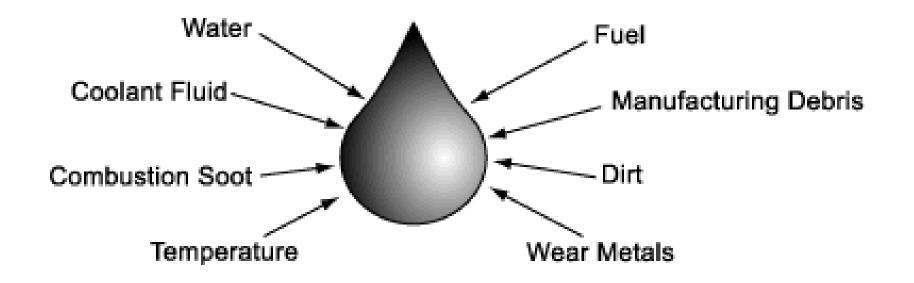
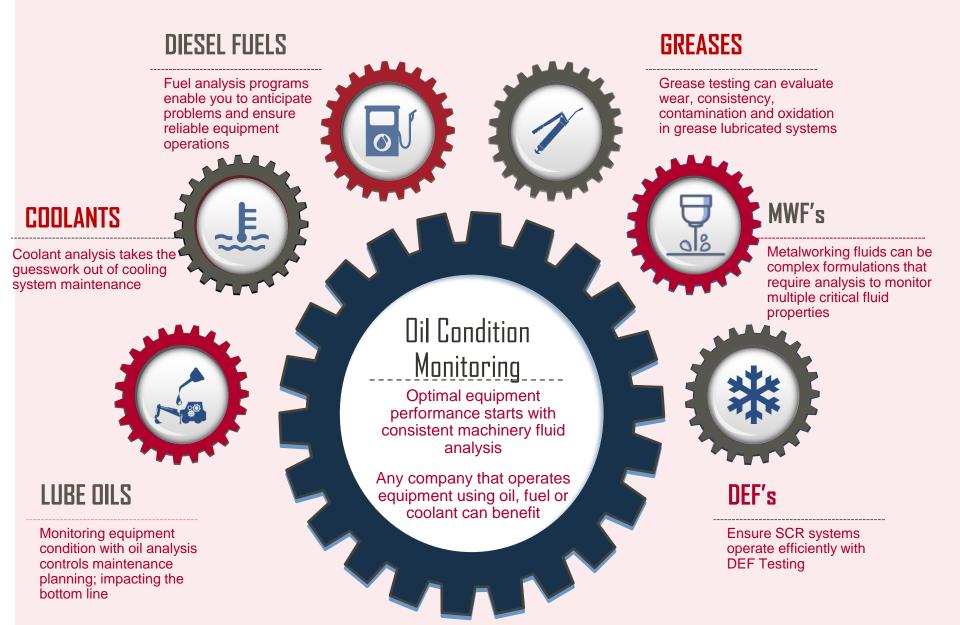


Basics of Oil Condition Monitoring Through Oil Analysis

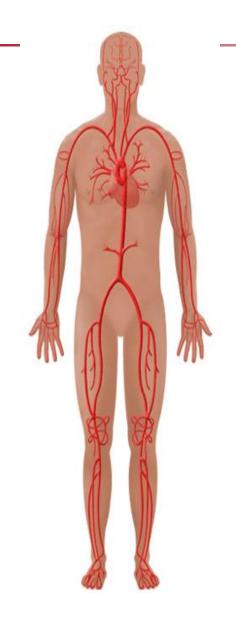


INTERNATIONAL 🌍 REPRESENTATIVE

Marian Kiley Key Account Manager Analysts, Inc. <u>mkiley@analystsinc.com</u> 09/16/2016



Oil analysis is the sampling and laboratory analysis of a lubricant's properties, suspended contaminants, and wear debris. Oil analysis is performed as part of a routine condition monitoring program to provide meaningful and accurate information on the lubricant and overall condition of the machine. Oil analysis provides a view of the condition of the oil along with the machine wear!


Analysts' Testing Capabilities

What your doctor needs

Blood Testing Can:

- Recognize How Well Organs are Functioning
- Distinguish Different Causes of Complaints
- Diagnose Diseases
- Identify RISKS for Known Conditions
- Confirm if Prescribed Medication is Working

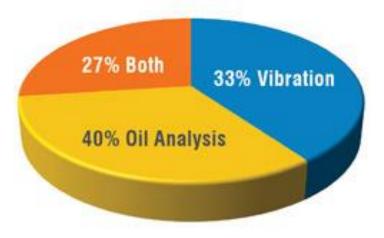
Your doctor can only diagnose the above if you provide the necessary information:

- Height
- Gender
- Weight
- Symptoms
- 🗸 Age

What the laboratory needs

Oil Analysis Can:

- Recognize How Well Equipment Components are Operating
- Distinguish Different Causes of Wear
- Diagnose Fluid Degradation
- Identify RISKS for Known Conditions
- Confirm if Corrective Maintenance Actions are Working


The laboratory can only diagnose the above if you provide crucial information:

- Machine Mfg/Model
- Component Type
- Oil Type
- Symptoms
- Hours on Machine & Oil

Oil Analysis + Vibration

- Oil Condition Monitoring (OCM) & Vibration are Complimentary Predictive Tools
- Depending on the Failure Mode, One Technique May Provide Earlier Warning
- Combined, OCM and Vibration Increase
 Equipment Reliability

Bearing fault detection of early bearing failure (750 machines)

The pie chart shows the impressive results. Of the 750 machines in the condition monitoring program, bearing faults were first detected 67 percent of the time using oil analysis and 60 percent of the time with vibration analysis.

Both technologies converged to catch bearing faults 27 percent of the time. It was noted that while oil analysis caught the faults 40 percent of the time ahead of vibration, eventually vibration analysis would have detected many of these faults as the issue progressed.

Oil Analysis GOALS

- Condition Monitoring
- Fluid Selection
 - Comparison
 - Quality Control
- Establish Safe & Proper Drain Intervals
- Filtration Monitoring
- > Special Requirements

Oil Analysis Objectives

- Prevent Lubrication and Wear Related Failures
- Reduce Maintenance Costs
- Decrease Unplanned Shutdowns
- Increase Equipment Life

8

Contaminants

Machine Wear

Lubricant

Condition

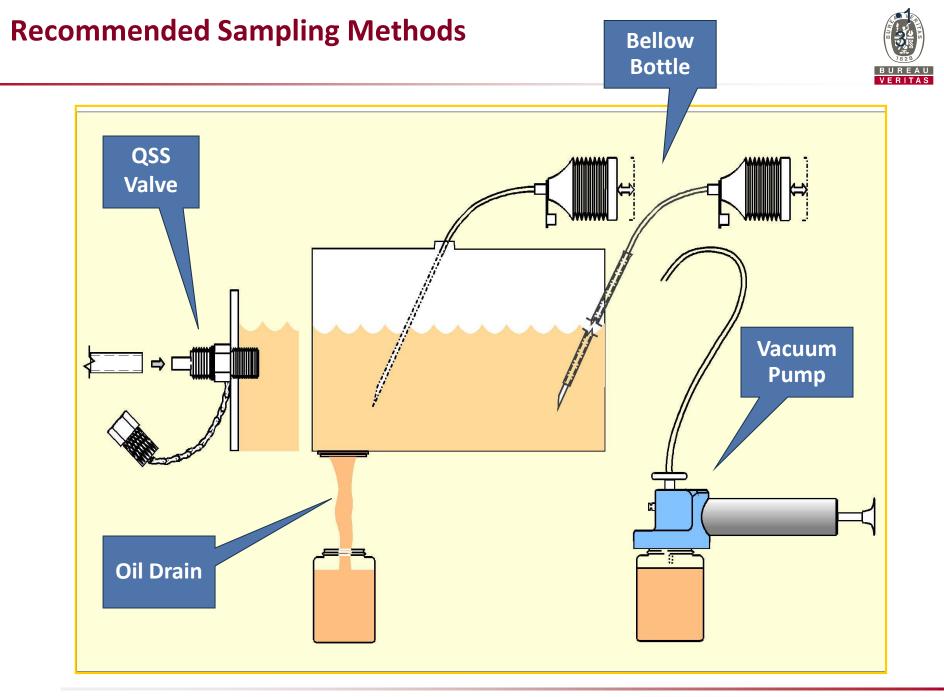
SELECTING EQUIPMENT

- Start Small
 - Based on Equipment Criticality
- Sample Frequently
 - Monthly / Quarterly
- Review and Act on Reports
- Expand Program to Additional Equipment

CRUCIAL INFORMATION

- Unit / Compartment ID
- Mfg. Make & Model
- Oil Information
 - Manufacturer
 - Brand
 - ISO Grade
- Equipment Type / Application
- Feedback
- Service Hours
 - Equipment & Oil

THE SAMPLING PROCESS



Petcock or sampling valve (QSS[®]) prior to oil filter

Vacuum pump/tubing at dipstick or oil fill

Sump reservoir or drain

- Avoid points where lube flow is restricted or where <u>contaminants</u> and <u>wear debris</u> settle out or are filtered out
- Sample component while operating or within <u>30 minutes</u> after shutdown
- Visually check sampling materials for any <u>contamination</u> before use
- Containers are shipped clean and should be stored and transported with cleanliness in mind
- Assure clean technique when using sampling pumps

ROUTINE TESTING

• Spectrochemical Analysis

- 21 elements including wear metals, contaminates and additives
- Viscosity and Equivalent ISO grade
 - Measures a lubricants resistance to flow
- Water
 - Reported in % (non-critical applications)
 - Reported in ppm (sensitive / critical applications)
- Acid Number (AN) / Base Number (BN)
 - Lubricant Degradation
 - Service Life
- ISO Particle Count
 - System Cleanliness
 - Contamination Control

Spectrochemical Metals Analysis (ppm)

BUREAU
VERITAS

Wear Metals: Typical Sources of Elements	Iron (Fe)	Chrome (Cr)	Nickel (Ni)	Aluminum (AI)	Lead (Pb)	Copper (Cu)	Tin (Sn)	Molybdenum (Mo)	Titanium (Ti)
Atmospheric	1			1		1			
Bearings	1	1	1	1	1	1	1	1	1
Blocks / Housings	1			1					
Blowers	1			1		1	1		
Brakes	1				1				
Bushings	1			1	1	1			
Chain Drives	1	1	1						
Clutches / Discs	1				1	1	1		
Crankshaft / Camshaft	1	1	1						
Cylinder / Liners	1	1							
Gears	1	1							1
Impellers	1			1			1		
Oil Pumps	1			1	1	1			1
Pistons	1			1	1		1	1	
Rings	1	1						1	
Rods	1	1	1	1					1
Screws	1					1			
Shafts	1	1	1		III III III III	s da diretan diana			1
Spools	1	1	1						1
Surface Rust / Oxides	~								
Tubing / Piping	1		1	1		1	1		
Valves / Valve Train	1	1	1						
Vanes	1								1
Wrist Pins	1	1				1			

Spectrochemical Metals Analysis (ppm)

Non-Wear Metals: Typical Sources of Elements	Silicon (Si)	Sodium (Na)	Boron (B)	Phosphorus (p)	Zinc (Zn)	Calcium (Ca)	Magnesium (Mg)	Molybdenum (Mo)
ADDITIVES:								
- Anti-Foam	1							
- Anti-Oxidant			1		1			
- Anti-Wear			1	1	1	1	1	1
- Corrosion Inhibitor		1		1	1	1	1	1
- Detergent			1	1		1	1	
- Dispersant			1			1	1	
- Extreme Pressure								1
- Reserve Alkalinity						1	1	
- Rust Inhibitor		1				1	1	
- Thickener (Grease)	1	1						
Atmospheric / Process	1	1	1	1		1	1	
Brine / Saltwater	1	1		in a second and in the later of the second second		1	1	
Coolant Inhibitor	1	1	1	1				1

Viscosity

VISCOSITY - Measures a lubricants resistance to flow

	n	new oil acceptable range									
SAE GRADE	LOW @	Min	TYP	Max	+25%	+35%					
20	<5.6	5.6	8.8	9.3	11.0	11.9					
30	<9.3	9.3	11.2	12.5	14.0	15.1					
40	<12.5	12.5	14.5	16.3	18.1	19.6					
50	<16.3	16.3	17.8	21.9	22.3	24.0					
60	<21.9	21.9	24.5	26.1	30.6	33.1					
5W30	<9.3	9.3	10.2	12.5	12.8	13.8					
5W40	<12.5	12.5	15.1	16.3	18.9	20.4					
5W50	<16.3	16.3	18.1	21.9	22.6	24.4					
10W30	<9.3	9.3	10.8	12.5	13.5	14.6					
10W40	<12.5	12.5	13.6	16.3	17.0	18.4					
15W40	<12.5	12.5	14.3	16.3	17.9	19.3					
15W50	<16.3	16.3	17.7	21.9	22.1	23.9					
20W50	<16.3	16.3	17.2	21.9	21.5	23.2					

Water

Presence of Water

- ✓ Reported in %
- ✓ Reported in ppm

Base Number / BN

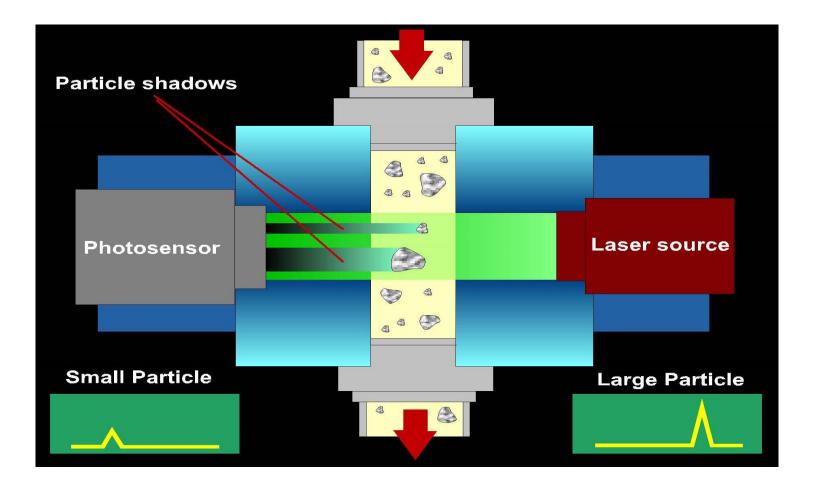
Monitors the Reserve Alkalinity of the lubricant Measured against new oil for % of **depletion**

Typical causes of BN decrease:

- Elevated Operating Temperature
- Oxidation / Nitration Acids
- Inadequate Combustion
- High Sulfur Fuels
- Over-Extended Service Time

Acid Number

Acid Number / AN


Monitored for increased level Evaluated against increase above new oil level

Typical Causes AN Increase:

- Elevated operating temperature
- Oxidative degradation
- Additive transformations
- Environmental contamination
- Improper oil type or mixture
- Over-extended service time

PARTICLE COUNT Measures particle size and volume

ISO Cleanliness Code

	ISO 4406 - Number of particles per ml											
	More than	Up to & Including	ISO Number									
	2,500,000		>28									
	1,300,000	2,500,000	28									
	640,000	1,300,000	27									
	320,000	640,000	26									
	160,000	320,000	25									
	80,000	160,000	24									
	40,000	80,000	23									
	20,000	40,000	22									
	10,000	20,000	21									
. = 6720	5,000	10,000	20									
	2,500	5,000	19									
	1,300	2,500	18									
- 422	640	1,300	17									
= 432	320	640	16									
	160	320	15									
	80	160	14									
11 - 52	40	80	13									
μ=52 —	20	40	12									
-	10	20	11									
	5	10	10									
	2.5	5	9									
	1.3	2.5	8									
	0.64	1.3	7									
	0.32	0.64	6									
20/10/12	0.16	0.32	5									
20/16/13	0.08	0.16	4									
	0.04	0.08	3									
	0.02	0.04	2									
	0.01	0.02	1									
	0.00	0.01	0									

Total >4 μ = 6720

- Total >6 μ = 432
- Total >14 μ = 52

ISO CODE: 20/16/13

Data Interpretation

In the Laboratory

Sample Results / Data Interpretation:

- Classify overall condition and severity
- Monitor & reflect wear and corrosion modes
- Verification of proper lubricant in service
- Degree and Identity of contaminants
- Assess lubricant serviceability
- Assess filtration effectiveness
- Suggest condition causes and reasons
- Recommend diagnostic or corrective actions
- Answer specific questions from customer

Sample Status:

NORMAL: Lubricant and equipment conditions are acceptable. Continue routine sampling schedule.

- MONITOR: Noteworthy presence or change; action usually not warranted.
- **ABNORMAL:** Atypical results. Consideration, diagnostics and/or corrective action is necessary.
- **<u>CRITICAL:</u>** Conditions present which will reduce system life. <u>Immediate</u> corrective action is necessary.

Evaluation Considerations:

- Individual Equipment Specifics:
 - Make, Model, Application, and Fluid Capacity
- Operating Environment & Duty Cycles
- Sample Operating Data:
 - (Unit and Lube Service Times, Oil Added, etc.)
- Customer Specific Requirements
- Customer Notations and Feedback
- Historical Trends
- Comparison with Similar Equipment.

Sources For Applied Evaluations:

- Equipment (OEM) Guidelines
- ✓ Lubricant Mfg Recommendations
- Customer Specific Requirements
- Legislated Environmental Limits
- ✓ Experience
- Historical Data of Similar Equipment

Types Of Applied Limits:

- Set Values Minimum or Maximum
- Defined Ranges with Severity Assigned
- ✓ Trend Analysis for ± Change
- Combinations of the Above

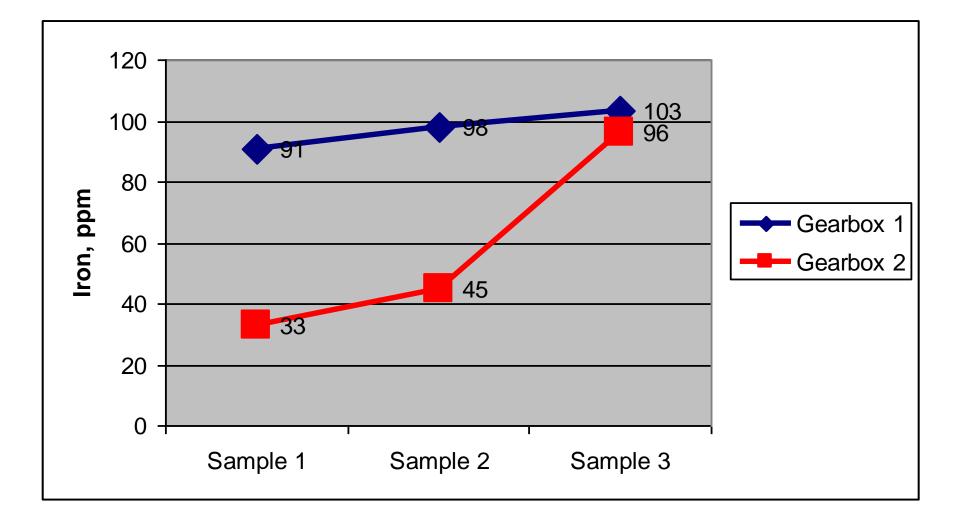
Rules / Qualifications 1. Mfg, Model, Application 2. Lubricant Required = ISO 150 3. Frequency = 2500 Hours										
Minimum	Vis @ 40 C, cSt	- 10% ~ New Oil	Abnormal							
Maximum	Vis @ 40 C, cSt	+ 15% ~ New Oil	Abnormal							
Maximum	Water, ppm	500 (.05+)	Abnormal							
Maximum	Silicon, ppm	+ 15 ppm ~ New Oil	Abnormal							
Environmental	Chlorine, ppm	1000 maximum	Hazardous							

Compare Set Limits vs. Trend Analysis

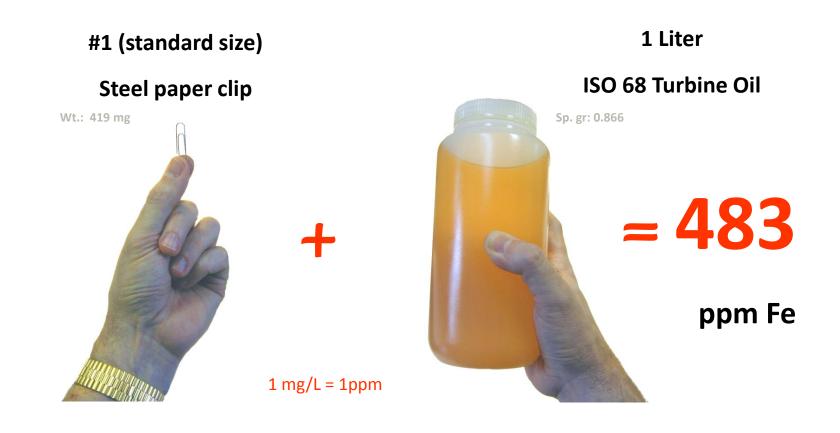
- 1) Two Identical Gearboxes
- 2) Same Age and Operating Modes
- 3) Samples Taken at Same Intervals
- 4) Use Set Limit 100 ppm for Iron

Evaluate Against 100 ppm Maximum (Iron)

Gearbox Number 1										
<u>Sample</u>	<u>Iron</u>	<u>Set Limit</u>	<u>Trend</u>							
1	91	Normal	Normal							
2	98	Normal	Normal							
3	105	Abnormal	Normal							



Evaluate Against 100 ppm Maximum (Iron)


Gearbox Number 2										
<u>Sample</u>	<u>Iro</u> <u>n</u>	<u>Set Limit</u>	<u>Trend</u>							
1	33	Normal	Normal							
2	45	Normal	Normal							
3	96	Normal	Abnormal							

Trend Comparison

When A Change Occurs:

- Look for Corresponding Cause or Reason
 - Increased wear: Is dirt or water present?
- Look for a Confirming Related Change
 - Increased viscosity: Has oxidation or acid level also increased? Check additives for mixture...
- Look for Identifying Components
 - Water + Na (Sodium) + Mg (Magnesium) = Brine
 - Water + Na (Sodium) + B (boron) or K (Potassium) = Cooling System Leak

Major Change Without a Corresponding Reason...

RESAMPLE !

- 1. Confirm Analysis Results
- 2. Ensure Component Identification
- 3. Ensure Representative Sample

The Abnormal Report

Analysis Report

Status: ABNORMAL on Mar 16 2016

ANALYSTS, INC.

Analysts, Inc. Phone: 800-24	ISO 17025 Accredited 3385 Martin Farm Road 1-6315	d, Suwanee, GA, 30024 Page 1	
Analysts, Inc. Marian Kiley 3385 Martin Farm Ro Suwanee, GA, 30024	-		
Unit ID: LINE 27 EXTRUDER	Unit Worksite: PLANT SI	Comp. Ref NO.: 4393104	
Component Type: GEARBOX		Component: GEARBOX	
Unit Manufacturer and Model: Davi	s Standard 60IN60 TPI	Oil Type: SHELL TELLUS ISO 320	
Component Manufacturer and Mod	el: Davis Standard 60IN60TPI	Component Serial Number: CD-053	
Maintonance Recommendativ	ons for Lab No. 201603221909	Reported On: Mar 24 2016	

Maintenance Recommendations for Lab No. 201603221898

Reported On: Mar 24 2016

From: Shaw Industries - Plant SI, PLANT SI

ANALYSIS INDICATES ABNORMAL CONDITIONS! PARTICLE COUNT level(s) are HIGH. PERFORM system filtration per manufacturer's guidelines. NOTED ELEMENTS are generally associated with: Gear or bearing wear. RESAMPLE at 1/2 normal interval.

SPE	SPECTROCHEMICAL ANALYSIS IN PARTS PER MILLION																				
LAB NO.	lran	Chromium	Nckel	Aluminum	Lead	Copper	Tin Silver	Ttanium	Silcon	Boron		Pota seium	Molybdenum	Phospharus	Zinc	Calcium	Barium	Magnesium	Antimony	Vanadium	Sample Drawn
1898	<u>28 *</u>	1	2	1	<1	<u>27 *</u>	1 <0.1	1	2	2 2		2	1	250	7	1	1	1	1	1	03/16/16
1474	25	<1	<1	<1	<1	25	<1 <0.1	<1	2	c1 1		1	<1	232	4	<1	<1	<1	<1	<1	-
1311	29	<1	<1	<1	<1	27	<1 <0.1	<1	2	ct 1		<10	<5	276	19	<10	<10	<1	<30	<1	-
0687	24	<1	<1	1	1	26	2 <0.1	<1	2	1 1		<10	<5	262	15	<10	<10	<1	<30	<1	12/02/13
0026	17	<1	<1	1	1	23	<1 0.1	<1	1	2 2		<10	<5	265	14	<10	<10	<1	<30	<1	10/16/12
2970	5	<1	<1	2	1	15	1 <0.1	<1	2	1 1		<10	<5	258	8	<10	<10	<1	<30	<1	09/21/11
SAM	PLE	INFORM	ΛΑΤΙΟ	NC				PHYS	ICAL T	EST R	ESU	LTS									
LAB	NO.	MVHR Unit	MI/HR	OII	OII Add	FLTR CHG	OII CHG	Water(KF)	Viscosi 40 °C	у т/	w	Partick >4µn		Particles >6µm	Particle ≥14µm		articles •21µm	Particles >38µm	Partic ⊳70µ		ISO Code
189	8	0	0		0	No	S	35	143.0	0.	87	3290)	937	90		20	2	<1	:	<u>19/17/14 *</u>
147	4	0	0		0	-		59	142.0	0.	39	3571		578	26		6	<1	<1		<u>19/16/12 *</u>
131	1	0	0		0	-		38	151.0	0.	56	7415	5	1532	96		20	1	<1		20/18/14 *
068	7	0	0		0	-		28	153.0	0.	45	6915	5	1186	66		15	4	<1		20/17/13
002	6					-		31	147.9	0.1	73	1801	2	4539	167		28	4	<1		21/19/15
297	0	1	1			Yes	Y	41	152.8	0.	34	1572	9	1021	23		6	1	<1		21/17/12

Machine Condition Monitoring Through Oil Analysis

Machine Condition Monitoring Through Oil Analysis

Questions ?

INTERNATIONAL 🏹 REPRESENTATIVE