

Monitoring Reciprocating Compressors

for the Vibration Institute
Piedmont Chapter
September 18th

Mary Margaret Chapman

- Degree in Computer Science from the University of Tennessee
- Worked for CSI 1988 to 1996
- Worked for MachineXpert 1996 2002
- Worked for PCB Piezotronics 2002 End 2012
- Worked for Windrock Beginning of 2013 to Present

What is a Reciprocating machine?

A reciprocating machine is one which rotational movement is turned into reciprocating motion

FFT Monitoring for Rotating Equipment

- Components that PdM personal use to get FFT data:
 - Accelerometer
 - Cable
 - Data Collector

Vibration
measured as a
function of time
but also as a
function of
frequency or phase

FFT Example on a reciprocating Compressor

Normal Horizontal and Axial readings on end of cylinder

Lots of energy related to running speed could make it hard to determine issues

Vibration on the cross head of a compressor Throw

 An Example of the limitations of Waveform/FFT analysis on a reciprocating compressor

You Know something is wrong but what is the problem? Stay tune till the end of the presentation to find out.

Portable Reciprocating Monitoring Tool

A Predictive Tool

- Reciprocating Machinery Analysis
 - Engines
 - Compressors

- In Cylinder Pressure
- Temperatures
- Vibration
- Ultrasonics

Key Component of Crank Angle Analysis

- Pressure, Vibration, Ultrasonic Data is referenced to <u>crank shaft</u> <u>position</u>
 - This is Not FFT or Spectrum Data Vibration Data
 - Band Filtered, Envelope Detected Vibration
 - Frequency Ranges specific to Reciprocating machines
- Cylinder Top Dead Center (TDC) Synchronized to Analyzer

Crank Angle Vibration on Compressor

Comp 4 Press and Vibes 03-05-2012

1> 70.00

2> 70.00

^{1&}gt; Comp 4 H Pressure, R=1, LS=1, C=3

^{3&}gt; Comp 4 Hi Freq Vib, R=1, LS=1, C=3

^{5&}gt; Comp 4 XH Hi Freq Vib, R=1, LS=1, C=3

^{2&}gt; Comp 4 C Pressure, R=1, LS=1, C=3

^{4&}gt; Comp 4 Raw Vibration, R=1, LS=1, C=3 + 6> Comp 4 XH Raw Vib, R=1, LS=1, C=3 +

Performance data on Compressors

- Horsepower
- Volumetric efficiency (suction and discharge)
- Flow
- Leak Index & Flow balance
- Valve/nozzle HP loss suction and discharge
- Clearance volume
- Toe pressures
- Theoretical vs. actual discharge temperature
- Rod load compression and tension
- Rod reversal

Mechanical defects on Compressors

- Vibration vs. Crankangle
 - Loose rod on piston/crosshead by looking at the vibration pattern vs. rod load, you can zero in on the cause.
 - Abnormal impacts on valves, unloading devices
 - Crosshead looseness
 - Bearing defects
- FFT Vibration
 - Coupling misalignment
 - Imbalance
 - Foundation problems
 - Pulsation problems
 - Broken frame bolting

Common Problems picked up with portable

Engines

- Valve Leakage
- Valve Train Problems
- Ignition Issues
- External leaks
- Piston / Cylinder Issues
- Bearings
- Accessories like Oil Pump, Water Pump

Compressor

- Suction/Discharge Valve
- Leaking Valves
- Leaking Rings
- Malfunctioned Unloaders
- Rod Load / Rod Reversal
 - Snap shot in time
- Load / Flow
- Vibration Issues
- Pulsation
- Rider Band / Cross Head Wear

Benefits of monitoring reciprocating compressors

- Defer Calendar Based Maintenance
- Performance Optimization
- Machinery Throughput Improvement
- Avoid Catastrophic Failures
- Reduce unscheduled downtime

- Reduce Machinery Abuse
- Quality Assurance of the New Installations and Overhaul Equipment
- Planning and Scheduling
- Extend the run time between overhauls
- Prioritize Maintenance Expenditures

Profit = Totalized throughput – (Energy cost + Maintenance Cost + Operating Cost + Analyzer Department Cost)

Compressor Data

Pressure Readings

Head and Crank End Pressure Sensors

Pressure Volume Curves

Suction Valve Leakage

Discharge Valve Leakage

Repaired Discharge Valve

Calculating Horsepower

It takes work to transport gas through a pipe That work is the area inside the PV curve The rate of doing work is horsepower

Calculate Power Losses?

Valve Losses on C2001 B

Dynamic Load - Combined

Static + Inertial = Dynamic (Total) Rod Load

Most of the time, inertial load reduces peaks of total load.

Within Rod Load Limits

Compres	or Calcula	ions										8
Comp	IHP	RPM	Toe Press		%Vol Eff		%Pow Loss		Flow	Clear %		
Cyl			Pd	Ps	Dis	Suc	Dis	Suc	Bal	Set	Cal.	
1> CH5	392.11	002.6	796.9	601.4	72.3	88.1	9.0	6.5	1.01	42.0	53.0	5-19-09 11:25:33
2> CC5	369.51	000.7	803.1	603.1	71.1	88.7	7.9	6.1	1.03	44.0	49.3	5-19-09 11:26:40

Exceeding Rod Load

Compres	or Calcula	ons											
Comp	IHP	RPM	Toe Press		%Vol Eff		%Pow Loss		Flow	Clear %			
Cyl			Pd	Ps	Dis	Suc	Dis	Suc	Bal	Set	Cal.		
1> CH5	508.29	0.000	897.5	601.9	63.1	84.1	7.1	4.6	1.02	46.3	47.5	5-19-09 14:24:53	
2> CC5	579.16	200.0	899.0	601.7	62.8	83.7	6.0	4.3	1.02	46.6	48.2	5-19-09 14:25:12	

Vibration to Identify Mechanical Defects

Vibration is taken in conjunction With an encoder or mag pickup.

90 270

Basic Vibration – Reciprocating

Crankangle Degree

Crosshead Knock

• Vibrations are easily traced to cause. Below a crosshead knock occurs at force reversal.

Worn Out Rider Rings

UltraSonics to Identify Mechanical Defects

Discharge Leak – shown in Ultrasonic data

Ring Leak – shown in Ultrasonic data

Remember the Spectrum and Waveform data from the beginning of the presentation?

Back to our example from the beginning

 Since we know something is different, but can not determine what it is with FFT – lets look at the crank angle data.

Pressure Trace

Pressure Traces with Vibration

Ultra Sonics Traces with Vibration

Plugged Valves Due to Worn Riders

Vibration on the head end of a compressor Throw

Conclusion

 Where Spectrum vibration data is the most valuable on rotating equipment

 Crank angle data is most valuable on reciprocating equipment

Question?

Slicing up the PIE for Analysis Tools

- -Spectrum Data for Rotating Equipment
- -Crank-angle Data for Reciprocating Equipment

