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COMPLEX SURVEY DATA ANALYSIS IN 
POPULATION-BASED EPIDEMIOLOGY 

Mehmet Emin ARAYICI1 

1. INTRODUCTION

Population‑based epidemiology relies on surveys that
sample individuals from large populations to estimate health 
outcomes and risk factors. Unlike experiments, surveys do not 
manipulate exposure; they are observational, making 
representativeness and unbiased estimation essential. Many 
surveys employ complex sampling designs rather than simple 
random sampling. These designs typically involve stratifying the 
population into subgroups, sampling clusters of households or 
individuals, and applying sampling weights to adjust for unequal 
selection probabilities and non‑response (Iparragirre, Barrio, 
Aramendi, & Arostegui, 2022; Parsons, Wei, & Parker, 2013). 
The aim is to reduce cost and increase precision while ensuring 
coverage of key subpopulations. Because units selected within the 
same cluster tend to be more similar, and because strata have 
different sampling fractions, the resulting data are correlated and 
heteroskedastic; ignoring the design elements leads to biased 
estimates and underestimated variances (Murillo Fort & Guillén 
Estany, 1989; Sturgis, 2004). Consequently, specialized methods 
are required for analyzing complex survey data in 
epidemiological research. 

1  Asst. Prof. Dr., Dokuz Eylül University, Faculty of Medicine, Department of 
Biostatistics and Medical Informatics, mehmet.e.arayici@gmail.com, ORCID: 
0000-0002-0492-5129. 
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This chapter provides a comprehensive overview of 
complex survey data analysis for population‑based epidemiology. 
It begins by explaining sampling strategies such as stratification 
and clustering, then describes how sampling weights and 
post‑stratification adjustments are constructed. Techniques for 
variance estimation—including Taylor series linearization and 
replication methods—are explored, followed by guidance on 
weighted regression modelling and strategies for dealing with 
missing data. 

 

2. SAMPLING STRATEGIES: STRATIFICATION 
AND CLUSTERING 

2.1. Stratified Sampling 

Stratification divides the population into strata—
homogeneous subgroups defined by characteristics such as 
region, urban/rural status, or demographic categories—and 
samples are drawn separately from each stratum. Stratification 
offers several advantages (Wu, Thompson, Wu, & Thompson, 
2020)(Levin & Kanza, 2014): 

Variance reduction: sampling homogeneous strata 
reduces variability within strata and leads to more precise 
estimates, as all strata are represented. 

Ensuring representation of key subgroups: 
oversampling important but rare groups (e.g., racial/ethnic 
minorities) enhances power to analyse differences across 
subgroups. 

Operational efficiency: fieldwork can be organized by 
region or cluster, reducing travel costs. 

Two primary sampling strategies within stratification are 
proportional allocation and disproportional (or unequal) 
allocation. In proportional allocation, the sample fraction within 
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each stratum equals the population fraction, which minimizes 
overall variance when population variances are similar. In 
disproportional allocation, sample sizes are increased in smaller 
or higher‑variability strata, often requiring weight adjustments to 
produce unbiased national estimates (Imrey, Sobel, & Francis, 
1979; Yanagawa & Wakimoto, 1972).  

Calculating stratum weights: For a stratified sample to 
produce national estimates, weights must reflect the population 
proportion of each stratum. The Micronutrient Survey Manual 
shows that stratum weights may be computed by dividing the 
population number by the sample number or by dividing the 
percentage of population by the percentage of sampled units; the 
selected method should be applied consistently across strata. 
Without weighting, estimates overrepresent heavily sampled 
strata and underrepresent lightly sampled strata, leading to biased 
national estimates (Kulas, Robinson, Smith, & Kellar, 2018; 
Schmidt et al., 2011). 

2.2. Cluster Sampling 

Cluster sampling selects clusters (primary sampling units 
or PSUs) such as villages, census blocks, or hospitals, then 
samples households or individuals within clusters. It is frequently 
combined with stratification to create a multi‑stage design. 
Cluster sampling reduces fieldwork costs because interviewers 
travel to fewer locations, but it introduces intracluster 
correlation—people within the same cluster tend to be more 
similar than those across clusters—leading to increased sampling 
variance (Krenzke & Haung, 2014; Murphy & Chesnut, 2018). 
The design effect (DEFF) quantifies the inflation of variance due 
to clustering and weighting; it depends on the intracluster 
correlation coefficient (ICC) and average cluster size. Ignoring 
clustering yields standard errors that are too small and confidence 
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intervals that are too narrow, potentially leading to incorrect 
inferences (Bell et al., 2012). 

Two‑stage cluster sampling is common. In the 
Demographic and Health Surveys (DHS), a two‑stage probability 
sample is drawn: first, PSUs stratified by region and urban/rural 
area are selected with probability proportional to size (PPS); 
second, households within PSUs are sampled systematically with 
equal probability (Aliaga & Ren, 2006; Kalton et al., 2021). The 
combination of stratification and clustering yields self‑weighting 
samples within strata while achieving cost efficiency. Similar 
two‑stage designs are used in other national surveys like the U.S. 
National Health and Nutrition Examination Survey (NHANES) 
(“National Health and Nutrition Examination Survey (NHANES) 
- Health, United States,” 2024) and the Türkiye Health Surveys 
(Arayici & Kose, 2025). 

2.3.Multi‑stage and Multiphase Sampling 

Large population surveys may involve more than two 
stages. For example, NHANES selects PSUs (counties), then 
segments (census blocks), then households, and finally 
individuals; there are often subsamples for laboratory 
measurements or special studies. Multiphase sampling may also 
be used, where certain measurements are obtained only for a 
subsample; weights for subsamples must be adjusted accordingly 
(“NHANES Tutorials - Weighting Module,” n.d.-a). 

 

3. SAMPLE WEIGHTING AND 
POST‑STRATIFICATION 

3.1. Purpose of Sampling Weights 

Sampling weights are fundamental to complex survey 
analysis. They serve three purposes:  
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1. Adjusting for unequal selection probabilities:When 
the sampling design oversamples certain strata or 
clusters, the probability of selection varies. The base 
weight, defined as the inverse of the probability of 
selection, corrects this unequal probability 
(Bartosińska, 2012).  

2. Correcting for non‑response: Some sampled 
households or individuals do not participate. 
Non‑response adjustments inflate weights of 
respondents within adjustment cells to compensate for 
missing units (Singh, Ganesh, & Lin, 2013).  

3. Post‑stratification and calibration: Final weights are 
calibrated to known population totals (e.g., by age, sex, 
or region) to correct residual bias and align sample 
distributions with census counts (Triveni, Danish, & 
Tawiah, 2024). 

Ignoring weights can bias estimates because unweighted 
analyses treat each observation as equally representative. Inverse 
probability weighting reduces this bias but may increase variance 
if weights vary widely (Bell et al., 2012). The design effect 
accounts for this variance inflation. 

3.2. Construction of Survey Weights 

Survey weights typically evolve through a series of 
adjustments, which may vary by survey: 

Base (design) weights: computed as the reciprocal of the 
selection probability. For example, NHANES (“NHANES 
Tutorials - Weighting Module,” n.d.-b) base weights combine the 
reciprocal of selecting the PSU, segment, household, and person. 

Non‑response adjustments: weights are multiplied by 
the inverse of the response rate within adjustment cells defined 
by demographics or design variables (Ezzati & Khare, 2002). 
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Post‑stratification or raking: weights are calibrated to 
external population totals using demographic variables. 
NHANES calibrates its weights to estimates from the American 
Community Survey, replacing previous calibrations to the 
Current Population Survey to improve reliability for Asian 
populations. DHS computes separate household and individual 
weights (for women and men) by multiplying the inverse 
selection probability and the inverse of the household response 
rate; additional biomarker weights adjust for subsampling 
(Caughey et al., 2020). 

3.3.Finite Population Correction and Replicate 
Weights 

When a large fraction of the population is sampled (as 
may occur in small strata), a finite population correction (FPC) 
reduces variance estimates. FPC equals (𝑁𝑁 − 𝑛𝑛)/(𝑁𝑁 − 1)where 
𝑁𝑁is the population size and 𝑛𝑛the sample size; it reflects the 
reduction in variability because units cannot be resampled. Many 
software packages allow specifying FPC to improve accuracy 
(“Survey Data Analysis with R,” n.d.). Replicate weights—sets 
of weights that replicate the sampling design across many 
replicates—provide an alternative to specifying strata and PSU 
variables. Balanced repeated replication (BRR) and jackknife 
replicate weights are common and are provided for surveys like 
the Current Population Survey. They replace PSU and strata 
information and allow straightforward estimation of variances 

 

4. VARIANCE ESTIMATION TECHNIQUES 

Accurate variance estimation is vital for valid inference in 
complex surveys. Standard errors computed under simple random 
sampling are biased when strata, clustering, and weights are 
ignored (Bell et al., 2012). Two major approaches are used: 
Taylor series linearization and replication methods. 
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4.1. Taylor Series Linearization 

Taylor series linearization approximates the variance of a 
complex estimator by expanding it as a linear function around the 
population mean, then computing the variance of the linearized 
estimator. It is computationally efficient and generalizes well to 
regression coefficients and nonlinear statistics (Goodwin & 
Thompson, 2001; Hammer, Shin, & Porcellini, 2003). The NCES 
guide notes that Taylor linearization uses design variables (strata 
and PSU) and does not require replicate weights; it is available in 
software such as SAS PROC SURVEYREG (“SAS Help Center: 
Overview: SURVEYREG Procedure,” n.d.), Stata svy commands 
(“How Do I Use the Stata Survey (Svy) Commands? | Stata 
FAQ,” n.d.), SPSS Complex Samples (“Complex Samples - IBM 
SPSS Statistics,” n.d.), and R’s (Lumley, Gao, Schneider, & 
Lumley", 2025) survey package (So et al., 2020). For example, 
the variance of a mean 𝜇̂𝜇 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖/∑𝑖𝑖 𝑤𝑤𝑖𝑖can be linearized 
by approximating it with a ratio estimator and computing the 
variance of the numerator and denominator using design 
information. However, linearization requires deriving specific 
formulas for each estimator, which may be challenging for 
complex statistics like quantiles or poverty indices. 

4.2. Replication Methods 

Replication methods estimate variance by repeatedly 
re‑computing the statistic on multiple replicate samples that 
mimic the complex design. The sampling variability across 
replicates approximates the variance of the full‑sample estimator 
(Mukhopadhyay, An, Tobias, & Watts, 2008; Rust & Rao, 1996). 
Common methods include: 

Balanced Repeated Replication (BRR): When the 
sample design contains strata with exactly two PSUs per stratum, 
BRR constructs replicates by retaining one PSU from each 
stratum according to a Hadamard matrix pattern and multiplying 
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its weight by two. The variance is calculated as the average 
squared deviation of replicate estimates from the full‑sample 
estimate. Fay’s BRR is a generalization that multiplies weights 
by factors ρ and 2−𝜌𝜌 rather than omitting PSUs, improving 
stability (Parsad & Gupta, 2007). 

Jackknife Repeated Replication (JRR): The survey is 
divided into groups (often PSUs or clusters). Each replicate 
deletes one group and re‑weights the remaining units. The 
variance is the scaled average of squared deviations of replicate 
estimates from the full estimate. JRR works with more than two 
PSUs per stratum and is widely used in surveys where replicate 
weights are provided (Frankel, 2014). 

Bootstrap methods: Resampling of PSUs or clusters with 
replacement creates bootstrap replicates; weights are rescaled to 
preserve total population size. Bootstrapping is flexible and 
works for nonlinear statistics but may be computationally 
intensive (Chen & Sadler, 2010). 

Replication methods have advantages when linearization 
formulas are difficult or when replicate weights are available 
from data producers. They also provide robust variance estimates 
for complex estimators. However, they require careful 
specification of replicate weights and may be sensitive to the 
number of replicates. 

4.3. Design Effects and Intracluster Correlation 

The design effect (DEFF) quantifies the inflation (or 
reduction) in variance due to the complex design relative to 
simple random sampling. It is defined as DEFF = varcomplex/
varsrs. Stratification typically reduces variance (DEFF<1) because 
homogeneous strata yield more precise estimates, whereas 
clustering increases variance (DEFF>1) due to correlated 
observations Survey weighting may reduce bias but can increase 
variance when weights have high variability. The intracluster 
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correlation coefficient (ICC) measures the similarity of units 
within clusters and drives the design effect; high ICC and large 
cluster size lead to large DEFF. Software packages often report 
the design effect for estimates, facilitating understanding of the 
efficiency of the design (Cohen, 2002; Kalton & Brick, 2005). 

 

5. WEIGHTED REGRESSION MODELLING 

Regression modelling in epidemiology often aims to relate 
exposures to health outcomes, adjusting for confounders. In 
complex surveys, regression coefficients must be estimated using 
design‑appropriate methods to obtain unbiased estimates and 
correct standard errors (Daberkow, 1984). 

In weighted least squares (WLS) regression, coefficients 
are estimated by minimizing the sum of squared residuals 
weighted by the sampling weights. The survey package in R 
implements WLS via svyglm(); Stata uses svy: regress; SPSS 
uses CSGLM (Complex Samples General Linear Models). 
Standard errors are estimated using Taylor linearization or 
replication. For logistic regression, the pseudo maximum 
likelihood estimator multiplies the log‑likelihood by sampling 
weights, producing consistent parameter estimates; standard 
errors are obtained using the Huber–White sandwich estimator or 
design‑based variance estimation. Proper specification of weights 
and design variables is critical; ignoring sampling weights can 
bias regression coefficients and understate standard errors (Bell 
et al., 2012; Blahut & Dayton, 2004). 

An example is NHANES logistic regression for diabetes 
prevalence. Suppose we model diabetes status as a function of 
age, BMI, and sex. The design is specified by strata, PSU, and 
weights. In R: library(survey) design <- svydesign(ids=~psu, 
strata=~stratum, weights=~weight, data=nhanes) model <-
svyglm(diabetes ~ age + bmi + sex, design=design, 
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family=quasibinomial()) The resulting coefficients estimate 
population log‑odds ratios, and the svyglm function uses a 
sandwich variance estimator that accounts for clustering and 
stratification (Dey et al., 2025). 

Outliers in survey data may correspond to influential 
clusters or misreported values. Weighted robust regression 
methods, such as M‑estimators and GM‑estimators, can reduce 
the influence of extreme observations. The robsurvey package 
extends the survey package by implementing robust estimators 
for complex survey data (Dehnel, 2016; Nugroho, Wardhani, 
Fernandes, & Solimun, 2020). It emphasises that different modes 
of inference—design‑based, model‑based and compound—
reflect how much confidence is placed in model assumptions and 
that robust methods can mitigate sensitivity to outliers. 

 

6. DEALING WITH MISSING DATA IN 
COMPLEX SURVEYS 

Missing data are ubiquitous in epidemiological surveys 
because respondents may skip questions or units may drop out. 
Complex survey designs exacerbate the problem because 
missingness may be related to inclusion probabilities or design 
variables (Ghosh & Pahwa, 2008). Ignoring missingness can 
reduce the effective sample size and bias estimates. 

Several strategies exist for handling missing data: 

1. Complete‑case (listwise) deletion: excludes cases with 
missing values. Although easy to implement, this strategy 
can bias estimates if the missingness mechanism is not 
completely at random; it also reduces sample size 
(Kellermann, Trevathan, & Kromrey, 2016). 

2. Inverse Probability Weighting (IPW): uses weights 
proportional to the inverse probability of responding. A 
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logistic regression model predicts response probability 
using available variables (including design variables), and 
the inverse predicted probabilities serve as weights (Dey 
et al., 2025). IPW can correct for nonresponse bias when 
the response model is correctly specified, but extreme 
weights can inflate variance. 

3. Single Imputation (SI): replaces missing values with 
predicted values or mean values; this tends to 
underestimate variance because it ignores imputation 
uncertainty (McMillan, 2013). 

4. Multiple Imputation (MI): creates multiple complete 
datasets by replacing missing values with draws from an 
imputation model that includes predictors of missingness 
and the survey design variables. Estimates are computed 
on each imputed dataset, and results are combined using 
Rubin’s rules. The logistic regression review notes that MI 
is popular for complex surveys; the pooled estimate 
averages across imputations, and the variance combines 
within‑ and between‑imputation variability. MI models 
should include sampling weights, strata, and clusters as 
predictors or via dedicated survey imputation procedures 
(Zhang et al., 2023). Sequential regression multiple 
imputation (SRMI), also called fully conditional 
specification, is particularly suited for large surveys; each 
variable with missingness is imputed sequentially using 
regression models and includes design variables (Zhang et 
al., 2023). 

Including design information in the imputation model is 
crucial. The skip‑pattern imputation study emphasises that 
sampling weights, strata, and clustering should be included as 
predictors in the imputation model to preserve design‑based 
inference; failing to include them can distort variance estimation 
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(Zhang et al., 2023). After imputation, the final analysis uses the 
survey design specification and combines estimates across 
imputations. A practical guide to multiple imputation in large 
surveys found that combining IPW and MI can improve accuracy 
and reduce bias compared with complete‑case analysis; however, 
the nonresponse model may have limited predictive power and 
the selection of predictors is important (He, Zaslavsky, 
Harrington, Catalano, & Landrum, 2010). 

 

7. SOFTWARE TOOLS FOR SURVEY ANALYSIS 

R survey and Related Packages: The R language 
provides comprehensive tools for complex survey analysis. The 
survey package, developed by Thomas Lumley, supports 
specifying survey designs via svydesign(), which takes arguments 
for PSU (ids), strata, weights, and FPC (Lumley et al., 2025). It 
implements descriptive statistics, ratio estimation, quantiles, and 
regression models using linearization or replication. Weighted 
regression is implemented in svyglm() and svycoxph() for 
survival analysis; variance estimation options include 
linearization and replicate weights. The package also supports 
calibration and raking (via svycalibrate) and provides functions 
to compute design effects and intracluster correlation. The 
robsurvey package adds robust regression estimators for complex 
surveys (Outline, n.d.). For replication methods, the srvyr and 
tidyverse interfaces provide tidy syntax and functions for BRR 
and JRR; replicate weights can be created with as.svrepdesign(). 

Stata: svy Commands: Stata contains a suite of survey 
commands (svy) that incorporate sampling weights, stratification, 
and clustering (Kolenikov, 2008; Winter, 2002). Users specify 
the design using svyset, providing the weight variable (pweight), 
stratification (strata), PSU (psu), FPC, and replicate weights if 
available. Stata implements descriptive statistics (svy: mean, svy: 
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proportion), linear regression (svy: regress), generalized linear 
models (svy: glm), logistic regression (svy: logistic), and survival 
analysis. The UCLA guide explains that probability weights in 
Stata correspond to final survey weights that include all 
adjustments; replicate weights can be used when PSU or strata 
variables are unavailable. Stata computes standard errors using 
Taylor linearization by default and provides options for 
Jackknife, BRR, and bootstrap variance estimation. 

SPSS Complex Samples: IBM SPSS Statistics offers the 
Complex Samples modüle (“Complex Samples - IBM SPSS 
Statistics,” n.d.), which incorporates sample design information 
into analysis. The module provides procedures for:  

Complex Samples Descriptives (CSDESCRIPTIVES): 
computes means, sums, ratios and design effects, with variance 
estimation based on the sample design (equal probability or PPS) 
and sampling with or without replacement. Complex Samples 
Tabulate (CSTABULATE): generates frequency tables, 
cross‑tabulations, and design effects. Complex Samples General 
Linear Models (CSGLM): performs linear regression, ANOVA, 
and ANCOVA using sampling weights and design variables; 
outputs parameter estimates, standard errors, and tests of 
hypotheses. Complex Samples Logistic Regression 
(CSLOGISTIC): fits logistic regression models with sampling 
weights, providing coefficient estimates, standard errors, odds 
ratios, design effects, and Wald tests. 

The module allows specifying sampling plans, including 
equal probability designs, PPS sampling, and designs with or 
without replacement. Users can handle missing data via listwise 
deletion or imputation within the module. Other software includes 
SAS (“SAS Help Center: Overview: SURVEYREG 
Procedure,” n.d.) (PROC SURVEYMEANS, PROC 
SURVEYREG, PROC SURVEYLOGISTIC), SUDAAN, and 
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specialized packages like convey for poverty measures in R. The 
guidelines provided by the NCES emphasise using software that 
supports design‑based variance estimation to avoid 
underestimating variances. 

 

8. LIMITATIONS AND CHALLENGES 

Despite the availability of sophisticated methods and 
software, complex survey analysis faces several limitations.  

1. Design mis‑specification: Analysts must correctly 
specify strata, PSU, weights, and FPC. Mis‑specification 
leads to biased variance estimation. In secondary data 
analyses, documentation may be incomplete, and replicate 
weights may be unavailable. 

2. Extreme or highly variable weights: Large variation in 
weights can inflate variance and produce unstable 
estimates. Weight trimming or smoothing may reduce 
variance at the cost of introducing bias. 

3. Non‑response and missing data: Response rates may be 
low, and missing data may correlate with design variables. 
IPW and MI rely on correct models; misspecification can 
bias results. Complex skip patterns and skip‑condition 
variables further complicate imputation. 

4. Measurement error and recall bias: Self‑reported 
outcomes (e.g., dietary intake, physical activity) may be 
measured with error. Complex survey analysis does not 
inherently correct measurement error; additional methods 
such as validation substudies are needed. 

5. Computational resources: Large surveys with replicate 
weights require substantial memory and computing time, 
especially when using bootstrap methods. 
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6. Causal inference: Complex survey data are 
observational; causal interpretations require careful 
consideration of confounding and selection bias. 
Incorporating design variables into causal models remains 
an area of methodological research. 

Advances in survey methodology aim to address these 
challenges and enhance the utility of complex surveys for 
epidemiology. Linking survey data with administrative records, 
electronic health records or wearable devices can enrich analyses 
and reduce respondent burden. However, linkage introduces 
privacy concerns and requires harmonizing sampling weights. 
Surveys are adopting adaptive designs that modify sampling 
probabilities in real time based on paradata (e.g., response 
propensities), improving efficiency and reducing nonresponse 
bias. Responsive design may allocate more resources to strata 
with lower response rates. Combining design‑based weights with 
flexible modelling (e.g., hierarchical models, Bayesian inference) 
can improve estimates for small domains and incorporate prior 
information. The tension between design‑based and model‑based 
approaches is being addressed through compound inference 
methods that balance the strengths of both. Machine learning 
algorithms can model complex relationships among variables to 
improve nonresponse adjustment, calibration, and imputation. 
Ensuring interpretability and maintaining design‑based properties 
remain active research areas.  New variance estimation 
techniques aim to handle high‑dimensional data, complex 
estimators, and robust measures of association. For example, 
robust regression and influence function approaches provide 
resilience against outliers and model misspecification.  To 
facilitate secondary analysis, survey organizations are 
increasingly providing detailed metadata, design variables, 
replicate weights, and user guides (e.g., DHS, NHANES). 
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Continued improvements in accessibility will reduce errors and 
broaden the use of complex survey data. 

 

9. CONCLUSIONS 

Complex survey designs are indispensable for collecting 
representative epidemiological data at national and subnational 
levels. By combining stratification, multi‑stage cluster sampling, 
and weighting, surveys like NHANES, DHS, and THS efficiently 
produce data to monitor population health. Analysis of such data 
requires explicit recognition of the sampling design: weights 
adjust for unequal selection and nonresponse, and variance 
estimation must account for stratification and clustering. Taylor 
series linearization and replication methods provide reliable 
standard errors; design effects inform sample efficiency; and 
weighted regression models yield valid associations. Handling 
missing data through IPW and multiple imputation and using 
specialized software tools are essential for robust analysis. While 
challenges remain—such as design mis‑specification, extreme 
weights, and model misspecification—ongoing methodological 
advances promise to strengthen the integration of complex survey 
data into population‑based epidemiology. Careful application of 
design‑based principles and awareness of survey documentation 
will ensure that epidemiological inferences reflect the populations 
the surveys are intended to represent. 
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	Stata: svy Commands: Stata contains a suite of survey commands (svy) that incorporate sampling weights, stratification, and clustering (Kolenikov, 2008; Winter, 2002). Users specify the design using svyset, providing the weight variable (pweight), str...
	SPSS Complex Samples: IBM SPSS Statistics offers the Complex Samples modüle (“Complex Samples - IBM SPSS Statistics,” n.d.), which incorporates sample design information into analysis. The module provides procedures for:
	Complex Samples Descriptives (CSDESCRIPTIVES): computes means, sums, ratios and design effects, with variance estimation based on the sample design (equal probability or PPS) and sampling with or without replacement. Complex Samples Tabulate (CSTABULA...
	The module allows specifying sampling plans, including equal probability designs, PPS sampling, and designs with or without replacement. Users can handle missing data via listwise deletion or imputation within the module. Other software includes SAS (...
	8. LIMITATIONS AND CHALLENGES
	Despite the availability of sophisticated methods and software, complex survey analysis faces several limitations.
	1. Design mis‑specification: Analysts must correctly specify strata, PSU, weights, and FPC. Mis‑specification leads to biased variance estimation. In secondary data analyses, documentation may be incomplete, and replicate weights may be unavailable.
	2. Extreme or highly variable weights: Large variation in weights can inflate variance and produce unstable estimates. Weight trimming or smoothing may reduce variance at the cost of introducing bias.
	3. Non‑response and missing data: Response rates may be low, and missing data may correlate with design variables. IPW and MI rely on correct models; misspecification can bias results. Complex skip patterns and skip‑condition variables further complic...
	4. Measurement error and recall bias: Self‑reported outcomes (e.g., dietary intake, physical activity) may be measured with error. Complex survey analysis does not inherently correct measurement error; additional methods such as validation substudies ...
	5. Computational resources: Large surveys with replicate weights require substantial memory and computing time, especially when using bootstrap methods.
	6. Causal inference: Complex survey data are observational; causal interpretations require careful consideration of confounding and selection bias. Incorporating design variables into causal models remains an area of methodological research.
	Advances in survey methodology aim to address these challenges and enhance the utility of complex surveys for epidemiology. Linking survey data with administrative records, electronic health records or wearable devices can enrich analyses and reduce r...
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