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COMPLEX SURVEY DATA ANALYSIS IN
POPULATION-BASED EPIDEMIOLOGY

Mehmet Emin ARAYICI?

1. INTRODUCTION

Population-based epidemiology relies on surveys that
sample individuals from large populations to estimate health
outcomes and risk factors. Unlike experiments, surveys do not
manipulate exposure; they are observational, making
representativeness and unbiased estimation essential. Many
surveys employ complex sampling designs rather than simple
random sampling. These designs typically involve stratifying the
population into subgroups, sampling clusters of households or
individuals, and applying sampling weights to adjust for unequal
selection probabilities and non-response (lparragirre, Barrio,
Aramendi, & Arostegui, 2022; Parsons, Wei, & Parker, 2013).
The aim is to reduce cost and increase precision while ensuring
coverage of key subpopulations. Because units selected within the
same cluster tend to be more similar, and because strata have
different sampling fractions, the resulting data are correlated and
heteroskedastic; ignoring the design elements leads to biased
estimates and underestimated variances (Murillo Fort & Guillén
Estany, 1989; Sturgis, 2004). Consequently, specialized methods
are required for analyzing complex survey data in
epidemiological research.
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This chapter provides a comprehensive overview of
complex survey data analysis for population-based epidemiology.
It begins by explaining sampling strategies such as stratification
and clustering, then describes how sampling weights and
post-stratification adjustments are constructed. Techniques for
variance estimation—including Taylor series linearization and
replication methods—are explored, followed by guidance on
weighted regression modelling and strategies for dealing with
missing data.

2. SAMPLING STRATEGIES: STRATIFICATION
AND CLUSTERING

2.1. Stratified Sampling

Stratification divides the population into strata—
homogeneous subgroups defined by characteristics such as
region, urban/rural status, or demographic categories—and
samples are drawn separately from each stratum. Stratification
offers several advantages (Wu, Thompson, Wu, & Thompson,
2020)(Levin & Kanza, 2014):

Variance reduction: sampling homogeneous strata
reduces variability within strata and leads to more precise
estimates, as all strata are represented.

Ensuring  representation of key subgroups:
oversampling important but rare groups (e.g., racial/ethnic
minorities) enhances power to analyse differences across
subgroups.

Operational efficiency: fieldwork can be organized by
region or cluster, reducing travel costs.

Two primary sampling strategies within stratification are
proportional allocation and disproportional (or unequal)
allocation. In proportional allocation, the sample fraction within
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each stratum equals the population fraction, which minimizes
overall variance when population variances are similar. In
disproportional allocation, sample sizes are increased in smaller
or higher-variability strata, often requiring weight adjustments to
produce unbiased national estimates (Imrey, Sobel, & Francis,
1979; Yanagawa & Wakimoto, 1972).

Calculating stratum weights: For a stratified sample to
produce national estimates, weights must reflect the population
proportion of each stratum. The Micronutrient Survey Manual
shows that stratum weights may be computed by dividing the
population number by the sample number or by dividing the
percentage of population by the percentage of sampled units; the
selected method should be applied consistently across strata.
Without weighting, estimates overrepresent heavily sampled
strata and underrepresent lightly sampled strata, leading to biased
national estimates (Kulas, Robinson, Smith, & Kellar, 2018;
Schmidt et al., 2011).

2.2. Cluster Sampling

Cluster sampling selects clusters (primary sampling units
or PSUs) such as villages, census blocks, or hospitals, then
samples households or individuals within clusters. It is frequently
combined with stratification to create a multi-stage design.
Cluster sampling reduces fieldwork costs because interviewers
travel to fewer locations, but it introduces intracluster
correlation—people within the same cluster tend to be more
similar than those across clusters—leading to increased sampling
variance (Krenzke & Haung, 2014; Murphy & Chesnut, 2018).
The design effect (DEFF) quantifies the inflation of variance due
to clustering and weighting; it depends on the intracluster
correlation coefficient (ICC) and average cluster size. Ignoring
clustering yields standard errors that are too small and confidence
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intervals that are too narrow, potentially leading to incorrect
inferences (Bell et al., 2012).

Two-stage cluster sampling is common. In the
Demographic and Health Surveys (DHS), a two-stage probability
sample is drawn: first, PSUs stratified by region and urban/rural
area are selected with probability proportional to size (PPS);
second, households within PSUs are sampled systematically with
equal probability (Aliaga & Ren, 2006; Kalton et al., 2021). The
combination of stratification and clustering yields self-weighting
samples within strata while achieving cost efficiency. Similar
two-stage designs are used in other national surveys like the U.S.
National Health and Nutrition Examination Survey (NHANES)
(“National Health and Nutrition Examination Survey (NHANES)
- Health, United States,” 2024) and the Turkiye Health Surveys
(Arayici & Kose, 2025).

2.3.Multi-stage and Multiphase Sampling

Large population surveys may involve more than two
stages. For example, NHANES selects PSUs (counties), then
segments (census blocks), then households, and finally
individuals; there are often subsamples for laboratory
measurements or special studies. Multiphase sampling may also
be used, where certain measurements are obtained only for a
subsample; weights for subsamples must be adjusted accordingly
(“NHANES Tutorials - Weighting Module,” n.d.-a).

3. SAMPLE WEIGHTING AND
POST-STRATIFICATION

3.1. Purpose of Sampling Weights

Sampling weights are fundamental to complex survey
analysis. They serve three purposes:
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1. Adjusting for unequal selection probabilities:When
the sampling design oversamples certain strata or
clusters, the probability of selection varies. The base
weight, defined as the inverse of the probability of
selection, corrects this unequal probability
(Bartosinska, 2012).

2. Correcting for non-response: Some sampled
households or individuals do not participate.
Non-response  adjustments inflate  weights of
respondents within adjustment cells to compensate for
missing units (Singh, Ganesh, & Lin, 2013).

3. Post-stratification and calibration: Final weights are
calibrated to known population totals (e.g., by age, sex,
or region) to correct residual bias and align sample
distributions with census counts (Triveni, Danish, &
Tawiah, 2024).

Ignoring weights can bias estimates because unweighted
analyses treat each observation as equally representative. Inverse
probability weighting reduces this bias but may increase variance
if weights vary widely (Bell et al., 2012). The design effect
accounts for this variance inflation.

3.2. Construction of Survey Weights

Survey weights typically evolve through a series of
adjustments, which may vary by survey:

Base (design) weights: computed as the reciprocal of the
selection probability. For example, NHANES (*NHANES
Tutorials - Weighting Module,” n.d.-b) base weights combine the
reciprocal of selecting the PSU, segment, household, and person.

Non-response adjustments: weights are multiplied by
the inverse of the response rate within adjustment cells defined
by demographics or design variables (Ezzati & Khare, 2002).
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Post-stratification or raking: weights are calibrated to
external population totals using demographic variables.
NHANES calibrates its weights to estimates from the American
Community Survey, replacing previous calibrations to the
Current Population Survey to improve reliability for Asian
populations. DHS computes separate household and individual
weights (for women and men) by multiplying the inverse
selection probability and the inverse of the household response
rate; additional biomarker weights adjust for subsampling
(Caughey et al., 2020).

3.3.Finite Population Correction and Replicate
Weights

When a large fraction of the population is sampled (as
may occur in small strata), a finite population correction (FPC)
reduces variance estimates. FPC equals (N —n)/(N — 1)where
Nis the population size and nthe sample size; it reflects the
reduction in variability because units cannot be resampled. Many
software packages allow specifying FPC to improve accuracy
(“Survey Data Analysis with R,” n.d.). Replicate weights—sets
of weights that replicate the sampling design across many
replicates—provide an alternative to specifying strata and PSU
variables. Balanced repeated replication (BRR) and jackknife
replicate weights are common and are provided for surveys like
the Current Population Survey. They replace PSU and strata
information and allow straightforward estimation of variances

4. VARIANCE ESTIMATION TECHNIQUES

Accurate variance estimation is vital for valid inference in
complex surveys. Standard errors computed under simple random
sampling are biased when strata, clustering, and weights are
ignored (Bell et al., 2012). Two major approaches are used:
Taylor series linearization and replication methods.
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4.1. Taylor Series Linearization

Taylor series linearization approximates the variance of a
complex estimator by expanding it as a linear function around the
population mean, then computing the variance of the linearized
estimator. It is computationally efficient and generalizes well to
regression coefficients and nonlinear statistics (Goodwin &
Thompson, 2001; Hammer, Shin, & Porcellini, 2003). The NCES
guide notes that Taylor linearization uses design variables (strata
and PSU) and does not require replicate weights; it is available in
software such as SAS PROC SURVEYREG (“SAS Help Center:
Overview: SURVEYREG Procedure,” n.d.), Stata svy commands
(“How Do | Use the Stata Survey (Svy) Commands? | Stata
FAQ,” n.d.), SPSS Complex Samples (“Complex Samples - IBM
SPSS Statistics,” n.d.), and R’s (Lumley, Gao, Schneider, &
Lumley", 2025) survey package (So et al., 2020). For example,
the variance ofamean i = Y; w;y;/ i w;can be linearized
by approximating it with a ratio estimator and computing the
variance of the numerator and denominator using design
information. However, linearization requires deriving specific
formulas for each estimator, which may be challenging for
complex statistics like quantiles or poverty indices.

4.2. Replication Methods

Replication methods estimate variance by repeatedly
re-computing the statistic on multiple replicate samples that
mimic the complex design. The sampling variability across
replicates approximates the variance of the full-sample estimator
(Mukhopadhyay, An, Tobias, & Watts, 2008; Rust & Rao, 1996).
Common methods include:

Balanced Repeated Replication (BRR): When the
sample design contains strata with exactly two PSUs per stratum,
BRR constructs replicates by retaining one PSU from each
stratum according to a Hadamard matrix pattern and multiplying
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its weight by two. The variance is calculated as the average
squared deviation of replicate estimates from the full-sample
estimate. Fay’s BRR is a generalization that multiplies weights
by factors p and 2—p rather than omitting PSUs, improving
stability (Parsad & Gupta, 2007).

Jackknife Repeated Replication (JRR): The survey is
divided into groups (often PSUs or clusters). Each replicate
deletes one group and re-weights the remaining units. The
variance is the scaled average of squared deviations of replicate
estimates from the full estimate. JRR works with more than two
PSUs per stratum and is widely used in surveys where replicate
weights are provided (Frankel, 2014).

Bootstrap methods: Resampling of PSUs or clusters with
replacement creates bootstrap replicates; weights are rescaled to
preserve total population size. Bootstrapping is flexible and
works for nonlinear statistics but may be computationally
intensive (Chen & Sadler, 2010).

Replication methods have advantages when linearization
formulas are difficult or when replicate weights are available
from data producers. They also provide robust variance estimates
for complex estimators. However, they require careful
specification of replicate weights and may be sensitive to the
number of replicates.

4.3. Design Effects and Intracluster Correlation

The design effect (DEFF) quantifies the inflation (or
reduction) in variance due to the complex design relative to
simple random sampling. It is defined as DEFF = varympjex/

var. Stratification typically reduces variance (DEFF<1) because
homogeneous strata yield more precise estimates, whereas
clustering increases variance (DEFF>1) due to correlated
observations Survey weighting may reduce bias but can increase
variance when weights have high variability. The intracluster
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correlation coefficient (ICC) measures the similarity of units
within clusters and drives the design effect; high ICC and large
cluster size lead to large DEFF. Software packages often report
the design effect for estimates, facilitating understanding of the
efficiency of the design (Cohen, 2002; Kalton & Brick, 2005).

5. WEIGHTED REGRESSION MODELLING

Regression modelling in epidemiology often aims to relate
exposures to health outcomes, adjusting for confounders. In
complex surveys, regression coefficients must be estimated using
design-appropriate methods to obtain unbiased estimates and
correct standard errors (Daberkow, 1984).

In weighted least squares (WLS) regression, coefficients
are estimated by minimizing the sum of squared residuals
weighted by the sampling weights. The survey package in R
implements WLS via svyglm(); Stata uses svy: regress; SPSS
uses CSGLM (Complex Samples General Linear Models).
Standard errors are estimated using Taylor linearization or
replication. For logistic regression, the pseudo maximum
likelihood estimator multiplies the log-likelihood by sampling
weights, producing consistent parameter estimates; standard
errors are obtained using the Huber—White sandwich estimator or
design-based variance estimation. Proper specification of weights
and design variables is critical; ignoring sampling weights can
bias regression coefficients and understate standard errors (Bell
et al., 2012; Blahut & Dayton, 2004).

An example is NHANES logistic regression for diabetes
prevalence. Suppose we model diabetes status as a function of
age, BMI, and sex. The design is specified by strata, PSU, and
weights. In R: library(survey) design <- svydesign(ids=~psu,
strata=~stratum, weights=~weight, data=nhanes) model <-
svyglm(diabetes ~ age + bmi + sex, design=design,
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family=quasibinomial()) The resulting coefficients estimate
population log-odds ratios, and the svyglm function uses a
sandwich variance estimator that accounts for clustering and
stratification (Dey et al., 2025).

Outliers in survey data may correspond to influential
clusters or misreported values. Weighted robust regression
methods, such as M-estimators and GM-estimators, can reduce
the influence of extreme observations. The robsurvey package
extends the survey package by implementing robust estimators
for complex survey data (Dehnel, 2016; Nugroho, Wardhani,
Fernandes, & Solimun, 2020). It emphasises that different modes
of inference—design-based, model-based and compound—
reflect how much confidence is placed in model assumptions and
that robust methods can mitigate sensitivity to outliers.

6. DEALING WITH MISSING DATA IN
COMPLEX SURVEYS

Missing data are ubiquitous in epidemiological surveys
because respondents may skip questions or units may drop out.
Complex survey designs exacerbate the problem because
missingness may be related to inclusion probabilities or design
variables (Ghosh & Pahwa, 2008). Ignoring missingness can
reduce the effective sample size and bias estimates.

Several strategies exist for handling missing data:

1. Complete-case (listwise) deletion: excludes cases with
missing values. Although easy to implement, this strategy
can bias estimates if the missingness mechanism is not
completely at random; it also reduces sample size
(Kellermann, Trevathan, & Kromrey, 2016).

2. Inverse Probability Weighting (IPW): uses weights
proportional to the inverse probability of responding. A

10
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logistic regression model predicts response probability
using available variables (including design variables), and
the inverse predicted probabilities serve as weights (Dey
et al., 2025). IPW can correct for nonresponse bias when
the response model is correctly specified, but extreme
weights can inflate variance.

3. Single Imputation (SI): replaces missing values with
predicted values or mean values; this tends to
underestimate variance because it ignores imputation
uncertainty (McMillan, 2013).

4. Multiple Imputation (MI): creates multiple complete
datasets by replacing missing values with draws from an
imputation model that includes predictors of missingness
and the survey design variables. Estimates are computed
on each imputed dataset, and results are combined using
Rubin’s rules. The logistic regression review notes that Ml
is popular for complex surveys; the pooled estimate
averages across imputations, and the variance combines
within- and between-imputation variability. MI models
should include sampling weights, strata, and clusters as
predictors or via dedicated survey imputation procedures
(Zhang et al., 2023). Sequential regression multiple
imputation (SRMI), also called fully conditional
specification, is particularly suited for large surveys; each
variable with missingness is imputed sequentially using
regression models and includes design variables (Zhang et
al., 2023).

Including design information in the imputation model is
crucial. The skip-pattern imputation study emphasises that
sampling weights, strata, and clustering should be included as
predictors in the imputation model to preserve design-based
inference; failing to include them can distort variance estimation

11
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(Zhang et al., 2023). After imputation, the final analysis uses the
survey design specification and combines estimates across
imputations. A practical guide to multiple imputation in large
surveys found that combining IPW and MI can improve accuracy
and reduce bias compared with complete-case analysis; however,
the nonresponse model may have limited predictive power and
the selection of predictors is important (He, Zaslavsky,
Harrington, Catalano, & Landrum, 2010).

7. SOFTWARE TOOLS FOR SURVEY ANALYSIS

R survey and Related Packages: The R language
provides comprehensive tools for complex survey analysis. The
survey package, developed by Thomas Lumley, supports
specifying survey designs via svydesign(), which takes arguments
for PSU (ids), strata, weights, and FPC (Lumley et al., 2025). It
implements descriptive statistics, ratio estimation, quantiles, and
regression models using linearization or replication. Weighted
regression is implemented in svyglm() and svycoxph() for
survival analysis; variance estimation options include
linearization and replicate weights. The package also supports
calibration and raking (via svycalibrate) and provides functions
to compute design effects and intracluster correlation. The
robsurvey package adds robust regression estimators for complex
surveys (Outline, n.d.). For replication methods, the srvyr and
tidyverse interfaces provide tidy syntax and functions for BRR
and JRR; replicate weights can be created with as.svrepdesign().

Stata: svy Commands: Stata contains a suite of survey
commands (svy) that incorporate sampling weights, stratification,
and clustering (Kolenikov, 2008; Winter, 2002). Users specify
the design using svyset, providing the weight variable (pweight),
stratification (strata), PSU (psu), FPC, and replicate weights if
available. Stata implements descriptive statistics (svy: mean, svy:

12



COMPLEX SURVEY DATA ANALYSIS IN POPULATION-BASED EPIDEMIOLOGY

proportion), linear regression (svy: regress), generalized linear
models (svy: glm), logistic regression (svy: logistic), and survival
analysis. The UCLA guide explains that probability weights in
Stata correspond to final survey weights that include all
adjustments; replicate weights can be used when PSU or strata
variables are unavailable. Stata computes standard errors using
Taylor linearization by default and provides options for
Jackknife, BRR, and bootstrap variance estimation.

SPSS Complex Samples: IBM SPSS Statistics offers the
Complex Samples modile (“Complex Samples - IBM SPSS
Statistics,” n.d.), which incorporates sample design information
into analysis. The module provides procedures for:

Complex Samples Descriptives (CSDESCRIPTIVES):
computes means, sums, ratios and design effects, with variance
estimation based on the sample design (equal probability or PPS)
and sampling with or without replacement. Complex Samples
Tabulate (CSTABULATE): generates frequency tables,
cross-tabulations, and design effects. Complex Samples General
Linear Models (CSGLM): performs linear regression, ANOVA,
and ANCOVA using sampling weights and design variables;
outputs parameter estimates, standard errors, and tests of
hypotheses. = Complex  Samples  Logistic  Regression
(CSLOGISTIC): fits logistic regression models with sampling
weights, providing coefficient estimates, standard errors, odds
ratios, design effects, and Wald tests.

The module allows specifying sampling plans, including
equal probability designs, PPS sampling, and designs with or
without replacement. Users can handle missing data via listwise
deletion or imputation within the module. Other software includes
SAS (“SAS Help Center: Overview: SURVEYREG
Procedure,” n.d) (PROC SURVEYMEANS, PROC
SURVEYREG, PROC SURVEYLOGISTIC), SUDAAN, and

13
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specialized packages like convey for poverty measures in R. The
guidelines provided by the NCES emphasise using software that
supports  design-based variance estimation to avoid
underestimating variances.

8. LIMITATIONS AND CHALLENGES

Despite the availability of sophisticated methods and
software, complex survey analysis faces several limitations.

1. Design mis-specification: Analysts must correctly
specify strata, PSU, weights, and FPC. Mis-specification
leads to biased variance estimation. In secondary data
analyses, documentation may be incomplete, and replicate
weights may be unavailable.

2. Extreme or highly variable weights: Large variation in
weights can inflate variance and produce unstable
estimates. Weight trimming or smoothing may reduce
variance at the cost of introducing bias.

3. Non-response and missing data: Response rates may be
low, and missing data may correlate with design variables.
IPW and MI rely on correct models; misspecification can
bias results. Complex skip patterns and skip-condition
variables further complicate imputation.

4. Measurement error and recall bias: Self-reported
outcomes (e.g., dietary intake, physical activity) may be
measured with error. Complex survey analysis does not
inherently correct measurement error; additional methods
such as validation substudies are needed.

5. Computational resources: Large surveys with replicate
weights require substantial memory and computing time,
especially when using bootstrap methods.

14
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6. Causal inference: Complex survey data are
observational; causal interpretations require careful
consideration of confounding and selection bias.
Incorporating design variables into causal models remains
an area of methodological research.

Advances in survey methodology aim to address these
challenges and enhance the utility of complex surveys for
epidemiology. Linking survey data with administrative records,
electronic health records or wearable devices can enrich analyses
and reduce respondent burden. However, linkage introduces
privacy concerns and requires harmonizing sampling weights.
Surveys are adopting adaptive designs that modify sampling
probabilities in real time based on paradata (e.g., response
propensities), improving efficiency and reducing nonresponse
bias. Responsive design may allocate more resources to strata
with lower response rates. Combining design-based weights with
flexible modelling (e.g., hierarchical models, Bayesian inference)
can improve estimates for small domains and incorporate prior
information. The tension between design-based and model-based
approaches is being addressed through compound inference
methods that balance the strengths of both. Machine learning
algorithms can model complex relationships among variables to
improve nonresponse adjustment, calibration, and imputation.
Ensuring interpretability and maintaining design-based properties
remain active research areas. = New variance estimation
techniques aim to handle high-dimensional data, complex
estimators, and robust measures of association. For example,
robust regression and influence function approaches provide
resilience against outliers and model misspecification. To
facilitate secondary analysis, survey organizations are
increasingly providing detailed metadata, design variables,
replicate weights, and user guides (e.g., DHS, NHANES).

15
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Continued improvements in accessibility will reduce errors and
broaden the use of complex survey data.

9. CONCLUSIONS

Complex survey designs are indispensable for collecting
representative epidemiological data at national and subnational
levels. By combining stratification, multi-stage cluster sampling,
and weighting, surveys like NHANES, DHS, and THS efficiently
produce data to monitor population health. Analysis of such data
requires explicit recognition of the sampling design: weights
adjust for unequal selection and nonresponse, and variance
estimation must account for stratification and clustering. Taylor
series linearization and replication methods provide reliable
standard errors; design effects inform sample efficiency; and
weighted regression models yield valid associations. Handling
missing data through IPW and multiple imputation and using
specialized software tools are essential for robust analysis. While
challenges remain—such as design mis-specification, extreme
weights, and model misspecification—ongoing methodological
advances promise to strengthen the integration of complex survey
data into population-based epidemiology. Careful application of
design-based principles and awareness of survey documentation
will ensure that epidemiological inferences reflect the populations
the surveys are intended to represent.

16
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