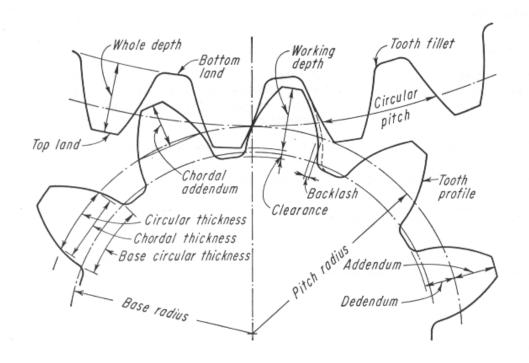
Use of gears goes back many centuries

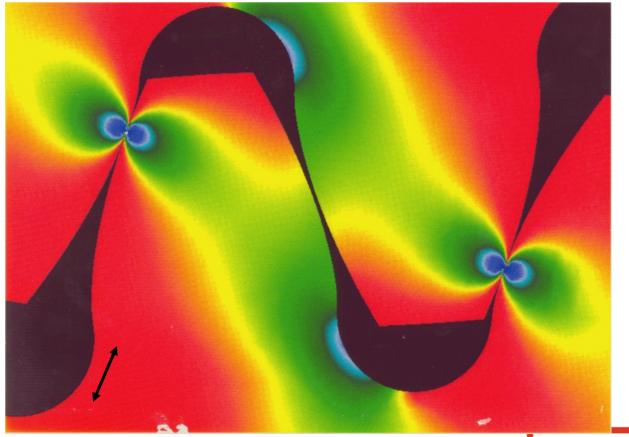
Primitive Parallel Shaft Gears


21st Century Gearing

- Speeds in excess of 70,000 RPM
- Velocity of teeth over 300 MPH
- Some units designed and built to run 7-10 years continuously
- Output torque over 25 million in-lbs
- Transmit over 100,000 HP

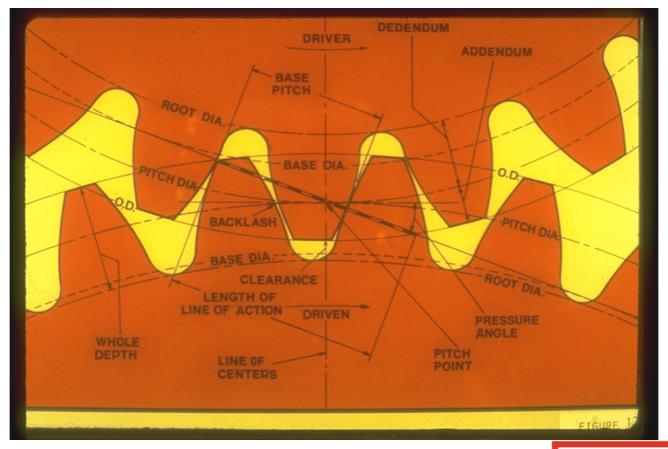
Involute Theory


- Webster defines an "involute" as 'a curve traced by a point on a string kept taut as it is un-wound from a cylinder'.
- The profile of most gear teeth manufactured in the US are an "involute"

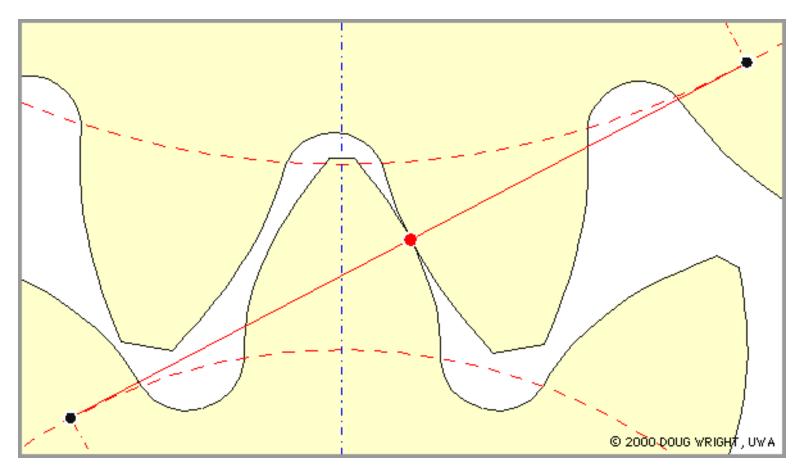

Involute Theory

• It doesn't matter where on the involute you operate, you will have conjugate motion between the rotors.

Gear Tooth Loading Patterns



Bending fatigue crack



Gear Nomenclature

Relative Sliding & Rolling Motion

Used with permission from Dr. Douglas Wright University of Western Australia

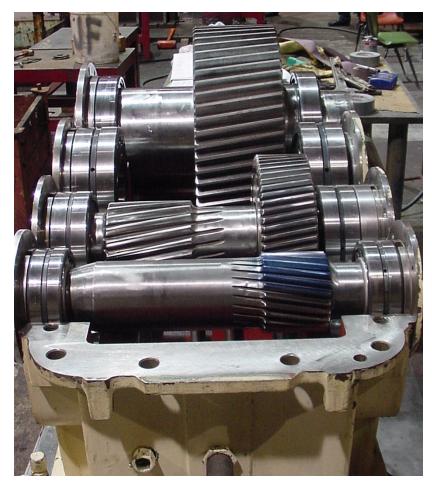
Progressive pitting

Metallurgy and Heat Treat

- Through Hardened
- Case Hardened

Through-hardened gearing

- Historically, the most common gearing- particularly for large gearing
- Wide range of Alloys
- Wide Range of Hardness
 - 200 BHN-420 BHN
- Generally homogeneous hardness throughout tooth
- All heat treating is done prior to cutting teeth.
- No heat treating after teeth are cut



Case hardened gearing:

- Higher performance gearing
- Teeth are cut and then hardened
- Carburized
 - 58-62 Rc Case Hardness
 - 0.020"-0.250" Deep
- Nitrided
 - 50-54 Rc Hardness
 - 0.015"-0.025" Deep
- Induction hardened
 - 50-52 Rc Hardness
 - 0.020"-0.250" Deep

Single Helical Gearing

- Gearing generates axial forces
- Each shaft must have a bearing of capable of handling axial load

Double Helical Gearing

- Gearing does not generate axial forces
- One shaft must have a bearing of capable of positioning gearing
- Remaining shafts
 must float axially

Effect of Geometry on Load Distribution

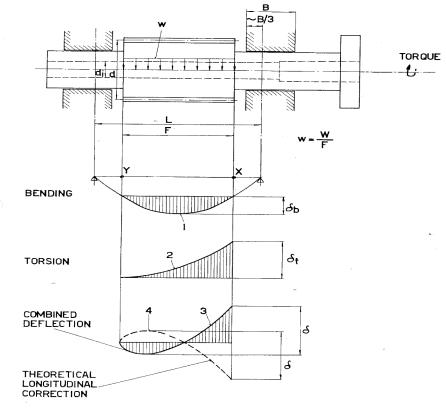
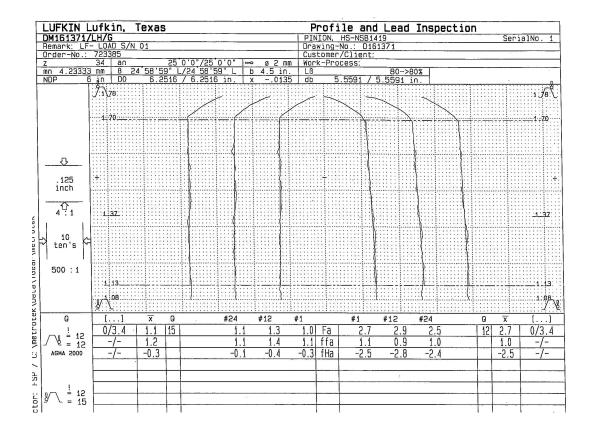
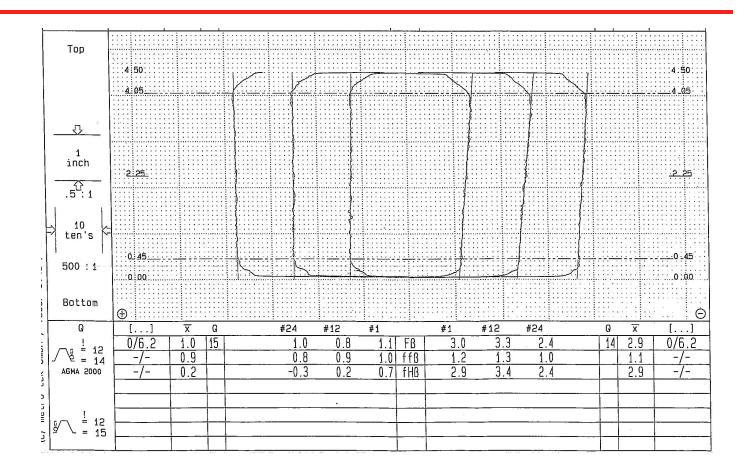



FIG. 9 PINION DEFLECTIONS AND LONGITUDINAL CORRECTIONS

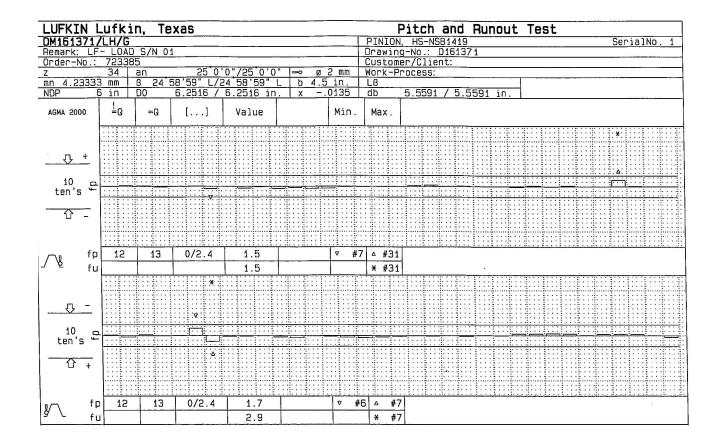
TYPICAL TOOTH ALIGNMENT



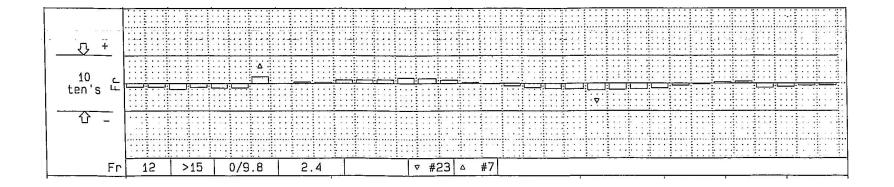
Gear Checker



Profile Check



Lead Check



Pitch Error

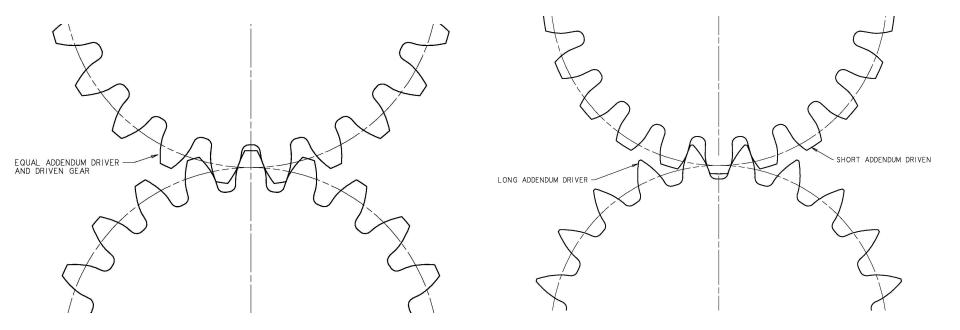
Pitch Diameter Runout Check

Gear Repair Techniques

- Tooth repair options
- Bearing journal repair options
- Seal fit repair options

Gear Repair Techniques

- Case-Hardened
 - Pitted or frosted
 - Kiss grind
 - Verify material is carburized
 - Remove 0.003"-0.005" from load surface
 - Make certain to not machine too much from case
 - Broken
 - Replace



Gear Repair Techniques

- Through-Hardened Gearing
 - Pitted
 - Kiss grind
 - Remove 0.003"-0.005" from load surface
 - Re-cut gear and oversize pinion to match
 - Machine off O.D.
 - » Up to 40% of tooth depth per side
 - Re-cut teeth on gear to remove pits
 - Machine new pinion oversized
 - Broken
 - Replace

Standard vs Shifted-Profile Gearing

Equal Addendum Gearing

Shifted Profile Gearing

Re-cutting Gear Teeth

Bearing journal and seal repairs

- HVOF coating
 - Bonds to parent metal
 - Ideal for both journal and roller bearings
 - Application thickness from 0.005" -0.025"
 - Acceptable for most gear box applications
 - Acceptable practice for API 687 repairs

Bearing journal and seal repairs

- Chrome Plating
 - Bonds to parent metal
 - May be applied to journal and roller bearings
 - Limited sources due to environmental issues

Bearing journal and seal repairs

- Metal spray
 - Does not appreciably bond to parent material
 - Limited applications
 - Seal Fits
 - Captured areas
 - Under roller bearings

Roller Bearing Repair

- Used in repair of large tapered roller, and cylindrical roller bearings
 - Grind 0.004"-0.007" from contact surface
 - Make oversized rollers
- More of an issue due to recent increases in lead time to obtain new bearings

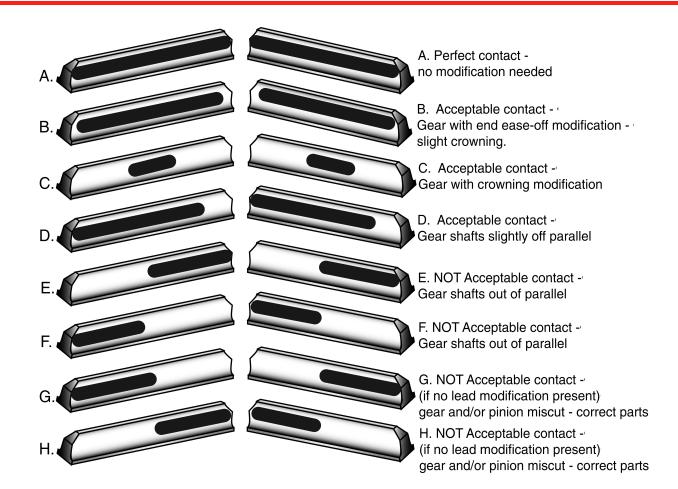
Journal Bearing Repair

- Inspection
 - Dimensional inspection
 - Dye penetrant inspection
 - Ultra-sonic inspection
- Rebabbitt bearing surface
 - Remachine bore, pressure dams

Assembly & Test

Assembly & Test

- Bearing adjustment
- Tooth contact
- Lubrication

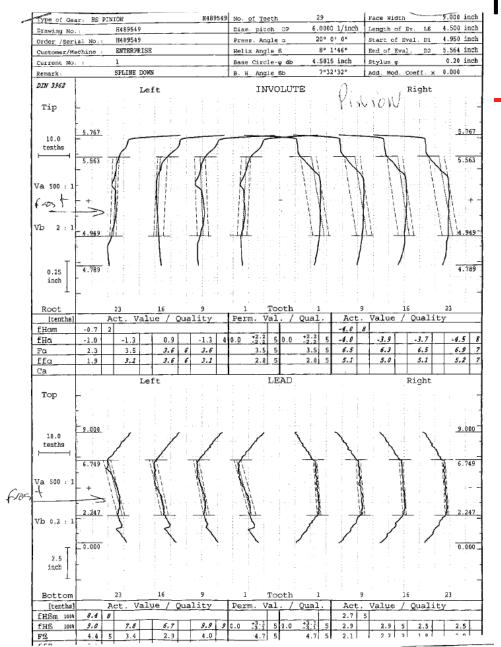


Tooth Contact Check

Typical Tooth Contact

Re-rates and up-rates

- Ratio changes
- Horsepower increases
- Re-engineering for reliability
 - Bearing upgrades
 - Gearing upgrades


Turbine Powered Gear

Scoring over a portion of face

•Problems •Noise/vibration •Scoring

The Problem and the Root Cause

- •Problem evaluation:
 - •Abnormal tooth contact
 - •Inadequate lubrication
 - •Resonance
- •Root Cause
 - •High temperatures in mesh
 - •Irregular thermal
 - expansion
 - •Tooth count in parts

CARBURIZED, Double Helical, STD. HOBBED General Gearset Data Rated Per AGMA 6011-I03 PINION GEAR										
Gearset Rating (hp) 'K' @ Rated hp (psi) Tan. Load @ Rated hp (1b)	15686 812 26123	Torque @ Rated hp (lb-in) Durability (hp) Strength (hp)	63757 15686 17920	158292 15686 19612						
Gearset Serv. (hp) 'K' @ Serv. hp (psi) Tan. Load @ Serv. hp (lb) Sep. Load @ Serv. hp (lb) Tot. Load @ Serv. hp (lb)	4310 223.00 7178 2638 7647	Torque @ Serv. hp (lb-in) Contact Stress (psi) Bending Stress (psi) API613 B.S.N. sf=1 (psi) API Allow. B.S.N. (psi)	17518 80200 12507 15397 38500	43493 80200 11428 14069 38500						
Working Centers (in) Effective Face (in) Cutter NDP	8.500 9.250 6.000	Number of Teeth Minimum Hardness RC Rotor Rpm	29 58 15500.00	72 58 6243.06						
Ratio PLV (ft/min) Std. Helix Angle Base Helix Angle	2.4828 19807 8°1′46″ 7°32′33″	Outside Dia (in) Working Pitch Dia (in) Root Dia (in) Center Groove Dia (in) SAP Dia (in)	5.215 4.881 4.436 4.300 4.651	12.452 12.119 11.674 11.538 11.865						
Face Overlap Ratio Trans. Contact Ratio Len Line of Action (in) Normal Base Pitch (in) AGMA Service Factor API613 Service Factor	2.4677 1.7050 0.8462 0.4920219 3.63 1.97	Base Circle Dia (in) Add. Mod. Coefficient Standard Pitch Dia (in) Lead (in) Nor Fin Tooth Thk @Std (in) Nor Tip Thk Const @OD Circ. Space Width @OD (in)	4.581487 0.0000 4.881188 108.70481 0.2574	11.374726 0.0000 12.118812 269.88781						
WORKING VS STANDARD DATA Center Distance (in) Helix Angle Normal Diametral Pitch Normal Pressure Angle Transverse Diametral Pitch Transverse Pressure Angle	WORKI 8.5 8.0295 6.0 20.00 5.94 20.18	NG STANDARD 00 8.500 83 8.029583 00 6.000 00 20.0000 12 5.9412								
Flash Temperature Idx Oil Inlet Temperature (° Run-In Surface Finish (µ AGMA6011 Scuffing Risk	862 F) 120 in RA) 46 CW 0.000	INCREASER Pvt Scoring Value Pinic Max. Sliding Velocity (1	on:1833124 ft/sec)	Gear:3177894 84						

AGMA925 GEAR SURFACE DISTRESS EVALUATION(use as reference only) Max Contact Temp (°F) 182 Tooth Temp (°F) 154 Scuff Risk: LOW Oil VG: 32 Flash Temp Max (°F) 28 Spec Film Tck: 1.4331 Wear Risk: HIGH Lamda: 0.95

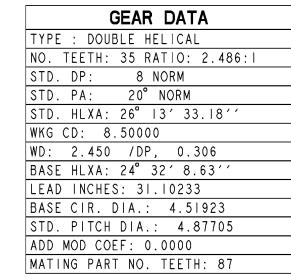
DEFLEX V4.3 INPUT:US CALCULATED DEFLECTIONS REF INFO:

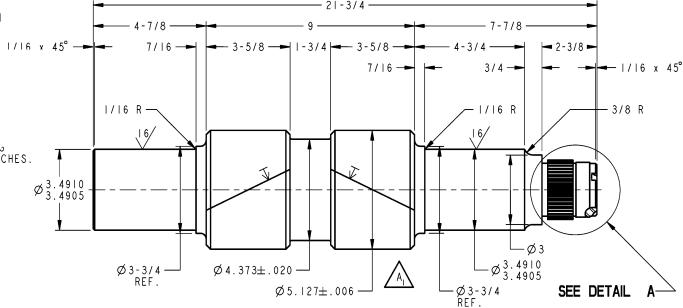
							IN MICRO-	INCHES
STA	LOADS (1		OD	ID	LENGTH	BENDING	BENDING	
NO.	VERT.	HORIZ.	(in.)	(in.)	(in.)	VERT.	HORIZ.	TORS.
_								
1 BRG	0.0	0.0	3.50	0.00	2.00	0	0	0
2	0.0	0.0	5.00	0.00	0.44	194	72	0
3	0.0	0.0	4.88	0.00	0.13	229	85	0 0
4	0.0	0.0	4.88	0.00	0.25	238	88	0
5	1196.3	439.7	4.88	0.00	1.70	257	95	Ō
6	1196.3	439.7	4.88	0.00	1.70	360	133	-14
Ž	1196.3	439.7	4.88	0.00	1.70	417	154	-50
8	1196.3	439.7	4.88	0.00	1.70	419	155	-107
9	1196.3	439.7	4.88	0.00	1.70	368	136	-186
10	1196.3	439.7	4.88	0.00	0.25	270	100	-286
11	0.0	0.0	4.88	0.00	0.13	252	93	-303
12	0.0	0.0	3.63	0.00	0.44	243	90	0
13	0.0	0.0	3.50	0.00	2.00	208	77	0
14 BRG	0.0	0.0	3.50	0.00	2.00	0	0	0
15	0.0	0.0	3.20	0.00	1.00	-240	-89	0
16	0.0	0.0	3.20	0.00	0.00	-360	-133	Ō

NOTE:

Torsional deflection is added to vertical component of the bending deflection before calculating combined deflection. (797.5556 lb. load/in. face)

POSITIVE values indicate UP for vertical loads and deflections and to the RIGHT for horizontal loads and deflections.


ROTOR WEIGHT = 71.3 lbs. ROTOR LENGTH = 17.125 in.



1/25/2010 9:53:54 AM

Solution:

- •Double helical gear set
 - •Shorter helices
 - •Higher helix angle
 - •Different tooth count
- •New high speed bearings (radial only)

High Casing Temp. Causes

- Misdirected oil flow
- Too little oil flow
- Too much oil flow
- Inadequate clearance
- Inadequate drain
- Rubs

Gear Vibration Causes

- Unbalance
- Coupling misalignment
- Inadequate foundation or loose bolts
- Lateral and torsional critical speed response
- Bearings design, manufacture., assembly, wear
- Couplings lockup, wear, no lubricant, not as designed
- Gear tooth errors design, manufacturing, assembly, wear

Vibration Frequencies Unique to Gearing

- Tooth Mesh Frequency
- Tooth Repeat Frequency
- Assembly Phase Frequency
- Ghost Frequency

Tooth Mesh Frequency

- How many teeth come into mesh during a given time period.
 - Same for hunting or non-hunting tooth gear set
 - Example 1: 24 teeth meshing with 73 teeth
 - Hunting tooth
 - Example 2: 24 teeth meshing with 72 teeth
 - Common prime factors are 2 and 3 :
 - Non-Hunting tooth
 - TMF = Pinion speed x number teeth in pinion
 - » Or
 - TMF = Gear wheel speed x number teeth in gear wheel

Tooth Mesh Frequency

- Number of teeth in pinion: 24
- Number of teeth in gear: 72
- Speed of pinion:1200 rpm
- Speed of gear: 400 rpm
- Tooth mesh frequency:

24 X 1200 = 28,800 cpm 72 x 400 = 28,800 cpm

Tooth Repeat Frequency

- A certain tooth on the pinion hitting a certain tooth on the gear wheel. Typically heard as an audible beat.
 - Hunting tooth gear set : TRF = gear speed/number teeth in pinion
 - Non-Hunting tooth gear set : TRF = gear speed x product of the prime numbers common to pinion and gear wheel/ number of teeth in pinion

Tooth Repeat Frequency

- Hunting tooth gear set : TRF = gear speed/number teeth in pinion
- Example:

24 teeth in pinion turning 1200 rpm 73 teeth in gear turning 394.52 rpm Tooth Repeat Frequency 394.52 / 24 = 16.44 cpm

Tooth Repeat Frequency

- Non-Hunting tooth gear set : TRF = gear speed x product of the prime numbers common to pinion and gear wheel/ number of teeth in pinion
- Example:

24 teeth in pinion turning 1200 rpm 72 teeth in gear turning 400 rpm Prime numbers: 2, and 3 Tooth Repeat Frequency $400 \ge 2 \le 3 / 24 = 100$ cpm

Assembly Frequency

- A vibration caused by non-hunting tooth gear sets.
- Assembly frequency = Tooth mesh frequency / product of the prime numbers common to pinion and gear wheel teeth
- Example:

Number of teeth in pinion: 24 Number of teeth in gear: 72 Prime numbers: 2, and 3 Speed of pinion: 1200 rpm Tooth mesh frequency: 28,800 cpm Assembly frequency= 28,800 / (2 x 3) = 4800 cpm

Ghost Frequency

• Similar to tooth mesh, but related to the gear tooth cutting/grinding machine .

– GF = # teeth in worm wheel x rotor speed

Gear Noise Causes

- Tooth errors from manufacturing
 - Spacing, profile (involute), lead (tooth alignment), surface finish, gear cutting machine error, etc.
- Degradation of tooth profile during operation
 - Wear, pitting or tooth breakage
- Improper design
 - Tip or root relief
 - Resonance in gear unit
- Other system components
 - Clutches, couplings, etc

Questions?

• Thank you for your attention

