ORBIT ANALYSIS

Ray Kelm, P.E.

President/Chief Engineer

Kelm Engineering, LLC

Dustin Pavelek, P.E.
Senior Engineer
Kelm Engineering, LLC

The Concept of Orbits

Overview

- Orbit Description
- Orbital Construction
- 1X Orbits
- Phase Reference in Orbits
- Compensation
- Frequency Analysis using Orbits
- Precession in Orbits
- Orbit Shapes
- Pedestal orbits
- Field Data Collection

Orbits

- Orbit Plots show the path a rotor takes as at vibrates during operation
- Orbits are created from the data from two orthogonal (perpendicular)
 measurements taken simultaneously
- A phase reference on the rotor is used for filtering an orbit to a specific frequency and identifying frequency content from orbit plots
- Orbits may be Direct (unfiltered), 1X or nX
- Like Bode' or Polar Plots, Orbits may be compensated or un-compensated

Orbit Construction

^{*}Reproduced from Fundamentals of Rotating Machinery Diagnostics by Donald E. Bently and Charles Hatch

Sample Orbits

The 1X Orbit Due to Imbalance

- Well below the critical speed, the high spot is in phase with the heavy spot and both are on the "outside" of the orbit path
- Above the first critical speed, the heavy spot is on the "inside" of the orbit path. The high spot, by definition, remains on the "outside"

Orbit Phase Reference

• The location of the rotor when the phase reference trigger fires is indicated by the blank-bright mark on the orbit plot

 The blank-bright orientation is the standard convention based on the use of the z-axis input for the trigger on an oscilloscope and a negative trigger pulse

Orbit Vector Compensation

- Compensation allows us to remove any unwanted information from an orbit plot mathematically.
- Filtered 1X orbits can be vector compensated to subtract out the slow roll runout vectors from each probe

1X Orbit – 1X Slow Roll Vector Orbit = 1X Compensated Orbit

Orbit Waveform Compensation

Waveform compensation can be used to eliminate "glitch" in orbit data caused by surface defects on probe target areas

A slow-roll waveform is digitally subtracted from vibration waveform data using the trigger as a reference

The resulting waveform includes actual shaft vibration and any noise in the signal

Orbit Plots – Loop Rules

• Loop rules can be used to determine vibration frequency when only one timing mark is present.

Vibration Frequency = # of Loops ± 1

Number Rotations

No. Rotations = No. Timing Marks

Vibration
Modelinstitute

Internal:Add External: Subtract

Orbit Analysis – Frequency Content

- Multiple timing marks indicate sub-synchronous vibration
- Frequency ratio can be determined by inspection

Orbit Loops

- Loops indicate the presence of non-synchronous vibration
- External loops are caused by dominant forward precession of the nonsynchronous components
- Internal loops are caused by dominant reverse precession of the nonsynchronous components

1X and 1/2X
Forward Precession

1X and 1/2X
Reverse Precession

Forward and Reverse Precession

- Forward precession is the most common vibration observed. The shaft is whirling in the same direction as rotation.
- Reverse precession happens with the shaft is whirling in the opposite direction from rotation. This can happen during rubs or between split critical speeds.

Precession from Phase Reference

- The normal "Blank-Bright" convention indicates forward precession
- "Bright-Blank" phase marks indicate reverse precession
- Always check probe orientation and rotation direction!

Orbit Analysis – Non-integer Components

- Shapes of orbits with non-integer multiples or sub-multiple components will be similar to exact integers but will be "skewed"
- The location of the phase reference mark will "rotate" along the orbit path

Orbit Shapes

• The shape of the orbit can be used to evaluate any restrictions to motion that influence machine vibration.

Misalignment

Increasing Severity

Orbit Shapes

• Physical restraints internal to the machine can restrict shaft motion in the bearings. This can be identified using unfiltered orbits.

Pedestal Orbits

- Orbits can be generated from pedestal measurements when accelerometers are installed on a bearing housing.
- Pedestal orbits often contain frequency content associated with housing vibration that may or may not be present if measuring shaft vibration directly.

Field Data Collection

- Avoid pitfalls during data collection:
 - Verify collection parameters are adequate for the application (Fmax, No. of lines, etc.)
 - Verify probe orientation. Does your collector setup match physical location of probes? Are your cables crossed?
 - Check for the correct rotation direction.
 - Is your phase reference a positive or negative trigger?
 - A proximity probe looking at a keyway will produce a negative trigger.
 - A key will produce a positive trigger.
 - Most laser tachometers are selectable.

Field Data

• Many software packages will allow the analyst to view orbits to identify times, speeds, or loads where significant events occur.

Field Data – Operating Deflection Shapes

• 1X orbits can be used to estimate a rotor operating deflection shape when X-Y measurements are available at multiple axial locations

Closing

- Orbit analysis is another useful tool to keep in your Analyst Toolbox
 - Use both Direct and Filtered (1X) orbits
 - Evaluate affect of vector or waveform compensation on orbit plots
 - Review frequency content apparent in orbits
 - Evaluate the shape of the orbit and what may be influencing this
 - Look for changes in orbit plots caused by time/speed/load changes

• Like any other analysis method, good conclusions can only be made from good data

