Bringing Precision Maintenance, Vibration and CMMS together to identify and eliminate true bad actors in your plant

02/20/09

Scott Glover Kapstone Kraft

www.scott.glover@kapstonepaper.com

My name is Scott Glover...

- A mechanical engineer, I have worked in the Charleston Paper Mill for 20 years as a Paper Machine Process Engineer, Power and Utilities Maintenance Engineer, Machine and Rebuild Shop supervisor providing support to the Mill. For the past 2 ½ years I have been the Precision Maintenance lead at the Charleston Mill.
- ▲ More personally and still relevant, I enjoy doing Machine Shop work as a Hobby. I still can not pass a lawnmower in a trash pile with out picking it up to resurrect...
- **△** E:\presentation\STEAMENGINE.MPG
- △ Bottom line, I love Machinery and am excited be here today to share some of my experiences...

What is a Bad Actor?

- ▲ When I told a machinist this week what I was going to be talking about today he was quick to tell me, "anything on two legs walking around this plant."
- ▲ It is that equipment that you hear "is that thing down again? We just worked on it two weeks ago."
- ▲ Another is "yeah, it lasted six months and that's what we typically get from it."
- △ It is the P.I.T.A. equipment... Pain In the !@#.

Bad Actors \$\$\$...

- △ Study from Reliability Solutions, Inc. of Maintenance Cost Data from 9 years and 10 paper mills...
- ▲ Machines over 500HP typically comprise 2% of machines in a mill and cost \$11-13/hp/year to operate.
- ▲ Machines 500 to 100 HP typically comprise 13% of machines in a mill and cost \$22-26/hp/year to operate.
- ▲ Machines 100HP and less typically comprise 80% of machines in a mill and cost \$49-63/hp/year to operate.

Precision Maintenance...

- ▲ Simply put a process of doing maintenance according to specifications which address primary failure modes.
- ▲ We generalize that equipment fails as follows:
- △ 30% fails due to Misalignment
- △ 30% fails due to Unbalance
- △ 30% fails due to Assembly Error
- △ 10% fails due to Other

Alignment...

- ▲ A good alignment program is key to rotating equipment reliability. Commonly missed are:
- △ Soft foot
- Pipe strain
- ▲ Thermal growth
- ▲ Angle and short foot
- △ Belief that couplings will "accept" misalignment

Precision Maintenance: Balance

- △ Car tire example... Not many in the room would spend \$100/tire and then not spend \$6-8/tire to have them balanced.
- △ Specify all rotating assemblies be balanced to the "intent" of G1.

Precision Maintenance: Balance

▲ I should have know...

Precision Maintenance: Assembly Error...

- ▲ This category really captures what I describe as good machine practice.
- △ Cleanliness, proper tools, checking and correcting fits, doweling, proper lube.
- ▲ The "no hammer" rule.
- ▲ The shiny metal myth. My experience...10-15% of the stuff you have on the shelve as spares...from parts to complete assemblies are failures on the shelf.

Other...

- ▲ The 10% "OTHER" category includes the more difficult mechanical failures...perhaps the word should be more exotic or less frequent...
- △ Oil swirls
- ▲ Motor rotor bar problem
- ▲ Electrical air gap problems
- △ Operators...those two legged bad actors...

Precision Maintenance Spec's

- ▲ Similar to and sync'd with engineering specs and documented. Examples:
- △ Soft foot checked and no more than 0.002", pipe strain the same.
- ▲ No more than 4 shims under a foot
- ▲ Jack bolts to be installed on all equipment
- Thermal growth calculated and applied to all equipment
- ▲ Keyways turned 180 degrees and keys fitted
- ▲ All bearing fits to be mic'd and in tolerance
- △ G1 balance
- △ TIR 0.002" or less
- ▲ Proper bolt torque
- Proper Lube

Good Vibrations...

- ▲ Vibration is one tool used to prioritize "Precision Maintenance work" and provide feedback for the craftsman.
- △ "Experience suggests that reducing the overall vibration level from 0.2 in/second to 0.1 in/sec can reduce maintenance costs up to 50%" (R.S. Inc)
- △ 0.1 in/sec overall vibration is consider a "good" level, while 0.075 is considered "world class."
- △ Above 0.25 in/sec is to be a suspected bad actor.

Precision Maintenance Process Flow

- Written process flow diagram
- △ Color coded responsibilities
- Identified path for precision and nonprecision work
- △ Post in the areas

Computerized Maintenance Management Systems) CMMS:

- ▲ During my career I have led/and or participated in the design and implementation of two CMMS (Maximo and SAP).
- ▲ I did this not because of my love for computers, but for the love of Tools and Machinery.
- **△** E:\presentation\DeWalt drill movie.mpeg

The Perfect CMMS

- ▲ You have accurate equipment records in searchable fields.
- ▲ hp, rpm, manufacture, model number, seal type, etc. are populated.
- ▲ Work Orders are written to the correct functional location.
- △ Standing orders do not exist...

Fishing for bad actors...

- △ Surf your vibration database of using the vibration tolerances of 0.1 in/sec and above and then 0.25 in/sec and above.
- ▲ Take this list and pull up equipment work order records. You are guaranteed to find some good, easily fundable maintenance work.
- ▲ Do not necessarily get hung up on "bad" vibration numbers if the work order history does not show significant \$\$\$. Some machines that would not qualify as "precision," infact do not need to be prioritized: Ex. Blowers, shaft mounted gearboxes, spring bases.

Fishing for bad actors...cont'd

- △ If your vibration data and/or experience suggests a piece of equipment is bad actor, but the initial work order review shows few \$\$\$ spent...dig further.
- △ Sometimes, "Less is More" in data base searches. It is quite possible that the significant repair costs you thought should be on that equipment are being charged to a nearby piece of equipment or at a level above in the work order system.
- ▲ Service and Vendor records can be used successfully when W/O's fail. Windshield example...

Fishing for bad actors...cont'd

- ▲ The lack of precision maintenance is especially telling in high rpm equipment. A 3600rpm application that exhibits high vibration will likely have a history of high \$\$\$. Review both your vibration and CMMS data bases in this area for opportunities.
- ▲ It is particularly important to apply precision vibration standards and repair work on equipment with mechanical seals.

△ First Base, \$\$\$, History

△ Agitator, \$\$\$, History, Base, Pack-ryte

Pump, \$\$\$, history, pipe strain

Kapstone Kraft LLC

△ 25hp, 3600rpm high pressure water pumps. 0 to \$42,0000 over 2-1/2 years

△ 800hp, \$60,000 year steam savings, disk coupling

△ 1000hp, FD Boiler fan, \$\$\$, sootblower

▲ Plastic Precision – Poly-Shield

Lineshaft bearings

▲ Lineshaft Temp monitoring, \$\$\$

A Hydrapulper Feed

A Hydrapulper Tub

Kapstone Kraft LLC

▲ Hydrapulper New base, \$\$\$

A Hydrapulper New base & jack bolts

Kapstone Kraft LLC

△ New pump, jack bolts, pipe supports

▲ New base, jack bolts, pipe supports, dog-house, 8 years, 0 \$\$\$

△ Good transition base...

△ Another Good transition base...

△ Another Good transition base...

▲ Full base...

▲ Full base...

▲ Precision Maintenance at its best and worst... 3 years and running great...

A few more good words...

- **△** \$\$\$...It is all about the money
- ▲ Learn how much it cost \$\$\$ for you customer to run their process. Process \$\$\$ information and downtime, combined with maintenance cost/vibration levels can be good places to look for opportunities to shine.
- ▲ Know how much electrical power costs and use potential savings to drive reliability...especially in 24/7/365 operations.
- ▲ Talk to mechanics and operators to find bad actors...then confirm with your vibration data and CMMS.

Discussion...