

Rolling Element Bearing Analysis Presentation Topics

Considerations in Making the Measurement

Analyzing & Experiences in the Field

Considerations in Pinpointing Problems

Follow-up Points and Discussion

Copyright 2010 Commtest, Inc.

commtest

Meaningful R.E.B. Analysis

- There are lots of product offerings, tools, and techniques available.
- Sometimes just making the choices can be a bit intimidating and overwhelming.
- We need to take away some of the "mystery".
- We need to make the best of the situation.
- We will now examine the history, scientific terminology, and industry jargon.

Copyright 2010 Commtest, Inc

commtest

Getting Down to Basics

- A bearing carries the load by round elements placed between two pieces.
- Relative motion of two pieces causes rolling, with very little resistance or friction.
- Started with logs on the ground with a stone block on top! (Log at back was moved to front, sequentially.)
- Rolling elements in a circular bearing are captive and do not fall out under load.
- R.E.B. offers a good trade-off on cost, size, weight, carrying capacity, durability, accuracy, low friction, and the list goes on.

10 Commtest, Inc.

commtest

Why Do Bearings Fail?

- · Poor design.
- · Misapplication.
- · Poor installation.
- Improper loading.
- Poor care and maintenance.

Design Engineering - Application Engineering - Maintenance

Copyright 2010 Commtest, Inc.

Take a **Proactive** Approach

- Choose the correct bearing for the application.
- Employ proper bearing installation techniques.
- Utilize proper skills in assembly, balancing, alignment, etc.
- Follow proper lubrication schedule.
- Use care in storage, shipping, and handling.
- Ensure proper operation.
- Train everyone on the value of these good practices.
- Take the time to do the job right!

Copyright 2010 Commtest, Inc.

Facts on Bearing Life / Failure

- Less than 10% achieve design life.
- 16% fail due to handling and installation.
- 14% fail due to contamination.
- 36% fail due to inadequate lubrication.
- 34% fail due to fatigue issues (excessive loading).
- Any extra loading (e.g. misalignment, unbalance, resonance) reduces life by a cubed function.
 - $ightharpoonup L_{10}=(16,667/RPM)* (rated load/actual load)^3$
 - 10% extra loading cuts life by 1/3
 - 20% extra loading cuts life by half!

** Source: SKF Bearing Journals.

What is L_{10} Life?

- It is the life expectancy for 90% of the population.
- Full load life is estimated at 1,000,000 revolutions.
- Sounds impressive, but at 3600 RPM, this is only 4.6 hours!
- Guidelines....
 - Light load is at < 6%.
 - Normal load is 6% to 12%.
 - Heavy load is at >12%.

From a few months to years at continuous 365/24 usage.

What Do We Wish To Accomplish?

- Early detection of even the slightest fault appearing with the bearing.
- Avoidance of any down time and secondary damage due to bearing failure.
- Pinpoint the faulty component and possible cause of the excessive vibration.
- Decide a corrective course of action.
- Follow-up and verify.

Familiar Key Elements: Detection - Analysis - Correction - Verification

Copyright 2010 Commtest, Inc.

COL

The Detection Technologies

- Vibration analysis and acoustic emission.
- Oil and wear particle analysis.
- Infrared thermography.

Each technology has its place and should be used where appropriate. (Many times, they are <u>complementary</u>.)

Copyright 2010 Commtest, Inc.

commitest

Vibration and the Sources

- We can typically break vibration down to 4 main components:
 - Forced vibration due to unbalance, misalignment, blade and vane pass, gear mesh, looseness, impacts, resonance, etc.
 - Resonance response due to impacts.
 - Stress waves or shock pulses.
 - Frictional vibration.

Copyright 2010 Commtest, Inc

commt

It's All About Pattern Recognition

- Vibration measurements provide us with four basic spectrum (FFT) patterns:
 - $-\frac{\text{Harmonics}}{\text{shape}}$ Almost always caused by the TWF
 - <u>Sidebands</u> Due to Amplitude or Frequency Modulation.
 - Mounds/Haystacks Random vibration occurring in a frequency range.
 - <u>Raised Noise Floor</u> White noise or large random events.

Copyright 2010 Commtest, Inc.

commtest

What Are We Looking For?

- Detection of a even the slightest metal-to-metal contact from impacting components or inadequate lubrication in a bearing.
- A slight ringing caused by a bearing fault resonating a <u>natural frequency</u> in the machinery setup.
- Presence of high-frequency, low-energy vibration.
 - Sometimes noted as raising the "carpet level" in the noise floor in acceleration readings – especially at high frequency.
- Capability to detect an incipient failure with senses that transcend normal human abilities .. sight, sound, touch, smell, etc.

 \underline{Note} . It is not important as to \underline{what} natural frequency is excited; the measurement just needs to be $\underline{repeatable}$.

Copyright 2010 Commtest, Inc.

What Are The Typical Failure Stages? • STAGE 1: - Presence of ultrasonic frequencies (typically well above 5KHz) that are barely detectable. - Very low amplitudes appearing in the acceleration measurement. - Life remaining at this point is 10-20%.

Typical Failure Stages?

• STAGE 3:

- Energy spreads more down the spectrum.
- Defect frequencies begin to be more prominent.
- More harmonics and sidebands show up.
- Wear tend to flatten out peaks and patterns.
- Bearing temperature increase is now apparent.
- It is time to order parts and start an action plan!
- Bearing life is now 5% or less.

Copyright 2010 Commtest. Inc.

CON

Typical Failure Stages?

• STAGE 4:

- 1X energy begins to increase as clearance is quite noticeable.
- Broadband spectral noise is evident by a raised noise floor.
- Failure is eminent!
- 1% life is remaining at best.

Copyright 2010 Commtest, Inc

commites

Contact between two metal surfaces. A shock (or pressure) wave is created. - Analogy is the wave set up by an earthquake or tsunami. - A ripple from a pebble tossed in a pond is another example.

• Resulting signal propagates through the metal surfaces when there are no air gaps to filter (good metal-to-metal contact).

6

How Can We Detect Early Signs?

- · Special instrumentation and detection circuits.
- · Special signal processing.
- Detection of small spikes with short duration and ringing characteristics.
- A small tell-tale signal in the presence of lots of noise and higher amplitudes (a high dynamic range > 95dB).
- · Accelerometer with a solid mounting.
- Good measurement practices.
- Special measurement for defect detection, plus normal readings in 3 axes.

Copyright 2010 Commtest, Inc.

commte

How Have Solutions Suppliers Addressed This Need?

- Lots and lots of competitive and complementary offerings, some dating back to the early 70's:
 - Spike Energy™ and Spike Energy Spectrum™
 - ESPTM (Envelope Signal Processing)
 - HFD TM (High Frequency Detection)
 - SEE TM (Spectral Emitted Energy)
 - PeakVue TM
 - Shock Pulse TM
 - Stress Waves
 - Enveloping (or Demodulation)
 - Cepstrum

Copyright 2010 Commtest, Inc

commtes

The Choices ... Analyzer Model# Product Name Frequency Range Sampling Rate Diagnostic Output Illa vetom pepi-pesit SP, WF, Auto Conesito SE Energy (Bently Nevada) Exist Decily to vide com 1 Bands 450-32 kHz Potedra excatalistical con SPUB Defroit fand around 34 kHz 135.000 w.cond dBmax, dB carper, SPM WF & S decided level shock value EsPACE 2500 Spike Energy** & ESP* 11,200 W.C. Rodrael Automation Spike Energy Peak-to-Peak Spike Energy SP & UF 0,000 for most produ SPUB SHOW 32 8/2 Shak St carpet, SPM VF & S decided level shock value Copyright 2010 Commtest, Inc.

Is There a Common Thread?

- All methods are based on a <u>fundamental concept</u>: There are repetitive impacts in the machine structure that indicate bearing faults, gear damage, looseness, cavitations, and similar faults.
- Machine/bearing resonances (or sensor resonance) are excited by the impacts – similar to striking a bell.
- Repetitive fault frequencies can be identified with special signal processing – filtering, peak detection, and frequency analysis.
- Careful measurement and collection methods are essential to enable this technique.
- Advanced signal processing technology and instrumentation available today make this a proven analysis tool in routine data collection programs for Predictive Maintenance (PdM).

Copyright 2010 Commtest, Inc.

commtest

What Do We Need To "See"?

- Spikes from impacts.
- Ringing from a natural resonance being excited.
- Demodulation (or other method) to determine and "see" the repeated fault frequency.
- Frequency Determination on 'Impact Rate' to isolate the fault.

What Are the Basic Requirements?

- Solid Transducer Mounting.
- Mounting Target and Orientation Maintained.
- Mounted in Load Zone of Bearing Housing.
- Best Possible Mechanical Interface for Transmission of Energy.
- High Frequency Energy Detection Method.
- Detection of Repeated Fault and Ringing Condition.
- Ability to Strip Out Low Frequencies Associated with Actual Running Speed.
- Ability to Demodulate (Envelope) Signal or Determine the Peaks of the Repetitive Fault Frequency.
- Ability to Detect Repetition Fault Frequency.
- Ability to Show Resulting Signature (FFT) and Compare the Pattern to Published Data.

Copyright 2010 Commtest, Inc.

High-pass - Repetitive Peaks in TWF - Low-pass - FFT

The Measurement Challenge

- The mounting method is of key importance.
- We cannot "see" high frequency vibration unless the mount is a solid mechanical interface.

What Does "Demodulation" **Really Mean?**

- It is analogous to stripping out the information from an AM radio
 - Spanning the band for the station frequency (540-1600 KHz) and picking off the broadcasted signal.

 First need to incorporate a high-pass or band-pass filtering.
- Eliminate any high amplitude signals associated with 1X and multiples up to about 10X.
- Include only the fault frequencies exciting inherent resonance. Intensify and draw out repetitive components of the fault.
- Convert to frequency for display of the pattern.
- Amplitudes will show up as a distinctive "saw-tharmonic pattern of the actual bearing fault.

Copyright 2010 Commtest, In-

Can The Reading Be Trended? Yes, but consistency of measurement is of utmost importance. Same hardware. Same measurement location. Solid mounting in good mechanical transfer path. Same conditions.

Case History Example

- Automotive paint facility.
- 250 HP motors running 6-foot bladed exhaust fans.
- Motor running at 1792 RPM.
- Fan belt driven and running at 820 RPM.
- Bearings known.
- · Excessive vibration reported.
- Initial measurements made of vibration with acceleration, velocity, and demodulation.
- Source of problem is identified, corrective action is recommended.
- Bearing SKF 22218CCK changed out at next production break.
- Let's take a look at initial results first, then Before/After comparisons.

Copyright 2010 Commtest, Inc.

Another Recent Finding • Low speed machine turning at 394 RPM. • Bearing known as FAG 23906B • Fault frequencies known: - BPFI is 18.889 - BPFO is 16.111 - BSF is 6.2 - FTFI is 0.46 • Low vibration amplitudes, but somewhat noisy. • High frequency acceleration data was taken along with routine measurements, no demod.

Pre-requisites and Procedure

- Bearing part number(s) <u>must</u> be known.
- Fault frequencies must be known and preloaded.
- Running speed <u>must</u> be accurately recorded.
- Bearing faults excite natural resonances in the machine components or transducer.
- The fault frequency is recurring.
- A technique is available to detect the repetition rate in time.
- The fault frequency (if present) can be shown in an FFT display with bearing data overlays.

Copyright 2010 Commtest, Inc.

commtes

Summary Remarks

- Machinery vibration measurements in time waveform and spectrum can provide early (tell-tale) signs of rolling element bearing defects.
- Special signal processing techniques (now available in most portable data collectors) can detect impacting spikes and pinpoint a specific fault frequency.
- Comparing the resulting signature (pattern) to published fault frequencies can pinpoint the root cause of the problem.
- Field experiences in PdM over 30 years have proven the concepts to be very accurate and reliable.
- Considerable cost savings (in maintenance and production) are afforded by use of this technology.

Copyright 2010 Commtest, Inc.

commtes

Questions / Discussion on Rolling Element Analysis?

Email: dshreve@commtest.com