# Fundamentals of Gearing

# Transferring Load Via Friction

As pressure was increased at the point of contact you increased the ability to transmit motion.



This works well up to the point that slippage starts to occur.....

# Gotta Have Some Teeth

# The Early Years



# Modern gearing transmits:

# Torque Uniform Motion



An engineering/manufacturing marvel that is continuously marching towards perfection.

# Transmitting Uniform Motion

Gearing transmits uniform motion between two rotating discs through the precise, lubricated meshing of gear teeth.

The art/science of gearing requires the proper application of geometry, mechanics and craftsmanship to product gearing which accomplishes the task while optimizing the trade off of performance and cost.

### Modern Gear Technology

Provides for a reduction in speed and an increase in torque.

Provides for an increase in speed which is economically unobtainable using normal prime movers.

# Nomenclature

- Involute Curve
- Outside Diameter
- Root Diameter
- Pitch Diameter
- Addendum
- Dedendum
- Line of Action
- Line of Centers
- Pitch Point
- Backlash
- Diametral Pitch

# Involute Curve



# Involute Curves in Action





### **Definitions**

Base Diameter

The diameter of the base circle on the circle from which the involute tooth profile is developed.

Pitch Diameter

The diameter of the pitch circle. In theory is is the imaginary circle that rolls without slippage with a pitch circle of a mating gear.

Outside Diameter

The diameter of the outside of the gear.

Root Diameter

The diameter of the root circle or the circle that is tangent to the bottoms of the tooth spaces

Line of Centers

The line which connects the centers of the pitch circles of two matng gears.



Pitch Point

The point of tangency of two pitch circles on the of centers.

Line of Action

The straight line passing through the pitch point and tangent to the base circles. It is actually the path of contact of mating involutes.

Base Pitch

The linear distance between adjacent involutes along a common normal such as the line of action, or the circular distance taken on the base circle.

Pressure Angle

The angle between the line of action and the line tangent to the pitch circle at the pitch point. Since an involute has no specific pressure angle until brought into intimate contact with another involute, the operating pressure angle is determined by the center distance at which a pair of gears operate. For uniformity and economies, standard pressure angles are established for standard gear tooth systems.

Backlash

The amount by which the width of a tooth space exceeds the thickness of the engaging tooth on the pitch circles.



Working Depth

The depth of engagement of two mating gears - in effect the sum of their addendums.

Face Width

The length of the teeth in an axial plane.

Whole Depth

The total depth of a tooth space, equal to the addendum plus the dedendum, or the working depth plus the clearance.

Addendum

The radial distance between the pitch circle and the outside diameter.

Dedendum

The radial distance between the pitch circle and the root circle.

Clearance

The amount by which the dedendum in a gear exceeds the addendum of its mating gear.

# Diametral Pitch

Ratio of number of teeth to the number of inches in the pitch diameter

Divide number of teeth by the pitch diameter to obtain the diametrical pitch or the number of teeth per inch for a given pitch diameter.

EXAMPLE: Spur Gear has 40 teeth and a pitch diameter of 10 inches

Diametrical pitch = 
$$\frac{40}{10} = 4$$

### Diametral Pitch







1-1/4 D.P.

1-1/2 D.P.

3 D.P.

The smaller the number the coarser the

pitch

### Modular Pitch







Module 20

Module 16

Module 8

The larger the number the coarser the pitch

# Gear Box Components - Reducers

- •Smaller Gear Pinion
- •Larger Gear "Bull" Gear
- •When there is more than a single stage reduction gear sets are called:
  - -High Speed or Input
  - -Low Speed or Output
  - -Intermediate
  - -Multiple intermediates are first intermediate, second intermdiate, and so on...

# Single Reduction Gear Set



Gearbox Components

Single Stage Increaser



# Multi-Stage Gear Assembly



### Double Reduction Gearbox



Parallel Shaft
Single Helical
Double Reduction

Right Angle
Spiral Bevel/
Single Helical
Double
Reduction



# Three Stage Gearbox



# Calculating Gear Ratios

Teeth on the Bull Gear Teeth on the Pinion = Gear Ratio

If a Bull Gear has 100 Teeth and the Pinion has 20 Teeth

The Ratio is expressed as 5.0:1

# Calculating Gear Speeds

$$\frac{1800\text{RPM}}{5.0:1} = \text{Bull Gear Speed}$$

Bull Gear Speed = 
$$\frac{1800\text{RPM}}{5.0:1} = 360\text{RPM}$$

### Cooling Tower Gearbox Application





Calculating Multi-stage Ratios

Given a 3 stage gearbox with each stage having a 5:1 ratio What is the ratio of the Gearbox?

 $5 \times 5 \times 5 = 125:1$ 

Now if the input speed is 1800 RPM What is the output speed? 1800/125 = 14.4 RPM

### Calculating Torque

Torque = 
$$\frac{\text{HP X 63025}}{\text{RPM}}$$

Torque =  $\frac{100 \text{ HP X 63025}}{14.40 \text{ RPM}}$ 

Torque =  $\frac{437,674 \text{ in/lb}}{1}$ 

Torque is inversely related to speed

A gear reducer that decreases speed creates a proportional increase in torque.

Decreasing Speed by a factor of 5

Increases Torque by a factor of 5

Reduce Speed, Increase Torque

Speed Decrease = Torque Increase
125:1 Ratio
Speed Decrease X 125
Torque Increase X 125

### **Increaser Applications**



Speed Increaser Output
Ratio X Input RPM = Speed Increaser Output
1:5 Ratio With 1800 RPM Input
5 X 1800 = 9,000 RPM

### **Increaser Applications**



# Speed

### Pitch Line Velocity



Low Speed Applications
Typically Less than 2000 RPM or
Less that 5000 FPM Pitch line Velocity
High Speed Applications
Typically Higher that 2000 RPM, or
Above 5000 FPM Pitch Line Velocity

### **Gear Designers Care About**

How Much Power is Required?
How Fast Must it Turn?
What is Peculiar About the
Application?