
BIOSTATISTICAL EVALUATONS

Editör: Prof.Dr. Sıddık KESKİN

yaz
yayınları



 

 
 

Biostatistical Evaluations 

 

 

 
Editör 

Prof.Dr. Sıddık KESKİN 

 

 

 

 

 

 
2025 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biostatistical Evaluations 

 

Editör: Prof.Dr. Sıddık KESKİN 

 

 

© YAZ Yayınları 

Bu kitabın her türlü yayın hakkı Yaz Yayınları’na 
aittir, tüm hakları saklıdır. Kitabın tamamı ya da 
bir kısmı 5846 sayılı Kanun’un hükümlerine göre, 
kitabı yayınlayan firmanın önceden izni 
alınmaksızın elektronik, mekanik, fotokopi ya da 
herhangi bir kayıt sistemiyle çoğaltılamaz, 
yayınlanamaz, depolanamaz. 

 

E_ISBN    978-625-8508-70-3 

Ekim 2025 – Afyonkarahisar 

 

 

Dizgi/Mizanpaj: YAZ Yayınları 

Kapak Tasarım: YAZ Yayınları 

 

 

YAZ Yayınları. Yayıncı Sertifika No: 73086 

M.İhtisas OSB Mah. 4A Cad. No:3/3 
İscehisar/AFYONKARAHİSAR 

www.yazyayinlari.com 

yazyayinlari@gmail.com 

info@yazyayinlari.com 



 

İÇİNDEKİLER 

 
Biostatistical Approaches in Psychometric Scale 
Development and Validation Processes ............................ 1 
Hakan ÖZTÜRK 

Power Analysis and Sample Size Calculation in Health 
Research .............................................................................. 22 
Hakan ÖZTÜRK, Elvan HAYAT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Bu kitapta yer alan bölümlerde kullanılan kaynakların, görüşlerin, 
bulguların, sonuçların, tablo, şekil, resim ve her türlü içeriğin 

sorumluluğu yazar veya yazarlarına ait olup ulusal ve uluslararası 
telif haklarına konu olabilecek mali ve hukuki sorumluluk da 

yazarlara aittir." 

 



BIOSTATISTICAL APPROACHES IN 
PSYCHOMETRIC SCALE DEVELOPMENT 

AND VALIDATION PROCESSES 
 

Hakan ÖZTÜRK1 

 

1. INTRODUCTION 

Psychometric scales are tools that enable abstract 
concepts to be made measurable. Many psychosocial constructs 
such as depression, anxiety, stress, quality of life, pain perception, 
or sleep patterns cannot be directly observed; measuring these 
constructs is only possible with valid and reliable scales. In health 
sciences, scales play a critical role in diagnosis and screening 
processes, in evaluating treatment effectiveness, and in 
epidemiological research (DeVellis & Thorpe, 2021). 

Validity and reliability are two fundamental 
characteristics that determine the scientific value of scales. 
Validity refers to whether the scale actually measures the 
construct it intends to measure, while reliability indicates the 
consistency and reproducibility of the measurement. A reliable 
but invalid scale does not provide accurate information, just as a 
valid but low-reliability scale does not produce consistent results. 
Therefore, both characteristics must be present (Carmines & 
Zeller, 1979; Sullivan & Artino, 2011). 

Biostatistics is not merely a technical tool in the scale 
development process, but also a methodological guide. Statistical 
analyses are used at every stage, from the creation of the item pool 
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to the testing of the factor structure, from the calculation of 
reliability coefficients to advanced modeling. In particular, factor 
analysis (exploratory and confirmatory), Cronbach's alpha, 
Kuder-Richardson 20, ICC, content validity indices (CVI, CVR), 
and fit indices (CFI, TLI, RMSEA, SRMR) are indispensable 
statistical tools in the scale development process (Boateng, 
Neilands, Frongillo, Melgar-Quiñonez, & Young, 2018). 

Statistical errors made during the scale development and 
validation process can seriously undermine the reliability and 
generalizability of research in the health field. Therefore, 
researchers must have not only a strong grasp of psychometric 
principles but also a solid background in biostatistics. The quality 
of scales developed in fields that directly impact human life, such 
as health sciences, directly affects not only research results but 
also clinical decision-making processes (Setia, 2017). 

The purpose of this section is to systematically examine 
the psychometric scale development and validation process in 
light of biostatistical approaches. First, the conceptual framework 
and scale development steps will be addressed, followed by a 
detailed discussion of validity and reliability analyses. Finally, the 
process will be explained through a practical example. 

 

2. SCALE DEVELOPMENT PROCESS 

Psychometric scale development is a systematic process 
that progresses through specific methodological stages, not 
merely the random assembly of items. The fundamental goal of 
this process is to create a tool that can measure the structure to be 
assessed (e.g., depression, quality of life, sleep patterns) in a 
conceptually grounded, valid, and reliable manner. Therefore, the 
scale development process consists of the following stages 
(DeVellis & Thorpe, 2021; Boateng et al., 2018). 
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2.1. Determining the Conceptual Framework 

The first step in the scale development process is the 
theoretical definition of the construct to be measured. Literature 
review plays a critical role at this point. If the conceptual 
framework is not clearly defined, the scale items developed may 
fail to adequately represent the construct to be measured. 

From a biostatistical perspective, no direct analysis is 
performed at this stage; however, the foundation for the 
subsequent validity and reliability stages is laid here. Therefore, 
determining the dimensions of the scale (e.g., unidimensional or 
multidimensional structures) in advance increases the 
interpretability of factor analyses to be performed later 
(Worthington & Whittaker, 2006). 

2.2. Developing an Item Pool 

Once the conceptual framework has been established, a 
broad pool of items representing this framework is created. Items 
can be obtained from the literature, similar scales, expert 
opinions, and focus group discussions. 

Points to consider at this stage: 

•    Items should be clear and understandable. 

•    Each item should measure only one concept. 

•    Biased or leading statements should be avoided. 

Statistical analysis is not performed directly at this stage; 
however, sufficient diversity must be ensured for the item 
analysis to be performed in the next step. 

2.3. Expert Review and Content Validity 

After the item pool is created, content experts are 
consulted to assess content validity. One of the most commonly 
used methods for this purpose is Lawshe's Content Validity Ratio 
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(CVR) method. Experts are asked to evaluate each item as 
“necessary,” “useful but not necessary,” or “unnecessary.” Then, 
using the CVR formula, a value is calculated for each item. Items 
falling below a certain threshold value are eliminated (Lawshe, 
1975). 

After creating the item pool, content experts are consulted 
to evaluate content validity. One of the most commonly used 
methods for this purpose is Lawshe's Content Validity Ratio 
(CVR) method. Experts are asked to evaluate each item as 
“necessary,” “useful but not necessary,” or “unnecessary.” Then, 
the CVR formula is used to calculate the value for each item. For 
an item to be removed from the scale, its calculated CVR value 
must be below the critical value determined based on the number 
of experts. The critical threshold value is determined according to 
the table proposed by Lawshe (1975); for example, the minimum 
CVR value is 0.99 for 5 experts, 0.62 for 10 experts, and 0.42 for 
20 experts. Therefore, as the number of experts increases, the 
acceptable minimum CVR value decreases, but if the calculated 
CVR falls below this value, the item is eliminated (Lawshe, 
1975). 

Additionally, the Content Validity Index (CVI) can also be 
used. The CVI is based on assessments where experts rate the 
appropriateness of items. Content validity is generally accepted 
when this value is above 0.80 (Polit & Beck, 2006). 

2.4. Pilot Study 

After establishing content validity, a pilot study is 
conducted on a small sample to test the scale's understandability, 
applicability, and duration. The sample size for a pilot study is 
generally recommended to be between 30 and 50 people 
(Johanson & Brooks, 2010). 
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The statistical outputs of the pilot study include: 

− Participant feedback on the comprehensibility of the 
items, 

− Examination of item distributions (mean, standard 
deviation, skewness, kurtosis), 

− Preliminary assessment of item-total correlations. 

As a result of this stage, items with low statistical 
discriminability can be eliminated or revised. 

2.5. Common Mistakes in the Scale Development 
Process 

The scale development process is quite sensitive from a 
methodological perspective, and any mistakes made can seriously 
undermine the scientific value of the scale. The most common 
mistakes encountered in the literature are as follows: 

1. Inadequacy of the Conceptual Framework 

− Inadequate definition of the structure to be 
measured leads to random creation of the item pool. 

− As a result, the scale fails to adequately measure the 
targeted psychological or clinical structure (Clark & 
Watson, 1995). 

2. An Inadequate or Biased Item Pool 

− Attempting to develop a scale with very few items 
or using leading statements causes problems in 
factor analyses. 

− The reliability of the scale decreases when items 
with low item-total correlations are not eliminated 
(Worthington & Whittaker, 2006). 
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3. Inadequate Sample Size 

− Sample size is critically important for multivariate 
methods such as factor analysis. Although the 5–10 
times participant/item rule is generally 
recommended (MacCallum, Widaman, Zhang, & 
Hong, 1999), factor analysis is sometimes 
performed with very small samples in some studies. 
This can lead to misidentification of the structure. 

4. Inadequate Reporting of Validity and Reliability 

− Some studies claim that a scale is “valid and 
reliable” based solely on Cronbach's Alpha. 
However, alpha alone is not sufficient; additional 
analyses such as factor analysis, test-retest 
reliability, and criterion validity must be performed 
(Tavakol & Dennick, 2011). 

5. İstatistiksel Yöntemlerin Yanlış Kullanımı 

A significant portion of methodological errors made in 
scale development studies stem from the incorrect or incomplete 
application of statistical methods. 

− For example, common errors include not reporting 
KMO and Bartlett tests in factor analysis, selecting 
inappropriate rotation methods, or disregarding fit 
indices. 

− Furthermore, applying parametric assumptions 
without questioning them in Likert-type data 
weakens validity. 

To prevent these errors, it is recommended that 
biostatistical consultation be sought at every stage of the scale 
development process. Considering that scales developed in health 
sciences directly influence clinical decision-making processes, 
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the importance of methodological robustness increases further 
(Boateng et al., 2018). 

 

3. VALIDITY ANALYSES 

For a scale to be scientifically valuable, it is not enough 
for it to be reliable; it must also accurately measure the construct 
it is intended to measure. This characteristic is called validity. 
Validity, in general terms, refers to the degree to which a scale or 
measurement tool accurately measures the concept it targets 
(Messick, 1995). In psychometric literature, validity is a 
multidimensional concept and has different types. 

3.1. Content Validity 

Content validity determines the extent to which scale 
items represent the structure being measured. It is generally based 
on evaluations made by experts in the field. 

Lawshe Method: Experts are asked to classify each item 
as “necessary,” “useful but not necessary,” and “unnecessary.” 
The Content Validity Ratio (CVR) is then calculated. For 
example, in a study with 10 experts, if 8 mark an item as 
“necessary,” the CVR value is found using the formula. Items 
below the specified threshold values are removed from the scale 
(Lawshe, 1975). 

Content Validity Index (CVI): Experts evaluate items 
using a 4-point rating scale. If each item's CVI value is above 
0.80, the content is considered valid (Polit & Beck, 2006). 

3.2. Construct Validity 

Construct validity indicates whether the scale actually 
measures the theoretical construct it intends to measure. In other 
words, it is a type of validity that assesses whether the scores 
obtained from the scale are consistent with the relevant theoretical 
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construct (Cronbach & Meehl, 1955). Therefore, construct 
validity is considered one of the most fundamental and 
comprehensive validity criteria for psychometric tests. 

The most commonly used methods are factor analyses. 
Factor analysis aims to reveal a smaller number of latent factors 
that explain the relationships between observed variables 
(Fabrigar, Wegener, MacCallum, & Strahan, 1999). Exploratory 
factor analysis (EFA) is used to discover the structure of the scale, 
while confirmatory factor analysis (CFA) is used to test the 
theoretically predicted structure. These analyses reveal the 
dimensional structure of the scale and show the degree to which 
the structure to be measured corresponds to the theoretical 
framework (Brown, 2015). 

3.2.1. Exploratory Factor Analysis 

Exploratory factor analysis is one of the most commonly 
used methods, particularly in the early stages of scale 
development, to determine which factors items cluster under and 
to discover the underlying structure of the scale. Key points to 
consider in EFA applications are summarized below: 

− It is used to discover the factor structure of the 
scale. 

− Prerequisites: Kaiser-Meyer-Olkin (KMO) ≥ 0.60 
and Bartlett's Test of Sphericity should be 
significant (Field, 2018). 

− Factor loadings are generally preferred to be ≥ 
0.40. 

− Rotation methods: Varimax (independent factors) 
or Oblimin (related factors). 
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3.2.2. Confirmatory Factor Analysis 

Confirmatory factor analysis is used to statistically 
validate the factor structure identified by exploratory factor 
analysis or predicted based on theoretical foundations. This 
method utilizes various fit indices to assess the extent to which 
the scale's dimensions conform to the expected theoretical model. 
The following criteria (fit indices) are generally considered to 
demonstrate that the scale has a valid structure: 

− χ²/df < 2 indicates excellent fit, 2 < χ²/df < 3 
indicates acceptable fit, 

− CFI ≥ 0.90, TLI ≥ 0.90, 

− RMSEA ≤ 0.08, SRMR ≤ 0.08 (Kelloway, 1998; 
Hu & Bentler, 1999). 

3.3. Criterion Validity 

It shows the degree to which the scale's results correlate 
with a measurement accepted as the gold standard. Criterion 
validity is generally examined through two main approaches, 
which are concurrent validity and predictive validity. 

Concurrent validity: The measurement results of the 
new scale are compared with those of an existing valid scale at 
the same time. 

Predictive validity: The scale is used to predict a future 
situation (e.g., disease development). 

3.4. Face Validity 

Face validity refers to the extent to which a scale appears 
to measure the construct it is intended to measure. It is not 
measured by a statistical test, but rather evaluated through 
participant and expert opinions. Face validity alone is not 
sufficient; however, it is important in terms of participants finding 
the scale acceptable (Holden, 2010). 
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4. RELIABILITY ANALYSES 

The reliability of a measurement tool means that it 
produces consistent results when repeated under the same 
conditions. Reliability is one of the most fundamental indicators 
in the scale development process. If a scale is not reliable, it 
indicates that the scores obtained are largely affected by random 
errors and therefore the scientific value of the measurements is 
low (DeVellis & Thorpe, 2021). 

Reliability can be assessed using different methods in 
psychometric studies. The most commonly used approaches are 
internal consistency, test-retest reliability, parallel form 
reliability, and inter-rater reliability. 

4.1. Internal Consistency 

Internal consistency determines whether the items on the 
scale measure the same concept. 

Cronbach's Alpha Coefficient (α): This is the most 
commonly used measure for Likert-type multi-category scales. 
Generally, α ≥ 0.70 values are considered acceptable, α ≥ 0.80 is 
considered good, and α ≥ 0.90 is considered an excellent indicator 
of internal consistency (Nunnally & Bernstein, 1994). However, 
an excessively high alpha coefficient (>0.95) may suggest 
excessive similarity (redundancy) between items. 

Kuder-Richardson 20 (KR-20): Used as an alternative 
to Cronbach's Alpha for scales with binary responses such as 
Yes/No. 

4.2. Test-Retest Reliability 

It assesses whether the scale produces stable 
measurements over time. The same scale is administered to the 
same participants at specific intervals (e.g., 2–4 weeks), and the 
correlation between the scores is calculated. 
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− Pearson correlation or Intraclass Correlation 
Coefficient (ICC) can be used. 

− r ≥ 0.70 is generally considered an acceptable level 
(Streiner, Norman, & Cairney, 2015). 

4.3. Parallel Forms Reliability 

In this method, two equivalent forms developed to 
measure the same construct are administered to the same 
participants. The high correlation between the two forms 
indicates that the scale is reliable. It is frequently used, 
particularly in educational measurements (Anastasi & Urbina, 
1997). 

4.4. Inter-rater Reliability 

It tests whether multiple evaluators assess the same case 
in a similar manner. 

− Cohen’s Kappa (κ): Used for binary categorical 
variables; κ ≥ 0.60 is considered good, κ ≥ 0.80 is 
considered very good agreement (Landis & Koch, 
1977). 

− Intraclass Correlation Coefficient (ICC): Assesses 
inter-observer agreement for continuous variables. 

 

5. STATISTICAL APPROACHES AND 
APPLICATIONS 

The psychometric scale development process is not only 
theoretical but also requires intensive statistical analysis. The 
methods used cover a wide range, from sample size to factor 
analysis, and from item statistics to advanced modeling. This 
section summarizes the most frequently used statistical 
approaches in the scale development process. 
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5.1. Sample Size and Power Analysis 

In scale development studies, sample size plays a critical 
role. An insufficient sample may reduce the validity of factor 
analyses and negatively influence reliability coefficients. 
Therefore, it is generally recommended that each item in a scale 
be represented by at least 5–10 participants (MacCallum, 
Widaman, Zhang, & Hong, 1999). In addition, in most cases, a 
sample size of n ≥ 200 is considered adequate for factor analyses 
(Comrey & Lee, 2013). Nevertheless, in order to more accurately 
determine the required sample size for statistical analyses such as 
Cronbach’s alpha, correlation coefficients, and factor loadings, 
conducting a power analysis using G*Power or similar software 
is advised. 

5.2. Prerequisites for Factor Analysis 

Before conducting factor analysis, the suitability of the 
data for factor analysis should be tested. 

Kaiser-Meyer-Olkin (KMO): The KMO test is a 
criterion used to assess sample adequacy. A KMO value of 0.60 
and above is acceptable, 0.80 and above indicates good, and 0.90 
and above indicates excellent sample adequacy (Field, 2018). 

Bartlett’s Test of Sphericity: This test tests whether the 
correlation matrix is not an identity matrix. A significant result (p 
< 0.05) obtained in this test indicates that the correlations between 
variables are suitable for factor analysis (Field, 2018). 

5.3. Item Analyses 

The contribution of each item to the scale is assessed 
through item analyses. 

Item–total correlation: Items with correlations below 
0.30 are considered to have low discriminative power and may be 
recommended for removal from the scale (DeVellis & Thorpe, 
2021). 
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Factor loadings: In both EFA and CFA, factor loadings 
are generally expected to be ≥ 0.40. 

Contribution to internal consistency: The contribution 
of each item to the overall reliability of the scale can be examined 
using Cronbach’s alpha “if item deleted” analysis. 

5.4. Advanced Methods 

Beyond basic analysis, advanced statistical methods are 
also used in the scale validation process: 

Multi-group Confirmatory Factor Analysis (CFA): 
This technique examines whether the scale measures the same 
construct equivalently across different groups (e.g., gender or 
cultural backgrounds). 

Structural Equation Modeling (SEM): SEM allows for 
the modeling of relationships among latent factors derived from 
the scale items, providing a comprehensive framework for testing 
theoretical models (Byrne, 2016). 

Cross-validation: This approach involves testing the 
scale on different samples to enhance the generalizability and 
stability of the findings. 

Item Response Theory (IRT): IRT evaluates each item’s 
measurement power and difficulty level, offering detailed insights 
into item performance. It has become increasingly prominent in 
fields such as educational measurement and clinical 
psychometrics (Embretson & Reise, 2000). 

 

6. APPLICATION EXAMPLE: A SCALE 
DEVELOPMENT STUDY 

This section demonstrates how the theoretical framework 
of scale development is reflected in practice. The example 
presented here has been constructed for illustrative purposes and 
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is not based on an actual dataset. The aim is to concretize the 
statistical steps of the scale development process and provide 
guidance to the reader. 

6.1. Purpose of the Research and Scale Subject 

The aim is to develop an original scale to assess symptoms 
of depression in fathers of infants aged 3–12 months and to test 
its psychometric properties. Most of the existing instruments in 
the literature have been developed for mothers, and the limited 
availability of father-specific scales has created the need for such 
a measure (Matthey et al., 2001). 

6.2. Method and Sample 

In the first stage of the study, existing scales in the 
literature were reviewed, and a conceptual framework for paternal 
depression was established. Based on this framework and with 
input from subject-matter experts, a draft scale consisting of 28 
items was developed. The sample size for the scale development 
process was determined in accordance with recommended 
psychometric criteria, with the aim of including at least ten 
participants per item. Consistent with this principle, the study 
sample comprised 350 fathers who voluntarily participated 
through various family health centers and pediatric outpatient 
clinics. The administration of the draft form to participants 
constituted the preliminary phase of the scale development 
process. Prior to data collection, approval was obtained from the 
relevant University Ethics Committee, and written informed 
consent was secured from all participants. 

6.3. Analysis Processes 

1) Pilot Study: 

The scale form was first administered to a small pilot 
sample (n = 30–50). At this stage, the clarity of the items, the 
response time, and the overall feasibility of the scale were 
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evaluated. Based on participant feedback, revisions to wording 
and phrasing were made where necessary. The data obtained from 
the pilot study served as a foundation for administering the scale 
to the main sample. 

2) Content Validity: 

Expert opinions were obtained from five specialists, and 
the CVR was calculated using the Lawshe method. Three items 
with CVR values below 0.62 were eliminated, reducing the scale 
to 25 items. 

3) Exploratory Factor Analysis: 

− KMO = 0.89, Bartlett’s test χ²(300) = 2156.42, p < 
0.001. 

− A four-factor structure was identified, explaining 
62.4% of the total variance. 

− Factor loadings ranged from 0.45 to 0.78. 

Table 1. Exploratory Factor Analysis Factor Loadings (Example) 

Item Factor 1 Factor 2 Factor 3 Factor 4 
Item 1 0.65 - - - 
Item 2 0.72 - - - 
Item 5 - 0.58 - - 
Item 9 - - 0.64 - 
Item 12 - - - 0.75 
… … … … … 

Note: Table is for illustrative purposes only. 

4) Confirmatory Factor Analysis: 

The model fit indices indicated an acceptable to good fit: 
χ²/df = 2.15, CFI = 0.93, TLI = 0.91, RMSEA = 0.056, SRMR = 
0.047. 

 

 

Biostatistical Evaluations

15



Table 2. Confirmatory Factor Analysis Fit Indices (Example) 

Fit Index Value Criterion Interpretation 
χ²/df 2.15 < 3 Acceptable 
CFI 0.93 ≥ 0.90 Acceptable 
TLI 0.91 ≥ 0.90 Acceptable 
RMSEA 0.056 ≤ 0.08 Good fit 
SRMR 0.047 ≤ 0.08 Good fit 

5) Reliability Analyses: 

− Cronbach’s Alpha: The internal consistency of the 
total scale was α = 0.88, with subscale values 
ranging between 0.79 and 0.86. 

− Test–retest reliability: Assessed with a subsample 
of 60 participants over a three-week interval, 
yielding r = 0.82. 

− ICC = 0.84 (95% CI: 0.79–0.88), indicating high 
stability across measurements. 

6.4. Interpretation of Findings 

In this illustrative example, the developed scale consisted 
of four subdimensions and a total of 25 items. Factor loadings 
were found to be within acceptable ranges, and the CFA fit indices 
demonstrated that the model achieved a good level of fit. 
Reliability analyses further indicated that the scale provides 
stable and consistent measurements. 

In conclusion, the example of the Paternal Depression 
Scale illustrates how validity and reliability analyses are applied 
in the process of scale development. The data presented here are 
entirely fictional; however, similar methodological steps should 
be followed in an actual scale development study. 
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7. CONCLUSION 

The process of psychometric scale development is a 
multi-stage methodological framework that requires not only 
theoretical knowledge but also a strong biostatistical foundation. 
Ensuring the reliability and validity of scales enhances the 
scientific value of the resulting measurements and supports 
accurate decision-making in healthcare. In particular, statistical 
approaches such as factor analyses, reliability coefficients, 
content validity, and fit indices establish a robust methodological 
basis for scale construction. 

Biostatistical methods play a critical role that extends 
beyond treating scales merely as measurement tools in clinical 
research. They contribute to diagnostic accuracy, the evaluation 
of treatment effectiveness, and the reliable reporting of 
epidemiological indicators. Given that poorly designed or 
inadequately validated instruments may lead to erroneous clinical 
decisions, methodological rigor in this field is directly related to 
patient safety. 

For future research, several methodological 
recommendations are emphasized: 

• Sample size determination in scale development 
should not rely solely on practical rules of thumb 
(e.g., ten times the number of items), but should also 
incorporate power analyses. 

• Reporting of validity and reliability should extend 
beyond Cronbach’s alpha to include factor analyses, 
test–retest reliability, intraclass correlation 
coefficients (ICC), and criterion validity. 

• Cross-validation and multi-group CFA across 
different cultures and populations are crucial to 
ensure generalizability. 
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• Advanced statistical approaches (e.g., Structural 
Equation Modeling, Item Response Theory) can 
enhance the precision of measurement. 

In conclusion, the rigorous and appropriate application of 
biostatistical methods in the development and validation of 
psychometric scales not only improves research quality but also 
directly contributes to more reliable decision-making in 
healthcare practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biostatistical Evaluations

18



REFERENCES 

Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.). 
Upper Saddle River, NJ: Prentice Hall. 

Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-
Quiñonez, H. R., & Young, S. L. (2018). Best practices for 
developing and validating scales for health, social, and 
behavioral research: A primer. Frontiers in Public Health, 
6, 149. https://doi.org/10.3389/fpubh.2018.00149 

Brown, T. A. (2015). Confirmatory factor analysis for applied 
research (2nd ed.). New York: Guilford Press. 

Byrne, B. M. (2016). Structural equation modeling with AMOS: 
Basic concepts, applications, and programming (3rd ed.). 
New York: Routledge. 

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity 
assessment. Beverly Hills, CA: Sage. 

Comrey, A. L., & Lee, H. B. (2013). A first course in factor 
analysis (2nd ed.). New York: Psychology Press. 

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in 
psychological tests. Psychological Bulletin, 52(4), 281–
302. https://doi.org/10.1037/h0040957 

DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: 
Theory and applications (5th ed.). Los Angeles, CA: Sage. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for 
psychologists. Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. 
J. (1999). Evaluating the use of exploratory factor analysis 
in psychological research. Psychological Methods, 4(3), 
272–299. https://doi.org/10.1037/1082-989X.4.3.272 

Biostatistical Evaluations

19

https://doi.org/10.1037/1082-989X.4.3.272


Field, A. (2018). Discovering statistics using IBM SPSS statistics 
(5th ed.). London: Sage. 

Holden, R. R. (2010). Face validity. In I. B. Weiner & W. E. 
Craighead (Eds.), The Corsini encyclopedia of 
psychology (4th ed.). Hoboken, NJ: John Wiley & Sons. 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in 
covariance structure analysis: Conventional criteria 
versus new alternatives. Structural Equation Modeling, 
6(1), 1–55. https://doi.org/10.1080/10705519909540118 

Johanson, G. A., & Brooks, G. P. (2010). Initial scale 
development: Sample size for pilot studies. Educational 
and Psychological Measurement, 70(3), 394–400. 
https://doi.org/10.1177/0013164409355692 

Kelloway, E. K. (1998). Using LISREL for structural equation 
modeling. Thousand Oaks, CA: Sage Publications. 

Landis, J. R., & Koch, G. G. (1977). The measurement of 
observer agreement for categorical data. Biometrics, 
33(1), 159–174. https://doi.org/10.2307/2529310 

Lawshe, C. H. (1975). A quantitative approach to content validity. 
Personnel Psychology, 28(4), 563–575. 
https://doi.org/10.1111/j.1744-6570.1975.tb01393.x 

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). 
Sample size in factor analysis. Psychological Methods, 
4(1), 84–99. https://doi.org/10.1037/1082-989X.4.1.84 

Matthey, S., Barnett, B., Ungerer, J., & Waters, B. (2001). 
Paternal and maternal depressed mood during the 
transition to parenthood. Journal of Affective Disorders, 
64(2–3), 93–103. 

Messick, S. (1995). Validity of psychological assessment: 
Validation of inferences from persons’ responses and 

Biostatistical Evaluations

20

https://doi.org/10.1037/1082-989X.4.1.84


performances as scientific inquiry into score meaning. 
American Psychologist, 50(9), 741–749. 
https://doi.org/10.1037/0003-066X.50.9.741 

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory 
(3rd ed.). New York: McGraw-Hill. 

Polit, D. F., & Beck, C. T. (2006). The content validity index: Are 
you sure you know what’s being reported? Critique and 
recommendations. Research in Nursing & Health, 29(5), 
489–497. https://doi.org/10.1002/nur.20147 

Setia, M. S. (2017). Methodology series module 5: Sampling 
strategies. Indian Journal of Dermatology, 62(1), 39–44. 
https://doi.org/10.4103/0019-5154.198646 

Streiner, D. L., Norman, G. R., & Cairney, J. (2015). Health 
measurement scales: A practical guide to their 
development and use (5th ed.). Oxford: Oxford University 
Press. 

Sullivan, G. M., & Artino, A. R. (2011). Analyzing and 
interpreting data from Likert-type scales. Journal of 
Graduate Medical Education, 3(4), 541–542. 
https://doi.org/10.4300/JGME-5-18 

Worthington, R. L., & Whittaker, T. A. (2006). Scale development 
research: A content analysis and recommendations for 
best practices. The Counseling Psychologist, 34(6), 806–
838. https://doi.org/10.1177/0011000006288127 

Biostatistical Evaluations

21

https://doi.org/10.1037/0003-066X.50.9.741
https://doi.org/10.4300/JGME-5-18
https://doi.org/10.1177/0011000006288127


POWER ANALYSIS AND SAMPLE SIZE CALCULATION 
IN HEALTH RESEARCH 
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1. INTRODUCTION 

Hypothesis tests are widely used in scientific research; 
however, the outcome of any statistical test depends not only on 
the data set but also to a large extent on the research design—
particularly the sample size. In this regard, statistical power 
analysis is a planning tool that is often ignored in research but is 
critical for the reliability and validity of results. 

The power is the likelihood of a statistical test to correctly 
refute the null (H₀) when an alternative condition (H₁) actually 
holds, measured as 1 − β. Beta (ß) represents the probability of 
committing a type II error, or that there is not a detectable 
difference (Cohen, 1988). In simpler terms, power is an estimate 
of the likelihood a study will find a true effect if one really exists. 

Researchers use power analysis in three main ways: 

1. A priori analysis, to determine the necessary sample 
size for a planned effect size, significance level (α), 
and target power; 

2. Post hoc (retrospective) analysis, to evaluate the 
achieved power of a completed study; and 
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3. Sensitivity analysis, to estimate the smallest effect that 
can be detected with the available data (Suresh, 2011; 
Thomas & Krebs, 1997). 

In health science especially clinical studies the 
significance of power analysis remain ethical as well as economy. 
The collection of an overly large sample size may result in 
wastage of resources and ethical concerns, while a small sample 
size might prevent detection of potential effects. Thus, a carefully 
planned power calculation could play an important role 
contributing to resources efficiency and the validity of research 
results (Biau et al., 2008). 

Two types of error underlie all hypothesis tests. A Type I 
error (α) occurs when a true null hypothesis is wrongly rejected, 
commonly controlled at 0.05 or 0.01. A Type II error (β) occurs 
when a false null hypothesis is not rejected, producing a false-
negative result. These errors are inversely related: increasing α 
lowers β and increases power but also heightens the risk of false 
positives. The researcher must balance these risks according to 
disciplinary norms and the practical consequences of each 
(Cohen, 1988; Suresh, 2011). 

The power of a test, 1 – β, is dependent on factors like 
direct effect size and sample size and is inversely related to factors 
like data variance, such as measurement error and sample 
heterogeneity. If the effect size and variance is large, one can 
achieve high power even with a smaller sample: on the contrary 
if the effect size is small or measurement error is large, a larger 
sample size is required to achieve sufficient power (Cohen, 1988). 

There are some methodological peculiarities in power 
analysis in health sciences. The first one is that interpretational 
issues do not relate only to statistical significance, but clinical 
significance is also to be considered while determining the effect 
size. It means that a difference between treatment groups should 
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be presented on a clinical scale, such as risk ratio , odds ratio, and 
hazard ratio. These usually can be taken from the literature or the 
results of similar studies, for example, meta-analyses . The second 
peculiar feature of health sciences studies is that Bonferroni or 
FDR corrections are used in studies involving multiple tests. 
Since these corrections reduce power, they should be considered 
while calculating the number of samples. 

In recent years, Bayesian power analyses and Monte Carlo 
simulation-based methods have become increasingly prevalent 
alongside classical frequency-based approaches. These 
approaches offer more flexible and realistic estimates, 
particularly for complex data structures such as mixed-effects 
models or longitudinal data (Gelman, Hill, & Vehtari, 2020). 

In short, power analysis is not only a mathematical 
calculation but also a critical component of research design. 
Researchers should reconsider many decisions within the power 
analysis framework, from hypothesis formulation to variable 
selection, data collection plans, and analysis strategies. This 
approach reduces potential errors in the research process and 
enhances the scientific reliability of the results obtained (UCLA 
Statistical Consulting Group, n.d.). 

Consequently, the concept of “power” forms the basis of 
research design in health sciences. A well-planned power analysis 
ensures the validity and ethical reliability of scientific findings 
through accurate sample size, balanced error levels, and 
meaningful effect estimates. This book chapter aims to provide 
researchers with a practical guide by addressing the theoretical 
foundations, application examples, and interpretation principles 
of power analysis in health research. 
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2. BASIC CONCEPTS 

2.1. Power, Significance Level and Error Types 

The purpose of statistical tests in a study is to make 
inferences about the population based on data obtained from the 
sample. Two types of errors can occur in this process: 

Type I error (α): Incorrectly rejecting the null hypothesis 
(H₀) when it is actually true. 

Type II error (β): Failure to reject H₀ when it is actually 
false, i.e., a false negative result. 

Statistical power (1 – β) is the probability that the test will 
detect the alternative hypothesis (H₁) when it is true (Cohen, 
1988). In research, a power of 80% (β = 0.20) or 90% (β = 0.10) 
is often targeted (Biau, Kernéis, & Porcher, 2008). 

The α value (usually 0.05) represents the significance 
level. α and β are inversely related: when the α value is reduced 
(a stricter limit is set), the power is likely to decrease. Therefore, 
when planning a study, a balance must be struck between α, β, 
and sample size. 

2.2. Effect Size 

Effect size is a quantitative measure of the relationship 
between two variables or the difference between two groups. 
Unlike statistical significance, effect size indicates the clinical or 
practical importance of the finding (Sullivan & Feinn, 2012). 
Because the p-value only provides a binary classification of 
“significant” or “insignificant,” effect size is a complementary 
measure for evaluating the real-world impact of research findings. 

The most commonly used effect size indicators in health 
sciences research vary depending on the type of analysis. 

When comparing the means of two groups, Cohen's d 
measure is used, which expresses the ratio of the mean difference 
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between the two groups to the pooled standard deviation. Cohen 
(1988) classified d = 0.20 as a small effect, 0.50 as a medium 
effect, and 0.80 as a large effect. 

In variance analyses (ANOVA) comparing three or more 
groups, effect size is generally assessed using η² (eta squared) or 
the f value derived from it; η² values are interpreted with 
thresholds of 0.01 (small), 0.06 (medium), and 0.14 (large) 
(Cohen, 1988). 

In correlation analyses, the effect size is directly the r 
coefficient. Cohen (1988) suggested r = 0.10 as a small, 0.30 as a 
medium, and 0.50 as a large relationship. 

In logistic regression models, effect size is generally 
assessed using the Odds Ratio (OR); it is calculated as the 
exponential value of the β coefficient (eβ) and interpreted within 
the context of the literature. 

In risk analysis or survival studies, the Risk Ratio (RR) or 
Hazard Ratio (HR) is used; these ratios are evaluated according 
to the clinical context (Matthay et al., 2021). 

Accurate estimation of effect size is critical for the 
reliability of power analysis. This estimate is typically obtained 
from three sources: 

1. Results from previously published similar studies, 

2. Systematic reviews or meta-analyses, 

3. Findings from small-scale pilot studies. 

Detecting small effect sizes requires larger sample sizes. 
Therefore, in clinical research, clinical significance must be 
evaluated alongside statistical significance (p < 0.05). A 
statistically significant difference does not necessarily mean that 
it is clinically important; similarly, a clinically valuable difference 
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may not be statistically significant due to low power (Biau, 
Kernéis, & Porcher, 2008). 

2.3. Sample Size, Variance and Power Relationship 

The statistical power of a study is impacted by four main 
components (Cohen, 1988; Faul et al., 2007): 

1. Effect size 

2. Significance level (α) 

3. Sample size (n) 

4. Variance (σ²) 

The power of a statistical test varies depending on the 
interaction of various parameters. When one of these parameters 
is changed while the others are held constant, the power also 
varies accordingly. As the effect size increases, the power of the 
test increases, while an increase in variance reduces the power. 
Similarly, an increase in sample size increases the power. 
Furthermore, when the significance level (α) increases, i.e., when 
the threshold becomes more lenient, the power of the test 
increases, but the risk of false positives (Type I error) also rises. 
These relationships are often visualized using “power curve” 
graphs. For example, while 30 participants may be sufficient to 
detect an effect size of 0.5, approximately 200 participants may 
be needed to detect a smaller effect size of 0.2 (Cohen, 1988). 

2.4. Types of Power Analysis 

Power analyses can be examined under three main 
categories (Biau et al., 2008): 

A priori (power before data collection): Before data 
collection, the sample size is calculated based on the targeted 
power (e.g., 0.80), the expected effect size, and the α level. 
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Post hoc (power after data collection): After the study 
is completed, the power achieved is calculated based on the effect 
size obtained. However, interpretation is limited because it is 
based on the observed effect (Hoenig & Heisey, 2001). 

Sensitivity analysis: While the sample size is fixed, the 
minimum effect size that can be detected with a certain power is 
examined. 

These concepts are important in determining which 
strategy the researcher will adopt during the design phase. 

2.5. Interpretation of Effect Size in Health Sciences 

The evaluation of effect size in health sciences must go 
beyond just statistical significance. It should also consider clinical 
relevance. A finding can be statistically significant but still lack 
real-world importance. For example, a 2 mmHg difference in 
mean systolic blood pressure may be statistically significant; 
however, it may not matter clinically if it doesn’t affect treatment, 
quality of life, or patient outcomes. Therefore, researchers should 
focus more on the clinical significance of their findings instead of 
only stressing p-values. 

Effect size links statistical findings with clinical reality. 
Clinical significance looks at the real impact of an intervention 
on patients and whether this impact creates a meaningful 
difference in healthcare. Therefore, when performing power 
analysis in health research, it is crucial to evaluate both the 
statistical aspect of effect size and the ability to detect clinically 
significant changes (Sullivan & Feinn, 2012; Matthay et al., 
2021). 

Clinical significance thresholds are generally determined 
by considering clinical experience, previous research in the 
literature, and meaningful differences from the patient's 
perspective. For example, in depression treatments, a 2-point 
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decrease in the Beck Depression Inventory score may be 
statistically significant, but it may not result in a noticeable 
improvement in the patient's quality of life. Similarly, a drug that 
extends life expectancy by an average of 10 days may yield a 
statistically robust result; however, this difference may not be 
considered clinically meaningful if it involves serious side effects 
or high costs. Therefore, researchers should consider both patient 
benefit and treatment costs and risks when determining clinical 
thresholds. 

 

3. POWER ANALYSIS BY RESEARCH TYPE 

The type of statistical test to be used in the research 
directly determines the structure of the power analysis. Since the 
definition of effect size, variance structure, and degrees of 
freedom differ for each test type, sample calculations also vary 
accordingly (Biau, Kernéis, & Porcher, 2008). Therefore, power 
analysis should be planned in conjunction with the selection of 
statistical tests for the research. 

3.1. Power Analysis for the Difference Between Two 
Means (t-Test) 

The t-test comparing the means of two independent 
groups (e.g., “treatment” vs. “control”) is one of the most 
commonly used methods in health research. 

Here, power analysis is usually performed using the 
following four parameters: 

• α: Significance level 

• 1 – β: Targeted power (usually 0.80 or 0.90) 

• σ: Measurement variance 

• Δ: Expected difference between groups (effect size) 
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Cohen's d effect size, defined by Cohen (1988), is used for 
this test: 

𝑑𝑑 =
𝑋𝑋�1 − 𝑋𝑋�2
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

where 𝑋𝑋�1 and 𝑋𝑋�2 are the means of the two groups, 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
is the pooled standard deviation of both groups. 

For example, if a difference of 0.5 standard deviation is 
expected between the means of two groups and α=0.05, power = 
0.80 is selected, approximately 64 participants are required in 
each group (Faul et al., 2007). 

If the variance is high or the expected difference is small, 
the sample size increases rapidly. 

In health research, this test is frequently used for blood 
parameters, quality of life scores, or biochemical measurements. 

In sample planning, the clinically meaningful minimum 
difference (e.g., a 0.5% decrease in HbA1c) should be taken from 
the literature (Suresh, 2011). 

3.2. Power Analysis for Analysis of Variance (ANOVA) 

One-way ANOVA is used when comparing three or more 
groups. 

Effect size is usually expressed as η² or f (Cohen's f effect 
size for ANOVA): 

𝑓𝑓 = �
𝜂𝜂2

1 − 𝜂𝜂2
 

where η² is a measure of the effect size's variance ratio (η² 
= Explained variance / Total variance).  

Cohen (1988) classified these values as small = 0.10, 
medium = 0.25, large = 0.40. 
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In ANOVA, as the number of groups increases, the 
degrees of freedom also increase, so more participants are needed 
for a fixed α and effect size. 

For example, in a study comparing three treatment groups 
(α = 0.05, power = 0.80, f = 0.25), a total sample of 159 (53 people 
in each group) is required (Faul et al., 2007). 

3.3. Power Analysis for Categorical Data (Chi-Square 
Test) 

Chi-square tests evaluate the relationship between two or 
more categorical variables. 

Power analysis is usually based on the magnitude of the 
difference between expected and observed frequencies. 

Effect size is denoted by w: 

𝑤𝑤 = ��
(𝑝𝑝0 − 𝑝𝑝1)2

𝑝𝑝0
 

where p0 is the expected proportions and p1 is the observed 
proportions. 

Cohen (1988) classified small = 0.10, medium = 0.30, 
large = 0.50. 

For example, assuming a medium-level relationship (w = 
0.30) in a two-category table (2×2), with α = 0.05 and power = 
0.80 targeted, a total of 88 participants are required. 

This approach is suitable for proportional outcomes in 
clinical trials, such as the frequency of side effects or success 
rates. 

 

 

Biostatistical Evaluations

31



3.4. Power Analysis in Correlation and Regression 
Analysis 

Correlation analyses measure the strength of the linear 
relationship between two continuous variables. The effect size is 
directly the r correlation coefficient. 

According to Cohen (1988), r = 0.10 (small), 0.30 
(medium), 0.50 (large). For example, for r = 0.30, α = 0.05, and 
power = 0.80, the required sample size is 84. 

A similar calculation is performed in simple linear 
regression; however, in multiple regression, the proportion of 
variance explained (R²) is used as a basis. For example, in a model 
with 5 independent variables, approximately 92 samples are 
required to detect a 0.10 increase in R² (Faul et al., 2007). 

3.5. Power Analysis in Clinical Trials: Non-Inferiority 
and Equivalence Tests 

In classical hypothesis testing, the goal is to test the 
hypothesis that “there is a difference”; however, in many clinical 
trials, the objective is to demonstrate that the new treatment is not 
worse than the current standard (non-inferiority) or that it is 
equivalent (equivalence). 

Power analysis is more complex in these types of designs 
because the difference margin (Δ, “non-inferiority margin”) is 
predetermined (Piaggio et al., 2006). For example, if a new 
antibiotic is allowed to have a recovery rate no more than 10% 
lower than the standard treatment (Δ = 0.10), the power analysis 
is performed based on this margin. 

Non-inferiority studies generally require a larger sample 
size than classical equivalence tests (Chow et al., 2017). 
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3.6. Simulation Based Power Analyses 

Analytical solutions can be difficult in complex structures 
such as mixed models, repeated measurements, or survival 
analyses. In such cases, data is generated using Monte Carlo 
simulation, and the power estimate is calculated by determining 
the rejection rate for each scenario. This method is particularly 
preferred for mixed-effects models and Bayesian frameworks 
(Green & MacLeod, 2016; Lakens & Caldwell, 2021; Muthén & 
Muthén, 2002). 

 

4. APPLICATIONS OF POWER ANALYSIS 

4.1. Power Analysis with G*Power Software 

G*Power is a free power analysis software widely used in 
social, behavioral, and health sciences (Faul et al., 2007). The 
program supports both a priori (sample size calculation) and post 
hoc (actual power) as well as sensitivity analyses. Usage steps: 

Step 1: Select the test family. 

For example, if the means of two independent groups are 
to be compared: 

Test family → t tests, then Statistical test → Means: Two 
independent groups (two-tailed) is selected. 

Step 2: Enter effect size. 

Cohen's recommended d values can be used (0.2 small, 
0.5 medium, 0.8 large). 

For greater realism, effect sizes from previous studies 
should be preferred (Sullivan & Feinn, 2012). 
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Step 3: Enter α, power (1–β), and the estimated d value. 

For example: When α = 0.05, power = 0.80, and d = 0.5 
are entered, G*Power recommends approximately 64 participants 
per group. 

Step 4: On the results screen, G*Power provides the 
following outputs: 

− Total sample size required 

− Critical t value 

− Noncentrality parameter (δ) 

− Targeted power (1–β) 

These results can be visualized in both tabular and 
graphical form with a “Power vs. Sample Size” curve. 

G*Power is an easy-to-use software; however, it may be 
insufficient for power analysis of complex models such as 
multilevel analyses and mixed-effects models. For such analyses, 
it is recommended to use R or simulation-based methods 
(Gelman, Hill, & Vehtari, 2020). 

4.2. Power Analysis in R 

R provides more flexible and reproducible analyses with 
its open-source structure and extensive package support. 

The most commonly used packages for power analysis are 
pwr, simr, and WebPower. 

The pwr package (Champely, 2020) is based on Cohen's 
formulas. Below are sample R codes used in the pwr package to 
compare the means of two independent groups and calculate the 
minimum sample size required for correlation analysis. 
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–.Package.installation 
install.packages("pwr") 
library(pwr) 
 
–.To.compare.the.means.of.two.independent.groups 
pwr.t.test(d = 0.5, sig.level = 0.05, power = 0.80, type = 
"two.sample") 
 
–.For.correlation.analysis 
pwr.r.test(r = 0.3, sig.level = 0.05, power = 0.80) 

The output includes the n value (required sample size for 
each group). 

For example, the second command shows that 
approximately 84 observations are required for r = 0.3; this is 
consistent with Cohen's (1988) tables. 

Classical formulas are not valid for mixed models or 
repeated measures data. In this case, simulation-based power 
analysis can be performed using the simr package (Green & 
MacLeod, 2016). 

library(lme4) 
library(simr) 
 
–.Example.of.a.mixed.model 
Model <- lmer(outcome ~ group + (1|subject), data = 
mydata ) 
 
–.Simulation‗based.power.analysis 
powerSim(model, nsim = 100) 

This method calculates the model's rejection rate of H₀ in 
each scenario; this rate represents the estimated power. It is 
particularly useful in health research for longitudinal data (e.g., 
blood pressure monitoring). 
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The WebPower package is integrated with a web interface 
and supports power calculations in more advanced analyses such 
as multiple regression and structural equation modeling (SEM) 
(Zhang & Yuan, 2018). 

4.3. An Example of Power Calculation for the Mean 
Difference in Clinical Research 

Research Question: Does a new physical therapy protocol 
reduce pain scores (VAS) by an average of 2 points compared to 
conventional treatment? 

Assumptions: 

− Standard deviation (σ) = 3 

− Target difference (Δ) = 2 

− α = 0.05, power = 0.80 

Cohen’s d = Δ / σ = 0.67 

When using the G*Power or pwr.t.test(d = 0.67, power = 
0.80) command, approximately 36 participants per group are 
sufficient. However, considering a 10–15% potential attrition rate 
in clinical trials, at least 40 participants per group are 
recommended (Chow et al., 2017). 

4.4. Interpretation and Reporting of Results 

When doing applied power analyses, it's important to be 
clear about the assumptions you make about the input (like effect 
size and variance). To make sure that the analyses can be repeated, 
you should include the name and version of the calculation 
software you used (e.g., G*Power, R, etc.). Also, adding graphs 
like power curves makes it easier for the reader to understand how 
sample size and statistical power are related. Nonetheless, the 
results must be interpreted both quantitatively and clinically 
(Sullivan & Feinn, 2012). 
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Focusing only on the p-value in clinical research limits 
how we understand the results. In contrast, reporting extra 
measures like effect size and power value along with power 
analysis leads to a better evaluation of findings. Reputable 
medical journals and research guidelines, such as CONSORT and 
STROBE, also recommend including power analysis. This 
analysis should show the statistical strength of the study (Schulz, 
Altman, & Moher, 2010; von Elm et al., 2007). 

4.5. Common Mistakes and Misinterpretation 

1. Overreliance on post hoc power analysis: 

The power analysis performed after the study is 
completed is often misleading because it is based on the observed 
effect size (Hoenig & Heisey, 2001). Therefore, it is 
recommended to perform calculations during the planning phase 
(a priori). 

2. Failure to report effect size: 

Reporting only the p-value may indicate the presence of a 
statistically significant difference; however, it does not provide 
information about the magnitude, direction, or clinical 
importance of this difference. Failure to specify the effect size 
makes it difficult to assess the practical or clinical significance of 
the results (Sullivan & Feinn, 2012). 

3. Missing assumptions: 

Simply stating that a “power analysis was performed” 
without clearly specifying the basic assumptions of the power 
analysis—such as the significance level (α), error probability (β), 
effect size, and variance—is insufficient. Such incomplete 
reporting reduces the reproducibility of the analyses and the 
reliability of the results. 
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4. Failure to account for missing data: 

Power analyses conducted without considering the 
possibility of sample loss (dropout) in clinical trials often result 
in lower-than-expected power because the trial is completed with 
a smaller sample size than planned. Therefore, potential dropout 
rates should be estimated in advance in the power analysis, and 
the sample size should be adjusted accordingly. 

5. Failure to adjust for multiple comparisons: 

When multiple statistical tests are applied, failure to adjust 
for multiple comparisons using methods such as Bonferroni or 
FDR (False Discovery Rate) increases the significance level (α) 
and leads to α-inflation. This situation negatively affects the 
reliability and statistical power of the analyses by increasing the 
likelihood of false positive results (Type I error) (Bender & 
Lange, 2001). 

4.6. Clinical and Ethical Perspective 

Power analysis is not just a statistical requirement; it is 
also an ethical necessity in clinical research (Biau et al., 2008). 
Studies with insufficient sample sizes may miss meaningful 
differences and overlook results that could be valuable for clinical 
practice. This creates an ethical issue by wasting participants' 
time and effort and exposing them to unnecessary risks.  

Conversely, studies with overly large sample sizes can 
result in unethical consequences, such as wasting resources, 
creating economic burdens, and subjecting participants to 
unnecessary interventions. Thus, proper power analysis is crucial 
for enhancing scientific validity and ensuring participant safety, 
making good use of resources, and following research ethics. 

In health-related clinical research, including information 
about power analysis in ethics committee applications is a 
required evaluation criterion. A well-planned power analysis 
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shows both the statistical soundness of the study and ethical 
responsibility. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

Power analysis is not just a statistical technique in health 
sciences research; it plays a key role in ensuring scientific validity 
and ethical responsibility. Making sure a study has enough power 
allows findings to be interpreted reliably in both scientific and 
clinical contexts. 

Statistical power is central to research design. Not finding 
a significant difference in a study does not always mean there is 
no difference; real effects could be missed due to low power 
(Biau, Kernéis, & Porcher, 2008). Therefore, power analysis is 
essential for preventing false negative results and ensuring the 
effective use of research resources. Since Cohen's (1988) classic 
framework, the key components of power analysis—effect size, 
sample size, variance, and significance level—have not changed; 
however, how we apply them has progressed. Today, tools like 
G*Power, R, and simulation-based methods allow for practical 
solutions for both traditional and complex models (Faul, 
Erdfelder, Lang, & Buchner, 2007; Green & MacLeod, 2016). 

Thorough analysis during the planning stage in health 
sciences ensures both statistical accuracy and ethical soundness. 
Low power can make data collected from participants 
meaningless, while overly large samples can lead to ethical 
concerns, such as unnecessary use of resources and subjecting 
participants to extra interventions (Biau et al., 2008). Thus, power 
analysis is closely tied to research ethics principles. 

A priori power analysis should always be done in 
research; the expected effect size, target power, and significance 
level (α) should be clearly stated before data collection and 
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included in the ethics committee application. When choosing 
effect size, literature-based approaches should be prioritized; 
results from meta-analyses or earlier similar studies provide 
realistic estimates (Sullivan & Feinn, 2012). Variance estimates 
and potential sample losses must also be considered. Since a 10 
to 20 percent sample loss is common in clinical trials, it is 
advisable to plan for an additional sample that reflects this rate 
(Chow et al., 2017). 

Power analysis results should be reported in a clear, 
transparent, and reproducible way. Stating the type of test used, 
effect size, significance level (α), error probability (β), software, 
and references increases the reliability of the methods (APA 7; 
CONSORT, 2010; STROBE, 2007). Post hoc power analyses 
should be approached with caution. These analyses, which rely 
on observed effects, can often be misleading and should only be 
considered as explanatory information (Hoenig & Heisey, 2001). 

With the development of research methods, simulation-
based power analyses have also gained importance. More flexible 
and realistic power estimates can be made using simr or similar R 
packages in mixed models, repeated measures, and Bayesian 
analyses (Green & MacLeod, 2016). Furthermore, Bayesian 
power analysis allows uncertainty to be modeled more 
realistically by incorporating prior information into the model. 
Adaptive designs offer both ethical and economic advantages by 
allowing the sample size to be updated based on interim analysis 
results. Machine learning-supported power estimates add a new 
dimension to model-based simulations by using real-world data 
(e.g., EHR, hospital records) (Gelman, Hill, & Vehtari, 2020). 

Finally, we must always consider clinical significance. 
Statistical significance (p < 0.05) alone is not enough; we also 
need to evaluate the clinical importance and effect size of the 
finding (Sullivan & Feinn, 2012). To raise this awareness among 

Biostatistical Evaluations

40



clinical researchers, we should create training programs, online 
modules, and open-access guides on statistical power analysis. 

In conclusion, creating reliable information in health 
sciences depends on well-designed and properly powered studies. 
A well-planned power analysis is not just a statistical 
requirement; it also shows scientific and ethical responsibility. 
For researchers, this analysis is a key step in understanding the 
meaning of the data and the importance of the findings. 
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