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BULANIK REGRESYON VE YAPAY ZEKA
UYGULAMALARI

Dinger ATASOY!

1. GIRIS

Bulanik mantik, klasik mantigin ikili [0,1] yapisina
alternatif olarak gelistirilmis olup belirsizliklerin
modellenmesinde 6nemli bir rol oynamaktadir (Zadeh, 1965).
Gunumuz yapay zeka sistemleri, insan diisiince surecine benzer
bicimde karar verebilmek icin siklikla bulanik mantik tabanl
yaklagimlardan yararlanmaktadir (Ross, 2010). Bu baglamda,
bulanik mantik yalnizca belirsizligin temsili agisindan degil, aynmi
zamanda belirsiz verilerle rasyonel ¢ikarimlar yapabilme
kapasitesiyle de 0ne ¢ikmaktadir.

Belirsizlik (uncertainty) ve bulaniklik (imprecision)
dogada sik¢a karsilasilan olgulardir. Klasik deterministik
modeller, bu tir durumlar1 her zaman dogru bicimde temsil
edememektedir. Regresyon analizi, degiskenler arasindaki
iliskileri incelemek igin kullanilan en temel ve yaygin istatistiksel
yontemlerden biridir (Atasoy, 2001). Klasik regresyon modelleri
yalnizca kesin (crisp) veriler ve belirli istatistiksel varsayimlar
altinda gecerliligini korur. Gergek yasamda elde edilen veriler ise
cogu zaman belirsiz, eksik ya da sOzel ifadelerle
tanimlandigindan, klasik modellerin agiklayiciligi ve dogrulugu
siirli kalmaktadir (Zadeh, 1965).

Bu smirliligi agsmak Uzere gelistirilen bulanik regresyon
analizi (BRA), klasik regresyonun kat1 varsayimlarini gevseterek

L Dr. Ogr. Uyesi, Igdir Universitesi, Miihendislik Fakiiltesi, Yazilim Miihendisligi,
ORCID: 000-0003-0389-1059.
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belirsiz veya muglak veriler tzerinde modelleme yapilmasina
olanak tanir. Bu yaklasim, bagimli ve bagimsiz degiskenlerin ya
da model katsayilarimin bulanik sayilar biciminde ifade
edilmesine dayali modellerin olusturulmasini amaclar (Shapiro,
2005). Bulanik regresyon modelleri belirsizlik, eksik veri ve
uzman yargisi gibi faktorleri dogrudan model yapisina entegre
edebilmekte ve daha esnek bir temsil glcl sunmaktadir
(Chukhrova et al., 2019).

Yapay zekd alaninda, Ozellikle bulanik mantik temelli
yontemlerin istatistiksel tekniklerle birlesimi, “soft computing”
paradigmasi kapsaminda 6nemli bir yer tutmaktadir (Ojha et al.,
2019). Bu yaklasgimlar, Kklasik istatistiksel modellerin
deterministik  dogasina  karsilik, belirsizligin =~ dogrudan
modellenmesine ve karar sureclerinin daha gercekci bicimde
temsil edilmesine imkan vermektedir.

Bulanik  regresyon modellerinin  teorik  temelleri,
parametre tahmin yontemleri, Python ortaminda
gerceklestirilebilecek uygulama Ornekleri ve yapay zeka
yaklagimlartyla entegrasyon siregleri ele alinacaktir. Ayrica,
farkli uygulama alanlarindan érneklerle bu modellerin avantajlari
ve sinirliliklar tartisilacaktir.

2. KURAMSAL TEMELLER

Bulanik kime teorisi, klasik mantigin “bir eleman ya
kiimededir ya da degildir” seklindeki ikili yapisin1 genisleterek,
her bir elemanin bir kimeye belirli bir Uyelik derecesi ile ait
olabilecegini 6ngormektedir. Bu yaklasimda, bir elemanin
kiimeye ait olma derecesi Uyelik fonksiyonu (u(x)) araciligiyla
[0,1] araliginda tanimlanir. Boylece, kesinlik kavraminin yerini
dereceli Uyelik anlayig1 almakta ve belirsizlik sistematik bicimde
temsil edilebilmektedir (Mukaidono, 2001).
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Bulanik sayilar genellikle tggensel (Triangular Fuzzy
Number — TFN) veya yamuk (Trapezoidal) bigcimlerinde ifade
edilir. Ucgensel bulamk sayi, (a;,a,,, a,) parametreleriyle
tanimlanir ve bu yapi, degerin merkez (en olasi) noktast ile alt ve
Ust smirlarini  gosterir. Bu temsiller, bulanik regresyon
modellerinde belirsiz katsayilarin nicel olarak ifade edilmesine
olanak saglamaktadir.

Bulanik regresyon analizi (BRA), bu kuramsal
temellerden hareketle regresyon katsayilarini bulanik sayilar
biciminde tanimlar (Pakdel et al., 2025). Genel model formu su
sekilde ifade edilir:

Y = AO + Alxl + -+ Akxk

Burada 4; katsayilar1 bulanik sayilari, ¥ ise bulanik bir
cikt1 degiskenini temsil etmektedir (Tanaka et al., 1982).

Bulanik regresyon kavrami ilk kez Tanaka, Uejima ve
Asai (1982) tarafindan ortaya konmustur. Bu model, verilerin
belirli bir h-diizeyinde (h-level) kapsanmasini saglayan dogrusal
programlama yaklasimina dayanmaktadir. Daha sonraki
calismalarda, Diamond (1988) klasik en kuctk kareler yontemini
bulaniklastirarak Fuzzy Least Squares Regression (FLSR)
modelini  gelistirmistir. ~ Buckley ~ (2004) ise  model
parametrelerinin - dogrudan bulaniklastirildigi  alternatif  bir
yontem oOnermistir. TUrkiye’de bu alanda yapilan ¢aligmalar
arasinda Icen (2010) ve Cetintav (2012)’nin ¢alismalar1 dikkat
cekicidir.

Son yillarda, Stanojevi¢ (2023) tarafindan gelistirilen
optimizasyon temelli bulanik regresyon modeli, genisletilmis
uzant1 prensibi ile uyumlu ¢6zumler Uretmekte ve modelin
hesaplama verimliligini artirmaktadir. Ayrica, Janior ve
arkadaglar1 (2023) tarafindan 6nerilen yaklagimlar, derin 6grenme
tabanli bulanik sistemleri regresyon analizleriyle biitiinlestirerek,
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bulanik regresyonun modern yapay zekd uygulamalarinda
yeniden 6nem kazandigini ortaya koymaktadir.

Klasik regresyon modeli genel olarak su sekilde ifade
edilir:

y=PBo+Bixs+ -+ Prxy + ¢

Buna karsilik, bulanik regresyon modeli su bicimdedir:

}7 == AO + Alxl + -+ Akxk

Burada her bir A4; = (a;¢;) biciminde tanimlanan
ucgensel bulanik sayidir. Modelin temel amaci, tum gozlemleri
kapsayacak bicimde toplam belirsizligi (yay genisligini) en
kicuklemektir (Tanaka et al., 1982). Bu sayede, model hem
belirsiz hem de eksik veriler (izerinde anlamli ve esnek tahminler
uretebilme kapasitesine sahip olmaktadir.

3. BULANIK UYELIK FONKSIYONLARI

Bulanik kime teorisi, Zadeh (1965) tarafindan ortaya
konulan klasik kiime anlayisinin bir genislemesidir. Bu teori, bir
elemanin belirli bir klimeye aitligini yalnizca “var” veya “yok”
biciminde degil, kismi aidiyet dereceleriyle ifade eder. Bu
baglamda, Uyelik fonksiyonu (membership function), evrensel
kiime Uzerinde tanimli olup her bir elemanin aitlik derecesini
[0,1] araliginda gbsteren matematiksel bir fonksiyondur.

na(x): X — [0,1]
e uz(x) = 0ise x eleman1 kiimeye hic ait degildir.
o pz(x) =1 ise x elemani kiimeye tamamen aittir.

o 0 < pz(x) < 1isexelemani kiimeye kismen aittir.
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Sekil 1. Bulamik Uyelik fonksiyonlar

Ucgensel Uyelik Fonksiyonu (Triangular), belirli bir
minimum, maksimum ve tepe degeriyle tanimlanir. Basit ve
hesaplamas1 kolaydir. Trapezoidal Uyelik Fonksiyonu, dort
parametre ile tanimlanir, belirli bir aralikta tam iyeligi temsil
eder. Gauss Uyelik Fonksiyonu: Ortalama (u) ve standart sapma
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(o) degerleriyle tanimlanir, yumusak gegisli bir fonksiyondur. S-
diizgii (Sigmoid) Uyelik Fonksiyonu: S biciminde artan veya
azalan bir yapiya sahiptir.

4. BULANIK CIKARIM SISTEMLERI

Mamdani tipi
¢ikarim sistemi

1975’te Ebrahim Mamdani tarafindan 6nerilmistir.
Hem giris hem de ¢ikis degiskenleri bulanik
kiimelerle ifade edilir. Dilsel kural tabanina dayalidir
ve dzellikle kontrol sistemlerinde (6rnegin sicaklik,
hiz, nem kontrolii) yaygin bicimde kullanilir.

Sugeno tipi
¢ikarim istemi
(Takagi—Sugeno
FIS)

Takagi ve Sugeno (1985) tarafindan gelistirilmistir.
Cikis degiskeni bir bulanik kiime yerine dogrusal veya
sabit bir fonksiyon olarak tanimlanir. Matematiksel
modelleme, optimizasyon ve adaptif sistemlerde sik¢a
tercih edilir.

Tsukamoto Tipi
Bulanik Cikarim
Sistemi

Tsukamoto bulanik ¢ikarim sistemi, 1979 yilinda Y.
Tsukamoto tarafindan gelistirilen ve Mamdani ile
Sugeno sistemleri arasinda bir gegis niteligi tagiyan
bir bulanik ¢ikarim yaklagimidir.

Bulanik regresyon analizi (BRA) baglaminda, bu ¢ikarim
sistemleri farkli roller Gstlenir. Sugeno (Takagi—-Sugeno) tipi
cikarim sistemi, ¢iktiyr dogrusal bir fonksiyon olarak tanimladigi
icin regresyon analizine en uygun yapiy1 sunar. Bu yapi, 6zellikle
ANFIS (Adaptive Neuro-Fuzzy Inference System) gibi hibrit
modellerin temelini olusturur ve fonksiyonel iliski kurma
(regresyon) gorevlerinde yiksek performans gosterir. Buna
karsin, Mamdani tipi sistemler daha cok kontrol sistemlerinde
kullanilmakla birlikte, geleneksel BRA modelleri (Tanaka,
FLSR) daha ziyade bir optimizasyon problemi olarak ele alinir ve
dogrudan bir ¢ikarim sistemi kullanmaktan ¢ok bulanik kiime
kavramina dayanur.
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5. BULANIK REGRESYON MODELLERININ
TEORIK ALTYAPISI

Bulanik regresyon, bagimli degiskenin veya model
katsayilarinin bulanik olarak tanimlandigi, klasik regresyon
modellerinden farkli olarak belirsizlikleri dogrudan model yapisi
icerisinde ifade edebilen bir yaklasimdir.

5.1. Model Yapisi
Basit bir bulanik regresyon modeli soyle ifade edilebilir:

? = AO + Alxl + -+ Akxk

Burada y, bulamk cikti; A; katsayilar ise bulanik
sayilardir. Bir bagka yaklagim sekli de

c
Vi = z HiYi
i=1
Bicimindedir.
o c: kural sayis1

e p;: i-kuralin Gyelik derecesi

o ¥, her kural icin ¢iktilar

Girdiler Bulanik Regresyon Fonksiyonlar Cikular
_ Bulantk Regresyon fonk. 1 1y / z\l\ Hl;l
e \ | AR R | - .
[t - / A
\__/ % - \//""'
/'_"\ . Bularuk Regresyon fonk. i . { \ f SR \ =
k’u'.) — P =[x, X, oy Xng, ] i » A’I | >| 2-.“' Yy ,-I >y
B x;“ — Hi¥i /1“‘-—/
; ko (N
| He |} — » Bulamik Regresyon fonk.c | Ve V' BeYe
N 01 == [£12 g sy 4] O/

Sekil 2. Bulanik regresyon (fuzzy regression) modelinin akis
diyagranmm (Voskoglou, 2020).
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Sekil 3’te akis diyagraminda; girdi degiskenleri
X1, X5, ., X Qibi bagimsiz degiskenlerdir (Sicaklik, yogunluk,
slire ve basing gibi). Her biri sisteme bilgi tasir, ancak bu bilgiler
kesin sayilar yerine bulanik degerler olarak da ele alinabilir.

@101, X2, oo, X1 ), P2 (X1, X2, ey Xi ), oo

Bu fonksiyonlar klasik regresyondaki katsayilarin yerine
gecer. Amag, “her x;” icin bir bulanmik tahmin fonksiyonu
uretmektir.

Her fonksiyon, veriye gore bir Gyelik derecesi hesaplar.

Her fonksiyonun ¢iktis1 bir Gyelik derecesi y;’dir.

25 € [0!1]
Bu deger, ilgili kuralin (ya da fonksiyonun) ne kadar etkin
oldugunu belirtir.

Ornegin:
e p; = 0.9 — 1. kural ¢ok giicli sekilde aktif
e U, = 0.3 — 2. kural zayif sekilde aktif

Her bir Gyelik derecesi, kendi bulanik tahmin degeriyle
carpilir. (i;¥;) Bu adimda her kuralin ciktis1, sistemin toplam
ciktisina katkisina gore agirliklandirilir. Sonra tim bu agirlikli
bulanik ¢iktilar toplanir:

Z iy
i

Bu ifade, sistemde tanimlanan tiim kurallarin katkilarini
biitiinlestirmektedir. Her bir regresyon fonksiyonunun ¢iktisi,
kendi 6nem agirligi (w) dogrultusunda genel sistem ¢iktisina etki
eder. En sagda yer alan ¢ift dalgali sembol 7, sistemin bulanik
tahminini, yani elde edilen bulanik ¢iktiy1 temsil etmektedir. Bu
cikti, tek bir kesin deger yerine bir bulanik kiime bi¢ciminde ifade
edilir.  Gerektiginde, bu bulanik kime keskinlestirme
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(defuzzification) yoOntemi araciligiyla sayisal bir degere
dontistiiriilerek yorumlanabilir.

5.2. Yapay Zeka Yaklasimlariyla Entegrasyon

Bulanik regresyon modellerinin yapay zeka teknikleriyle
biitiinlestirilmesi, modelin hem tahmin dogrulugunu artirmakta
hem de yorumlanabilirligini glglendirmektedir. Bulanik
regresyon modelleri, belirsizlik ve ipucuyla tanimli degiskenleri
dogrudan modelleme imkani sunarken, yapay zeka teknikleri
(6rnegin sinir aglari, evrimsel algoritmalar, kimeleme
yontemleri) bu modellerin tahmin dogrulugunu ve adaptasyon
yeteneklerini artirmaktadir (Ramly vd., 2023). Ozellikle, bir
bilesik model yapisinda bulanik regresyonun interpretatif yapisi
ile derin 6grenme ya da genetik optimizasyon gibi yaklasimlarin
otomatik  6grenme  Kkapasitesi  birlestirildiginde,  hem
aciklanabilirlik hem de performans agisindan Gstunlik elde
edilebilmektedir (Wu et al., 2019). Ornegin, aciklanabilir bulank
kiimeleme-tabanli regresyon algoritmasi, Takagi—-Sugeno-Kang
(TSK) yapisina dayali olarak gruplama, tyelik fonksiyonlariin
belirlenmesi ve ardindan gradyan inisle parametre optimizasyonu
uygulayarak geleneksel regresyon yontemlerine kiyasla daha
diisik RMSE ve MAE degerleri gostermistir (Viafia vd., 2022).
Bu baglamda, bulanik regresyon-yapay zek& entegrasyonu,
belirsiz verilerle ¢alisilan finans, mihendislik ve karar destek
sistemleri gibi alanlarda anlamli bir metodolojik ilerleme olarak
degerlendirilebilir.

5.2.1.Neuro-Fuzzy Sistemler

ANFIS (Adaptive Neuro-Fuzzy Inference System), sinir
ag1 ogrenme yetenegi ile bulanik ¢ikarim sistemini birlestirir
(Kisa ve ark., 2023; Danesh, R., et al., 2023). Bu model, kural
tabanli bulanik sistem ile agirlik 6grenmesini harmanlar. ANFIS,
regresyon gorevlerinde etkilidir (Mantalas et al., 2025). Bir
calismada, ANFIS ve Kklasik regresyon yontemleri, malzeme
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Ozelliklerinin tahmini agisindan karsilastirilmistir (Krolo et al.,
2019). Ayrica, A DEPSO optimizasyonu ile hibrit ANFIS modeli
gelistirilerek su kalite parametrelerinin tahmini
gerceklestirilmistir (Ahmadianfar et al., 2022). Bu hibrit yapi,
ciktilar1 dogrusal fonksiyonlar olarak tanimlayan Takagi-Sugeno
(TSK) tipi ¢ikarim sistemini temel alir. TSK'nin regresyon analizi
gorevleri icin Mamdani tipine gore tercih edilmesinin ana sebebi,
¢iktinin dogrudan bir matematiksel regresyon fonksiyonu y =
f(x) olarak ifade edilebilmesi ve bu sayede sinir ag1 algoritmalari
(gradyan inis) ile regresyon parametrelerinin kolaylikla optimize
edilebilmesidir. Bu, ANFIS'i regresyon gorevlerinde guclu ve

uyarlanabilir kilar.
5.2.2.Derin Bulanik Sistemler

Derin 6grenme ve bulanik sistemlerin birlesimi “deep
fuzzy systems” olarak adlandirilir.  Ozellikle regresyon
problemlerinde yorumlanabilir yapiy1 koruyarak dogruluk
artirimi hedeflenir (Junior et al., 2022). Bu yaklagimlar, yiksek
boyutlu veride hem temsil giici hem de yorumlanabilirlik saglar.

5.2.3.Uygulama Alanlar1 ve Ornekler

e Enerji tiketimi tahmini/cevresel modelleme: Sensor
verilerindeki belirsizlikleri modelleme.

« Insaat/gayrimenkul fiyat tahmini: Karisik verilerde hiyerarsik
bulanik regresyon kullanilarak (Demirhan ve ark., 2024).

e Malzeme bilimleri: Mikroyap1 0zelliklerini dngdrmede
ANFIS ve regresyon modellerinin karsilastiriimasi (Krolo et
al., 2019).

« Proses kontrol: Uretim sistemlerinde belirsiz 6lgtimler ile
kontrol modelleri.

o Ekonomi / Finans: Talep tahmini, risk analizi gibi belirsizlik
iceren modeller.

10
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6. UYGULAMA
Tablo 1. Modelin istatistiksel yapisi

|Eleman ||Rolu ||Amag |

Bagimsiz

Degisken (x) Sicaklik (°C) Tahmin igin girdi.

Temel Amag: Tum gozlemleri
kapsayacak sekilde toplam
belirsizligi Y; ¢; en
kicuklemek

4; = (a, ;)
a;:Merkez
¢;: Yayilhim/belirsizlik

Bulanik Katsayilar
(Ao, A1)

Bulanik regresyon modelimiz, katsayilar1 tiggensel
bulanik sayilar 4; = (a;, ¢;) bigiminde tanimlar.

Tablo 2. Modelin kurgulanmasi ve amaci

|Kod/Metin Kism ||Amac1

Modelin
Kurgulanmasi ve
Amaci Tablosu

Tanaka modelinin temel mantigini1 ve DP
katsayilarini agiklar.

Python Kiitiiphane |[numpy, linprog importlarin1 ve amag
ve Model Yapisi fonksiyonu ile kisitlarin (alt/iist sinir esitsizliklerinin)
Kodu matematiksel mantigini gosterir.

Giris boliimiinde belirtildigi gibi, bulanik regresyon
(BRA) modellerinin Python ortaminda nasil kurgulanabilecegine
dair bir ¢erceve sunulmaktadir. Asagidaki yapi, Sekil
3'teki Enerji Tuketimi Tahmini 6rnegini temel alir ve Tanaka'nin
(1982) belirsizligi en kiigliklemeye dayali dogrusal programlama
yaklagimini yansitir.

11
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Bulanik Regresyon ile Enerji Tuketimi Tahmini

Gergek veri

7 — Bulanik Tahmin ()

== Fuzzy Regresyon 1 (Sofuk)
40 Fuzzy Regresyon 2 (lhiman)
== Fuzzy Regresyon 3 (Sicak)

Enerji Tuketimi {y)

0 5 10 15 20 25 30 5 40
Sicaklk (*C)

Ortalama Hata Kare (MSE): 17.011
Sekil 3. Bulamik regresyon ile enerji tiketim tahmini

Sekil 3’te, sicaklik (°C) ile enerji tiketimi (y) arasindaki
iliskiyi  modelleyen bulanik regresyon analizi sonuglari
gosterilmektedir. Gri noktalar go6zlemlenen gercek veri
degerlerini, siyah ¢izgi ise bulanik regresyon modeli tarafindan
tahmin edilen enerji tiketimini () temsil etmektedir. Grafikte
ayrica U¢ farkli bulanik regresyon bileseni (“Soguk”, “Iliman” ve
“Sicak” sicaklik bolgeleri) ayr1 ayr1 gosterilmistir. Bu bilesenler,
sicakligin farkli araliklarinda enerji  tlketim davranisinin
degisimini modelleyen yerel dogrusal regresyon egilimlerini
yansitmaktadir.

Model, sicaklik arttikga enerji tlketiminin dogrusal
bicimde yiikseldigini ortaya koymaktadir. “Soguk” bolgeye
(mavi kesikli ¢izgi) ait regresyon dogrusu, diisiik sicakliklarda
enerji tuketiminin nispeten disiik fakat degisken oldugunu;
“Iliman” boélge (turuncu kesikli ¢izgi) ise daha dengeli bir artis
egilimi sergiledigini gostermektedir. “Sicak™ bolge (yesil kesikli
cizgi) ise yuksek sicakliklarda enerji tiiketiminin belirgin bicimde
arttigin1 gostermektedir. Bu durum, sogutma sistemlerinin enerji
ihtiyacinin sicakliga duyarl oldugunu desteklemektedir.

12



Yazilim Miihendisligi

Modelin performansi, grafigin alt kisminda belirtilen
ortalama hata kareleri (MSE = 17.011) degeri ile
degerlendirilmistir. Bu deger, tahmin edilen degerlerin gozlem
degerlerine yakin oldugunu ve modelin genel olarak iyi bir uyum
sagladigimi gostermektedir. Ancak, bazi sicaklik araliklarinda
gercek verilerin bulanik tahmin dogrularindan hafif sapmalar
goOstermesi, enerji tuketimini etkileyen diger faktorlerin (6rnegin
nem orani, cihaz verimliligi, kullanict davranigi vb.) modele dahil
edilmesiyle iyilestirilebilecegine isaret etmektedir.

Sonug olarak, bu grafik, bulanik regresyon yaklasiminin
enerji  tiketimi  gibi  belirsizlik iceren  degiskenlerin
modellenmesinde etkin bir ara¢ oldugunu gostermektedir. Model,
klasik dogrusal regresyona gore cevresel kosullarin farkli
seviyelerinde daha esnek bir tahmin gucl sunmakta ve yapay
zekd tabanli sistemlerin enerji yOnetimi uygulamalarinda
kullanilabilirligini ortaya koymaktadir.

Bulanik Bolgeler igin RMS Yuzey Grafigi

20.0
17.5
15.0
125
10.0
7.5

RMS Deden

—
=
=]

5.0
25

Sekil 4.Bulanik bdélgeler icin RMS ylizey grafigi

Sekil 4’te elde edilen 3 boyutlu RMS (Root Mean Square
Error) ylizey grafigi, bulanik regresyon modelinin farkli sicaklik
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bolgelerinde (Soguk—Iliman—Sicak) gosterdigi hata dagilimini
strekli bir yizey olarak ortaya koymaktadir. Bu grafik, modelin
tahmin hatasim1 yalmzca sayisal olarak degil, bolgesel
degiskenligini de gorsel bicimde analiz etme olanagi
saglamaktadir (Chukhrova & Johannssen, 2019).

Yuzeyin yiksek oldugu alanlar, RMS degerlerinin
artmastyla birlikte modelin daha fazla belirsizlik icerdigini;
yuzeyin disiik oldugu bolgeler ise modelin daha kararli ve
ongorulebilir galistigin1 gostermektedir. Bu durum, literatiirde
Ozellikle adaptif bulanik ¢ikarim sistemleri (ANFIS) ve hibrit
regresyon modelleri ile yapilan ¢alismalarda da benzer bigimde
rapor edilmistir (Ahmadianfar et al., 2022; Demirhan & Baser,
2024; Pakdel et al., 2025).

Elde edilen yuzeyin “Soguk” bdlgesinde RMS degerinin
yuksek olmasi, diisiik sicakliklarda enerji tiketim davranisinin
karmasik yapisini ve modele dahil edilmeyen gevresel faktorlerin
etkisini g6stermektedir. Benzer sekilde, Soguk bolge hatalarinin
artis1, bulanik kumelerin Gyelik derecelerinin disiik oldugu
araliklarda modelin 6grenme kapasitesinin sinirli kaldigini ortaya
koymaktadir. Buna karsin “Sicak” bolgedeki disik RMS
degerleri, modelin bu aralikta daha dogrusal ve kararl iligkiler
yakaladigini gOstermekte; bu da sicaklik arttikca enerji
tiketiminin yapisal olarak daha o6ngorilebilir hale geldigini
gostermektedir (Demirkan ve ark., 2022).

Ayrica RMS yiizeyinin egimindeki azalma, parametre
duyarliliginin azalmasi anlamina gelir. Bu da modelin belirli
sicaklik araliklarinda robust (saglam) bir yapiya sahip oldugunu
gOstermektedir. Bu bulgu, hibrit yapay zeka tabanli bulanik
sistemlerin parametre kararlilig1 agisindan literatlirde belirtilen
egilimlerle uyumludur (Kong et al., 2025; Bhatia et al., 2025).

Sonug olarak, 3B RMS yizey grafigi, bulanik regresyon
modellerinin performans degerlendirmesinde nitelikli bir arag
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olarak 0ne ¢ikmaktadir. Bu yaklasim hem belirsizlik yonetimi
hem de dUyelik fonksiyonlarmin optimizasyonu sureglerinde
analitik bir referans noktasi olusturur (Junior et al., 2022; Ojha et
al.,, 2019). Ayrica, yapay zekd ve bulanmk mantik tabanli
sistemlerin entegrasyonunda yoruma dayali (explainable) yapay
zeka yoneliminin glclenmesine katki sunmaktadir (Viafa et al.,
2022).

7. SONUC VE GELECEK CALISMALAR

1. Bulanik regresyon analizi (BRA), klasik regresyonun kesin
(crisp) veri varsayimini gevseterek belirsiz, eksik veya sozel
ifadelerle  tanmimlanmus  veriler  (zerinde modelleme
yapilmasina olanak tanir.

2. Yapay Zekad Entegrasyonu ve Soft Computing: Glnlimuz
yapay zekad sistemleri, karar verme sireclerinde siklikla
bulanitk mantik tabanli yaklagimlardan yararlanmaktadir.
Bulanik mantik temelli yontemlerin istatistiksel tekniklerle
birlesimi, 6zellikle belirsizligin dogrudan modellenmesine
imkan taniyan "soft computing"” paradigmasi altinda 6nemli
bir yer tutar.

3. Modelin Yapisal Avantaji (Belirsizlik Yayilimi): Bulanik
regresyon modeli, katsayilar1 bulanik sayilar bigiminde
tamimlar. Modelin temel amaci, tim gdzlemleri kapsayacak
sekilde toplam belirsizligi (yay genisligini) en kugultmektir.
Bu sayede hem belirsiz hem de eksik veriler Uzerinde esnek
tahminler Gretebilme kapasitesine sahip olur.

4. Hibrit Sistemlerin  Ustiinliigii (Neuro-Fuzzy): Bulamk
regresyonun yapay zeka teknikleriyle, 6zellikle sinir aglariyla
(Neuro-Fuzzy) biitiinlestirilmesi hem tahmin dogrulugunu
artirmakta  hem de  modelin  yorumlanabilirligini
guclendirmektedir. Ornegin, ANFIS (Adaptive Neuro-Fuzzy
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Inference System), sinir agi 6grenme yetenegini bulanik
cikarim sistemiyle birlestirerek regresyon gorevlerinde etkili
olmaktadir.

. Genis Uygulama Alani: Bulanik regresyon modelleri,
belirsizlik iceren verilerle c¢alisilan gesitli alanlarda
uygulanabilmektedir. Ornek uygulamalar arasinda enerji
tiketimi tahmini, cevresel modelleme, gayrimenkul fiyat
tahmini  (karmasik verilerde), malzeme bilimleri ve
ekonomi/finans sektorindeki risk analizi gibi modeller yer
almaktadir.

. Aciklanabilir Yapay Zeka (XAl) Odakli Modeller Gelistirme:
Gelecek calismalar, 6zellikle Explainable Al (XAI) odakli
derin bulanik sistemler (deep fuzzy systems) gelistirilmesine
yonlendirilmelidir.  Bu,  yuksek  boyutlu  verilerde
yorumlanabilir ~ yapiyr koruyarak dogruluk artirimini
hedefleyecektir (Junior et al., 2022; Viafa et al., 2022).

Hibrit Optimizasyon Tekniklerinin Kullanimi: Mamdani—
TSK ve ANFIS gibi hibrit modellerin, optimizasyon
algoritmalari ile birlestirilerek, yorumlanabilirlik ve dogruluk
arasindaki dengenin kurulmasi 6nerilmektedir (Bhatia et al.,
2025).

Guraltiye Dayanikli (Robust) Regresyon Gelistirme: Veri
gurdltusiinin  (outliers) oldugu durumlarda daha dogru
tahminler yapabilmek igin gurultiye dayanikli (robust)
bulanik regresyon modellerinin gelistirilmesi Uzerinde
calisiimalidir (Kong et al., 2025).

. Yiksek Boyutlu Veri (Big Data) Olgeklenebilirligi: Cok
degiskenli ve bilyuk veri setleri icin 6lceklenebilir bulanik
modellerin tasarlanmasina odaklanilmalidir (Xue et al.,
2022).
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10. Gergek Diinya Vaka Caligsmalar1 ile Yontem Dogrulama:
Bulanik regresyon ve yapay zeka entegrasyonu yontemlerinin
etkinligini ve giivenilirligini artirmak icin, gelistirilen
modellerin gercek dinyaya uygulanmis kapsamli vaka
caligmalar1  ve  deneysel sonucglarla  dogrulanmasi
Onerilmektedir.
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BUYUK DIL MODELLERINDE PERFORMANS
OPTIMIZASYONLARI: O(N?) ATTENTION
ENGELI VE URETIM ODAKLI COZUMLER

Mazhar KAYAOGLU!
Ugur BERDIBEK?

1. GIRIS

Biiytik dil modelleri (Large Language Models, LLM'ler),
dogal dil isleme gorevlerinde basarilar elde etmistir. Temelini
olusturan Transformer mimarisi, self-attention mekanizmasiyla
baglami etkili bicimde modellemekte; ancak bu mekanizmanin
zaman ve bellek karmasikligi, uzun dizilerde 6lc¢eklenebilirlik

sorunlar1 yaratmaktadir (Vaswani et al., 2017, s. 1). O(n%)

karmasikligi, egitim ve iiretim asamalarinda kaynak tiiketimini
artirarak uygulamalarda verimliligi ve maliyet etkinligini
sinirlamaktadir.  Bu  kitap boliimii, 2015-2025 arasinda

yaymlanmig 30 makale ve teknik raporu derleyerek O(n*)

attention engelini agmaya yonelik yontemleri, donanim odakli
inovasyonlart ve tretim araglarim1 incelemekte; Transformer
tabanli LLM’lerin evrimini biitiinciil bir ¢er¢evede Ozetlemeyi
amaglamaktadir. Transformer mimarisi, “Attention is All You
Need” ile self-attention katmanlarinin biitiinlestirilmesine
dayanmakta ve geleneksel RNN/CNN yaklasimlarina {istiinliik
saglamaktadir (Vaswani et al., 2017, s. 1). Ancak attention

hesaplamalarinin kuadratik karmasikhig O(n*), dizi uzunlugu

' Dr. Bingdl Universitesi, Enformatik B&liimii, Bingdl/ TURKIYE, ORCID: 0000-
0002-5807-9781.

2 Dr. Bagimsiz Arastirmaci, Bingdl / TURKIYE, ORCID: 0000-0003-3202-8342.
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(n) arttikca maliyeti katlanarak yiikselterek 6zetleme ve ¢ok turlu
diyalog gibi gorevlerde uygulanabilirligi kisitlamaktadir.
Literatlirde bu engeli hafifletmek {izere seyrek ve lineer attention
mekanizmalari, nicellestirme (quantization), spekiilatif kod
¢ozme (speculative decoding) ve self-attention’a alternatif
mimariler gelistirilmistir. Derlenen 30 kaynak, FlashAttention
serisi, durum uzay modelleri (SSM’ler) ve tiretim odakli sistemler
calismalari icermektedir. FlashAttention, donanim farkindaligi ve
[O-awareness ile bellek erisimini optimize ederken (Dao et al.,
2022, s.2; Shah et al., 2024, s. 2), Mamba ve benzeri SSM tabanli
yaklasimlar self-attention’in kuadratik maliyetine karsilik dizi
uzunluguna dogrusal O(n) zaman karmagikligi sunmaktadir (Gu

& Dao, 2023, s. 6; Dao & Gu, 2024, s. 6). vLLM ve DeepSpeed
throughput’'u 1.5-4 kata kadar artirarak deployment’
hizlandirmaktadir (Kwon et al., 2023, s. 4; Aminabadi et al.,
2022, s. 7). Quantization teknikleri, model boyutunu kiigiiltiirken
dogruluk kaybini simirlamaya ve enerji verimliligini artirmaya
yoneliktir; GPT-3 gibi biiylik modeller baglaminda (Brown et al.,
2020, not: Bu boliimde dogrudan referans verilmemis olsa da
genel literatiir baglaminda belirtilmistir), bu optimizasyonlar
maliyet ve sirdiiriilebilirlik agisindan kritik goriilmektedir
(Dettmers et al., 2022, s. 5; Xiao et al., 2023, s. 5). Buna karsin
uzun baglam extrapolation’i, donanim heterojenligi ve
etik/cevresel etkiler gibi sorunlar devam etmektedir. Bolim
yapist sOyledir: Boliim 2-4 temel attention ve donanim odakli
optimizasyonlart; Boliim 5-9 ¢oklu sorgu, spekiilatif kod ¢6zme,
KV-cache ve bellek teknikleri, nicellestirme, konum kodlama ve
uzun baglam yaklagimlarini; Bolim 10-11 alternatif mimariler ve
iiretim g¢ergevelerini ele almakta; Boliim 12 ise genel ¢ikarimlar
ve gelecek arastirma yonelimlerini tartismaktadir.
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2. TEMEL ATTENTIiON MEKANIZMASI

Transformer mimarisi, biiylik dil modellerinin (LLM'ler)
temel tasini olusturan bir mimaridir ve dogal dil isleme
gorevlerinde baglamsal temsilleri etkili bicimde yakalar. Bu
mimari, geleneksel sirali modellerin (6rnegin, RNN'ler)
sinirlamalarini  agmak iizere tasarlanmig, paralel hesaplama
yetenegiyle egitim verimliligini artirmaktadir. Temelini olusturan
attention mekanizmasi, giris dizisindeki her 6genin digerleriyle
dinamik iligkilerini modelleyerek uzun menzilli bagimliliklar
(long-range dependencies) yakalamada {istiin performans
sergilemektedir (Vaswani et al.,, 2017, s. 1). Bu bolim,
Transformer'in temel bilesenlerini 6zetleyerek self-attention'in

matematiksel temellerini ve O(n®) karmagiklik engelini

tartismakta; bdylece sonraki boliimlerde ele alinacak
optimizasyon stratejilerine zemin hazirlamaktadir. Transformer
modeli, kodlayici (encoder) ve kod ¢oziicii (decoder)
katmanlarindan olusmakta olup, her katman self-attention, feed-
forward aglar ve katman normalizasyonu gibi alt bilesenleri
icermektedir. Self-attention mekanizmasi, giris vektorlerini sorgu
(query), anahtar (key) ve deger (value) matrislerine doniistiirerek

.
hesaplanir: Attention(Q, K,V") = softmax (QLJ V', burada Q,

N

K ve V sirasiyla sorgu, anahtar ve deger matrisleri, d, ise
boyutluluk faktoriidiir (Vaswani et al., 2017, s. 1). Bu formiil, her
token'n diger token'larla benzerligini hesaplayarak agirlikli bir
toplam dretir ve modelin baglami  global olarak
degerlendirmesine olanak tanir. Multi-head attention, bu islemi
coklu bagliklar altinda ytiriiterek farkli alt uzaylardaki temsilleri
yakalamay1 ve genelleme yetenegini artirmayi amaglamaktadir.
Bu mekanizma, paralel hesaplama ve uzun menzilli bagimlilik
modellemesinde avantajlar sunarken, O(n*) zaman ve bellek

karmasikli§i nedeniyle yiliksek maliyetlidir. Attention skor
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matrisinin hesaplanmasi, dizi uzunlugu » ile kuadratik
Olceklenmekte, uzun baglamh gorevlerde GPU bellek sinirlarini

zorlamakta ve inference latency'sini artirmaktadir. O(n*)

karmasikligin  kaynagi, her token'm tiim diger token'larla
etkilesimini gerektiren tam yogun (dense) attention yapisidir;
bliyiilk modellerde bu durum yiiksek bellek gereksinimi
dogurmaktadir. Literatiirde bu engeli hafifletmeye yonelik
calismalar, Transformer'in evrimini tetiklemistir: seyrek attention
yontemleri, karmasikligt O(nlogn) veya lineer seviyeye

indirmeyi hedeflemekte (Kitaev et al., 2020, s. 2); donanim odakl1
optimizasyonlar ise IO-aware algoritmalarla pratik hizlanmalar
saglamaktadir (Dao et al., 2022, s. 2). Uzun baglam
extrapolation'1 baglaminda, kisa dizilerle egitilen modellerin uzun
test dizilerinde performans kaybi yasadigi gosterilmis (Press et
al., 2022, s. 5) ve enerji tiiketimi ile cevresel etkiler, LLM
6lceklenebilirliginin etik boyutunu giindeme tagimistir. Alternatif
mimariler (6rnegin, SSM tabanl yaklagimlar; Gu & Dao, 2023, s.
6) temel prensipleri korurken bu maliyetleri azaltmay1
amaclamakta olup, sonraki bdliimler bu temel {iizerinde
gelistirilen optimizasyonlar1 ayrintilandiracaktir.

3. DONANIM ODAKLI ATTENTION
OPTIMiZASYONLARI

Transformer mimarisinin temel attention mekanizmasi,
O(n*) karmasikigi nedeniyle hesaplama yogunlugunu

artirmakta; ancak bu engel, modern GPU bellek hiyerarsisini
hedefleyen 10-aware algoritmalarla hafifletilebilmektedir (Dao et
al., 2022, s. 2). Bu boliim, FlashAttention serisi iizerinden
donanim farkindaliginin  attention mekanizmasini  nasil
doniistiirdiigiinii incelemekte; bu yaklagimlar pratikte 7-10 kata
varan hizlanmalarla LLM'lerin uygulanabilirligini artirmaktadir.
Standart attention implementasyonunda softmax igin ara
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matrislerin tam materyalizasyonu, bellekler arasinda tekrarli veri
transferleri gerektirerek maliyeti ylikseltirken, FlashAttention
tiling ve recomputation teknikleriyle bu matrisleri bloklar halinde
isleyip softmax't c¢evrimi¢i hesaplamakta, bellek kullanimini
yaklagik %50 azaltmakta ve 7.6 kata varan hizlanma
saglamaktadir (Dao et al., 2022, s. 2). FlashAttention-3, Hopper
nesli GPU'lara uyarlanarak asenkron islem ve diisiik hassasiyetli
(FP8) aritmetik destegiyle 1.5-2 kat ek hizlanma elde etmekte, 1.2
PFLOPS/s diizeyine ulasmakta ve Llama 7B modellerinde
inference latency'sini yaklasik %40 azaltmaktadir (Shah et al.,
2024, s. 2). Bu donanim odakli yaklasimlar, quantization
teknikleriyle (Dettmers et al., 2022, s. 5) ve vVLLM gibi {iretim
cerceveleriyle (Kwon et al., 2023, s. 4) birlestirildiginde ek
verimlilik kazanimlar iiretmektedir. Ancak temel karmasiklik
degismemekte, uzun dizilerde maliyet siirmekte ve GPU merkezli
tasarim, donamim  bagimliligt  nedeniyle  portabiliteyi
sinirlamaktadir; bu nedenle Mamba gibi alternatif mimarilerle

(Gu & Dao, 2023, s. 6) hibrit sistemler gelistirmek, O(n’)

engelini donanim, sistem ve algoritma diizeylerinde birlikte
hafifletmeyi hedeflemektedir.

4. SEYREK VE LINEER ATTENTION
YONTEMLERI

Seyrek (sparse) ve lineer attention yOntemleri,
Transformer mimarisinin temelindeki O(n*) karmasikligin,
attention matrisinin tam yogunlugundan (dense) kaynaklandiginm
kabul ederek, bu matrisi seyrelterek veya yaklagiklayarak
maliyeti diisiirmeyi amaglamaktadir. Bu yaklagimlar, attention’1
yerel veya rastgele alt kiimelerle sinirlandirarak uzun diziler i¢in
O(nlogn) ya da O(n) karmasikliga inebilmektedir (Tay et al.,
2020, s. 3). Bu boliim, Reformer, Longformer, Big Bird ve
Performers gibi yontemleri, Efficient Transformers derlemesini
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gerceve metin olarak kullanarak incelemekte ve bu tekniklerin
donanim odakli optimizasyonlarla (Boliim 3) tamamlayiciligin
vurgulamaktadir.

Reformer, locality-sensitive hashing (LSH) ile benzer
token’lar1 ayn1 hash bucket’larinda gruplayarak, her sorgunun
yalnizca ilgili anahtarlarla etkilesmesini saglar ve bdylece
attention karmasikligin1 yaklasik O(nlogn) diizeyine indirger

(Kitaev et al., 2020, s. 2). LSH attention, sorgu vektorlerini
rastgele hiperdiizlemlere yansitarak benzerlik skorlarini

yaklastirir; tam (O(n”) matris yerine hash tabanli bir yap1 kullanir

ve reversible layers ile bellek tiiketimini azaltir. Deneysel
sonuclar, 64K token’lik dizilerde yaklasik %50 bellek tasarrufu
saglarken, hashing’in stokastik dogasi dogrulukta sinirli da olsa
bozulma riski tagimaktadir (Kitaev et al., 2020, s. 2).

Longformer, uzun belge isleme i¢in sliding window,
dilated ve global attention bilesenlerini birlestirerek, pencere
boyutu w i¢in yaklasik O(n-w) karmasiklik sunar (Beltagy et

al., 2020, s. 2). Dilated pattern, her k. token’in 6rneklenmesiyle
kapsama alanini genisletirken, az sayida global token (6rnegin,
baslik, 6zel isaretleyiciler) lizerinden uzun menzilli bagimliliklar
korur. LED (Longformer Encoder-Decoder), 16K token’lik
baglamlarda arXiv 6zetleme gibi gérevlerde ROUGE skorlarinda
iyilesmeler rapor etmektedir (Beltagy et al., 2020, s. 2). Big Bird
ise block-sparse bir sema ile yerel bloklar, rastgele baglantilar ve
global token’lar1 birlestirerek teorik olarak Turing-complete ve
universal approximator Ozelliklerini muhafaza eder; dikkat
grafigini seyrek bir G=(V,E) yapist olarak tamimlayarak

karmagikligi O(n) diizeyine indirir (Zaheer et al., 2020, s. 2).

Performers, FAVOR+ (Fast Attention Via positive
Orthogonal Random features) algoritmasiyla softmax attention’
random feature approximation araciligiyla lineerlestirir:
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softmax ( oK' ]V ~ ¢(Q) (¢(K ) V) ; burada ¢ rastgele Fourier

A
tabanli 6zellikleri temsil eder ve karmasikligi O(n-d) diizeyine

indirger (Choromanski et al., 2020, s. 3). Efficient Transformers
derlemesi, bu yaklasimlar1 sistematik bi¢cimde karsilastirarak,
uzun baglamlarda enerji verimliligi ve o6l¢eklenebilirlik
kazanimlarina ragmen approximation hatalar1 ve gorev
bagimliliginin ortak sinirlamalar olduguna isaret etmektedir (Tay
et al., 2020, s. 3). Bu ¢erceve, ilerleyen boliimlerde ele alinacak

coklu sorgu ve spekiilatif decoding teknikleriyle birlikte, O(n*)

engelinin algoritmik diizeyde asilmasinda yol gdsterici bir rol
istlenmektedir.

5. COKLU SORGU VE GRUPLU SORGU
ATTENTION

Transformer mimarisinin attention katmanlari, multi-head
attention (MHA) yapisiyla zengin temsiller iiretmekte, ancak bu
yap1 bellek ve hesaplama maliyetini artirarak 6zellikle tiretim
(inference) asamasinda KV-cache boyutunu biiyiitmektedir.
Coklu sorgu attention (MQA) ve gruplu sorgu attention (GQA),
head sayisina bagli bu yiikii azaltarak KV-cache verimliligini
yiikseltmekte ve O(n”) engelini dolayli bigimde hafifletmektedir
(Ainslie et al., 2023, s. 3). Bu boliim, GQA’nin matematiksel
cergevesini ve biiyiik dil modellerindeki kullanimini inceleyerek,
attention tasarirminda verimlilik odakli bir bakis agis1
sunmaktadir. MHA, attention’t birden c¢ok bashk altinda
yiiriiterek farkli alt uzaylarda bagimliliklar1 yakalar; her head i¢in
ayrt K ve V' matrislerinin saklanmasi, KV-cache boyutunu head
sayistyla orantili biiyiitmekte ve uzun baglamlarda bellek
baskisini artirmaktadir (Vaswani et al., 2017, s. 1). MQA, tim
head’ler icin tek bir K ve V' kullanarak cache karmasikligini
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diisiiriir; bu, inference hizinda artis saglarken, head cesitliligini
azaltarak baz1 gorevlerde egitim stabilitesini olumsuz
etkileyebilmektedir (Ainslie et al., 2023, s. 3). GQA, MHA ve
MQA arasinda bir denge kurar. Sorgular g gruba ayrilir, her grup

m head’i paylasir ve her grup i¢in tek bir K/V seti tutulur;
toplam head sayis1t H =g-m olup cache karmagikligi g ile
Olceklenir (Ainslie et al., 2023, s. 3). Boylece, MHA’ya gore
belirgin bellek tasarrufu saglanirken, MQA’ya kiyasla daha fazla
head ¢esitliligi korunur. PaLM ve Llama 2 gibi modellerde GQA
kullanimiyla, MHA’ya yakin dogruluk yaninda inference’ta
hizlanma ve otoregresif iiretimde daha diigiik latency elde
edilmistir (Ainslie et al., 2023, s. 3). GQA i¢in 6nerilen uptraining
stireci, onceden egitilmis MHA checkpoint’lerinin GQA’ya
doniistiiriilmesini, head’lerin benzerliklerine gére gruplanmasini,
K /V agirliklarinin ortalanmasini ve kisa bir yeniden egitimle
perplexity kaybinin %1’in altinda tutulmasin1 amaglamakta; bu
da tek GPU {izerinde fine-tuning gibi kaynak kisitli senaryolarda
avantaj saglamakta ve ¢ok uzun baglamlarda Longformer gibi
seyrek yontemlerle birlestirildiginde daha etkili olmaktadir
(Ainslie et al., 2023, s. 3; Beltagy et al., 2020, s. 2).

Karsilastirmali ¢alismalar, GQA’nin MQA’ya gore dogal
dil anlama gorevlerinde (6rnegin GLUE) %2-3 daha yiiksek
skorlar elde ederken, MHA’dan daha hizli calistigin
gostermektedir (Ainslie et al., 2023, s. 3). KV-cache
optimizasyonlar1 ve verimli servis altyapilariyla (6rnegin vLLM;
Kwon et al., 2023, s. 4) birlikte kullanildiginda, toplam enerji
tilkketiminde azalmalara katki sundugu rapor edilmistir. Sonug
olarak, coklu sorgu ve gruplu sorgu attention varyantlari,
Transformer attention katmanlarini KV-cache odakli yeniden

diizenleyerek O(n”*) engelini pratik diizeyde hafifletmekte ve

LLM’lerin  dretim  senaryolarinda  verimlilik  artiglar
saglamaktadir.
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6. SPEKULATIF KOD COZME YONTEMLERI

Autoregressive biiylik dil modelleri (LLM’ler), token’lar1
sirali iirettigi ve O(n’) attention engeliyle birlestigi icin
inference latency’si nedeniyle gercek zamanli uygulamalarda
stirhdir. Spekiilatif kod ¢6zme, kii¢lik bir draft model ve paralel
dogrulama yoluyla birden ¢ok token’t eszamanli tahmin ederek
2-3 kata varan hizlanmalar sunar (Leviathan et al., 2023, s. 3).
Temel sema, verili baglamda draft modelin uzunlugu L olan aday
diziler iiretmesi ve ana modelin bunlar1 paralel dogrulamasina
dayanir; kabul oraninin beklenen degeri E[a] oldugunda, ana

modele ¢agri bagina iiretilen token sayisinin beklenen degeri
yaklasik E[aL] dir.

Medusa, spekiilatif yaklagimi ¢oklu decoding head’leriyle
genisleterek ayni adimda birden c¢ok token tahmin etmekte ve
LLaMA/Vicuna tabanlt modellerde 2.2-2.8 kat hizlanma elde
etmektedir (Cai et al.,, 2024, s. 4). EAGLE, feature-level
autoregression ve agac tabanli draft yapilariyla LLaMA2-Chat
70B fizerinde 2.7-3.5 kat hizlanma ve iki kat throughput artisi
raporlar (Li et al., 2024a, s. 4). EAGLE-2 ise context-aware
dinamik agaclarla dallanmay1 baglama duyarh giiven esiklerine
gore uyarlayarak ek %20-40 hizlanma ve toplamda 3.05-4.26 kat
kazang saglamaktadir (Li et al., 2024b, s. 4). GQA gibi attention
varyantlar1 (Ainslie et al., 2023, s. 3) ve KV-cache
optimizasyonlartyla (Kwon et al., 2023, s. 4) birlestiginde, bu
yontemler O(n”) engelini algoritmik olarak degistirmeksizin

LLM iiretim performansini doniistiirmektedir.

7. KV-CACHE OPTIMIiZASYONLARI VE
SUREKLI TOPLU ISLEME

Autoregressive biiyilk dil modellerinde (LLM'ler),
attention sirasinda anahtar-deger (KV) ciftlerinin onbellege
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alinmasi1 verimliligi artirir; ancak cache’in dinamik yonetimi,
ozellikle degisken dizi uzunluklarinda bellek parcalanmasina yol

acarak O(n’) engelini inference asamasinda agirlastirir. KV-

cache optimizasyonlart ve siirekli toplu isleme (continuous
batching), blok tabanli bellek tahsisi ve iterasyon seviyesi
zamanlama ile bu sorunu hafifletmekte; throughput’u birkag
kattan onlarca kata kadar yiikseltebilmektedir (Kwon et al., 2023,
s.4; Yuetal., 2022, s. 4; Leviathan et al., 2023, s. 3).

PagedAttention, vLLM inference engine’inin ¢ekirdegini
olusturarak K'V-cache’i sanal bellek sayfalarina benzer bi¢imde
yonetir, GPU bellek pargalanmasini azaltir ve sabit boyutlu
bloklardan olusan bir diizenle serbest bloklarin yeniden
kullanimin1 saglar. Boylece Hugging Face Transformers tabanl
coziimlere kiyasla 2-24 kata varan throughput iyilesmeleri ve
esnek dagitim elde edilir (Kwon et al., 2023, s. 4). Orca tabanh
stirekli toplu isleme, istek iterasyonlarini diiglim ve bagimliliklar
kenar olarak modelleyen bir ¢izge iizerinde iterasyon diizeyi
zamanlama uygular; hazir iterasyonlardan batch olusturarak
GPT-3 o6lgeginde NVIDIA FasterTransformer’a kiyasla benzer
gecikme altinda 36.9 kata kadar throughput artis1 saglar (Yu et
al., 2022, s. 4). PagedAttention bellek yonetimine, continuous
batching ise zamanlamaya odaklandigindan, vLLM gibi
engine’lerde birlikte kullanimlari, donanim bagimliligr ve

dinamik yiik dengesizligine karsin, O(n’) engelini pratik
diizeyde hafifleten tamamlayict optimizasyonlar sunmaktadir
(Kwon et al., 2023, s. 4; Leviathan et al., 2023, s. 3).

8. KONUM KODLAMA VE UZUN BAGLAM
YONTEMLERI

Biiyiikk dil modellerinin (LLM'ler) parametre 6lcegi ve
attention katmanlarimin karmagikligi, hesaplama maliyetini
yiikselterek  deployment't  zorlastirmaktadir.  Nicellestirme
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(quantization), agirlik ve aktivasyonlar1 8- veya 4-bit temsillere
indirerek bellek gereksinimini azaltir, uygun donanimda
inference hizim1 artirir ve LLM.int8(), SmoothQuant, GPTQ,
AWQ, QLORA ile KV-cache ve continuous batching
optimizasyonlar1 ¢ergevesinde ele alinmaktadir. LLM.int8(), 8-
bit matris ¢arpimiyla Transformer katmanlarini quantize eder ve
aykir1 aktivasyonlar1 FP16 alt kiimesine tasiyarak %350 tasarruf
saglar. SmoothQuant, aktivasyon aykirilarini agirliklara yeniden
Ol¢ekleyerek INT8 quantization stabilize eder ve FP16’ya yakin
perplexity ile kazanimlar tiretir. GPTQ, katman bazli weight-only
quantization ile 3-4 bit seviyesinde dogrulugu korurken, AWQ
activation-aware weight quantization ile ©6nemli agirliklar
saklaylp yalmzca digerlerini 4-bit'e indirger. QLORA, 4-bit
NormalFloat ve LoRA'yi paged optimizers ve double
quantization ile birlestirerek 65B modellerin 48GB GPU iizerinde
fine-tuning'ini  ve  ChatGPT-benzeri performans saglar.
SmoothQuant’un aktivasyon, GPTQ ve AWQ’nun ise weight-
only yapida oldugu; birlikte kullanildiklarinda model boyutunu

dort kat kiiciiltebildikleri ve O(n*) attention engelini dogrudan

azaltmasalar da KV-cache ve continuous batching ile
Ol¢eklenebilir inference sunduklari raporlanmaktadir (Dettmers et
al., 2022, s. 5; Kwon et al., 2023, s. 4; Yu et al., 2022, s. 4; Xiao
et al., 2023, s. 5; Frantar et al., 2022, s. 5; Lin et al., 2023, s. 5;
Dettmers et al., 2023, s. 5).

9. KONUM KODLAMA VE UZUN BAGLAM
YONTEMLERI

Transformer mimarisinde konum bilgisi, token dizilerinin
siral1 yapisin1 kodlayarak baglamsal temsilleri zenginlestirir;
ancak klasik sabit siniizoidal konum kodlamalari, egitimdeki
baglam uzunlugunu asan dizilerde koti genelleserek uzun
baglamli gorevlerde attention darbogazini agirlastirir. Modern
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yaklagimlar, relative konumlandirma ve interpolation
teknikleriyle bu sinirlamayr asarak, egitim penceresinin ¢ok
Otesine uzanan baglamlarda LLM’lerin kullanilabilirligini
artirmaktadir (Su et al., 2021, s. 6; Chen et al., 2023, s. 6). Bu
bolim RoFormer (RoPE), ALiBi ve Position Interpolation
yontemlerini, matematiksel ilkeleri, extrapolation kapasiteleri ve
pratik etkileriyle birlikte; ayrica nicellestirme stratejileri (Boliim
8) ve alternatif mimarilerle (B6liim 10) etkilesimleri baglaminda
tartigmaktadir. RoPE, sorgu-anahtar vektorlerine konum bagiml
donme operatorii uygulayarak mutlak pozisyonu relative
mesafeye doniistiirlir ve uzun metin gorevlerinde LLM’lerde
yaygin olarak benimsenmistir (Su et al., 2021, s. 6). ALiBi, ayr
konum embedding’lerini kaldirip attention logit’lerine uzaklik
temelli lineer bias ekleyerek kisa baglamda egitilmis modellerin
daha uzun dizilere genellemesini saglar (Press et al., 2022, s. 6).
Position Interpolation, RoPE tabanli modellerde pozisyon
indekslerini yeniden dlgekleyerek baglam penceresini onlarca kat
genisletirken LongBench benzeri benchmark’larda rekabetgi
dogrulugu korur (Chen et al., 2023, s. 6). Bu teknikler, seyrek
attention yontemleriyle birlikte attention darbogazini anlamli
Olcilide hafifleten tamamlayici araglar sunar (Tay et al., 2020, s.
3).

10. O(1) KARMASIKLIKLI ALTERNATIF
MIMARILER: DURUM UZAY MODELLERI

Transformer temelli modellerdeki O(n”) attention engeli

uzun dizilerde Olgeklenebilirligi sinirlandirirken, durum uzay
modelleri (State Space Models, SSM'ler) lineer zaman
karmagikligi O(n) veya sabit O(1) adim basina hesaplama ile bu
sorunu hafifleterek Transformer'lara rekabetci bir alternatif
sunmaktadir. Siirekli dinamik sistemlerden esinlenen bu
mimariler, egitim paralelligini korurken inference sirasinda O(1)

adim bagina maliyet hedefler. Bu boliim, Mamba, Mamba-2,

32



Yazilim Miihendisligi

RetNet ve RWKYV mimarilerini 6zetlemektedir. Mamba, selective
SSM yaklasimiyla girise bagimli durum gegisleri tanimlar ve
uzun menzilli bagimliliklar1 lineer zamanli sekans modeli
cercevesinde yakalar (Gu & Dao, 2023, s. 6). Siirekli zaman SSM
denklemi

x(f) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

seklindedir. 1.4B parametreli Mamba, dil modellemede benzer
Olcekli Transformer’larla rekabetci perplexity elde ederken
inference throughput’unu birka¢ kata kadar artirmaktadir.
Mamba-2, State Space Duality (SSD) framework’iiyle SSM ve
attention arasindaki bagi formalize eder; 4 matrisinin uygun bir
tabanda diyagonal yapiya indirgenmesiyle structured matris
carpimlar1 {lizerinden (O(n) karmasiklikta attention-benzeri
islemler gergeklestirir (Dao & Gu, 2024, s. 7). WikiText103
sonuglari, 3B parametreli Mamba-2’nin Transformer tabanl
modellere gore daha diisiik loss ve 2-8 kat egitim/inference
hizlanmas1 sagladigin1  gdstermektedir. RetNet (Retentive
Network), retention mekanizmasiyla RNN-benzeri ardisik
giincellemeyi egitimde paralel, inference’ta ise hafif bir yap:
olarak formiile eder:

h=aOh_ +pOx,

(Sun et al, 2023, s. 7). Chunk-wise paralellestirme,
Transformer’a yakin egitim hizi saglarken, inference’ta O(1)

adim basina maliyet ve diisiik bellek ayak izi sunar. RWKV, RNN
ve Transformer ilkelerini birlestiren hibrit bir tasarim olup, time-
mixing ile ge¢gmis durumlarin Gistel sontimlii karigimini ve mevceut
girdinin lineer katkisini birlestirir:

ht =W®ht—1 +(1_W)®g(‘xt)

(Pengetal., 2023, s. 7). Boylece sabit O(1) adim basina maliyetle
uzun baglamlart igleyebilmekte; 14B parametreli RWKV
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modelleri  Pile veri kiimesinde benzer biiylikliikteki
Transformer’larla karsilagtirilabilir performans sergilemektedir.
Kargilagtirmali analizler, Mamba’nin selective SSM, RetNet’in
retention, RWKV’nin hibrit RNN-Transformer tasarimi ve
Mamba-2’nin dualite tabanli yapisi sayesinde O(1) adim basina

maliyet avantaji sundugunu; uygun senaryolarda 4-8 kata varan
hizlanmalarin rapor edildigini gostermektedir (Gu & Dao, 2023,
s. 6; Sunetal., 2023, s. 7; Peng et al., 2023, s. 7; Dao & Gu, 2024,

s. 7; Chen et al., 2023, s. 6). Bu mimariler, klasik O(n*) attention

engelini  yapisal dilizeyde asarak, konum interpolation
teknikleriyle (Chen et al., 2023, s. 6) birlikte kullanildiginda
enerji verimliliginde anlamli iyilesmeler ve edge computing
senaryolarinda daha hafif deployment profilleri sunmaktadir.

11. URETIiM CERCEVELERI VE UYGULAMA
ARACLARI

Biiytik dil modellerinin (LLM'ler) pratik uygulamalarinda
O(n®) attention engeli, inference latency’sini ve kaynak

kullanimimi  artirmakta; DeepSpeed Inference, vLLM ve
FasterTransformer gibi iiretim ¢ergeveleri, multi-GPU paralelligi,
heterojen bellek yonetimi ve kernel optimizasyonlart ile
throughput’u yaklasik 1.5-4 kat yiikseltmektedir (Aminabadi et
al., 2022, s. 7; Kwon et al., 2023, s. 8; NVIDIA, 2023, s. 8).
DeepSpeed Inference, tensor parallelism ve pipeline scheduling
ile katmanlart ¢oklu GPU iizerine bolerek biiyiik Olgekli
Transformer modellerinde, 6zellikle MT-NLG benzeri 530B
parametreli yapilarda, latency’de 7.3 kata kadar azalma ve
throughput’ta 1.5 katin iizerinde artig saglamakta; MoE destegi ve
Azure entegrasyonu ile enerji verimliligini yaklasik %350
artirirken, multi-node iletisim overhead’1 ve kii¢iik modellerde
sinirlt kazang dezavantaj olusturmaktadir (Aminabadi et al.,
2022, s. 7). vLLM, PagedAttention temelli KV-cache sayfalama
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tasarimiyla bellek pargalanmasini azaltarak degisken uzunluklu
isteklerde throughput’u 2-4 kat artirmakta ve Llama 70B igin
Hugging Face tabanli yaklagimlara kiyasla yaklasik %55 daha
disiik latency sunmaktadir (Kwon et al., 2023, s. 8).
FasterTransformer ise kernel fusion ve nicellestirme ile, Ampere
nesli GPU’larda GPT-J (6B) i¢in PyTorch’a gore 5 kata varan
hizlanma saglamakta, ancak NVIDIA ekosistemine siki
bagimlilik portabiliteyi sinirlamaktadir (NVIDIA, 2023, s. 8). Bu
cergeveler, SSM tabanli alternatif mimarilerle biitiinlestiginde,
biiyiik 6l¢ekli LLM servislerinin maliyet ve latency agisindan
sirdiiriilebilir  deployment’t i¢in temel bilesenler haline
gelmektedir (Gu & Dao, 2023, s. 6).

12. SONUC VE GELECEK YONELIMLER

Bu kitap boliimii, biiyiik dil modellerinin (LLM'ler)
cekirdek zorluklarindan biri olan O(n’) attention engelini

biitiinciil bir ¢ercevede ele almis, performans optimizasyonlarini
mimari, sistem ve uygulama katmanlar1 boyunca sentezlemistir.
Giristen (Boliim 1) baslayarak temel attention mekanizmalari
(B6liim 2), donanim odakl1 optimizasyonlar (Boliim 3), seyrek ve
lineer attention (Bolim 4), ¢oklu ve gruplu sorgu attention
(Bolim 5), spekiilatif kod ¢ozme (Bolim 6), KV-cache ve
batching stratejileri (Boliim 7), nicellestirme (B6lim 8), konum
kodlama ve uzun baglam (Bolim 9), O(n)-O(1) karmasiklikli
alternatif mimariler (Béliim 10) ve liretim ¢erceveleri (Boliim 11)
tartisilmis; bu yaklasimlar birlikte inference hizimi yaklagik 2-37
kat artirmakta, bellek kullanimin1 %>50-80 azaltmakta ve
LLM’lerin pratik kullanimini dontistiirmektedir (Vaswani et al.,
2017, s. 1; Gu & Dao, 2023, s. 6; Kwon et al., 2023, s. 8; Dao et
al., 2022, s. 2; Leviathan et al., 2023, s. 3; Dao & Gu, 2024, s. 7).
Ana ¢ikarimlar {li¢ katmanda 6zetlenebilir. (1) Mimari diizeyde,
seyrek ve lineer attention (Longformer, Performer) O(n)
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karmagiklik sunarak uzun baglamli gorevlerde (n>16K)
perplexity’yi %15-25 azaltmakta (Beltagy et al., 2020, s. 3;
Choromanski et al., 2020, s. 3); konum kodlama ve interpolation
(RoPE, ALiBi, Position Interpolation) ile birlestiginde uzun
baglam extrapolation’1 iyilesmektedir (Su et al., 2021, s. 6; Press
et al., 2022, s. 6; Chen et al., 2023, s. 6). (2) Sistem diizeyinde,
PagedAttention ve continuous batching, KV-cache ve zamanlama
optimizasyonlartyla throughput’u 20-40 kat artirmakta,
nicellestirme (LLM.int8(), GPTQ, AWQ, QLORA) ile model
boyutunu 4-8 kat kiicliltmekte ve enerji maliyetlerini %50-70
azaltmaktadir (Yu et al., 2022, s. 4; Frantar et al., 2022, s. 5;
Dettmers et al., 2023, s. 5; Lin et al., 2023, s. 5; Dettmers et al.,
2022, s. 5; Xiao et al., 2023, s. 5; Kwon et al., 2023, s. 4). (3)
Uygulama diizeyinde, DeepSpeed, vLLM ve FasterTransformer
gibi ¢ergeveler, spekiilatif decoding (Medusa, EAGLE) ile
entegre edildiginde gercek zamanl {iretimi 3-5 kat hizlandirarak
endistriyel ~ Olgcekte  deployment’t mimkiin  kilmaktadir
(Aminabadi et al., 2022, s. 7; Kwon et al., 2023, s. 8; NVIDIA,
2023,s.8; Caietal.,2024,s.4; Lietal., 2024a, s. 4). SSM-tabanl
mimariler (Mamba, RetNet, RWKV) ve SSM-Transformer

hibritleri ise O(n*) engelini yapisal diizeyde gevseterek O(n) -
O(1) rejimlerine yaklagsmaktadir (Gu & Dao, 2023, s. 6; Sun et
al., 2023, s. 7; Peng et al., 2023, s. 7).

Bununla birlikte, donanim bagimliligt (GPU-6zgii
kernel’ler), diisiik bit nicellestirmede quantization noise, asiri
uzun baglamlarda interpolation bozulmalari ve alternatif
mimarilerde egitim paralelligi sinirlamalari, O(n”) engelinin
yalnizca yonetilebilir hale geldigini gostermektedir (NVIDIA,
2023, s. 8; Lin et al., 2023, s. 5; Chen et al., 2023, s. 6; Peng et
al., 2023, s. 7). Gelecek calismalar i¢in hibrit ve modiiler SSM-
attention tasarimlari, baglama duyarli adaptif optimizasyonlar,
siirdiiriilebilir ve enerji-aware nicellestirme, multimodal uzun
baglam yontemleri ve federated/privasi odakli cergeveler
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(HELM, BigBench ve benzeri benchmark’larin genisletilmesiyle)
on plana ¢ikmaktadir. Sonug olarak, bu béliim, O(n”) attention

engelinin yenilikgi mimari, sistemsel ve iretim odakl
optimizasyonlarla biiyiik dl¢iide asilabilecegini gostererek, daha
verimli, 6lgeklenebilir ve etik LLM tasarimlari i¢in kavramsal bir
temel sunmaktadir.

37



Yazilim Miihendisligi

KAYNAKCA

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebron,
D., & Sanghai, S. (2023). GQA: Training generalized
multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245. Erigim
adresi: https://arxiv.org/abs/2305.13245

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Smith, C., Ly,
A., Momcilovic, B., ... & He, Y. (2022). DeepSpeed
inference: Enabling efficient inference of transformer
models at unprecedented scale (Microsoft Technical
Report MSR-TR-2022-21). Microsoft Research. Erigim
adresi: https://arxiv.org/abs/2207.00032

Beltagy, 1., Peters, M. E., & Cohan, A. (2020). Longformer: The
long-document transformer. arXiv preprint
arXiv:2004.05150. Erisim adresi:
https://arxiv.org/abs/2004.05150

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D., & Dao,
T. (2024). Medusa: Simple LLM inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774. Erisim adresi:
https://arxiv.org/abs/2401.10774

Chen, S., Wong, S., Chen, L., & Tian, Y. (2023). Extending
context window of large language models via positional
interpolation. arXiv preprint arXiv:2306.15595. Erisim
adresi: https://arxiv.org/abs/2306.15595

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane,
A., Sarlos, T., ... & Davis, A. (2020). Rethinking attention
with performers. arXiv preprint arXiv:2009.14794.
Erisim adresi: https://arxiv.org/abs/2009.14794

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., & R¢, C. (2022).
FlashAttention: Fast and memory-efficient exact attention

38


https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2009.14794

Yazilim Miihendisligi

with 1O-awareness. arXiv preprint arXiv:2205.14135.
Erisim adresi: https://arxiv.org/abs/2205.14135

Dao, T., & Gu, A. (2024). Transformers are SSMs: Generalized
models and efficient algorithms through structured state
space duality. arXiv preprint arXiv:2405.21060. Erisim
adresi: https://arxiv.org/abs/2405.21060

Dettmers, T., Lewis, M., Belkada, Y., & Zettlemoyer, L. (2022).
LLM.int8(): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339. Erigim adresi:
https://arxiv.org/abs/2208.07339

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L.
(2023). QLORA: Efficient finetuning of quantized LLMs.
arXiv  preprint arXiv:2305.14314. Erisim adresi:
https://arxiv.org/abs/2305.14314

Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2022).
GPTQ: Accurate post-training quantization for generative
pre-trained transformers. arXiv preprint
arXiv:2210.17323. Erisim adresi:
https://arxiv.org/abs/2210.17323

Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752. Erisim adresi:
https://arxiv.org/abs/2312.00752

Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451.
Erisim adresi: https://arxiv.org/abs/2001.04451

Kwon, W, Li, Z., Zhuang, S., Sheng, L., Zheng, S., Yu, C. Y., ...
& Stoica, 1. (2023). Efficient memory management for
large language model serving with PagedAttention. In
Proceedings of the 29th Symposium on Operating Systems

39


https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2001.04451

Yazilim Miihendisligi

Principles (pp- 611-626). Erisim adresi:
https://arxiv.org/abs/2309.06180

Leviathan, Y., Kalman, M., & Matias, Y. (2023). Fast inference
from transformers via speculative decoding. arXiv
preprint arXiv:2211.17192. Erisim adresi:
https://arxiv.org/abs/2211.17192

Li, Y., Wei, F., Zhang, C., & Zhang, H. (2024a). EAGLE:
Speculative sampling requires rethinking feature
uncertainty. arXiv preprint arXiv:2401.15077. Erigim
adresi: https://arxiv.org/abs/2401.15077

Li, Y., Wei, F., Zhang, C., & Zhang, H. (2024b). EAGLE-2:
Faster inference of language models with dynamic draft

trees. arXiv preprint arXiv:2406.16858. Erisim adresi:
https://arxiv.org/abs/2406.16858

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., & Han, S. (2023).
AWQ: Activation-aware weight quantization for LLM
compression and  acceleration. arXiv  preprint
arXiv:2306.00978. Erisim adresi:
https://arxiv.org/abs/2306.00978

NVIDIA. (2023). FasterTransformer: NVIDIA's library for
accelerating transformer model inference. NVIDIA
Developer Documentation. Erisim adresi:
https://github.com/NVIDIA/FasterTransformer

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S.,
Cao, H., ... & Zhu, X. (2023). RWKV: Reinventing RNNs
for the transformer era. arXiv preprint arXiv:2305.13048.
Erisim adresi: https://arxiv.org/abs/2305.13048

Press, O., Smith, N. A., & Lewis, M. (2022). Train short, test
long: Attention with linear biases enables input length

extrapolation. arXiv preprint arXiv:2108.12409. Erisim
adresi: https://arxiv.org/abs/2108.12409

40


https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2306.00978
https://github.com/NVIDIA/FasterTransformer
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2108.12409

Yazilim Miihendisligi

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P., &
Dao, T. (2024). FlashAttention-3: Fast and accurate
attention with asynchrony and low-precision. arXiv
preprint arXiv:2407.08608. Erisim adresi:
https://arxiv.org/abs/2407.08608

Su, J., Lu, Y., Pan, S., Wen, B., & Liu, Y. (2021). RoFormer:
Enhanced transformer with rotary position embedding.
arXiv  preprint arXiv:2104.09864. Erisim adresi:
https://arxiv.org/abs/2104.09864

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., ... & Wei,
F. (2023). Retentive network: A successor to transformer
for large language models. arXiv  preprint
arXiv:2307.08621. Erisim adresi:
https://arxiv.org/abs/2307.08621

Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient
transformers: A survey. arXiv preprint arXiv:2009.06732.
Erisim adresi: https://arxiv.org/abs/2009.06732

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all
you need. In Advances in Neural Information Processing
Systems (pp. 5998-6008). Erisim adresi:
https://arxiv.org/abs/1706.03762

Xiao, G., Lin, J., Seznec, M., Wu, J., Demouth, J., & Han, S.
(2023). SmoothQuant: Accurate and efficient post-
training quantization for large language models. arXiv
preprint arXiv:2211.10438. Erigim adresi:
https://arxiv.org/abs/2211.10438

Yu, G.-L, Jeong, J. S., Kim, G.-W., Kim, S., & Chun, B.-G.
(2022). Orca: A distributed serving system for
transformer-based generative models. In Proceedings of
the 16th USENIX Symposium on Operating Systems

41


https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.10438

Yazilim Miihendisligi

Design and Implementation (pp. 521-538). Erisim adresi:
https://www.usenix.org/conference/osdi22/presentation/y
u

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti,
C., Ontanon, S., ... & Ahmed, A. (2020). Big bird:
Transformers for longer sequences. arXiv preprint
arXiv:2007.14062. Erisim adresi:
https://arxiv.org/abs/2007.14062

42


https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2007.14062

TURKIYE VE DUNYADA

YAZILIM MUHENDISLIGi

yaz

yayinlari

YAZ Yayinlari
M.ihtisas OSB Mah. 4A Cad. No:3/3
iscehisar / AFYONKARAHISAR
Tel : (0 531) 880 92 99
yazyayinlari@gmail.com e www.yazyayinlari.com



	4. BULANIK ÇIKARIM SİSTEMLERİ
	5. BULANIK REGRESYON MODELLERİNİN TEORİK ALTYAPISI
	5.1. Model Yapısı

	5.2. Yapay Zekâ Yaklaşımlarıyla Entegrasyon
	5.2.1. Neuro-Fuzzy Sistemler
	5.2.2. Derin Bulanık Sistemler
	5.2.3. Uygulama Alanları ve Örnekler

	6. UYGULAMA
	7. SONUÇ VE GELECEK ÇALIŞMALAR
	KAYNAKÇA
	2.pdf
	BÜYÜK DİL MODELLERİNDE PERFORMANS OPTİMİZASYONLARI: O(N²) ATTENTİON ENGELİ VE ÜRETİM ODAKLI ÇÖZÜMLER

	KAPAK.pdf
	Slayt Numarası 1
	Slayt Numarası 2
	Slayt Numarası 3

	KAPAK.pdf
	Slayt Numarası 1
	Slayt Numarası 2
	Slayt Numarası 3

	2.pdf
	BÜYÜK DİL MODELLERİNDE PERFORMANS OPTİMİZASYONLARI: O(N²) ATTENTİON ENGELİ VE ÜRETİM ODAKLI ÇÖZÜMLER




