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BULANIK REGRESYON VE YAPAY ZEKÂ 
UYGULAMALARI 

 

Dinçer ATASOY1 

 

1. GİRİŞ 

Bulanık mantık, klasik mantığın ikili [0, 1] yapısına 
alternatif olarak geliştirilmiş olup belirsizliklerin 
modellenmesinde önemli bir rol oynamaktadır (Zadeh, 1965). 
Günümüz yapay zekâ sistemleri, insan düşünce sürecine benzer 
biçimde karar verebilmek için sıklıkla bulanık mantık tabanlı 
yaklaşımlardan yararlanmaktadır (Ross, 2010). Bu bağlamda, 
bulanık mantık yalnızca belirsizliğin temsili açısından değil, aynı 
zamanda belirsiz verilerle rasyonel çıkarımlar yapabilme 
kapasitesiyle de öne çıkmaktadır. 

Belirsizlik (uncertainty) ve bulanıklık (imprecision) 
doğada sıkça karşılaşılan olgulardır. Klasik deterministik 
modeller, bu tür durumları her zaman doğru biçimde temsil 
edememektedir. Regresyon analizi, değişkenler arasındaki 
ilişkileri incelemek için kullanılan en temel ve yaygın istatistiksel 
yöntemlerden biridir (Atasoy, 2001). Klasik regresyon modelleri 
yalnızca kesin (crisp) veriler ve belirli istatistiksel varsayımlar 
altında geçerliliğini korur. Gerçek yaşamda elde edilen veriler ise 
çoğu zaman belirsiz, eksik ya da sözel ifadelerle 
tanımlandığından, klasik modellerin açıklayıcılığı ve doğruluğu 
sınırlı kalmaktadır (Zadeh, 1965). 

Bu sınırlılığı aşmak üzere geliştirilen bulanık regresyon 
analizi (BRA), klasik regresyonun katı varsayımlarını gevşeterek 

 
1  Dr. Öğr. Üyesi, Iğdır Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği, 

ORCID: 000-0003-0389-1059. 

Yazılım Mühendisliği

1



belirsiz veya muğlak veriler üzerinde modelleme yapılmasına 
olanak tanır. Bu yaklaşım, bağımlı ve bağımsız değişkenlerin ya 
da model katsayılarının bulanık sayılar biçiminde ifade 
edilmesine dayalı modellerin oluşturulmasını amaçlar (Shapiro, 
2005). Bulanık regresyon modelleri belirsizlik, eksik veri ve 
uzman yargısı gibi faktörleri doğrudan model yapısına entegre 
edebilmekte ve daha esnek bir temsil gücü sunmaktadır 
(Chukhrova et al., 2019). 

Yapay zekâ alanında, özellikle bulanık mantık temelli 
yöntemlerin istatistiksel tekniklerle birleşimi, “soft computing” 
paradigması kapsamında önemli bir yer tutmaktadır (Ojha et al., 
2019). Bu yaklaşımlar, klasik istatistiksel modellerin 
deterministik doğasına karşılık, belirsizliğin doğrudan 
modellenmesine ve karar süreçlerinin daha gerçekçi biçimde 
temsil edilmesine imkân vermektedir. 

Bulanık regresyon modellerinin teorik temelleri, 
parametre tahmin yöntemleri, Python ortamında 
gerçekleştirilebilecek uygulama örnekleri ve yapay zekâ 
yaklaşımlarıyla entegrasyon süreçleri ele alınacaktır. Ayrıca, 
farklı uygulama alanlarından örneklerle bu modellerin avantajları 
ve sınırlılıkları tartışılacaktır. 

 

2. KURAMSAL TEMELLER 

Bulanık küme teorisi, klasik mantığın “bir eleman ya 
kümededir ya da değildir” şeklindeki ikili yapısını genişleterek, 
her bir elemanın bir kümeye belirli bir üyelik derecesi ile ait 
olabileceğini öngörmektedir. Bu yaklaşımda, bir elemanın 
kümeye ait olma derecesi üyelik fonksiyonu (µ(x)) aracılığıyla 
[0,1] aralığında tanımlanır. Böylece, kesinlik kavramının yerini 
dereceli üyelik anlayışı almakta ve belirsizlik sistematik biçimde 
temsil edilebilmektedir (Mukaidono, 2001). 
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Bulanık sayılar genellikle üçgensel (Triangular Fuzzy 
Number – TFN) veya yamuk (Trapezoidal) biçimlerinde ifade 
edilir. Üçgensel bulanık sayı, (𝑎𝑎𝑙𝑙 ,𝑎𝑎𝑚𝑚,𝑎𝑎𝑟𝑟) parametreleriyle 
tanımlanır ve bu yapı, değerin merkez (en olası) noktası ile alt ve 
üst sınırlarını gösterir. Bu temsiller, bulanık regresyon 
modellerinde belirsiz katsayıların nicel olarak ifade edilmesine 
olanak sağlamaktadır. 

Bulanık regresyon analizi (BRA), bu kuramsal 
temellerden hareketle regresyon katsayılarını bulanık sayılar 
biçiminde tanımlar (Pakdel et al., 2025). Genel model formu şu 
şekilde ifade edilir: 

𝑌𝑌� = 𝐴̃𝐴0 + 𝐴̃𝐴1𝑥𝑥1 + ⋯+ 𝐴̃𝐴𝑘𝑘𝑥𝑥𝑘𝑘 

Burada 𝐴̃𝐴𝑖𝑖 katsayıları bulanık sayıları, 𝑌𝑌�  ise bulanık bir 
çıktı değişkenini temsil etmektedir (Tanaka et al., 1982). 

Bulanık regresyon kavramı ilk kez Tanaka, Uejima ve 
Asai (1982) tarafından ortaya konmuştur. Bu model, verilerin 
belirli bir h-düzeyinde (h-level) kapsanmasını sağlayan doğrusal 
programlama yaklaşımına dayanmaktadır. Daha sonraki 
çalışmalarda, Diamond (1988) klasik en küçük kareler yöntemini 
bulanıklaştırarak Fuzzy Least Squares Regression (FLSR) 
modelini geliştirmiştir. Buckley (2004) ise model 
parametrelerinin doğrudan bulanıklaştırıldığı alternatif bir 
yöntem önermiştir. Türkiye’de bu alanda yapılan çalışmalar 
arasında İçen (2010) ve Çetintav (2012)’nin çalışmaları dikkat 
çekicidir. 

Son yıllarda, Stanojević (2023) tarafından geliştirilen 
optimizasyon temelli bulanık regresyon modeli, genişletilmiş 
uzantı prensibi ile uyumlu çözümler üretmekte ve modelin 
hesaplama verimliliğini artırmaktadır. Ayrıca, Júnior ve 
arkadaşları (2023) tarafından önerilen yaklaşımlar, derin öğrenme 
tabanlı bulanık sistemleri regresyon analizleriyle bütünleştirerek, 
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bulanık regresyonun modern yapay zekâ uygulamalarında 
yeniden önem kazandığını ortaya koymaktadır. 

Klasik regresyon modeli genel olarak şu şekilde ifade 
edilir: 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜀𝜀 
 

Buna karşılık, bulanık regresyon modeli şu biçimdedir: 

𝑌𝑌� = 𝐴̃𝐴0 + 𝐴̃𝐴1𝑥𝑥1 + ⋯+ 𝐴̃𝐴𝑘𝑘𝑥𝑥𝑘𝑘 
 

Burada her bir 𝐴̃𝐴𝑖𝑖 = (𝑎𝑎𝑖𝑖 , 𝑐𝑐𝑖𝑖) biçiminde tanımlanan 
üçgensel bulanık sayıdır. Modelin temel amacı, tüm gözlemleri 
kapsayacak biçimde toplam belirsizliği (yay genişliğini) en 
küçüklemektir (Tanaka et al., 1982). Bu sayede, model hem 
belirsiz hem de eksik veriler üzerinde anlamlı ve esnek tahminler 
üretebilme kapasitesine sahip olmaktadır. 

 

3. BULANIK ÜYELİK FONKSİYONLARI 

Bulanık küme teorisi, Zadeh (1965) tarafından ortaya 
konulan klasik küme anlayışının bir genişlemesidir. Bu teori, bir 
elemanın belirli bir kümeye aitliğini yalnızca “var” veya “yok” 
biçiminde değil, kısmi aidiyet dereceleriyle ifade eder. Bu 
bağlamda, üyelik fonksiyonu (membership function), evrensel 
küme üzerinde tanımlı olup her bir elemanın aitlik derecesini 
[0,1] aralığında gösteren matematiksel bir fonksiyondur.  

𝜇𝜇𝐴𝐴�(𝑥𝑥):𝑋𝑋 → [0,1] 

• 𝜇𝜇𝐴𝐴�(𝑥𝑥) = 0 ise x elemanı kümeye hiç ait değildir. 

• 𝜇𝜇𝐴𝐴�(𝑥𝑥) = 1 ise x elemanı kümeye tamamen aittir. 

• 0 < 𝜇𝜇𝐴𝐴�(𝑥𝑥) < 1 ise x elemanı kümeye kısmen aittir. 
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Şekil 1. Bulanık üyelik fonksiyonlar 

Üçgensel Üyelik Fonksiyonu (Triangular), belirli bir 
minimum, maksimum ve tepe değeriyle tanımlanır. Basit ve 
hesaplaması kolaydır. Trapezoidal Üyelik Fonksiyonu, dört 
parametre ile tanımlanır, belirli bir aralıkta tam üyeliği temsil 
eder. Gauss Üyelik Fonksiyonu: Ortalama (μ) ve standart sapma 
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(σ) değerleriyle tanımlanır, yumuşak geçişli bir fonksiyondur. S-
düzgü (Sigmoid) Üyelik Fonksiyonu: S biçiminde artan veya 
azalan bir yapıya sahiptir. 

 

4. BULANIK ÇIKARIM SİSTEMLERİ 

Mamdani tipi 
çıkarım sistemi 

1975’te Ebrahim Mamdani tarafından önerilmiştir. 
Hem giriş hem de çıkış değişkenleri bulanık 
kümelerle ifade edilir. Dilsel kural tabanına dayalıdır 
ve özellikle kontrol sistemlerinde (örneğin sıcaklık, 
hız, nem kontrolü) yaygın biçimde kullanılır. 

Sugeno tipi 
çıkarım istemi 
(Takagi–Sugeno 
FIS) 

Takagi ve Sugeno (1985) tarafından geliştirilmiştir. 
Çıkış değişkeni bir bulanık küme yerine doğrusal veya 
sabit bir fonksiyon olarak tanımlanır. Matematiksel 
modelleme, optimizasyon ve adaptif sistemlerde sıkça 
tercih edilir. 

Tsukamoto Tipi 
Bulanık Çıkarım 
Sistemi 
 

Tsukamoto bulanık çıkarım sistemi, 1979 yılında Y. 
Tsukamoto tarafından geliştirilen ve Mamdani ile 
Sugeno sistemleri arasında bir geçiş niteliği taşıyan 
bir bulanık çıkarım yaklaşımıdır. 

Bulanık regresyon analizi (BRA) bağlamında, bu çıkarım 
sistemleri farklı roller üstlenir. Sugeno (Takagi–Sugeno) tipi 
çıkarım sistemi, çıktıyı doğrusal bir fonksiyon olarak tanımladığı 
için regresyon analizine en uygun yapıyı sunar. Bu yapı, özellikle 
ANFIS (Adaptive Neuro-Fuzzy Inference System) gibi hibrit 
modellerin temelini oluşturur ve fonksiyonel ilişki kurma 
(regresyon) görevlerinde yüksek performans gösterir. Buna 
karşın, Mamdani tipi sistemler daha çok kontrol sistemlerinde 
kullanılmakla birlikte, geleneksel BRA modelleri (Tanaka, 
FLSR) daha ziyade bir optimizasyon problemi olarak ele alınır ve 
doğrudan bir çıkarım sistemi kullanmaktan çok bulanık küme 
kavramına dayanır. 
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5. BULANIK REGRESYON MODELLERİNİN 
TEORİK ALTYAPISI 

Bulanık regresyon, bağımlı değişkenin veya model 
katsayılarının bulanık olarak tanımlandığı, klasik regresyon 
modellerinden farklı olarak belirsizlikleri doğrudan model yapısı 
içerisinde ifade edebilen bir yaklaşımdır. 

5.1. Model Yapısı 

Basit bir bulanık regresyon modeli şöyle ifade edilebilir: 

𝑌𝑌� = 𝐴̃𝐴0 + 𝐴̃𝐴1𝑥𝑥1 + ⋯+ 𝐴̃𝐴𝑘𝑘𝑥𝑥𝑘𝑘 
 

Burada 𝑦𝑦�, bulanık çıktı; 𝐴̃𝐴𝑖𝑖 katsayıları ise bulanık 
sayılardır. Bir başka yaklaşım şekli de 

𝑦𝑦��𝑖𝑖 = �𝜇𝜇𝑖𝑖𝑦𝑦�𝑖𝑖

𝑐𝑐

𝑖𝑖=1

 

Biçimindedir. 

• 𝑐𝑐: kural sayısı 

• 𝜇𝜇𝑖𝑖: i-kuralın üyelik derecesi 

• 𝑦𝑦��𝑖𝑖: her kural için çıktılar 

 

 
Şekil 2. Bulanık regresyon (fuzzy regression) modelinin akış 

diyagramı (Voskoglou, 2020). 
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Şekil 3’te akış diyagramında; girdi değişkenleri 
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 gibi bağımsız değişkenlerdir (Sıcaklık, yoğunluk, 
süre ve basınç gibi). Her biri sisteme bilgi taşır, ancak bu bilgiler 
kesin sayılar yerine bulanık değerler olarak da ele alınabilir. 

𝜑𝜑1(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘),𝜑𝜑2(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘), …  

Bu fonksiyonlar klasik regresyondaki katsayıların yerine 
geçer. Amaç, “her 𝑥𝑥𝑖𝑖” için bir bulanık tahmin fonksiyonu 
üretmektir. 
Her fonksiyon, veriye göre bir üyelik derecesi hesaplar. 

Her fonksiyonun çıktısı bir üyelik derecesi 𝜇𝜇𝑖𝑖’dir. 

𝜇𝜇𝑖𝑖 ∈ [0,1] 
Bu değer, ilgili kuralın (ya da fonksiyonun) ne kadar etkin 
olduğunu belirtir. 

Örneğin: 

• 𝜇𝜇1 = 0.9 → 1. kural çok güçlü şekilde aktif 

• 𝜇𝜇2 = 0.3 → 2. kural zayıf şekilde aktif 

Her bir üyelik derecesi, kendi bulanık tahmin değeriyle 
çarpılır. (𝜇𝜇𝑖𝑖𝑦𝑦��𝑖𝑖) Bu adımda her kuralın çıktısı, sistemin toplam 
çıktısına katkısına göre ağırlıklandırılır. Sonra tüm bu ağırlıklı 
bulanık çıktılar toplanır: 

�𝜇𝜇𝑖𝑖𝑦𝑦��𝑖𝑖
𝑖𝑖

 

Bu ifade, sistemde tanımlanan tüm kuralların katkılarını 
bütünleştirmektedir. Her bir regresyon fonksiyonunun çıktısı, 
kendi önem ağırlığı (μᵢ) doğrultusunda genel sistem çıktısına etki 
eder. En sağda yer alan çift dalgalı sembol 𝑦𝑦��, sistemin bulanık 
tahminini, yani elde edilen bulanık çıktıyı temsil etmektedir. Bu 
çıktı, tek bir kesin değer yerine bir bulanık küme biçiminde ifade 
edilir. Gerektiğinde, bu bulanık küme keskinleştirme 
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(defuzzification) yöntemi aracılığıyla sayısal bir değere 
dönüştürülerek yorumlanabilir. 

5.2. Yapay Zekâ Yaklaşımlarıyla Entegrasyon 

Bulanık regresyon modellerinin yapay zekâ teknikleriyle 
bütünleştirilmesi, modelin hem tahmin doğruluğunu artırmakta 
hem de yorumlanabilirliğini güçlendirmektedir. Bulanık 
regresyon modelleri, belirsizlik ve ipucuyla tanımlı değişkenleri 
doğrudan modelleme imkânı sunarken, yapay zekâ teknikleri 
(örneğin sinir ağları, evrimsel algoritmalar, kümeleme 
yöntemleri) bu modellerin tahmin doğruluğunu ve adaptasyon 
yeteneklerini artırmaktadır (Ramly vd., 2023). Özellikle, bir 
bileşik model yapısında bulanık regresyonun interpretatif yapısı 
ile derin öğrenme ya da genetik optimizasyon gibi yaklaşımların 
otomatik öğrenme kapasitesi birleştirildiğinde, hem 
açıklanabilirlik hem de performans açısından üstünlük elde 
edilebilmektedir (Wu et al., 2019). Örneğin, açıklanabilir bulanık 
kümeleme-tabanlı regresyon algoritması, Takagi–Sugeno-Kang 
(TSK) yapısına dayalı olarak gruplama, üyelik fonksiyonlarının 
belirlenmesi ve ardından gradyan inişle parametre optimizasyonu 
uygulayarak geleneksel regresyon yöntemlerine kıyasla daha 
düşük RMSE ve MAE değerleri göstermiştir (Viaña vd., 2022). 
Bu bağlamda, bulanık regresyon-yapay zekâ entegrasyonu, 
belirsiz verilerle çalışılan finans, mühendislik ve karar destek 
sistemleri gibi alanlarda anlamlı bir metodolojik ilerleme olarak 
değerlendirilebilir. 

5.2.1. Neuro-Fuzzy Sistemler 

ANFIS (Adaptive Neuro-Fuzzy Inference System), sinir 
ağı öğrenme yeteneği ile bulanık çıkarım sistemini birleştirir 
(Kısa ve ark., 2023; Danesh, R., et al., 2023). Bu model, kural 
tabanlı bulanık sistem ile ağırlık öğrenmesini harmanlar. ANFIS, 
regresyon görevlerinde etkilidir (Mantalas et al., 2025). Bir 
çalışmada, ANFIS ve klasik regresyon yöntemleri, malzeme 
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özelliklerinin tahmini açısından karşılaştırılmıştır (Krolo et al., 
2019). Ayrıca, A DEPSO optimizasyonu ile hibrit ANFIS modeli 
geliştirilerek su kalite parametrelerinin tahmini 
gerçekleştirilmiştir (Ahmadianfar et al., 2022). Bu hibrit yapı, 
çıktıları doğrusal fonksiyonlar olarak tanımlayan Takagi-Sugeno 
(TSK) tipi çıkarım sistemini temel alır. TSK'nın regresyon analizi 
görevleri için Mamdani tipine göre tercih edilmesinin ana sebebi, 
çıktının doğrudan bir matematiksel regresyon fonksiyonu 𝑦𝑦 =
𝑓𝑓(𝑥𝑥) olarak ifade edilebilmesi ve bu sayede sinir ağı algoritmaları 
(gradyan iniş) ile regresyon parametrelerinin kolaylıkla optimize 
edilebilmesidir. Bu, ANFIS'i regresyon görevlerinde güçlü ve 
uyarlanabilir kılar. 

5.2.2. Derin Bulanık Sistemler 

Derin öğrenme ve bulanık sistemlerin birleşimi “deep 
fuzzy systems” olarak adlandırılır. Özellikle regresyon 
problemlerinde yorumlanabilir yapıyı koruyarak doğruluk 
artırımı hedeflenir (Júnior et al., 2022). Bu yaklaşımlar, yüksek 
boyutlu veride hem temsil gücü hem de yorumlanabilirlik sağlar. 

5.2.3. Uygulama Alanları ve Örnekler 

• Enerji tüketimi tahmini/çevresel modelleme: Sensör 
verilerindeki belirsizlikleri modelleme. 

• İnşaat/gayrimenkul fiyat tahmini: Karışık verilerde hiyerarşik 
bulanık regresyon kullanılarak (Demirhan ve ark., 2024). 

• Malzeme bilimleri: Mikroyapı özelliklerini öngörmede 
ANFIS ve regresyon modellerinin karşılaştırılması (Krolo et 
al., 2019).  

• Proses kontrol: Üretim sistemlerinde belirsiz ölçümler ile 
kontrol modelleri. 

• Ekonomi / Finans: Talep tahmini, risk analizi gibi belirsizlik 
içeren modeller. 
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6. UYGULAMA 

Tablo 1. Modelin istatistiksel yapısı 

Eleman Rolü Amaç 
Bağımsız 
Değişken (𝑥𝑥) Sıcaklık (°C)  Tahmin için girdi. 

Bulanık Katsayılar 
(𝐴𝐴0,𝐴𝐴1)  

 𝐴̃𝐴𝑖𝑖 = (𝑎𝑎𝑖𝑖 , 𝑐𝑐𝑖𝑖) 
𝑎𝑎𝑖𝑖:Merkez 
𝑐𝑐𝑖𝑖: Yayılım/belirsizlik  

Temel Amaç: Tüm gözlemleri 
kapsayacak şekilde toplam 
belirsizliği ∑𝑐𝑐𝑖𝑖 en 
küçüklemek 

Bulanık regresyon modelimiz, katsayıları üçgensel 
bulanık sayılar 𝐴̃𝐴𝑖𝑖 = (𝑎𝑎𝑖𝑖 , 𝑐𝑐𝑖𝑖) biçiminde tanımlar. 

 

Tablo 2. Modelin kurgulanması ve amacı 

Kod/Metin Kısmı Amacı 
Modelin 
Kurgulanması ve 
Amacı Tablosu 

Tanaka modelinin temel mantığını ve DP 
katsayılarını açıklar. 

Python Kütüphane 
ve Model Yapısı 
Kodu 

numpy, linprog importlarını ve amaç 
fonksiyonu ile kısıtların (alt/üst sınır eşitsizliklerinin) 
matematiksel mantığını gösterir. 

Giriş bölümünde belirtildiği gibi, bulanık regresyon 
(BRA) modellerinin Python ortamında nasıl kurgulanabileceğine 
dair bir çerçeve sunulmaktadır. Aşağıdaki yapı, Şekil 
3'teki Enerji Tüketimi Tahmini örneğini temel alır ve Tanaka'nın 
(1982) belirsizliği en küçüklemeye dayalı doğrusal programlama 
yaklaşımını yansıtır. 
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Şekil 3. Bulanık regresyon ile enerji tüketim tahmini 

Şekil 3’te, sıcaklık (°C) ile enerji tüketimi (y) arasındaki 
ilişkiyi modelleyen bulanık regresyon analizi sonuçları 
gösterilmektedir. Gri noktalar gözlemlenen gerçek veri 
değerlerini, siyah çizgi ise bulanık regresyon modeli tarafından 
tahmin edilen enerji tüketimini (𝑦𝑦�) temsil etmektedir. Grafikte 
ayrıca üç farklı bulanık regresyon bileşeni (“Soğuk”, “Ilıman” ve 
“Sıcak” sıcaklık bölgeleri) ayrı ayrı gösterilmiştir. Bu bileşenler, 
sıcaklığın farklı aralıklarında enerji tüketim davranışının 
değişimini modelleyen yerel doğrusal regresyon eğilimlerini 
yansıtmaktadır. 

Model, sıcaklık arttıkça enerji tüketiminin doğrusal 
biçimde yükseldiğini ortaya koymaktadır. “Soğuk” bölgeye 
(mavi kesikli çizgi) ait regresyon doğrusu, düşük sıcaklıklarda 
enerji tüketiminin nispeten düşük fakat değişken olduğunu; 
“Ilıman” bölge (turuncu kesikli çizgi) ise daha dengeli bir artış 
eğilimi sergilediğini göstermektedir. “Sıcak” bölge (yeşil kesikli 
çizgi) ise yüksek sıcaklıklarda enerji tüketiminin belirgin biçimde 
arttığını göstermektedir. Bu durum, soğutma sistemlerinin enerji 
ihtiyacının sıcaklığa duyarlı olduğunu desteklemektedir. 

Yazılım Mühendisliği

12



Modelin performansı, grafiğin alt kısmında belirtilen 
ortalama hata kareleri (𝐌𝐌𝐌𝐌𝐌𝐌 =  𝟏𝟏𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎) değeri ile 
değerlendirilmiştir. Bu değer, tahmin edilen değerlerin gözlem 
değerlerine yakın olduğunu ve modelin genel olarak iyi bir uyum 
sağladığını göstermektedir. Ancak, bazı sıcaklık aralıklarında 
gerçek verilerin bulanık tahmin doğrularından hafif sapmalar 
göstermesi, enerji tüketimini etkileyen diğer faktörlerin (örneğin 
nem oranı, cihaz verimliliği, kullanıcı davranışı vb.) modele dahil 
edilmesiyle iyileştirilebileceğine işaret etmektedir. 

Sonuç olarak, bu grafik, bulanık regresyon yaklaşımının 
enerji tüketimi gibi belirsizlik içeren değişkenlerin 
modellenmesinde etkin bir araç olduğunu göstermektedir. Model, 
klasik doğrusal regresyona göre çevresel koşulların farklı 
seviyelerinde daha esnek bir tahmin gücü sunmakta ve yapay 
zekâ tabanlı sistemlerin enerji yönetimi uygulamalarında 
kullanılabilirliğini ortaya koymaktadır. 

 
Şekil 4.Bulanık bölgeler için RMS yüzey grafiği 

Şekil 4’te elde edilen 3 boyutlu RMS (Root Mean Square 
Error) yüzey grafiği, bulanık regresyon modelinin farklı sıcaklık 
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bölgelerinde (Soğuk–Ilıman–Sıcak) gösterdiği hata dağılımını 
sürekli bir yüzey olarak ortaya koymaktadır. Bu grafik, modelin 
tahmin hatasını yalnızca sayısal olarak değil, bölgesel 
değişkenliğini de görsel biçimde analiz etme olanağı 
sağlamaktadır (Chukhrova & Johannssen, 2019). 

Yüzeyin yüksek olduğu alanlar, RMS değerlerinin 
artmasıyla birlikte modelin daha fazla belirsizlik içerdiğini; 
yüzeyin düşük olduğu bölgeler ise modelin daha kararlı ve 
öngörülebilir çalıştığını göstermektedir. Bu durum, literatürde 
özellikle adaptif bulanık çıkarım sistemleri (ANFIS) ve hibrit 
regresyon modelleri ile yapılan çalışmalarda da benzer biçimde 
rapor edilmiştir (Ahmadianfar et al., 2022; Demirhan & Baser, 
2024; Pakdel et al., 2025). 

Elde edilen yüzeyin “Soğuk” bölgesinde RMS değerinin 
yüksek olması, düşük sıcaklıklarda enerji tüketim davranışının 
karmaşık yapısını ve modele dâhil edilmeyen çevresel faktörlerin 
etkisini göstermektedir. Benzer şekilde, Soğuk bölge hatalarının 
artışı, bulanık kümelerin üyelik derecelerinin düşük olduğu 
aralıklarda modelin öğrenme kapasitesinin sınırlı kaldığını ortaya 
koymaktadır. Buna karşın “Sıcak” bölgedeki düşük RMS 
değerleri, modelin bu aralıkta daha doğrusal ve kararlı ilişkiler 
yakaladığını göstermekte; bu da sıcaklık arttıkça enerji 
tüketiminin yapısal olarak daha öngörülebilir hale geldiğini 
göstermektedir (Demirkan ve ark., 2022). 

Ayrıca RMS yüzeyinin eğimindeki azalma, parametre 
duyarlılığının azalması anlamına gelir. Bu da modelin belirli 
sıcaklık aralıklarında robust (sağlam) bir yapıya sahip olduğunu 
göstermektedir. Bu bulgu, hibrit yapay zekâ tabanlı bulanık 
sistemlerin parametre kararlılığı açısından literatürde belirtilen 
eğilimlerle uyumludur (Kong et al., 2025; Bhatia et al., 2025). 

Sonuç olarak, 3B RMS yüzey grafiği, bulanık regresyon 
modellerinin performans değerlendirmesinde nitelikli bir araç 
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olarak öne çıkmaktadır. Bu yaklaşım hem belirsizlik yönetimi 
hem de üyelik fonksiyonlarının optimizasyonu süreçlerinde 
analitik bir referans noktası oluşturur (Júnior et al., 2022; Ojha et 
al., 2019). Ayrıca, yapay zekâ ve bulanık mantık tabanlı 
sistemlerin entegrasyonunda yoruma dayalı (explainable) yapay 
zekâ yöneliminin güçlenmesine katkı sunmaktadır (Viaña et al., 
2022). 

 

7. SONUÇ VE GELECEK ÇALIŞMALAR 

1. Bulanık regresyon analizi (BRA), klasik regresyonun kesin 
(crisp) veri varsayımını gevşeterek belirsiz, eksik veya sözel 
ifadelerle tanımlanmış veriler üzerinde modelleme 
yapılmasına olanak tanır. 

2. Yapay Zekâ Entegrasyonu ve Soft Computing: Günümüz 
yapay zekâ sistemleri, karar verme süreçlerinde sıklıkla 
bulanık mantık tabanlı yaklaşımlardan yararlanmaktadır. 
Bulanık mantık temelli yöntemlerin istatistiksel tekniklerle 
birleşimi, özellikle belirsizliğin doğrudan modellenmesine 
imkân tanıyan "soft computing" paradigması altında önemli 
bir yer tutar. 

3. Modelin Yapısal Avantajı (Belirsizlik Yayılımı): Bulanık 
regresyon modeli, katsayıları bulanık sayılar biçiminde 
tanımlar. Modelin temel amacı, tüm gözlemleri kapsayacak 
şekilde toplam belirsizliği (yay genişliğini) en küçültmektir. 
Bu sayede hem belirsiz hem de eksik veriler üzerinde esnek 
tahminler üretebilme kapasitesine sahip olur. 

4. Hibrit Sistemlerin Üstünlüğü (Neuro-Fuzzy): Bulanık 
regresyonun yapay zekâ teknikleriyle, özellikle sinir ağlarıyla 
(Neuro-Fuzzy) bütünleştirilmesi hem tahmin doğruluğunu 
artırmakta hem de modelin yorumlanabilirliğini 
güçlendirmektedir. Örneğin, ANFIS (Adaptive Neuro-Fuzzy 
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Inference System), sinir ağı öğrenme yeteneğini bulanık 
çıkarım sistemiyle birleştirerek regresyon görevlerinde etkili 
olmaktadır. 

5. Geniş Uygulama Alanı: Bulanık regresyon modelleri, 
belirsizlik içeren verilerle çalışılan çeşitli alanlarda 
uygulanabilmektedir. Örnek uygulamalar arasında enerji 
tüketimi tahmini, çevresel modelleme, gayrimenkul fiyat 
tahmini (karmaşık verilerde), malzeme bilimleri ve 
ekonomi/finans sektöründeki risk analizi gibi modeller yer 
almaktadır. 

6. Açıklanabilir Yapay Zekâ (XAI) Odaklı Modeller Geliştirme: 
Gelecek çalışmalar, özellikle Explainable AI (XAI) odaklı 
derin bulanık sistemler (deep fuzzy systems) geliştirilmesine 
yönlendirilmelidir. Bu, yüksek boyutlu verilerde 
yorumlanabilir yapıyı koruyarak doğruluk artırımını 
hedefleyecektir (Júnior et al., 2022; Viaña et al., 2022). 

7. Hibrit Optimizasyon Tekniklerinin Kullanımı: Mamdani–
TSK ve ANFIS gibi hibrit modellerin, optimizasyon 
algoritmaları ile birleştirilerek, yorumlanabilirlik ve doğruluk 
arasındaki dengenin kurulması önerilmektedir (Bhatia et al., 
2025). 

8. Gürültüye Dayanıklı (Robust) Regresyon Geliştirme: Veri 
gürültüsünün (outliers) olduğu durumlarda daha doğru 
tahminler yapabilmek için gürültüye dayanıklı (robust) 
bulanık regresyon modellerinin geliştirilmesi üzerinde 
çalışılmalıdır (Kong et al., 2025). 

9. Yüksek Boyutlu Veri (Big Data) Ölçeklenebilirliği: Çok 
değişkenli ve büyük veri setleri için ölçeklenebilir bulanık 
modellerin tasarlanmasına odaklanılmalıdır (Xue et al., 
2022). 
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10. Gerçek Dünya Vaka Çalışmaları ile Yöntem Doğrulama: 
Bulanık regresyon ve yapay zekâ entegrasyonu yöntemlerinin 
etkinliğini ve güvenilirliğini artırmak için, geliştirilen 
modellerin gerçek dünyaya uygulanmış kapsamlı vaka 
çalışmaları ve deneysel sonuçlarla doğrulanması 
önerilmektedir. 
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BÜYÜK DİL MODELLERİNDE PERFORMANS 
OPTİMİZASYONLARI: O(N²) ATTENTİON 

ENGELİ VE ÜRETİM ODAKLI ÇÖZÜMLER 
 

Mazhar KAYAOĞLU1 

Uğur BERDİBEK2 
 
 

1. GİRİŞ 

Büyük dil modelleri (Large Language Models, LLM'ler), 
doğal dil işleme görevlerinde başarılar elde etmiştir. Temelini 
oluşturan Transformer mimarisi, self-attention mekanizmasıyla 
bağlamı etkili biçimde modellemekte; ancak bu mekanizmanın 
zaman ve bellek karmaşıklığı, uzun dizilerde ölçeklenebilirlik 
sorunları yaratmaktadır (Vaswani et al., 2017, s. 1). 2( )n  
karmaşıklığı, eğitim ve üretim aşamalarında kaynak tüketimini 
artırarak uygulamalarda verimliliği ve maliyet etkinliğini 
sınırlamaktadır. Bu kitap bölümü, 2015-2025 arasında 
yayınlanmış 30 makale ve teknik raporu derleyerek 2( )n  
attention engelini aşmaya yönelik yöntemleri, donanım odaklı 
inovasyonları ve üretim araçlarını incelemekte; Transformer 
tabanlı LLM’lerin evrimini bütüncül bir çerçevede özetlemeyi 
amaçlamaktadır. Transformer mimarisi, “Attention is All You 
Need” ile self-attention katmanlarının bütünleştirilmesine 
dayanmakta ve geleneksel RNN/CNN yaklaşımlarına üstünlük 
sağlamaktadır (Vaswani et al., 2017, s. 1). Ancak attention 
hesaplamalarının kuadratik karmaşıklığı 2( )n , dizi uzunluğu 
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(n) arttıkça maliyeti katlanarak yükselterek özetleme ve çok turlu 
diyalog gibi görevlerde uygulanabilirliği kısıtlamaktadır. 
Literatürde bu engeli hafifletmek üzere seyrek ve lineer attention 
mekanizmaları, nicelleştirme (quantization), spekülatif kod 
çözme (speculative decoding) ve self-attention’a alternatif 
mimariler geliştirilmiştir. Derlenen 30 kaynak, FlashAttention 
serisi, durum uzay modelleri (SSM’ler) ve üretim odaklı sistemler 
çalışmaları içermektedir. FlashAttention, donanım farkındalığı ve 
IO-awareness ile bellek erişimini optimize ederken (Dao et al., 
2022, s. 2; Shah et al., 2024, s. 2), Mamba ve benzeri SSM tabanlı 
yaklaşımlar self-attention’ın kuadratik maliyetine karşılık dizi 
uzunluğuna doğrusal ( )n  zaman karmaşıklığı sunmaktadır (Gu 
& Dao, 2023, s. 6; Dao & Gu, 2024, s. 6). vLLM ve DeepSpeed 
throughput’u 1.5-4 kata kadar artırarak deployment’ı 
hızlandırmaktadır (Kwon et al., 2023, s. 4; Aminabadi et al., 
2022, s. 7). Quantization teknikleri, model boyutunu küçültürken 
doğruluk kaybını sınırlamaya ve enerji verimliliğini artırmaya 
yöneliktir; GPT-3 gibi büyük modeller bağlamında (Brown et al., 
2020, not: Bu bölümde doğrudan referans verilmemiş olsa da 
genel literatür bağlamında belirtilmiştir), bu optimizasyonlar 
maliyet ve sürdürülebilirlik açısından kritik görülmektedir 
(Dettmers et al., 2022, s. 5; Xiao et al., 2023, s. 5). Buna karşın 
uzun bağlam extrapolation’ı, donanım heterojenliği ve 
etik/çevresel etkiler gibi sorunlar devam etmektedir. Bölüm 
yapısı şöyledir: Bölüm 2-4 temel attention ve donanım odaklı 
optimizasyonları; Bölüm 5-9 çoklu sorgu, spekülatif kod çözme, 
KV-cache ve bellek teknikleri, nicelleştirme, konum kodlama ve 
uzun bağlam yaklaşımlarını; Bölüm 10-11 alternatif mimariler ve 
üretim çerçevelerini ele almakta; Bölüm 12 ise genel çıkarımlar 
ve gelecek araştırma yönelimlerini tartışmaktadır. 
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2. TEMEL ATTENTİON MEKANİZMASI 

Transformer mimarisi, büyük dil modellerinin (LLM'ler) 
temel taşını oluşturan bir mimaridir ve doğal dil işleme 
görevlerinde bağlamsal temsilleri etkili biçimde yakalar. Bu 
mimari, geleneksel sıralı modellerin (örneğin, RNN'ler) 
sınırlamalarını aşmak üzere tasarlanmış, paralel hesaplama 
yeteneğiyle eğitim verimliliğini artırmaktadır. Temelini oluşturan 
attention mekanizması, giriş dizisindeki her öğenin diğerleriyle 
dinamik ilişkilerini modelleyerek uzun menzilli bağımlılıkları 
(long-range dependencies) yakalamada üstün performans 
sergilemektedir (Vaswani et al., 2017, s. 1). Bu bölüm, 
Transformer'ın temel bileşenlerini özetleyerek self-attention'ın 
matematiksel temellerini ve 2( )n  karmaşıklık engelini 
tartışmakta; böylece sonraki bölümlerde ele alınacak 
optimizasyon stratejilerine zemin hazırlamaktadır. Transformer 
modeli, kodlayıcı (encoder) ve kod çözücü (decoder) 
katmanlarından oluşmakta olup, her katman self-attention, feed-
forward ağlar ve katman normalizasyonu gibi alt bileşenleri 
içermektedir. Self-attention mekanizması, giriş vektörlerini sorgu 
(query), anahtar (key) ve değer (value) matrislerine dönüştürerek 

hesaplanır: Attention( , , ) softmax
k

QKQ K V V
d

 
=   

 



, burada Q , 

K  ve V  sırasıyla sorgu, anahtar ve değer matrisleri, kd  ise 
boyutluluk faktörüdür (Vaswani et al., 2017, s. 1). Bu formül, her 
token'ın diğer token'larla benzerliğini hesaplayarak ağırlıklı bir 
toplam üretir ve modelin bağlamı global olarak 
değerlendirmesine olanak tanır. Multi-head attention, bu işlemi 
çoklu başlıklar altında yürüterek farklı alt uzaylardaki temsilleri 
yakalamayı ve genelleme yeteneğini artırmayı amaçlamaktadır. 
Bu mekanizma, paralel hesaplama ve uzun menzilli bağımlılık 
modellemesinde avantajlar sunarken, 2( )n  zaman ve bellek 
karmaşıklığı nedeniyle yüksek maliyetlidir. Attention skor 
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matrisinin hesaplanması, dizi uzunluğu n  ile kuadratik 
ölçeklenmekte, uzun bağlamlı görevlerde GPU bellek sınırlarını 
zorlamakta ve inference latency'sini artırmaktadır. 2( )n  
karmaşıklığın kaynağı, her token'ın tüm diğer token'larla 
etkileşimini gerektiren tam yoğun (dense) attention yapısıdır; 
büyük modellerde bu durum yüksek bellek gereksinimi 
doğurmaktadır. Literatürde bu engeli hafifletmeye yönelik 
çalışmalar, Transformer'ın evrimini tetiklemiştir: seyrek attention 
yöntemleri, karmaşıklığı ( log )n n  veya lineer seviyeye 
indirmeyi hedeflemekte (Kitaev et al., 2020, s. 2); donanım odaklı 
optimizasyonlar ise IO-aware algoritmalarla pratik hızlanmalar 
sağlamaktadır (Dao et al., 2022, s. 2). Uzun bağlam 
extrapolation'ı bağlamında, kısa dizilerle eğitilen modellerin uzun 
test dizilerinde performans kaybı yaşadığı gösterilmiş (Press et 
al., 2022, s. 5) ve enerji tüketimi ile çevresel etkiler, LLM 
ölçeklenebilirliğinin etik boyutunu gündeme taşımıştır. Alternatif 
mimariler (örneğin, SSM tabanlı yaklaşımlar; Gu & Dao, 2023, s. 
6) temel prensipleri korurken bu maliyetleri azaltmayı 
amaçlamakta olup, sonraki bölümler bu temel üzerinde 
geliştirilen optimizasyonları ayrıntılandıracaktır. 

 

3. DONANIM ODAKLI ATTENTİON 
OPTİMİZASYONLARI 

Transformer mimarisinin temel attention mekanizması, 
2( )n  karmaşıklığı nedeniyle hesaplama yoğunluğunu 

artırmakta; ancak bu engel, modern GPU bellek hiyerarşisini 
hedefleyen IO-aware algoritmalarla hafifletilebilmektedir (Dao et 
al., 2022, s. 2). Bu bölüm, FlashAttention serisi üzerinden 
donanım farkındalığının attention mekanizmasını nasıl 
dönüştürdüğünü incelemekte; bu yaklaşımlar pratikte 7-10 kata 
varan hızlanmalarla LLM'lerin uygulanabilirliğini artırmaktadır. 
Standart attention implementasyonunda softmax için ara 
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matrislerin tam materyalizasyonu, bellekler arasında tekrarlı veri 
transferleri gerektirerek maliyeti yükseltirken, FlashAttention 
tiling ve recomputation teknikleriyle bu matrisleri bloklar halinde 
işleyip softmax'ı çevrimiçi hesaplamakta, bellek kullanımını 
yaklaşık %50 azaltmakta ve 7.6 kata varan hızlanma 
sağlamaktadır (Dao et al., 2022, s. 2). FlashAttention-3, Hopper 
nesli GPU'lara uyarlanarak asenkron işlem ve düşük hassasiyetli 
(FP8) aritmetik desteğiyle 1.5-2 kat ek hızlanma elde etmekte, 1.2 
PFLOPS/s düzeyine ulaşmakta ve Llama 7B modellerinde 
inference latency'sini yaklaşık %40 azaltmaktadır (Shah et al., 
2024, s. 2). Bu donanım odaklı yaklaşımlar, quantization 
teknikleriyle (Dettmers et al., 2022, s. 5) ve vLLM gibi üretim 
çerçeveleriyle (Kwon et al., 2023, s. 4) birleştirildiğinde ek 
verimlilik kazanımları üretmektedir. Ancak temel karmaşıklık 
değişmemekte, uzun dizilerde maliyet sürmekte ve GPU merkezli 
tasarım, donanım bağımlılığı nedeniyle portabiliteyi 
sınırlamaktadır; bu nedenle Mamba gibi alternatif mimarilerle 
(Gu & Dao, 2023, s. 6) hibrit sistemler geliştirmek, 2( )n  
engelini donanım, sistem ve algoritma düzeylerinde birlikte 
hafifletmeyi hedeflemektedir. 

 

4. SEYREK VE LİNEER ATTENTİON 
YÖNTEMLERİ 

Seyrek (sparse) ve lineer attention yöntemleri, 
Transformer mimarisinin temelindeki 2( )n  karmaşıklığın, 
attention matrisinin tam yoğunluğundan (dense) kaynaklandığını 
kabul ederek, bu matrisi seyrelterek veya yaklaşıklayarak 
maliyeti düşürmeyi amaçlamaktadır. Bu yaklaşımlar, attention’ı 
yerel veya rastgele alt kümelerle sınırlandırarak uzun diziler için 

( log )n n  ya da ( )n  karmaşıklığa inebilmektedir (Tay et al., 
2020, s. 3). Bu bölüm, Reformer, Longformer, Big Bird ve 
Performers gibi yöntemleri, Efficient Transformers derlemesini 
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çerçeve metin olarak kullanarak incelemekte ve bu tekniklerin 
donanım odaklı optimizasyonlarla (Bölüm 3) tamamlayıcılığını 
vurgulamaktadır. 

Reformer, locality-sensitive hashing (LSH) ile benzer 
token’ları aynı hash bucket’larında gruplayarak, her sorgunun 
yalnızca ilgili anahtarlarla etkileşmesini sağlar ve böylece 
attention karmaşıklığını yaklaşık ( log )n n  düzeyine indirger 
(Kitaev et al., 2020, s. 2). LSH attention, sorgu vektörlerini 
rastgele hiperdüzlemlere yansıtarak benzerlik skorlarını 
yaklaştırır; tam 2( )n  matris yerine hash tabanlı bir yapı kullanır 
ve reversible layers ile bellek tüketimini azaltır. Deneysel 
sonuçlar, 64K token’lık dizilerde yaklaşık %50 bellek tasarrufu 
sağlarken, hashing’in stokastik doğası doğrulukta sınırlı da olsa 
bozulma riski taşımaktadır (Kitaev et al., 2020, s. 2). 

Longformer, uzun belge işleme için sliding window, 
dilated ve global attention bileşenlerini birleştirerek, pencere 
boyutu w  için yaklaşık ( )n w⋅  karmaşıklık sunar (Beltagy et 
al., 2020, s. 2). Dilated pattern, her k . token’ın örneklenmesiyle 
kapsama alanını genişletirken, az sayıda global token (örneğin, 
başlık, özel işaretleyiciler) üzerinden uzun menzilli bağımlılıkları 
korur. LED (Longformer Encoder-Decoder), 16K token’lık 
bağlamlarda arXiv özetleme gibi görevlerde ROUGE skorlarında 
iyileşmeler rapor etmektedir (Beltagy et al., 2020, s. 2). Big Bird 
ise block-sparse bir şema ile yerel bloklar, rastgele bağlantılar ve 
global token’ları birleştirerek teorik olarak Turing-complete ve 
universal approximator özelliklerini muhafaza eder; dikkat 
grafiğini seyrek bir ( , )G V E=  yapısı olarak tanımlayarak 
karmaşıklığı ( )n  düzeyine indirir (Zaheer et al., 2020, s. 2). 

Performers, FAVOR+ (Fast Attention Via positive 
Orthogonal Random features) algoritmasıyla softmax attention’ı 
random feature approximation aracılığıyla lineerleştirir: 
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( )softmax ( ) ( )
k

QK V Q K V
d

φ φ
 

≈  
 


 ; burada φ  rastgele Fourier 

tabanlı özellikleri temsil eder ve karmaşıklığı ( )n d⋅  düzeyine 
indirger (Choromanski et al., 2020, s. 3). Efficient Transformers 
derlemesi, bu yaklaşımları sistematik biçimde karşılaştırarak, 
uzun bağlamlarda enerji verimliliği ve ölçeklenebilirlik 
kazanımlarına rağmen approximation hataları ve görev 
bağımlılığının ortak sınırlamalar olduğuna işaret etmektedir (Tay 
et al., 2020, s. 3). Bu çerçeve, ilerleyen bölümlerde ele alınacak 
çoklu sorgu ve spekülatif decoding teknikleriyle birlikte, 2( )n  
engelinin algoritmik düzeyde aşılmasında yol gösterici bir rol 
üstlenmektedir. 

 

5. ÇOKLU SORGU VE GRUPLU SORGU 
ATTENTİON 

Transformer mimarisinin attention katmanları, multi-head 
attention (MHA) yapısıyla zengin temsiller üretmekte, ancak bu 
yapı bellek ve hesaplama maliyetini artırarak özellikle üretim 
(inference) aşamasında KV-cache boyutunu büyütmektedir. 
Çoklu sorgu attention (MQA) ve gruplu sorgu attention (GQA), 
head sayısına bağlı bu yükü azaltarak KV-cache verimliliğini 
yükseltmekte ve 2( )n  engelini dolaylı biçimde hafifletmektedir 
(Ainslie et al., 2023, s. 3). Bu bölüm, GQA’nın matematiksel 
çerçevesini ve büyük dil modellerindeki kullanımını inceleyerek, 
attention tasarımında verimlilik odaklı bir bakış açısı 
sunmaktadır. MHA, attention’ı birden çok başlık altında 
yürüterek farklı alt uzaylarda bağımlılıkları yakalar; her head için 
ayrı K  ve V  matrislerinin saklanması, KV-cache boyutunu head 
sayısıyla orantılı büyütmekte ve uzun bağlamlarda bellek 
baskısını artırmaktadır (Vaswani et al., 2017, s. 1). MQA, tüm 
head’ler için tek bir K  ve V  kullanarak cache karmaşıklığını 
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düşürür; bu, inference hızında artış sağlarken, head çeşitliliğini 
azaltarak bazı görevlerde eğitim stabilitesini olumsuz 
etkileyebilmektedir (Ainslie et al., 2023, s. 3). GQA, MHA ve 
MQA arasında bir denge kurar. Sorgular g  gruba ayrılır, her grup 
m  head’i paylaşır ve her grup için tek bir /K V  seti tutulur; 
toplam head sayısı H g m= ⋅  olup cache karmaşıklığı g  ile 
ölçeklenir (Ainslie et al., 2023, s. 3). Böylece, MHA’ya göre 
belirgin bellek tasarrufu sağlanırken, MQA’ya kıyasla daha fazla 
head çeşitliliği korunur. PaLM ve Llama 2 gibi modellerde GQA 
kullanımıyla, MHA’ya yakın doğruluk yanında inference’ta 
hızlanma ve otoregresif üretimde daha düşük latency elde 
edilmiştir (Ainslie et al., 2023, s. 3). GQA için önerilen uptraining 
süreci, önceden eğitilmiş MHA checkpoint’lerinin GQA’ya 
dönüştürülmesini, head’lerin benzerliklerine göre gruplanmasını, 

/K V  ağırlıklarının ortalanmasını ve kısa bir yeniden eğitimle 
perplexity kaybının %1’in altında tutulmasını amaçlamakta; bu 
da tek GPU üzerinde fine-tuning gibi kaynak kısıtlı senaryolarda 
avantaj sağlamakta ve çok uzun bağlamlarda Longformer gibi 
seyrek yöntemlerle birleştirildiğinde daha etkili olmaktadır 
(Ainslie et al., 2023, s. 3; Beltagy et al., 2020, s. 2). 

Karşılaştırmalı çalışmalar, GQA’nın MQA’ya göre doğal 
dil anlama görevlerinde (örneğin GLUE) %2-3 daha yüksek 
skorlar elde ederken, MHA’dan daha hızlı çalıştığını 
göstermektedir (Ainslie et al., 2023, s. 3). KV-cache 
optimizasyonları ve verimli servis altyapılarıyla (örneğin vLLM; 
Kwon et al., 2023, s. 4) birlikte kullanıldığında, toplam enerji 
tüketiminde azalmalara katkı sunduğu rapor edilmiştir. Sonuç 
olarak, çoklu sorgu ve gruplu sorgu attention varyantları, 
Transformer attention katmanlarını KV-cache odaklı yeniden 
düzenleyerek 2( )n  engelini pratik düzeyde hafifletmekte ve 
LLM’lerin üretim senaryolarında verimlilik artışları 
sağlamaktadır. 
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6. SPEKÜLATİF KOD ÇÖZME YÖNTEMLERİ 

Autoregressive büyük dil modelleri (LLM’ler), token’ları 
sıralı ürettiği ve 2( )n  attention engeliyle birleştiği için 
inference latency’si nedeniyle gerçek zamanlı uygulamalarda 
sınırlıdır. Spekülatif kod çözme, küçük bir draft model ve paralel 
doğrulama yoluyla birden çok token’ı eşzamanlı tahmin ederek 
2-3 kata varan hızlanmalar sunar (Leviathan et al., 2023, s. 3). 
Temel şema, verili bağlamda draft modelin uzunluğu L  olan aday 
diziler üretmesi ve ana modelin bunları paralel doğrulamasına 
dayanır; kabul oranının beklenen değeri [ ]α  olduğunda, ana 
modele çağrı başına üretilen token sayısının beklenen değeri 
yaklaşık [ ]Lα ’dir. 

Medusa, spekülatif yaklaşımı çoklu decoding head’leriyle 
genişleterek aynı adımda birden çok token tahmin etmekte ve 
LLaMA/Vicuna tabanlı modellerde 2.2-2.8 kat hızlanma elde 
etmektedir (Cai et al., 2024, s. 4). EAGLE, feature-level 
autoregression ve ağaç tabanlı draft yapılarıyla LLaMA2-Chat 
70B üzerinde 2.7-3.5 kat hızlanma ve iki kat throughput artışı 
raporlar (Li et al., 2024a, s. 4). EAGLE-2 ise context-aware 
dinamik ağaçlarla dallanmayı bağlama duyarlı güven eşiklerine 
göre uyarlayarak ek %20-40 hızlanma ve toplamda 3.05-4.26 kat 
kazanç sağlamaktadır (Li et al., 2024b, s. 4). GQA gibi attention 
varyantları (Ainslie et al., 2023, s. 3) ve KV-cache 
optimizasyonlarıyla (Kwon et al., 2023, s. 4) birleştiğinde, bu 
yöntemler 2( )n  engelini algoritmik olarak değiştirmeksizin 
LLM üretim performansını dönüştürmektedir. 

 

7. KV-CACHE OPTİMİZASYONLARI VE 
SÜREKLİ TOPLU İŞLEME 

Autoregressive büyük dil modellerinde (LLM'ler), 
attention sırasında anahtar-değer (KV) çiftlerinin önbelleğe 
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alınması verimliliği artırır; ancak cache’in dinamik yönetimi, 
özellikle değişken dizi uzunluklarında bellek parçalanmasına yol 
açarak 2( )n  engelini inference aşamasında ağırlaştırır. KV-
cache optimizasyonları ve sürekli toplu işleme (continuous 
batching), blok tabanlı bellek tahsisi ve iterasyon seviyesi 
zamanlama ile bu sorunu hafifletmekte; throughput’u birkaç 
kattan onlarca kata kadar yükseltebilmektedir (Kwon et al., 2023, 
s. 4; Yu et al., 2022, s. 4; Leviathan et al., 2023, s. 3). 

PagedAttention, vLLM inference engine’inin çekirdeğini 
oluşturarak KV-cache’i sanal bellek sayfalarına benzer biçimde 
yönetir, GPU bellek parçalanmasını azaltır ve sabit boyutlu 
bloklardan oluşan bir düzenle serbest blokların yeniden 
kullanımını sağlar. Böylece Hugging Face Transformers tabanlı 
çözümlere kıyasla 2-24 kata varan throughput iyileşmeleri ve 
esnek dağıtım elde edilir (Kwon et al., 2023, s. 4). Orca tabanlı 
sürekli toplu işleme, istek iterasyonlarını düğüm ve bağımlılıkları 
kenar olarak modelleyen bir çizge üzerinde iterasyon düzeyi 
zamanlama uygular; hazır iterasyonlardan batch oluşturarak 
GPT-3 ölçeğinde NVIDIA FasterTransformer’a kıyasla benzer 
gecikme altında 36.9 kata kadar throughput artışı sağlar (Yu et 
al., 2022, s. 4). PagedAttention bellek yönetimine, continuous 
batching ise zamanlamaya odaklandığından, vLLM gibi 
engine’lerde birlikte kullanımları, donanım bağımlılığı ve 
dinamik yük dengesizliğine karşın, 2( )n  engelini pratik 
düzeyde hafifleten tamamlayıcı optimizasyonlar sunmaktadır 
(Kwon et al., 2023, s. 4; Leviathan et al., 2023, s. 3). 

 

8. KONUM KODLAMA VE UZUN BAĞLAM 
YÖNTEMLERİ 

Büyük dil modellerinin (LLM'ler) parametre ölçeği ve 
attention katmanlarının karmaşıklığı, hesaplama maliyetini 
yükselterek deployment'ı zorlaştırmaktadır. Nicelleştirme 
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(quantization), ağırlık ve aktivasyonları 8- veya 4-bit temsillere 
indirerek bellek gereksinimini azaltır, uygun donanımda 
inference hızını artırır ve LLM.int8(), SmoothQuant, GPTQ, 
AWQ, QLORA ile KV-cache ve continuous batching 
optimizasyonları çerçevesinde ele alınmaktadır. LLM.int8(), 8-
bit matris çarpımıyla Transformer katmanlarını quantize eder ve 
aykırı aktivasyonları FP16 alt kümesine taşıyarak %50 tasarruf 
sağlar. SmoothQuant, aktivasyon aykırılarını ağırlıklara yeniden 
ölçekleyerek INT8 quantization'ı stabilize eder ve FP16’ya yakın 
perplexity ile kazanımlar üretir. GPTQ, katman bazlı weight-only 
quantization ile 3-4 bit seviyesinde doğruluğu korurken, AWQ 
activation-aware weight quantization ile önemli ağırlıkları 
saklayıp yalnızca diğerlerini 4-bit'e indirger. QLORA, 4-bit 
NormalFloat ve LoRA'yı paged optimizers ve double 
quantization ile birleştirerek 65B modellerin 48GB GPU üzerinde 
fine-tuning'ini ve ChatGPT-benzeri performans sağlar. 
SmoothQuant’un aktivasyon, GPTQ ve AWQ’nun ise weight-
only yapıda olduğu; birlikte kullanıldıklarında model boyutunu 
dört kat küçültebildikleri ve 2( )n  attention engelini doğrudan 
azaltmasalar da KV-cache ve continuous batching ile 
ölçeklenebilir inference sundukları raporlanmaktadır (Dettmers et 
al., 2022, s. 5; Kwon et al., 2023, s. 4; Yu et al., 2022, s. 4; Xiao 
et al., 2023, s. 5; Frantar et al., 2022, s. 5; Lin et al., 2023, s. 5; 
Dettmers et al., 2023, s. 5). 

 

9. KONUM KODLAMA VE UZUN BAĞLAM 
YÖNTEMLERİ 

Transformer mimarisinde konum bilgisi, token dizilerinin 
sıralı yapısını kodlayarak bağlamsal temsilleri zenginleştirir; 
ancak klasik sabit sinüzoidal konum kodlamaları, eğitimdeki 
bağlam uzunluğunu aşan dizilerde kötü genelleşerek uzun 
bağlamlı görevlerde attention darboğazını ağırlaştırır. Modern 
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yaklaşımlar, relative konumlandırma ve interpolation 
teknikleriyle bu sınırlamayı aşarak, eğitim penceresinin çok 
ötesine uzanan bağlamlarda LLM’lerin kullanılabilirliğini 
artırmaktadır (Su et al., 2021, s. 6; Chen et al., 2023, s. 6). Bu 
bölüm RoFormer (RoPE), ALiBi ve Position Interpolation 
yöntemlerini, matematiksel ilkeleri, extrapolation kapasiteleri ve 
pratik etkileriyle birlikte; ayrıca nicelleştirme stratejileri (Bölüm 
8) ve alternatif mimarilerle (Bölüm 10) etkileşimleri bağlamında 
tartışmaktadır. RoPE, sorgu-anahtar vektörlerine konum bağımlı 
dönme operatörü uygulayarak mutlak pozisyonu relative 
mesafeye dönüştürür ve uzun metin görevlerinde LLM’lerde 
yaygın olarak benimsenmiştir (Su et al., 2021, s. 6). ALiBi, ayrı 
konum embedding’lerini kaldırıp attention logit’lerine uzaklık 
temelli lineer bias ekleyerek kısa bağlamda eğitilmiş modellerin 
daha uzun dizilere genellemesini sağlar (Press et al., 2022, s. 6). 
Position Interpolation, RoPE tabanlı modellerde pozisyon 
indekslerini yeniden ölçekleyerek bağlam penceresini onlarca kat 
genişletirken LongBench benzeri benchmark’larda rekabetçi 
doğruluğu korur (Chen et al., 2023, s. 6). Bu teknikler, seyrek 
attention yöntemleriyle birlikte attention darboğazını anlamlı 
ölçüde hafifleten tamamlayıcı araçlar sunar (Tay et al., 2020, s. 
3). 

10. O(1) KARMAŞIKLIKLI ALTERNATİF 
MİMARİLER: DURUM UZAY MODELLERİ 

Transformer temelli modellerdeki 2( )n  attention engeli 
uzun dizilerde ölçeklenebilirliği sınırlandırırken, durum uzay 
modelleri (State Space Models, SSM'ler) lineer zaman 
karmaşıklığı ( )n  veya sabit (1)  adım başına hesaplama ile bu 
sorunu hafifleterek Transformer'lara rekabetçi bir alternatif 
sunmaktadır. Sürekli dinamik sistemlerden esinlenen bu 
mimariler, eğitim paralelliğini korurken inference sırasında (1)  
adım başına maliyet hedefler. Bu bölüm, Mamba, Mamba-2, 
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RetNet ve RWKV mimarilerini özetlemektedir. Mamba, selective 
SSM yaklaşımıyla girişe bağımlı durum geçişleri tanımlar ve 
uzun menzilli bağımlılıkları lineer zamanlı sekans modeli 
çerçevesinde yakalar (Gu & Dao, 2023, s. 6). Sürekli zaman SSM 
denklemi 

( ) ( ) ( )x t Ax t Bu t= + , ( ) ( ) ( )y t Cx t Du t= +  

şeklindedir. 1.4B parametreli Mamba, dil modellemede benzer 
ölçekli Transformer’larla rekabetçi perplexity elde ederken 
inference throughput’unu birkaç kata kadar artırmaktadır. 
Mamba-2, State Space Duality (SSD) framework’üyle SSM ve 
attention arasındaki bağı formalize eder; A  matrisinin uygun bir 
tabanda diyagonal yapıya indirgenmesiyle structured matris 
çarpımları üzerinden ( )n  karmaşıklıkta attention-benzeri 
işlemler gerçekleştirir (Dao & Gu, 2024, s. 7). WikiText103 
sonuçları, 3B parametreli Mamba-2’nin Transformer tabanlı 
modellere göre daha düşük loss ve 2-8 kat eğitim/inference 
hızlanması sağladığını göstermektedir. RetNet (Retentive 
Network), retention mekanizmasıyla RNN-benzeri ardışık 
güncellemeyi eğitimde paralel, inference’ta ise hafif bir yapı 
olarak formüle eder: 

1t t th h xα β−= +   

(Sun et al., 2023, s. 7). Chunk-wise paralelleştirme, 
Transformer’a yakın eğitim hızı sağlarken, inference’ta (1)  
adım başına maliyet ve düşük bellek ayak izi sunar. RWKV, RNN 
ve Transformer ilkelerini birleştiren hibrit bir tasarım olup, time-
mixing ile geçmiş durumların üstel sönümlü karışımını ve mevcut 
girdinin lineer katkısını birleştirir: 

1 (1 ) ( )t t th w h w g x−= + −   

(Peng et al., 2023, s. 7). Böylece sabit (1)  adım başına maliyetle 
uzun bağlamları işleyebilmekte; 14B parametreli RWKV 
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modelleri Pile veri kümesinde benzer büyüklükteki 
Transformer’larla karşılaştırılabilir performans sergilemektedir. 
Karşılaştırmalı analizler, Mamba’nın selective SSM, RetNet’in 
retention, RWKV’nin hibrit RNN-Transformer tasarımı ve 
Mamba-2’nin dualite tabanlı yapısı sayesinde (1)  adım başına 
maliyet avantajı sunduğunu; uygun senaryolarda 4-8 kata varan 
hızlanmaların rapor edildiğini göstermektedir (Gu & Dao, 2023, 
s. 6; Sun et al., 2023, s. 7; Peng et al., 2023, s. 7; Dao & Gu, 2024, 
s. 7; Chen et al., 2023, s. 6). Bu mimariler, klasik 2( )n  attention 
engelini yapısal düzeyde aşarak, konum interpolation 
teknikleriyle (Chen et al., 2023, s. 6) birlikte kullanıldığında 
enerji verimliliğinde anlamlı iyileşmeler ve edge computing 
senaryolarında daha hafif deployment profilleri sunmaktadır. 

 

11. ÜRETİM ÇERÇEVELERİ VE UYGULAMA 
ARAÇLARI  

Büyük dil modellerinin (LLM'ler) pratik uygulamalarında 
2( )n  attention engeli, inference latency’sini ve kaynak 

kullanımını artırmakta; DeepSpeed Inference, vLLM ve 
FasterTransformer gibi üretim çerçeveleri, multi-GPU paralelliği, 
heterojen bellek yönetimi ve kernel optimizasyonları ile 
throughput’u yaklaşık 1.5-4 kat yükseltmektedir (Aminabadi et 
al., 2022, s. 7; Kwon et al., 2023, s. 8; NVIDIA, 2023, s. 8). 
DeepSpeed Inference, tensor parallelism ve pipeline scheduling 
ile katmanları çoklu GPU üzerine bölerek büyük ölçekli 
Transformer modellerinde, özellikle MT-NLG benzeri 530B 
parametreli yapılarda, latency’de 7.3 kata kadar azalma ve 
throughput’ta 1.5 katın üzerinde artış sağlamakta; MoE desteği ve 
Azure entegrasyonu ile enerji verimliliğini yaklaşık %50 
artırırken, multi-node iletişim overhead’ı ve küçük modellerde 
sınırlı kazanç dezavantaj oluşturmaktadır (Aminabadi et al., 
2022, s. 7). vLLM, PagedAttention temelli KV-cache sayfalama 
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tasarımıyla bellek parçalanmasını azaltarak değişken uzunluklu 
isteklerde throughput’u 2-4 kat artırmakta ve Llama 70B için 
Hugging Face tabanlı yaklaşımlara kıyasla yaklaşık %55 daha 
düşük latency sunmaktadır (Kwon et al., 2023, s. 8). 
FasterTransformer ise kernel fusion ve nicelleştirme ile, Ampere 
nesli GPU’larda GPT-J (6B) için PyTorch’a göre 5 kata varan 
hızlanma sağlamakta, ancak NVIDIA ekosistemine sıkı 
bağımlılık portabiliteyi sınırlamaktadır (NVIDIA, 2023, s. 8). Bu 
çerçeveler, SSM tabanlı alternatif mimarilerle bütünleştiğinde, 
büyük ölçekli LLM servislerinin maliyet ve latency açısından 
sürdürülebilir deployment’ı için temel bileşenler haline 
gelmektedir (Gu & Dao, 2023, s. 6). 

 

12. SONUÇ VE GELECEK YÖNELİMLER 

Bu kitap bölümü, büyük dil modellerinin (LLM'ler) 
çekirdek zorluklarından biri olan 2( )n  attention engelini 
bütüncül bir çerçevede ele almış, performans optimizasyonlarını 
mimari, sistem ve uygulama katmanları boyunca sentezlemiştir. 
Girişten (Bölüm 1) başlayarak temel attention mekanizmaları 
(Bölüm 2), donanım odaklı optimizasyonlar (Bölüm 3), seyrek ve 
lineer attention (Bölüm 4), çoklu ve gruplu sorgu attention 
(Bölüm 5), spekülatif kod çözme (Bölüm 6), KV-cache ve 
batching stratejileri (Bölüm 7), nicelleştirme (Bölüm 8), konum 
kodlama ve uzun bağlam (Bölüm 9), ( )n - (1)  karmaşıklıklı 
alternatif mimariler (Bölüm 10) ve üretim çerçeveleri (Bölüm 11) 
tartışılmış; bu yaklaşımlar birlikte inference hızını yaklaşık 2-37 
kat artırmakta, bellek kullanımını %50-80 azaltmakta ve 
LLM’lerin pratik kullanımını dönüştürmektedir (Vaswani et al., 
2017, s. 1; Gu & Dao, 2023, s. 6; Kwon et al., 2023, s. 8; Dao et 
al., 2022, s. 2; Leviathan et al., 2023, s. 3; Dao & Gu, 2024, s. 7). 
Ana çıkarımlar üç katmanda özetlenebilir. (1) Mimari düzeyde, 
seyrek ve lineer attention (Longformer, Performer) ( )n  
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karmaşıklık sunarak uzun bağlamlı görevlerde (n>16K) 
perplexity’yi %15-25 azaltmakta (Beltagy et al., 2020, s. 3; 
Choromanski et al., 2020, s. 3); konum kodlama ve interpolation 
(RoPE, ALiBi, Position Interpolation) ile birleştiğinde uzun 
bağlam extrapolation’ı iyileşmektedir (Su et al., 2021, s. 6; Press 
et al., 2022, s. 6; Chen et al., 2023, s. 6). (2) Sistem düzeyinde, 
PagedAttention ve continuous batching, KV-cache ve zamanlama 
optimizasyonlarıyla throughput’u 20-40 kat artırmakta, 
nicelleştirme (LLM.int8(), GPTQ, AWQ, QLORA) ile model 
boyutunu 4-8 kat küçültmekte ve enerji maliyetlerini %50-70 
azaltmaktadır (Yu et al., 2022, s. 4; Frantar et al., 2022, s. 5; 
Dettmers et al., 2023, s. 5; Lin et al., 2023, s. 5; Dettmers et al., 
2022, s. 5; Xiao et al., 2023, s. 5; Kwon et al., 2023, s. 4). (3) 
Uygulama düzeyinde, DeepSpeed, vLLM ve FasterTransformer 
gibi çerçeveler, spekülatif decoding (Medusa, EAGLE) ile 
entegre edildiğinde gerçek zamanlı üretimi 3-5 kat hızlandırarak 
endüstriyel ölçekte deployment’ı mümkün kılmaktadır 
(Aminabadi et al., 2022, s. 7; Kwon et al., 2023, s. 8; NVIDIA, 
2023, s. 8; Cai et al., 2024, s. 4; Li et al., 2024a, s. 4). SSM-tabanlı 
mimariler (Mamba, RetNet, RWKV) ve SSM-Transformer 
hibritleri ise 2( )n  engelini yapısal düzeyde gevşeterek ( )n -

(1)  rejimlerine yaklaşmaktadır (Gu & Dao, 2023, s. 6; Sun et 
al., 2023, s. 7; Peng et al., 2023, s. 7). 

Bununla birlikte, donanım bağımlılığı (GPU-özgü 
kernel’ler), düşük bit nicelleştirmede quantization noise, aşırı 
uzun bağlamlarda interpolation bozulmaları ve alternatif 
mimarilerde eğitim paralelliği sınırlamaları, 2( )n  engelinin 
yalnızca yönetilebilir hale geldiğini göstermektedir (NVIDIA, 
2023, s. 8; Lin et al., 2023, s. 5; Chen et al., 2023, s. 6; Peng et 
al., 2023, s. 7). Gelecek çalışmalar için hibrit ve modüler SSM-
attention tasarımları, bağlama duyarlı adaptif optimizasyonlar, 
sürdürülebilir ve enerji-aware nicelleştirme, multimodal uzun 
bağlam yöntemleri ve federated/privasi odaklı çerçeveler 
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(HELM, BigBench ve benzeri benchmark’ların genişletilmesiyle) 
ön plana çıkmaktadır. Sonuç olarak, bu bölüm, 2( )n  attention 
engelinin yenilikçi mimari, sistemsel ve üretim odaklı 
optimizasyonlarla büyük ölçüde aşılabileceğini göstererek, daha 
verimli, ölçeklenebilir ve etik LLM tasarımları için kavramsal bir 
temel sunmaktadır. 
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