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BIOSTATISTICAL APPROACHES IN
PSYCHOMETRIC SCALE DEVELOPMENT
AND VALIDATION PROCESSES

Hakan OZTURK!

1. INTRODUCTION

Psychometric scales are tools that enable abstract
concepts to be made measurable. Many psychosocial constructs
such as depression, anxiety, stress, quality of life, pain perception,
or sleep patterns cannot be directly observed; measuring these
constructs is only possible with valid and reliable scales. In health
sciences, scales play a critical role in diagnosis and screening
processes, in evaluating treatment effectiveness, and in
epidemiological research (DeVellis & Thorpe, 2021).

Validity and reliability are two fundamental
characteristics that determine the scientific value of scales.
Validity refers to whether the scale actually measures the
construct it intends to measure, while reliability indicates the
consistency and reproducibility of the measurement. A reliable
but invalid scale does not provide accurate information, just as a
valid but low-reliability scale does not produce consistent results.
Therefore, both characteristics must be present (Carmines &
Zeller, 1979; Sullivan & Artino, 2011).

Biostatistics is not merely a technical tool in the scale
development process, but also a methodological guide. Statistical
analyses are used at every stage, from the creation of the item pool
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to the testing of the factor structure, from the calculation of
reliability coefficients to advanced modeling. In particular, factor
analysis (exploratory and confirmatory), Cronbach's alpha,
Kuder-Richardson 20, ICC, content validity indices (CVI, CVR),
and fit indices (CFI, TLI, RMSEA, SRMR) are indispensable
statistical tools in the scale development process (Boateng,
Neilands, Frongillo, Melgar-Quifionez, & Young, 2018).

Statistical errors made during the scale development and
validation process can seriously undermine the reliability and
generalizability of research in the health field. Therefore,
researchers must have not only a strong grasp of psychometric
principles but also a solid background in biostatistics. The quality
of scales developed in fields that directly impact human life, such
as health sciences, directly affects not only research results but
also clinical decision-making processes (Setia, 2017).

The purpose of this section is to systematically examine
the psychometric scale development and validation process in
light of biostatistical approaches. First, the conceptual framework
and scale development steps will be addressed, followed by a
detailed discussion of validity and reliability analyses. Finally, the
process will be explained through a practical example.

2. SCALE DEVELOPMENT PROCESS

Psychometric scale development is a systematic process
that progresses through specific methodological stages, not
merely the random assembly of items. The fundamental goal of
this process is to create a tool that can measure the structure to be
assessed (e.g., depression, quality of life, sleep patterns) in a
conceptually grounded, valid, and reliable manner. Therefore, the
scale development process consists of the following stages
(DeVellis & Thorpe, 2021; Boateng et al., 2018).
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2.1. Determining the Conceptual Framework

The first step in the scale development process is the
theoretical definition of the construct to be measured. Literature
review plays a critical role at this point. If the conceptual
framework is not clearly defined, the scale items developed may
fail to adequately represent the construct to be measured.

From a biostatistical perspective, no direct analysis is
performed at this stage; however, the foundation for the
subsequent validity and reliability stages is laid here. Therefore,
determining the dimensions of the scale (e.g., unidimensional or
multidimensional  structures) in advance increases the
interpretability of factor analyses to be performed later
(Worthington & Whittaker, 2006).

2.2. Developing an Item Pool

Once the conceptual framework has been established, a
broad pool of items representing this framework is created. Items
can be obtained from the literature, similar scales, expert
opinions, and focus group discussions.

Points to consider at this stage:

» Items should be clear and understandable.

» Each item should measure only one concept.

» Biased or leading statements should be avoided.

Statistical analysis is not performed directly at this stage;
however, sufficient diversity must be ensured for the item
analysis to be performed in the next step.

2.3. Expert Review and Content Validity

After the item pool is created, content experts are
consulted to assess content validity. One of the most commonly
used methods for this purpose is Lawshe's Content Validity Ratio
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(CVR) method. Experts are asked to evaluate each item as
“necessary,” “useful but not necessary,” or “unnecessary.” Then,
using the CVR formula, a value is calculated for each item. Items
falling below a certain threshold value are eliminated (Lawshe,
1975).

After creating the item pool, content experts are consulted
to evaluate content validity. One of the most commonly used
methods for this purpose is Lawshe's Content Validity Ratio
(CVR) method. Experts are asked to evaluate each item as
“necessary,” “useful but not necessary,” or “unnecessary.” Then,
the CVR formula is used to calculate the value for each item. For
an item to be removed from the scale, its calculated CVR value
must be below the critical value determined based on the number
of experts. The critical threshold value is determined according to
the table proposed by Lawshe (1975); for example, the minimum
CVR value is 0.99 for 5 experts, 0.62 for 10 experts, and 0.42 for
20 experts. Therefore, as the number of experts increases, the
acceptable minimum CVR value decreases, but if the calculated
CVR falls below this value, the item is eliminated (Lawshe,
1975).

Additionally, the Content Validity Index (CVI) can also be
used. The CVI is based on assessments where experts rate the
appropriateness of items. Content validity is generally accepted
when this value is above 0.80 (Polit & Beck, 2006).

2.4. Pilot Study

After establishing content validity, a pilot study is
conducted on a small sample to test the scale's understandability,
applicability, and duration. The sample size for a pilot study is
generally recommended to be between 30 and 50 people
(Johanson & Brooks, 2010).
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The statistical outputs of the pilot study include:

— Participant feedback on the comprehensibility of the
items,

— Examination of item distributions (mean, standard
deviation, skewness, kurtosis),

— Preliminary assessment of item-total correlations.

As a result of this stage, items with low statistical
discriminability can be eliminated or revised.

2.5. Common Mistakes in the Scale Development
Process

The scale development process is quite sensitive from a
methodological perspective, and any mistakes made can seriously
undermine the scientific value of the scale. The most common
mistakes encountered in the literature are as follows:

1. Inadequacy of the Conceptual Framework

— Inadequate definition of the structure to be
measured leads to random creation of the item pool.

— As aresult, the scale fails to adequately measure the
targeted psychological or clinical structure (Clark &
Watson, 1995).

2. An Inadequate or Biased Item Pool

— Attempting to develop a scale with very few items
or using leading statements causes problems in
factor analyses.

— The reliability of the scale decreases when items
with low item-total correlations are not eliminated
(Worthington & Whittaker, 2006).
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3. Inadequate Sample Size

Sample size is critically important for multivariate
methods such as factor analysis. Although the 5-10
times  participant/item  rule is  generally
recommended (MacCallum, Widaman, Zhang, &
Hong, 1999), factor analysis is sometimes
performed with very small samples in some studies.
This can lead to misidentification of the structure.

4. Inadequate Reporting of Validity and Reliability

Some studies claim that a scale is “valid and
reliable” based solely on Cronbach's Alpha.
However, alpha alone is not sufficient; additional
analyses such as factor analysis, test-retest
reliability, and criterion validity must be performed
(Tavakol & Dennick, 2011).

5. Istatistiksel Yontemlerin Yanhs Kullanimi

A significant portion of methodological errors made in
scale development studies stem from the incorrect or incomplete
application of statistical methods.

For example, common errors include not reporting
KMO and Bartlett tests in factor analysis, selecting
inappropriate rotation methods, or disregarding fit
indices.

Furthermore, applying parametric assumptions
without questioning them in Likert-type data
weakens validity.

To prevent these errors, it is recommended that
biostatistical consultation be sought at every stage of the scale
development process. Considering that scales developed in health
sciences directly influence clinical decision-making processes,
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the importance of methodological robustness increases further
(Boateng et al., 2018).

3. VALIDITY ANALYSES

For a scale to be scientifically valuable, it is not enough
for it to be reliable; it must also accurately measure the construct
it is intended to measure. This characteristic is called validity.
Validity, in general terms, refers to the degree to which a scale or
measurement tool accurately measures the concept it targets
(Messick, 1995). In psychometric literature, validity is a
multidimensional concept and has different types.

3.1. Content Validity

Content validity determines the extent to which scale
items represent the structure being measured. It is generally based
on evaluations made by experts in the field.

Lawshe Method: Experts are asked to classify each item
as “necessary,” “useful but not necessary,” and “unnecessary.”
The Content Validity Ratio (CVR) is then calculated. For
example, in a study with 10 experts, if 8 mark an item as
“necessary,” the CVR value is found using the formula. Items
below the specified threshold values are removed from the scale
(Lawshe, 1975).

Content Validity Index (CVI): Experts evaluate items
using a 4-point rating scale. If each item's CVI value is above
0.80, the content is considered valid (Polit & Beck, 2006).

3.2. Construct Validity

Construct validity indicates whether the scale actually
measures the theoretical construct it intends to measure. In other
words, it is a type of validity that assesses whether the scores
obtained from the scale are consistent with the relevant theoretical
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construct (Cronbach & Meehl, 1955). Therefore, construct
validity is considered one of the most fundamental and
comprehensive validity criteria for psychometric tests.

The most commonly used methods are factor analyses.
Factor analysis aims to reveal a smaller number of latent factors
that explain the relationships between observed variables
(Fabrigar, Wegener, MacCallum, & Strahan, 1999). Exploratory
factor analysis (EFA) is used to discover the structure of the scale,
while confirmatory factor analysis (CFA) is used to test the
theoretically predicted structure. These analyses reveal the
dimensional structure of the scale and show the degree to which
the structure to be measured corresponds to the theoretical
framework (Brown, 2015).

3.2.1. Exploratory Factor Analysis

Exploratory factor analysis is one of the most commonly
used methods, particularly in the early stages of scale
development, to determine which factors items cluster under and
to discover the underlying structure of the scale. Key points to
consider in EFA applications are summarized below:

— It is used to discover the factor structure of the
scale.

— Prerequisites: Kaiser-Meyer-Olkin (KMO) > 0.60
and Bartlett's Test of Sphericity should be
significant (Field, 2018).

— Factor loadings are generally preferred to be >
0.40.

— Rotation methods: Varimax (independent factors)
or Oblimin (related factors).



Biostatistical Evaluations

3.2.2. Confirmatory Factor Analysis

Confirmatory factor analysis is used to statistically
validate the factor structure identified by exploratory factor
analysis or predicted based on theoretical foundations. This
method utilizes various fit indices to assess the extent to which
the scale's dimensions conform to the expected theoretical model.
The following criteria (fit indices) are generally considered to
demonstrate that the scale has a valid structure:

— x?/df < 2 indicates excellent fit, 2 < y¥df < 3
indicates acceptable fit,

- CFI1=0.90, TLI = 0.90,

— RMSEA < 0.08, SRMR < 0.08 (Kelloway, 1998;
Hu & Bentler, 1999).

3.3. Criterion Validity

It shows the degree to which the scale's results correlate
with a measurement accepted as the gold standard. Criterion
validity is generally examined through two main approaches,
which are concurrent validity and predictive validity.

Concurrent validity: The measurement results of the
new scale are compared with those of an existing valid scale at
the same time.

Predictive validity: The scale is used to predict a future
situation (e.g., disease development).

3.4. Face Validity

Face validity refers to the extent to which a scale appears
to measure the construct it is intended to measure. It is not
measured by a statistical test, but rather evaluated through
participant and expert opinions. Face validity alone is not
sufficient; however, it is important in terms of participants finding
the scale acceptable (Holden, 2010).
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4. RELIABILITY ANALYSES

The reliability of a measurement tool means that it
produces consistent results when repeated under the same
conditions. Reliability is one of the most fundamental indicators
in the scale development process. If a scale is not reliable, it
indicates that the scores obtained are largely affected by random
errors and therefore the scientific value of the measurements is
low (DeVellis & Thorpe, 2021).

Reliability can be assessed using different methods in
psychometric studies. The most commonly used approaches are
internal consistency, test-retest reliability, parallel form
reliability, and inter-rater reliability.

4.1. Internal Consistency

Internal consistency determines whether the items on the
scale measure the same concept.

Cronbach's Alpha Coefficient (a): This is the most
commonly used measure for Likert-type multi-category scales.
Generally, a > 0.70 values are considered acceptable, o> 0.80 is
considered good, and o> 0.90 is considered an excellent indicator
of internal consistency (Nunnally & Bernstein, 1994). However,
an excessively high alpha coefficient (>0.95) may suggest
excessive similarity (redundancy) between items.

Kuder-Richardson 20 (KR-20): Used as an alternative
to Cronbach's Alpha for scales with binary responses such as
Yes/No.

4.2. Test-Retest Reliability

It assesses whether the scale produces stable
measurements over time. The same scale is administered to the
same participants at specific intervals (e.g., 2—4 weeks), and the
correlation between the scores is calculated.

10
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— Pearson correlation or Intraclass Correlation
Coefficient (ICC) can be used.

— 1>0.701is generally considered an acceptable level
(Streiner, Norman, & Cairney, 2015).

4.3. Parallel Forms Reliability

In this method, two equivalent forms developed to
measure the same construct are administered to the same
participants. The high correlation between the two forms
indicates that the scale is reliable. It is frequently used,
particularly in educational measurements (Anastasi & Urbina,
1997).

4.4. Inter-rater Reliability

It tests whether multiple evaluators assess the same case
in a similar manner.

— Cohen’s Kappa (x): Used for binary categorical
variables; k> 0.60 is considered good, k > 0.80 is
considered very good agreement (Landis & Koch,
1977).

— Intraclass Correlation Coefficient (ICC): Assesses
inter-observer agreement for continuous variables.

5. STATISTICAL APPROACHES AND
APPLICATIONS

The psychometric scale development process is not only
theoretical but also requires intensive statistical analysis. The
methods used cover a wide range, from sample size to factor
analysis, and from item statistics to advanced modeling. This
section summarizes the most frequently used statistical
approaches in the scale development process.

11
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5.1. Sample Size and Power Analysis

In scale development studies, sample size plays a critical
role. An insufficient sample may reduce the validity of factor
analyses and negatively influence reliability coefficients.
Therefore, it is generally recommended that each item in a scale
be represented by at least 5-10 participants (MacCallum,
Widaman, Zhang, & Hong, 1999). In addition, in most cases, a
sample size of n > 200 is considered adequate for factor analyses
(Comrey & Lee, 2013). Nevertheless, in order to more accurately
determine the required sample size for statistical analyses such as
Cronbach’s alpha, correlation coefficients, and factor loadings,
conducting a power analysis using G*Power or similar software
is advised.

5.2. Prerequisites for Factor Analysis

Before conducting factor analysis, the suitability of the
data for factor analysis should be tested.

Kaiser-Meyer-Olkin (KMO): The KMO test is a
criterion used to assess sample adequacy. A KMO value of 0.60
and above is acceptable, 0.80 and above indicates good, and 0.90
and above indicates excellent sample adequacy (Field, 2018).

Bartlett’s Test of Sphericity: This test tests whether the
correlation matrix is not an identity matrix. A significant result (p
< 0.05) obtained in this test indicates that the correlations between
variables are suitable for factor analysis (Field, 2018).

5.3. Item Analyses

The contribution of each item to the scale is assessed
through item analyses.

Item—total correlation: Items with correlations below
0.30 are considered to have low discriminative power and may be
recommended for removal from the scale (DeVellis & Thorpe,
2021).

12
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Factor loadings: In both EFA and CFA, factor loadings
are generally expected to be > 0.40.

Contribution to internal consistency: The contribution
of each item to the overall reliability of the scale can be examined
using Cronbach’s alpha “if item deleted” analysis.

5.4. Advanced Methods

Beyond basic analysis, advanced statistical methods are
also used in the scale validation process:

Multi-group Confirmatory Factor Analysis (CFA):
This technique examines whether the scale measures the same
construct equivalently across different groups (e.g., gender or
cultural backgrounds).

Structural Equation Modeling (SEM): SEM allows for
the modeling of relationships among latent factors derived from
the scale items, providing a comprehensive framework for testing
theoretical models (Byrne, 2016).

Cross-validation: This approach involves testing the
scale on different samples to enhance the generalizability and
stability of the findings.

Item Response Theory (IRT): IRT evaluates each item’s
measurement power and difficulty level, offering detailed insights
into item performance. It has become increasingly prominent in
fields such as educational measurement and clinical
psychometrics (Embretson & Reise, 2000).

6. APPLICATION EXAMPLE: A  SCALE
DEVELOPMENT STUDY

This section demonstrates how the theoretical framework
of scale development is reflected in practice. The example
presented here has been constructed for illustrative purposes and

13
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is not based on an actual dataset. The aim is to concretize the
statistical steps of the scale development process and provide
guidance to the reader.

6.1. Purpose of the Research and Scale Subject

The aim is to develop an original scale to assess symptoms
of depression in fathers of infants aged 3—12 months and to test
its psychometric properties. Most of the existing instruments in
the literature have been developed for mothers, and the limited
availability of father-specific scales has created the need for such
a measure (Matthey et al., 2001).

6.2. Method and Sample

In the first stage of the study, existing scales in the
literature were reviewed, and a conceptual framework for paternal
depression was established. Based on this framework and with
input from subject-matter experts, a draft scale consisting of 28
items was developed. The sample size for the scale development
process was determined in accordance with recommended
psychometric criteria, with the aim of including at least ten
participants per item. Consistent with this principle, the study
sample comprised 350 fathers who voluntarily participated
through various family health centers and pediatric outpatient
clinics. The administration of the draft form to participants
constituted the preliminary phase of the scale development
process. Prior to data collection, approval was obtained from the
relevant University Ethics Committee, and written informed
consent was secured from all participants.

6.3. Analysis Processes
1) Pilot Study:

The scale form was first administered to a small pilot
sample (n = 30-50). At this stage, the clarity of the items, the
response time, and the overall feasibility of the scale were

14
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evaluated. Based on participant feedback, revisions to wording
and phrasing were made where necessary. The data obtained from
the pilot study served as a foundation for administering the scale
to the main sample.

2) Content Validity:

Expert opinions were obtained from five specialists, and
the CVR was calculated using the Lawshe method. Three items
with CVR values below 0.62 were eliminated, reducing the scale
to 25 items.

3) Exploratory Factor Analysis:

—  KMO =0.89, Bartlett’s test y2(300) = 2156.42, p <
0.001.

— A four-factor structure was identified, explaining
62.4% of the total variance.

— Factor loadings ranged from 0.45 to 0.78.
Table 1. Exploratory Factor Analysis Factor Loadings (Example)

Item Factor 1 Factor 2 Factor 3 Factor 4
Iltem 1 0.65 - - -
Item 2 0.72 -

Item 5 - 0.58 -

Item 9 - - 0.64 -
Item 12 - - 0.75

Note: Table is for illustrative purposes only.
4) Confirmatory Factor Analysis:

The model fit indices indicated an acceptable to good fit:
y?/df = 2.15, CFI = 0.93, TLI = 0.91, RMSEA = 0.056, SRMR =
0.047.

15
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Table 2. Confirmatory Factor Analysis Fit Indices (Example)

Fit Index Value Criterion Interpretation
y/df 2.15 <3 Acceptable
CFlI 0.93 >0.90 Acceptable
TLI 0.91 >0.90 Acceptable
RMSEA 0.056 <0.08 Good fit
SRMR 0.047 <0.08 Good fit

5) Reliability Analyses:

— Cronbach’s Alpha: The internal consistency of the
total scale was o = 0.88, with subscale values
ranging between 0.79 and 0.86.

— Test-retest reliability: Assessed with a subsample
of 60 participants over a three-week interval,
yielding r = 0.82.

— ICC =0.84 (95% CI: 0.79-0.88), indicating high
stability across measurements.

6.4. Interpretation of Findings

In this illustrative example, the developed scale consisted
of four subdimensions and a total of 25 items. Factor loadings
were found to be within acceptable ranges, and the CFAfit indices
demonstrated that the model achieved a good level of fit.
Reliability analyses further indicated that the scale provides
stable and consistent measurements.

In conclusion, the example of the Paternal Depression
Scale illustrates how validity and reliability analyses are applied
in the process of scale development. The data presented here are
entirely fictional; however, similar methodological steps should
be followed in an actual scale development study.

16
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7. CONCLUSION

The process of psychometric scale development is a
multi-stage methodological framework that requires not only
theoretical knowledge but also a strong biostatistical foundation.
Ensuring the reliability and validity of scales enhances the
scientific value of the resulting measurements and supports
accurate decision-making in healthcare. In particular, statistical
approaches such as factor analyses, reliability coefficients,
content validity, and fit indices establish a robust methodological
basis for scale construction.

Biostatistical methods play a critical role that extends
beyond treating scales merely as measurement tools in clinical
research. They contribute to diagnostic accuracy, the evaluation
of treatment effectiveness, and the reliable reporting of
epidemiological indicators. Given that poorly designed or
inadequately validated instruments may lead to erroneous clinical
decisions, methodological rigor in this field is directly related to
patient safety.

For  future research, several  methodological
recommendations are emphasized:

e Sample size determination in scale development
should not rely solely on practical rules of thumb
(e.g., ten times the number of items), but should also
incorporate power analyses.

e Reporting of validity and reliability should extend
beyond Cronbach’s alpha to include factor analyses,
test-retest  reliability, intraclass  correlation
coefficients (ICC), and criterion validity.

e Cross-validation and multi-group CFA across
different cultures and populations are crucial to
ensure generalizability.

17
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e Advanced statistical approaches (e.g., Structural
Equation Modeling, Item Response Theory) can
enhance the precision of measurement.

In conclusion, the rigorous and appropriate application of
biostatistical methods in the development and validation of
psychometric scales not only improves research quality but also
directly contributes to more reliable decision-making in
healthcare practice.

18
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Biostatistical Evaluations

POWER ANALYSIS AND SAMPLE SIZE CALCULATION
IN HEALTH RESEARCH

Hakan OZTURK!
Elvan HAYAT?

1. INTRODUCTION

Hypothesis tests are widely used in scientific research;
however, the outcome of any statistical test depends not only on
the data set but also to a large extent on the research design—
particularly the sample size. In this regard, statistical power
analysis is a planning tool that is often ignored in research but is
critical for the reliability and validity of results.

The power is the likelihood of a statistical test to correctly
refute the null (Ho) when an alternative condition (H:) actually
holds, measured as 1 — 3. Beta (B) represents the probability of
committing a type Il error, or that there is not a detectable
difference (Cohen, 1988). In simpler terms, power is an estimate
of the likelihood a study will find a true effect if one really exists.

Researchers use power analysis in three main ways:

1. A priori analysis, to determine the necessary sample
size for a planned effect size, significance level (a),
and target power;

2. Post hoc (retrospective) analysis, to evaluate the
achieved power of a completed study; and
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3. Sensitivity analysis, to estimate the smallest effect that
can be detected with the available data (Suresh, 2011;
Thomas & Krebs, 1997).

In health science especially clinical studies the
significance of power analysis remain ethical as well as economy.
The collection of an overly large sample size may result in
wastage of resources and ethical concerns, while a small sample
size might prevent detection of potential effects. Thus, a carefully
planned power calculation could play an important role
contributing to resources efficiency and the validity of research
results (Biau et al., 2008).

Two types of error underlie all hypothesis tests. A Type |
error (a) occurs when a true null hypothesis is wrongly rejected,
commonly controlled at 0.05 or 0.01. A Type Il error (B) occurs
when a false null hypothesis is not rejected, producing a false-
negative result. These errors are inversely related: increasing o
lowers B and increases power but also heightens the risk of false
positives. The researcher must balance these risks according to
disciplinary norms and the practical consequences of each
(Cohen, 1988; Suresh, 2011).

The power of a test, 1 — B, is dependent on factors like
direct effect size and sample size and is inversely related to factors
like data variance, such as measurement error and sample
heterogeneity. If the effect size and variance is large, one can
achieve high power even with a smaller sample: on the contrary
if the effect size is small or measurement error is large, a larger
sample size is required to achieve sufficient power (Cohen, 1988).

There are some methodological peculiarities in power
analysis in health sciences. The first one is that interpretational
issues do not relate only to statistical significance, but clinical
significance is also to be considered while determining the effect
size. It means that a difference between treatment groups should
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be presented on a clinical scale, such as risk ratio , odds ratio, and
hazard ratio. These usually can be taken from the literature or the
results of similar studies, for example, meta-analyses . The second
peculiar feature of health sciences studies is that Bonferroni or
FDR corrections are used in studies involving multiple tests.
Since these corrections reduce power, they should be considered
while calculating the number of samples.

In recent years, Bayesian power analyses and Monte Carlo
simulation-based methods have become increasingly prevalent
alongside classical frequency-based approaches. These
approaches offer more flexible and realistic estimates,
particularly for complex data structures such as mixed-effects
models or longitudinal data (Gelman, Hill, & Vehtari, 2020).

In short, power analysis is not only a mathematical
calculation but also a critical component of research design.
Researchers should reconsider many decisions within the power
analysis framework, from hypothesis formulation to variable
selection, data collection plans, and analysis strategies. This
approach reduces potential errors in the research process and
enhances the scientific reliability of the results obtained (UCLA
Statistical Consulting Group, n.d.).

Consequently, the concept of “power” forms the basis of
research design in health sciences. A well-planned power analysis
ensures the validity and ethical reliability of scientific findings
through accurate sample size, balanced error levels, and
meaningful effect estimates. This book chapter aims to provide
researchers with a practical guide by addressing the theoretical
foundations, application examples, and interpretation principles
of power analysis in health research.
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2. BASIC CONCEPTS
2.1. Power, Significance Level and Error Types

The purpose of statistical tests in a study is to make
inferences about the population based on data obtained from the
sample. Two types of errors can occur in this process:

Type | error (a): Incorrectly rejecting the null hypothesis
(Ho) when it is actually true.

Type Il error (B): Failure to reject Ho when it is actually
false, i.e., a false negative result.

Statistical power (1 — ) is the probability that the test will
detect the alternative hypothesis (Hi) when it is true (Cohen,
1988). In research, a power of 80% (B = 0.20) or 90% ( = 0.10)
is often targeted (Biau, Kerneis, & Porcher, 2008).

The o value (usually 0.05) represents the significance
level. a and B are inversely related: when the o value is reduced
(a stricter limit is set), the power is likely to decrease. Therefore,
when planning a study, a balance must be struck between a, B,
and sample size.

2.2. Effect Size

Effect size is a quantitative measure of the relationship
between two variables or the difference between two groups.
Unlike statistical significance, effect size indicates the clinical or
practical importance of the finding (Sullivan & Feinn, 2012).
Because the p-value only provides a binary classification of
“significant” or “insignificant,” effect size is a complementary
measure for evaluating the real-world impact of research findings.

The most commonly used effect size indicators in health
sciences research vary depending on the type of analysis.

When comparing the means of two groups, Cohen's d
measure is used, which expresses the ratio of the mean difference
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between the two groups to the pooled standard deviation. Cohen
(1988) classified d = 0.20 as a small effect, 0.50 as a medium
effect, and 0.80 as a large effect.

In variance analyses (ANOVA) comparing three or more
groups, effect size is generally assessed using n? (eta squared) or
the f value derived from it; n? values are interpreted with
thresholds of 0.01 (small), 0.06 (medium), and 0.14 (large)
(Cohen, 1988).

In correlation analyses, the effect size is directly the r
coefficient. Cohen (1988) suggested r = 0.10 as a small, 0.30 as a
medium, and 0.50 as a large relationship.

In logistic regression models, effect size is generally
assessed using the Odds Ratio (OR); it is calculated as the
exponential value of the B coefficient (e) and interpreted within
the context of the literature.

In risk analysis or survival studies, the Risk Ratio (RR) or
Hazard Ratio (HR) is used; these ratios are evaluated according
to the clinical context (Matthay et al., 2021).

Accurate estimation of effect size is critical for the
reliability of power analysis. This estimate is typically obtained
from three sources:

1. Results from previously published similar studies,
2. Systematic reviews or meta-analyses,
3. Findings from small-scale pilot studies.

Detecting small effect sizes requires larger sample sizes.
Therefore, in clinical research, clinical significance must be
evaluated alongside statistical significance (p < 0.05). A
statistically significant difference does not necessarily mean that
itis clinically important; similarly, a clinically valuable difference
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may not be statistically significant due to low power (Biau,
Kernéis, & Porcher, 2008).

2.3. Sample Size, Variance and Power Relationship

The statistical power of a study is impacted by four main
components (Cohen, 1988; Faul et al., 2007):

1. Effect size

2. Significance level (o)
3. Sample size (n)

4. Variance (¢?)

The power of a statistical test varies depending on the
interaction of various parameters. WWhen one of these parameters
is changed while the others are held constant, the power also
varies accordingly. As the effect size increases, the power of the
test increases, while an increase in variance reduces the power.
Similarly, an increase in sample size increases the power.
Furthermore, when the significance level (a) increases, i.e., when
the threshold becomes more lenient, the power of the test
increases, but the risk of false positives (Type | error) also rises.
These relationships are often visualized using “power curve”
graphs. For example, while 30 participants may be sufficient to
detect an effect size of 0.5, approximately 200 participants may
be needed to detect a smaller effect size of 0.2 (Cohen, 1988).

2.4. Types of Power Analysis

Power analyses can be examined under three main
categories (Biau et al., 2008):

A priori (power before data collection): Before data
collection, the sample size is calculated based on the targeted
power (e.g., 0.80), the expected effect size, and the a level.
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Post hoc (power after data collection): After the study
is completed, the power achieved is calculated based on the effect
size obtained. However, interpretation is limited because it is
based on the observed effect (Hoenig & Heisey, 2001).

Sensitivity analysis: While the sample size is fixed, the
minimum effect size that can be detected with a certain power is
examined.

These concepts are important in determining which
strategy the researcher will adopt during the design phase.

2.5. Interpretation of Effect Size in Health Sciences

The evaluation of effect size in health sciences must go
beyond just statistical significance. It should also consider clinical
relevance. A finding can be statistically significant but still lack
real-world importance. For example, a 2 mmHg difference in
mean systolic blood pressure may be statistically significant;
however, it may not matter clinically if it doesn’t affect treatment,
quality of life, or patient outcomes. Therefore, researchers should
focus more on the clinical significance of their findings instead of
only stressing p-values.

Effect size links statistical findings with clinical reality.
Clinical significance looks at the real impact of an intervention
on patients and whether this impact creates a meaningful
difference in healthcare. Therefore, when performing power
analysis in health research, it is crucial to evaluate both the
statistical aspect of effect size and the ability to detect clinically
significant changes (Sullivan & Feinn, 2012; Matthay et al.,
2021).

Clinical significance thresholds are generally determined
by considering clinical experience, previous research in the
literature, and meaningful differences from the patient's
perspective. For example, in depression treatments, a 2-point
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decrease in the Beck Depression Inventory score may be
statistically significant, but it may not result in a noticeable
improvement in the patient's quality of life. Similarly, a drug that
extends life expectancy by an average of 10 days may yield a
statistically robust result; however, this difference may not be
considered clinically meaningful if it involves serious side effects
or high costs. Therefore, researchers should consider both patient
benefit and treatment costs and risks when determining clinical
thresholds.

3. POWER ANALYSIS BY RESEARCH TYPE

The type of statistical test to be used in the research
directly determines the structure of the power analysis. Since the
definition of effect size, variance structure, and degrees of
freedom differ for each test type, sample calculations also vary
accordingly (Biau, Kernéis, & Porcher, 2008). Therefore, power
analysis should be planned in conjunction with the selection of
statistical tests for the research.

3.1. Power Analysis for the Difference Between Two
Means (t-Test)

The t-test comparing the means of two independent
groups (e.g., “treatment” vs. “control”) is one of the most
commonly used methods in health research.

Here, power analysis is usually performed using the
following four parameters:

e a: Significance level
e 1 - PB: Targeted power (usually 0.80 or 0.90)
e . Measurement variance

e A: Expected difference between groups (effect size)
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Cohen's d effect size, defined by Cohen (1988), is used for
this test:

X1 —X

spooled

where X; and X, are the means of the two groups, spooieq
is the pooled standard deviation of both groups.

For example, if a difference of 0.5 standard deviation is
expected between the means of two groups and a=0.05, power =

0.80 is selected, approximately 64 participants are required in
each group (Faul et al., 2007).

If the variance is high or the expected difference is small,
the sample size increases rapidly.

In health research, this test is frequently used for blood
parameters, quality of life scores, or biochemical measurements.

In sample planning, the clinically meaningful minimum
difference (e.g., a 0.5% decrease in HbA1c) should be taken from
the literature (Suresh, 2011).

3.2. Power Analysis for Analysis of Variance (ANOVA)

One-way ANOVA is used when comparing three or more
groups.

Effect size is usually expressed as n? or f (Cohen's f effect

size for ANOVA):
TIZ
f = 1 _ 2
J n

where n? is a measure of the effect size's variance ratio (n?
= Explained variance / Total variance).

Cohen (1988) classified these values as small = 0.10,
medium = 0.25, large = 0.40.
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In ANOVA, as the number of groups increases, the
degrees of freedom also increase, so more participants are needed
for a fixed o and effect size.

For example, in a study comparing three treatment groups
(0= 0.05, power =0.80, f =0.25), a total sample of 159 (53 people
in each group) is required (Faul et al., 2007).

3.3. Power Analysis for Categorical Data (Chi-Square
Test)

Chi-square tests evaluate the relationship between two or
more categorical variables.

Power analysis is usually based on the magnitude of the
difference between expected and observed frequencies.

Effect size is denoted by w:

= jz (Do ;Opl)z

where po is the expected proportions and pz is the observed
proportions.

Cohen (1988) classified small = 0.10, medium = 0.30,
large = 0.50.

For example, assuming a medium-level relationship (w =
0.30) in a two-category table (2x2), with a = 0.05 and power =
0.80 targeted, a total of 88 participants are required.

This approach is suitable for proportional outcomes in
clinical trials, such as the frequency of side effects or success
rates.
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3.4. Power Analysis in Correlation and Regression
Analysis

Correlation analyses measure the strength of the linear
relationship between two continuous variables. The effect size is
directly the r correlation coefficient.

According to Cohen (1988), r = 0.10 (small), 0.30
(medium), 0.50 (large). For example, for r = 0.30, a. = 0.05, and
power = 0.80, the required sample size is 84.

A similar calculation is performed in simple linear
regression; however, in multiple regression, the proportion of
variance explained (R?) is used as a basis. For example, in a model
with 5 independent variables, approximately 92 samples are
required to detect a 0.10 increase in R? (Faul et al., 2007).

3.5. Power Analysis in Clinical Trials: Non-Inferiority
and Equivalence Tests

In classical hypothesis testing, the goal is to test the
hypothesis that “there is a difference”; however, in many clinical
trials, the objective is to demonstrate that the new treatment is not
worse than the current standard (non-inferiority) or that it is
equivalent (equivalence).

Power analysis is more complex in these types of designs
because the difference margin (A, “non-inferiority margin”) is
predetermined (Piaggio et al., 2006). For example, if a new
antibiotic is allowed to have a recovery rate no more than 10%
lower than the standard treatment (A = 0.10), the power analysis
is performed based on this margin.

Non-inferiority studies generally require a larger sample
size than classical equivalence tests (Chow et al., 2017).
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3.6. Simulation Based Power Analyses

Analytical solutions can be difficult in complex structures
such as mixed models, repeated measurements, or survival
analyses. In such cases, data is generated using Monte Carlo
simulation, and the power estimate is calculated by determining
the rejection rate for each scenario. This method is particularly
preferred for mixed-effects models and Bayesian frameworks
(Green & MacLeod, 2016; Lakens & Caldwell, 2021; Muthén &
Muthén, 2002).

4. APPLICATIONS OF POWER ANALYSIS
4.1. Power Analysis with G*Power Software

G*Power is a free power analysis software widely used in
social, behavioral, and health sciences (Faul et al., 2007). The
program supports both a priori (sample size calculation) and post
hoc (actual power) as well as sensitivity analyses. Usage steps:

Step 1: Select the test family.

For example, if the means of two independent groups are
to be compared:

Test family — t tests, then Statistical test — Means: Two
independent groups (two-tailed) is selected.

Step 2: Enter effect size.

Cohen's recommended d values can be used (0.2 small,
0.5 medium, 0.8 large).

For greater realism, effect sizes from previous studies
should be preferred (Sullivan & Feinn, 2012).
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Step 3: Enter a, power (1-f), and the estimated d value.

For example: When o = 0.05, power = 0.80, and d = 0.5
are entered, G*Power recommends approximately 64 participants
per group.

Step 4: On the results screen, G*Power provides the
following outputs:

— Total sample size required

Critical t value

— Noncentrality parameter ()

Targeted power (1-)

These results can be visualized in both tabular and
graphical form with a “Power vs. Sample Size” curve.

G*Power is an easy-to-use software; however, it may be
insufficient for power analysis of complex models such as
multilevel analyses and mixed-effects models. For such analyses,
it is recommended to use R or simulation-based methods
(Gelman, Hill, & Vehtari, 2020).

4.2. Power Analysis in R

R provides more flexible and reproducible analyses with
its open-source structure and extensive package support.

The most commonly used packages for power analysis are
pwr, simr, and WebPower.

The pwr package (Champely, 2020) is based on Cohen's
formulas. Below are sample R codes used in the pwr package to
compare the means of two independent groups and calculate the
minimum sample size required for correlation analysis.
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—.Package.installation
install.packages("pwr")
library(pwr)

—.To.compare.the.means.of.two.independent.groups
pwr.t.test(d = 0.5, sig.level =0.05, power =0.80, type =
"two.sample")

—.For.correlation.analysis
pwr.r.test(r = 0.3, sig.level = 0.05, power = 0.80)

The output includes the n value (required sample size for
each group).

For example, the second command shows that
approximately 84 observations are required for r = 0.3; this is
consistent with Cohen's (1988) tables.

Classical formulas are not valid for mixed models or
repeated measures data. In this case, simulation-based power
analysis can be performed using the simr package (Green &
MacLeod, 2016).

library(lme4)
library(simr)

—.Example.of.a.mixed.model
Model <- Ilmer(outcome ~ group + (1|subject), data =
mydata )

—.Simulation_based.power.analysis
powerSim(model, nsim = 100)

This method calculates the model's rejection rate of Ho in
each scenario; this rate represents the estimated power. It is
particularly useful in health research for longitudinal data (e.g.,
blood pressure monitoring).
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The WebPower package is integrated with a web interface
and supports power calculations in more advanced analyses such
as multiple regression and structural equation modeling (SEM)
(Zhang & Yuan, 2018).

4.3. An Example of Power Calculation for the Mean
Difference in Clinical Research

Research Question: Does a new physical therapy protocol
reduce pain scores (VAS) by an average of 2 points compared to
conventional treatment?

Assumptions:
— Standard deviation (o) =3
— Target difference (A) =2
— o=0.05, power =0.80
Cohen’sd=A/c=0.67

When using the G*Power or pwr.t.test(d = 0.67, power =
0.80) command, approximately 36 participants per group are
sufficient. However, considering a 10-15% potential attrition rate
in clinical trials, at least 40 participants per group are
recommended (Chow et al., 2017).

4.4. Interpretation and Reporting of Results

When doing applied power analyses, it's important to be
clear about the assumptions you make about the input (like effect
size and variance). To make sure that the analyses can be repeated,
you should include the name and version of the calculation
software you used (e.g., G*Power, R, etc.). Also, adding graphs
like power curves makes it easier for the reader to understand how
sample size and statistical power are related. Nonetheless, the
results must be interpreted both quantitatively and clinically
(Sullivan & Feinn, 2012).
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Focusing only on the p-value in clinical research limits
how we understand the results. In contrast, reporting extra
measures like effect size and power value along with power
analysis leads to a better evaluation of findings. Reputable
medical journals and research guidelines, such as CONSORT and
STROBE, also recommend including power analysis. This
analysis should show the statistical strength of the study (Schulz,
Altman, & Moher, 2010; von Elm et al., 2007).

4.5. Common Mistakes and Misinterpretation
1. Overreliance on post hoc power analysis:

The power analysis performed after the study is
completed is often misleading because it is based on the observed
effect size (Hoenig & Heisey, 2001). Therefore, it is
recommended to perform calculations during the planning phase
(a priori).

2. Failure to report effect size:

Reporting only the p-value may indicate the presence of a
statistically significant difference; however, it does not provide
information about the magnitude, direction, or clinical
importance of this difference. Failure to specify the effect size
makes it difficult to assess the practical or clinical significance of
the results (Sullivan & Feinn, 2012).

3. Missing assumptions:

Simply stating that a “power analysis was performed”
without clearly specifying the basic assumptions of the power
analysis—such as the significance level (a), error probability (B),
effect size, and variance—is insufficient. Such incomplete
reporting reduces the reproducibility of the analyses and the
reliability of the results.
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4. Failure to account for missing data:

Power analyses conducted without considering the
possibility of sample loss (dropout) in clinical trials often result
in lower-than-expected power because the trial is completed with
a smaller sample size than planned. Therefore, potential dropout
rates should be estimated in advance in the power analysis, and
the sample size should be adjusted accordingly.

5. Failure to adjust for multiple comparisons:

When multiple statistical tests are applied, failure to adjust
for multiple comparisons using methods such as Bonferroni or
FDR (False Discovery Rate) increases the significance level (o)
and leads to a-inflation. This situation negatively affects the
reliability and statistical power of the analyses by increasing the
likelihood of false positive results (Type | error) (Bender &
Lange, 2001).

4.6. Clinical and Ethical Perspective

Power analysis is not just a statistical requirement; it is
also an ethical necessity in clinical research (Biau et al., 2008).
Studies with insufficient sample sizes may miss meaningful
differences and overlook results that could be valuable for clinical
practice. This creates an ethical issue by wasting participants’
time and effort and exposing them to unnecessary risks.

Conversely, studies with overly large sample sizes can
result in unethical consequences, such as wasting resources,
creating economic burdens, and subjecting participants to
unnecessary interventions. Thus, proper power analysis is crucial
for enhancing scientific validity and ensuring participant safety,
making good use of resources, and following research ethics.

In health-related clinical research, including information
about power analysis in ethics committee applications is a
required evaluation criterion. A well-planned power analysis
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shows both the statistical soundness of the study and ethical
responsibility.

5. CONCLUSIONS AND RECOMMENDATIONS

Power analysis is not just a statistical technique in health
sciences research; it plays a key role in ensuring scientific validity
and ethical responsibility. Making sure a study has enough power
allows findings to be interpreted reliably in both scientific and
clinical contexts.

Statistical power is central to research design. Not finding
a significant difference in a study does not always mean there is
no difference; real effects could be missed due to low power
(Biau, Kernéis, & Porcher, 2008). Therefore, power analysis is
essential for preventing false negative results and ensuring the
effective use of research resources. Since Cohen's (1988) classic
framework, the key components of power analysis—effect size,
sample size, variance, and significance level—have not changed;
however, how we apply them has progressed. Today, tools like
G*Power, R, and simulation-based methods allow for practical
solutions for both traditional and complex models (Faul,
Erdfelder, Lang, & Buchner, 2007; Green & MacLeod, 2016).

Thorough analysis during the planning stage in health
sciences ensures both statistical accuracy and ethical soundness.
Low power can make data collected from participants
meaningless, while overly large samples can lead to ethical
concerns, such as unnecessary use of resources and subjecting
participants to extra interventions (Biau et al., 2008). Thus, power
analysis is closely tied to research ethics principles.

A priori power analysis should always be done in
research; the expected effect size, target power, and significance
level (a) should be clearly stated before data collection and
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included in the ethics committee application. When choosing
effect size, literature-based approaches should be prioritized;
results from meta-analyses or earlier similar studies provide
realistic estimates (Sullivan & Feinn, 2012). Variance estimates
and potential sample losses must also be considered. Since a 10
to 20 percent sample loss is common in clinical trials, it is
advisable to plan for an additional sample that reflects this rate
(Chow et al., 2017).

Power analysis results should be reported in a clear,
transparent, and reproducible way. Stating the type of test used,
effect size, significance level (a), error probability (B), software,
and references increases the reliability of the methods (APA 7;
CONSORT, 2010; STROBE, 2007). Post hoc power analyses
should be approached with caution. These analyses, which rely
on observed effects, can often be misleading and should only be
considered as explanatory information (Hoenig & Heisey, 2001).

With the development of research methods, simulation-
based power analyses have also gained importance. More flexible
and realistic power estimates can be made using simr or similar R
packages in mixed models, repeated measures, and Bayesian
analyses (Green & MacLeod, 2016). Furthermore, Bayesian
power analysis allows uncertainty to be modeled more
realistically by incorporating prior information into the model.
Adaptive designs offer both ethical and economic advantages by
allowing the sample size to be updated based on interim analysis
results. Machine learning-supported power estimates add a new
dimension to model-based simulations by using real-world data
(e.g., EHR, hospital records) (Gelman, Hill, & Vehtari, 2020).

Finally, we must always consider clinical significance.
Statistical significance (p < 0.05) alone is not enough; we also
need to evaluate the clinical importance and effect size of the
finding (Sullivan & Feinn, 2012). To raise this awareness among
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clinical researchers, we should create training programs, online
modules, and open-access guides on statistical power analysis.

In conclusion, creating reliable information in health
sciences depends on well-designed and properly powered studies.
A well-planned power analysis is not just a statistical
requirement; it also shows scientific and ethical responsibility.
For researchers, this analysis is a key step in understanding the
meaning of the data and the importance of the findings.
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