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NULL MAGNETIC CURVES ON 3D SEMI-
RIEMANNIAN MANIFOLDS IN THE CONTEXT
OF KILLING VECTOR FIELDS

Fatma ALMAZ!

1. INTRODUCTION

3-dimensional semi-Riemannian geometry, a broad
branch of differential geometry, arises by relaxing the
requirement that the metric tensor be positive definite. This plays
a vital role in modeling physical systems, particularly the space-
time geometry of general relativity. Unlike classical Riemannian
geometry, vectors on semi-Riemannian manifolds can have
space-like, time-like, or null (light-like) characteristics,
significantly affecting the internal structure of the manifold and
the dynamics on it.

This study focuses on the study of null magnetic curves
on a 3-dimensional semi-Riemannian manifold defined by an
adapted frame consisting of two null vectors and a time-like
vector. This particular choice of frame allows for a more in-depth
analysis of the specific metric and topological properties of space.
Magnetic curves are non-geodesic curves that represent the
motion of a charged particle placed in a magnetic field and are
derived from the Lorentz force equations. A null curve means that
the norm of its tangent vector is zero, suggesting that these curves
have a character similar to the trajectories of massless particles
moving at the speed of light.

L Assist. Prof. Dr, Batman University, Faculty of Arts and Sciences, Department of
Mathematics, ORCID: 0000-0002-1060-7813.
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Null magnetic curves are of great interest in both
differential geometry and theoretical physics, particularly in
understanding high-energy astrophysical phenomena and
cosmological models. The study of such curves illuminates the
behaviour of the Lorentz force equations in degenerate metric
spaces and also provides important information on how magnetic
fields interact with the curvature of spacetime. This introductory
section will discuss the theoretical basis of null magnetic curves,
the importance of the frenet frame structure in 3-dimensional
semi-Riemannian space, and the fundamental concepts necessary
for characterizing these curves. The ultimate goal is to develop
new insights into the dynamics of these complex systems by
elucidating the existence of these special curves, their geometric
properties, and their relationship to the structure of the magnetic
field.

Studies on magnetic curves in Lightike cone space have
been done by the authors in references (Almaz & Kulahci, 2018,
2020, 2021). Some mathematical results have been obtained by
the authors in reference (Drut-Romaniuc & Munteano, 2011) on
magnetic curves corresponding to Killing magnetic fields, some
results on contact magnetic flow in 3D Sasakian manifolds and
magnetic vortex filament flows are given in references ((Barros
& Romero, 2007), (Cabrerizo & Gomez, 2009)).

2. PRELIMINARIES

Let (M3, g) be a real 3D semi-Riemannian manifold of
index gq=1 and for a smooth null curve
y(@®) = (x°(t), x1(£), x2(t)); t e I = R in M3 the tangent vector
field of y satisfies

_dy  dx® dx! dx? “o dxtdx’ — o
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where g;; = g(0;,0;) and i,j € {0,1,2}. Ty is the tangent bundle
of y and Ty is defined as follows (see (O’Neill, 1983))

Ty* =Upey Toy i Ty = {P € ToM: g(Wp, {p) = 0},

where {p is null vector tangent of y at any P € y(t), Ty is a
vector bundle of y of rank 2. Hence, the tangent bundle Ty is a
vector subbundle of Ty, of rank 1 and this implies that Ty is
not complementary to Ty in TM|,,, according to the classical non-

degeneracy theory, there must be a vector bundle complementary
to Ty in the TM, this bundle will play the role of the normal
bundle Ty+.

Theorem 1. Let y be a null curve of a semi-Riemannian manifold
(M, g) and S(Ty*') a screen vector bundle of y. Then, there exists
a unique vector bundle E of rank 1 of the curve y, such that over
each coordinate neighbourhood V c vy, there exists a unique
partition N € T'(E|y) satisfying the following equation

gL N) = 1,g(N,N) = g(N, X) = 0,¥X € I(S(TYY)ly, (2.2)

for the null transversal bundles E and N of y and {%, N} isanull
basis of T'((Ty @ E)|y), which is
™|, = (Ty @ E) L S(Ty"),
((Duggal & Bejancu, 1996), (O’Neill, 1983)).
Let y be a null curve of an 3D semi-Riemannian manifold

(M?, g) of index 2 and N be the null vector field. For% = (¢ and

the Levi-Civita connection V on M?, and from g(¢,{) = 0 and
g(¢,N) =1onehas g(V;{,{) =0,9(V¢$,N) = —g({,V;N) =
h, where h is a smooth function. The null Frenet equations are
written as



Matematik

V(N = —hN + k,W (2.1)

V{W = kz( + klN,

where {h, kq,k,} are curvature functions of y, W € T(S(Ty"1))
and g(W,W) = —1. Then, for screen vector bundle S(Ty%),
Frenet frame on M along y can be written as {¢, N, W}, ((Graves
& Nomizu, 1978), (Ikawa, 1985)).

The Lorentz force of magnetic field F on M is described
to be a skew symetric operator @ given by

g(@(X),Y)=FX,Y),VX,Y € u(M) (2.2)
and the mixed product of the vector fields Is given as
gX XY, Z) =dvy(X,Y,Z),VX,Y,Z € u(M). (2.3)

The magnetic trajectories of F are curves y on M3 which
satisfy the Lorentz equation

Vel = @(0). (2.4)

Let F be a Killing vector field on M3 whichis F, = L,dVg,

where ¢ is denoted the inner product. In this context, the Lorentz
force of the F, is given as

dX)=FxX (2.5)
and Lorentz force equation is defined as

Proposition 1. Let y be a curve in a 3D semi Riemannian
Manifold and F be a vector field along the curve y. The, for a
variation of a in the direction of F, a map I:1 X (—¢,&) > M
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which satisfies

I(s,0) = Y(s), (5 (5,1) = F(s). (27)

Then, for the curvature function x(s,t) of the y, the following
expressions are provided

F@) = (5 (50) _ = 9(WE v (28)

t=

d
F(k) = <a—'; (s, t)) = g(ViF,N) — 2kg(V;F, ()

t=0

+g(R(F, ()¢, N) (2.9)

where
vist) = [Z 0, (2.10)

(Barros, Cabrerizo & Gomez, 2009).

Proposition 2. Let F(s) be the restriction to y of a Killing vector
field. In this case, the following expression for F is satisfied

F(v) = F(x) =0, (2.12)
(Barros, Cabrerizo & Gomez, 2009).

3. THE NULL MAGNETIC CURVES IN 3D SEMI-
RIEMANNIAN MANIFOLD

In this section, by consider the null magnetic curves
whose Frenet frame is made up of two null vectors { and N, W' is
timelike vector. and some characterizations of the null helices are
expressed according to the null frenet frame in 3D semi-
Riemannian nanifold of index 2.
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The following theorems were tried to be expressed.

Definition 1. Let y be a null curve in 3D semi-Riemannian
Manifold and with the Frenet apparatus {{, N, W, h, k;, k,} and let
F be a magnetic vector field along null curve y on M3. If the
Lorentz force equation given below, expressed for null N-
magnetic vector field y, the null curve y is called an N-magnetic
curve, is satisfied

VN = &y (N) = Fy x N. (3.1)

Theorem 2. Let y be a null N-magnetic curve in 3D semi-
Riemannian Manifold and with the Frenet apparatus
{{,N,W, h,k;,k,}. Then, the Lorentz force in the Frenet frame is
given as

DN (D) h 0 —011[¢
doy(N)[=]0 —-h —=k,||N], (3.2)
Dy(W) k, 0, O W

where ©; = g(®y(W), D).

Proof. Lety be a null N-magnetic curve in (M3, g) with the Frenet
apparatus {{, N, W, h,k,,k,}. Then,

On (D) = AT+ AN + AW
and from (3.1) and (2.2), one gets
A = g(Pn(9,N) =F(N) = —F(N,¢) = —g(®(N),) =h
A, =g(Pn(9, ) =0
Az = —g(Pn(Q), W) = —0;.
Thus, one writes
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() =hi—0,W.

Similarly, the Lorentz force functions ®y(N) and @y (W) can be
calculated that

CDN(N) = _hN - sz; CI)N(W) = kz( + ®1N.

Theorem 3. Let y be null N-magnetic trajectory of a magnetic
field Fy in 3D semi-Riemannian Manifold with the Frenet
apparatus {¢, N, W, h,k,, k,} if and only if Fy is satisfied

Fn(s) = % (=k2(s)¢(s) + ©1(s)N(s) + h(s)W(s)).  (3.3)

Proof. Let y be null N-magnetic trajectory of a magnetic field Fy.
In a 3D semi-Riemannian manifold, the vector product of two
time-like vectors usually produces a space-like vector that is
orthogonal to both time-like vectors with respect to the metric
tensor. If null vectors are linearly dependent, their vector product
yields the zero vector. If null vectors are linearly independent,
their vector product generally produces a space-like vector. This
resulting vector is orthogonal to both null vectors with respect to
the metric tensor. Let’s prove the theorem using the case of linear
dependence. Then, by using (2.5) and theorem 2, from Fy = al +
bN + cW, where a, b, c € C* one obtains

C
FN == H(_kzz + ®1N + hW),
where
hZ - ®1W = CNl; —hN — sz = CNZ;
kz( + G)lN = —aN1 - sz, (34)

where N,, N, are spacelike vector fields.
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Theorem 4. Let Fy be a Killing vector field 3D semi-Riemannian
Manifold with the Frenet apparatus {¢, N, W, h, k,, k, } for the null
N —magnetic curve y. Then, the following equations are satisfied
for the given null N —magnetic curve

—h

— _ ~Jhds [ hds
0, o e U c(s)k;e ds},

—((fky)")" — (fk2)'h + ((fh)" — fkyk; + fk,0,) = 0,

where f = ﬁ,c € C*.

Proof. For a null magnetic vector field Fy in (M3, g), from (3.3)
and by differentiating of (3.3) with respect to parameter s, one
gets

V(FN = (_f,kz + ﬂ1)< + (f,G)]_ + ﬂz)N + (f,h + ﬂg)W, (35)

where

f= ;]1 :—k'z;lz :@’1—h®1+hk1;

=l o

13 == _klkz + k2®1 + h,. (36)

By differentiating of (3.5) with respect to s and from (2.1), one
gets

2e (M + mlh) (m’z - m2h>
ViFn = (+m3k2 ¢+ +m3k, N

m’3+m2k2>
+<+mlk1 w o @37

where

ml = _f’kz + ﬂl’ mz = fl(')l + ﬂz, m3 = f’h + ﬂ3



Matematik

and from (2.8), (2.9) and (2.11), Fy(v) = 0, one has
£'0, +fl,=0=(5) 0,+-(0; —h0,) =0  (38)
and

-h
0, = —C(S) ef hdsf [ c(s)klefhdsds} (3.9)
and from Fy (k) = 0, one obtains

(—f'k, +fl)" + (—f'k, + fl))h + (f'h + fl)k,
+8REOLN) =0
from C is constant curvature g(R(Fy,0)(,N) = Cg(Fy,N) =0,
one gets

(_flkz + ﬂl)l + (_f,kz + ﬂl)h + (f,h + ﬂ3)k2 == 0
and
—((tk2)")" — (tk)'h + ((fh)’ — fk k, + tk,0,) = 0. (3.10)

Definition 2. Let y be null curve in 3D semi-Riemannian
Manifold and with the Frenet apparatus {(, N, W, h, k;, k,} and let
F be a magnetic vector field along the curve y on M3. If the
Lorentz force equation given below, expressed for null
W —magnetic vector field, the curve y is called null W —magnetic
curve, is satisfied

VW = Dy (W) = Fyy X W. (3.11)

Theorem 5. Let y be null W-magnetic curve in 3D semi-
Riemannian Manifold and with the Frenet apparatus
{{,N,W, h,k;,k,}. Then, the Lorentz force in the Frenet frame is
given as

Dw(0) 0, 0 —ki11[¢
oW lk, k, 0o llw
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where 0, = g(®w(0), N).

Proof. Let y be a null W-magnetic curve in (M3, g) with the
Frenet apparatus {¢, N, W, h, k,, k,}. Then,

Pw(Q) =N 0+ M N +n;W
and from (3.11) and (2.2), one gets
Ny = g(Pw (9, N) = 0351, = g(Pw (D), =0;
N3 = —g(Pw(), W) = —ky,
one writes
Oy (0) = 00—k W.

Similarly, the Lorentz force functions @y, (N) and &y, (W) can
be calculated that

Theorem 6. Let y be a null W-magnetic trajectory of a magnetic
field Fy in 3D semi-Riemannian Manifold with the Frenet
apparatus {, N, W, h,k,, k,} if and only if Fyy is satisfied

Fi(s) = oo (ka ()3(S) — ki (SIN(S) + ©;()W(s)). (3.13)

Proof. Let y be null W-magnetic trajectory of a magnetic field
Fw. Then, the vector product of two time-like vectors produces a
space-like vector that is orthogonal to both time-like vectors,
since null vectors product yields the zero vector, by using (2.5)
and theorem 5, from F = x{ + yN + zW, where x,y,z € C* one
obtains

Z
FW = @ (kzz - klN + ®2W),
2

where

10
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@2( + k1W = ZNI, _®2N - sz = ZN;;

where Nj, N5 are spacelike vector fields.

Theorem 7. Let Fyy be a Killing vector field 3D semi-Riemannian
Manifold with the Frenet apparatus {¢, N, W, h, k,, k, } for the null
N-magnetic curve y. Then, the following equations are satisfied
for the given null W-magnetic curve

(=(gky) + kyg(h + 0,)) = (—(gky)’ +kyg(h + 0,))h
+(g0,)'k; = 0

((gkz)’ +kgth+0,) + h(_(gk1)’ +kigth + @2))
+ kz(ggz)’) =0,

where g = @i,z € C”.
2

Proof. For a null magnetic vector field Fy, in (M3,g), by
differentiating of (3.13) according to parameter s, one gets

ViFw = ((gka)" + kyg(h + 0,))C
+(—(gky)" + kyg(h + 0,))N + (g0,)’'W  (3.15)

where

2

By differentiating of (3.15) with respect to s and from (2.1), one
has

V%F = ((gkz)’ + kog(h + 0,)" + h(—(gky)' + kyg(h + 0,))
+k,(80,)")¢

11
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+((—(gk1)’ +k;g(h + @z)), - (_(gkl)’ +k;g(h + @z))h
+(g02) k)N

((f02)") + (—(gk1)" + kyg(h + 0,))k,
+ ((gkz)' + kyg(h + 0,)’ >k w
+h(—(gk1)’ +kigth + @z)) +ka(g0,)' ) !

and from (2.8), (2.9) and (2.11), Fyy(v) = 0, one has

(—(gky)" + kig(h + 0,))" — (—(gky)’ +kyg(h + ©,))h
+(g0,)'k; =0 (3.17)
and from Fy, (k) = 0, one obtains

((gkz)' +kyg(h +0,)" + h(_(gk1)' +kigth + @2))
+k,(f0)") + g(R(F, DG, N) =0,

from C is constant curvature g(R(Fw, )¢, N) = Cg(Fw, N) = 0,
one gets

(gky) +kogh+0,)" + h(_(gk1)' +k,g(th + 92))

3.18
+k,(g0,) = 0. (3.18)

4. CONCLUSION

In this study, we consider the interactions between null
magnetic curves and Killing vector fields on defined 3-
dimensional semi-Riemannian manifolds. Null magnetic curves
represent light-like trajectories under the influence of the Lorentz
force, while Killing vector fields characterize the isometries of
the manifold, i.e., metric tensor-preserving symmetries. Our
findings demonstrate that the geometric and kinematic behavior
of null magnetic curves in this particular space is directly related
to the existence and structure of Killing vector fields. In

12
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particular, the influence of a Killing vector field on the null
magnetic curve provides important clues to the existence of
conserved magnitudes of the curve and, consequently, to the
integrability of the equations of motion. The results provide a
valuable framework for the application of these manifolds in
physical models and point to new directions for future research.

13
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ON g-LEONARDO SPLIT QUATERNION
POLYNOMIALS

Ali ATASOY!?

1. INTRODUCTION

Quantum calculus (g-calculus) has garnered significant
scholarly attention, demonstrating broad applicability in pure
mathematics (e.g., combinatorics, special functions) and applied
fields, including fractal analysis, multifractal measures, and the
entropy formulations of chaotic dynamical systems. The present
study introduces the concept of quantum split quaternion
polynomials, establishing their fundamental properties and
associated identities.

Integer sequences represent a cornerstone of mathematical
inquiry and remain an active research domain. Canonical
examples, particularly the Fibonacci and Lucas sequences, are
considered foundational. This status is attributable to their
complex structural characteristics, profound interconnections
with diverse mathematical fields, and extensive applicability in
disciplines ranging from biology and physics to statistics and
computer science.

Classical studies on Fibonacci and Lucas numbers form
the foundational background of many modern recursive
structures. Early works such as A Primer for the Fibonacci
Numbers provide a comprehensive introduction to these
sequences and their mathematical behavior (Bicknell, Hoggatt, &
Verner, 1972). Koshy’s well-known monograph further expands

L Asst. Prof. Dr., Kirikkale University, Keskin Vocational School, ORCID: 0000-
0002-1894-7695.

16



Matematik

this framework with formal properties and applications in various
mathematical domains (Koshy, 2001). More recent contributions
examine number theoretic representations, showing that integers
can be expressed through combinations of Fibonacci and Lucas
numbers (Park, Cho, Cho, Cho, & Park, 2020). Classical
references, including those by Vajda (1989) and by Verner and
Hoggatt (1969), detail the connections between these sequences
and the golden ratio. Extensions of these ideas to hypercomplex
systems were advanced by Halict (2012) through the study of
Fibonacci quaternions. Foundational sequence generalizations
were introduced in a series of works by Horadam (1961, 1963,
1965), who developed generalized Fibonacci sequences, explored
their complex analogues, and established fundamental structural
properties that continue to influence contemporary recursive
sequence theory.

The recursive formulations of the Fibonacci and Lucas
sequences are given by the following relations:

F,=F,_.1+F,5; Fpb=0F, =1,
Lpsoa =Lpy1+L, sLo=2,L; =1
The Fibonacci and Lucas sequences can be expressed
explicitly through their well-known Binet formulas.
fn = (pqo:z
For n > 2, Fibonacci polynomials are given as follows:
Fro(x) = xFp 1 (%) + F2(x) 5 Fo(x) = 0,F;(x) = 1.

Recent advancements in Leonardo number theory have
expanded the classical framework into new algebraic and analytic
domains. A modern treatment of the Leonardo sequence,
incorporating dual vector and dual angle representations, has been
proposed by Babadag and Atasoy (2024), offering an enriched
geometric interpretation of these numbers. The structural

, Ly, =" +y™ (1.2)

17
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properties of Leonardo sequences were further addressed in
several studies, including those by Catarino and Borges (2019)
and by Alp and Koger (2021), who investigated combinatorial
and arithmetic behaviors of the sequence. Extended
generalizations, such as those presented by Shannon and Deveci
(2022), highlight the adaptability of Leonardo-type recursions to
broader number-theoretic contexts. Complex-valued extensions
of Leonardo numbers were explored by Karatas (2022), providing
insights into their behavior within complex algebraic structures.
Complementary to these contributions, Shattuck (2022) offered
combinatorial proofs for generalized Leonardo identities, thereby
strengthening the theoretical foundations of Leonardo number
analysis.

The Leonardo number sequence Le,, is defined through the
recurrence relation

Le, =Le,_4 +Le, ,+1
starting with the terms Le, = Le; = 1. Then,
Le, — Le,,; = Le,,_4 +Le,_, +1—Le, —Le,_; —1
Le,y1 = 2Le, — Le,_,
(Mangueira, Vieira, Alves, & Catarino, 2022).
For n > 3, Leonardo polynomials are given as follows:
Len(x) = ZXLen—l(x) - Len—S(x)
where Ley(x) = Le;(x) = 1 and Le,(x) = 3.

Leonardo numbers are explicitly defined by Binet’s formulas:
z(pn+1_2¢n+1
=y

The study of special number sequences and polynomial
structures has led to significant advances in discrete mathematics,
particularly through identities and summation formulas derived
using generating functions. These constructions play a central

Le, = 2F,,; — 1= -1, n>0. (L2

18
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role in mathematical physics, modeling, and analytic number
theory (Nalli & Haukkanen, 2009; Horadam, 1996). Within this
context, Lee and Asci expanded classical recursive systems by
establishing fundamental properties of the (p, q)-Fibonacci and
(p, g)-Lucas polynomials (Lee & Asci, 2012). Catarino
subsequently introduced h(x)-Fibonacci quaternion polynomials,
linking special sequences to quaternionic algebra (Catarino,
2015). More recently, Zhang, Khan, and Kizilates analyzed
(p, g)-Fibonacci and (p, q)-Lucas polynomials associated with
Changhee numbers, further broadening the algebraic framework
of generalized Fibonacci-type structures (Zhang, Khan, &
Kizilates, 2023).

Further developments in generalized Fibonacci-type
structures have emerged through the integration of quantum
calculus and its extensions. Zhang and friends offered an
advanced treatment of (p,q)-Fibonacci and (p,q)-Lucas
polynomials associated with Changhee numbers, providing new
insights into their algebraic and combinatorial behavior (Zhang,
Khan, & Kizilates, 2023). Parallel contributions by Babadag
explored quantum-calculus-based approaches to dual and hyper-
dual number sequences, demonstrating the applicability of g-
analogue methods to broader algebraic systems (Babadag, 2023a;
Babadag, 2023b). Foundational work on quantum calculus by
Kac and Cheung (2002) established the theoretical framework
upon which many recent generalizations depend, while the
analysis of quantum integers by Le Stum and Quiros further
clarified structural properties relevant to sequence theory (Le
Stum & Quirds, 2015). Akkus and Kizilaslan (2019) argued that
the quantum calculus approach provides novel methods for
quaternion analysis. Additional extensions of quantum-calculus-
based recursive systems, including dual bicomplex Fibonacci and
Lucas numbers, were introduced by Kome and friends, marking
another significant step in the integration of quantum operators
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with hypercomplex number systems (Kome, Kome, & Catarino,
2022).

For arbitrary integers n and m, we introduce the function

[nl, = 11__"; =14q+-+q"
and
[m+nl, = [mly+4q™Inl,,
[mn], = [mlglnlgm.

If we take g = % in (1.1) and (1.2), we can write g-integer form

respectively as:

n

1—g¢q
®—oq

[zn]q 1_q2n
Ln(@;q) = o™ ="
n\®; q % ], %

n

Fo(o;q) = " 'nlg =9

and
Len(@;q) = 29" [n+ 1]y —1=2¢™' ———— -1

(Akkus & Kizilaslan, 2019).

A split quaternion may be described as an ordered
quadruple given by
Y = Yo +VYily +¥2iz +¥3i3
with y,, 1,72, 73 € R (R denotes the set of real numbers) and
split quatenionic units i,, i,, i5 satisfy
P2

.2 .2 P T T
ll —_ _lz —_ _l3 —_ _1, lllZ —_ _lzll —_ 13, lzl3 —_ _ll' (1.3)

Addition and multiplication operations are defined as
follows:
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y+68=(S,+Ss5)+(V, +Vs),
]/5 = Sy55 + (Vy, Vg) + SVV)', + SgV(g + Vy X Vg,

where y and & are split quaternions (Atasoy, Ata, Yayli, &
Kemer, 2017).

2. q-LEONARDO SPLIT QUATERNIONS

The scope of this section encompasses the definition of
the g-Leonardo and g-Lucas split quaternions, followed by the
presentation of their key structural characteristics and associated
algebraic identities.

The associated g-Leonardo split quaternion polynomial
sequences are introduced herein, and their fundamental properties
are subjected to rigorous examination.

Definition 2.1. The n" g-Fibonacci split quaternions and the
q-Lucas split quaternions are defined as follows:

Fole; @) = Fr(@; @) + Fri1(@; @iy + Fropo (05 @iy + Fryz(@; @)is,
Ln(9;q) = Lp(9;q) + Lpy1(@; @iy + Ly (9; )iz + Ly (@; q)is

where i;,i, and i; are the imaginary basis elements whose
products follow the multiplication rule stated in (1.3).

The Binet formulas of these quaternions

(pn+1£ _ ((pq)n+1£
Falo; @) = Py :

Ln(p;q) = 9" + (9q)"B
where ¢ =1+ @iy + @%i; + @%iz and B = 1+ (pq)i; + (9q)%i; +
(pa)°is.

Definition 2.2. The n™ g-Leonardo split quaternion sequences is
defined by
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Len(¢; q) = Len(@; q) + Leyi1(9; q)iy + Leyiz (95 9)i;
+ Len+3(@; q)i3

1
n+1 1¢—_q;:1 + 2"+2 Py i
1-— n+3 1-— n+4
+ 2¢n+3 q iZ + 2g0n+4—ql
¢ —@q ¢ —@q

— (L 40y +iy+i3) 2.1)

n+2

1—g¢q

= 2¢ 1

3

or equivalent

Len(0;q) = 2(p™[n + g + @™ n + 2]4i; + @™+ [n + 3,0,
+ "3+ 4l,i3) — (1 + iy + iy + i3). (2.2)

Theorem 2.1. The Binet-like formula for the n' g-Leonardo split
quaternions are

<Pn+1£—(§0Q)n+1E

Len(@;q) = 2F,(p;q) — A = 2( p ) —-A (23)

or equivalent
Len(p; ) = 2 (@ [nlg@ + (p)™p) — A
where,
A=1+i;+ iy +is,
¢ =1+ iy +¢*i; + @3,
Y =1+0¢[2]qi; + @?[3],i, + ©3[4] 413,
B =1+ (eq)iy + (pq)?i; + (9q)°is.

Proof. Using equations (2.1) and (2.2) and carrying out the
corresponding computations, we obtain
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Len(¢;q) = Len(@; q) + Leyi1(9; q)iy + Leyiz(9;9)i;

+ Len3(@; q)iz

1 2
= 2¢"*! 1=q™ + 2¢n+2 1-¢™" iy
Y —@q Y —@q
n+3 qn+3 n+a - qn+4
+ 2¢ i, +2¢ = o4 i3
(pn+1
= 24, - (1 + iy + @2y + @3i3)
(p)™*! _ _ _
T2y g et (p@)?iz + (99)°is)

"o — ()" B
¢ —pq

or equivalent

Len(9; q) = Len(@; @) + Leny1 (@5 @)iy + Leyi2(@; q)iy

have

+ Leny3(9; Qi3

=2(p"[n+ 1], + @™ n + 2] 41,

+ "2 [n + 3],y + @3 [n + 4],i5)
=2¢™([nl, +q™) + 20" ([nl, + q™[2])i,
+2¢™2([n], + q™[3])iy + 2¢™*3

= 2¢"[n],(1 + @iy + @?i; + ¢3iy)
+20™q™(1 + @[2]4i1 + @2[3]4iz + ¢3[4]4i3)
=2 (fp”[n]qg + (wq)”y) — A

To illustrate, take the case where n = 0 in (2.3). We will
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®—qp
Leg(p;q) =27—=—(1+1i; +i, +i3)

1-q9)
, 1o+ @20y + @3i3 — q(1 + (pq)iy + (9q)?iz + (9q)3i3)
1-q)
—A
(1—q) +¢i;(1-q*) + ¢*i,(1 - ¢°) + pi3(1 — q*)
=2 (1-q) —A

= 2(1 + @[2]iy + @?*[3]i; + ¢3[4]i3) — A.

3. q-LEONARDO SPLIT QUATERNION
POLYNAMIALS

This section introduces the formal definition of the g-
Leonardo split quaternion polynomial. Following this, we
establish the Binet formula and the generating functions
associated with this class of polynomials, and present several key
results concerning the behavior of the derived sequences.

Definition 3.1. For complex polynomials @ = a(x) and u = u(x),
the g-Leonardo polynomial Le,(x) is introduced using the
recurrence relation

Len(x) = 2ale,_;(x) — ule,_3(x) (3.1)

with the initial conditions Le,(x) = Le; (x) = 1, Le,(x) = 3 and
Le;(x) = 6a — u, Ley(x) = 12a% — 2au —p, -+

The Binet formula of the g-Leonardo polynomial can now
be obtained.

Theorem 3.1. Let t; = t;(x), t, = t,(x), t3 = t3(x) be the roots
of the characteristic equation roots of

t3 —2at’+u=0

in (3.1) where t = t(x). Then, for n > 0, the Binet formula for
q-Leonardo polynomials Le, (x) is
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Len,(x) = p(tT(x) + T (x) + w()t; (x)
where p = p(x), 7 = 7(x), w = w(x) and
_3_t2_t3+t2t3

p= (t, — ) (b — t3)’
3=ty —ty+ tyts
t (t; —t)(t, — t3)
3—t, —ty + tyt

W =

(t3 —t)(tz — t)
Proof. The proof can be obtained by mathematical calculations
forn=0,n=1,n=2.

Definition 3.2. The g-Leonardo split quaternion polynomial
Le, (x) is recursively defined as follows:

Ley(x) = Ley(x) + Lepyq (x)iy + Leyio(x)i; + Lepys(x)is.
The initial values for the g-Leonardo quaternion polynomials
Le, (x) are are given by:

Ley(x) = Ley(x) + Le; (x)i; + Le,(x)i, + Les(x)ig
=1+ iy + 3ip + (6a(x) — u(x))is,
Le;(x) = Le;(x) + Le,(x)i; + Les(x)i, + Ley(x)is
=1 + 311 + (6(1(3() - ‘Ll(x))lz
+ (12a%(x) — 2a(@)p(x) — u(x))is
where the imaginary units i, i, and i; adhere to the multiplication
rule described in (1.3).
Theorem 3.2. Consider £ G(t) as the generating function of the

q-Leonardo split quaternion polynomial Le,, (x), which is defined
by:

Ley(x) + [Le;(x) — 2aLey(x)]t + [Ley(x) — 2aLe; (x)]t?

L6@) = 1— 2at +t3
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Proof. The generating function of the g-Leonardo split
quaternion polynomials Le,(x), denoted by £_G(t), is given by
the series Yoy L e, (x)t™. For n > 3, we write

Le,(x) — 2aLle,_1(x) + ule,_5(x) =0
Z Le,(x)t" - 2a Z Le, 1()t" +pu Z Le, ;(x)t"=0
n=3 n=3 n=3

Z Le, ()" — Ley(x) — Le; ()t — Le, (x)£2
n=0
— 2at Le,(x)t" — Ley(x) — Lel(x)t>
»

+ ut3 Z Le,(x)t" = 0.
n=0

Then,
L,G() — Leg(x) — Le; ()t — Ley(x)t?
- Zat(LeG(t) — Ley(x) — Ley(X)t)
+ut*L,G(t) = 0.

In the last equality, if we make the necessary calculations, we find
the result as:

L G(1)

_ Leg(x) + [Leg(x) — 2aLleg(x)]t + [Ley(x) — 2aLle; (x)]t?
B 1—2at + ut? '

The proof is completed.

Theorem 3.3. The Binet-like formula for the g-Leonardo split
quaternion polynomial Le, (x) is

Ley(x) = ptQ;(x) + 1t70Q,(x) + wtiQy(x)
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t3is, Qo (%) = 1 + t3iy + thi, + t3is.

Proof. Based on Theorem 3.1, the proof can be readily
established by applying the Binet formula for the g-Leonardo
split quaternion polynomial. For n > 0,

Ley(x) = Leny(x) + Lepyq (x)iy + Lepio(x)is + Lepys(x)is

= pt! + 1t} + wt}

+ (ot + ottt + wthth)i,

+ (pth*2 + 7th+2 + wtlt?)i,

+ (ptI*3 + 7tht3 + wtht3)iy

= pth(1 + tyiy + t3i, + ti3)

+ Tt (1 + tyi; + t3i, + t3i3)

+ wth (1 + t3i; + t3i, + t3is)

= pt7Q1(x) + 1t5Q, (%) + wtzQ,(x).

4. CONCLUSIONS

In this study, split quaternion sequences are introduced
using notations from quantum calculus. We introduce a novel
class of g-Leonardo split quaternion polynomial sequences and
explore a range of their properties. This representation obtain a
new perspective on the structure of g-Leonardo split quaternions
and give a deeper understanding of their geometric and algebraic
interpretations and transformations.
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DIFERANSIYEL MAHREMIYET VE MODERN
UYGULAMALARI

Muhammed HASDEMIR!

1. GIRIS

Biiyiik Veri ¢aginda bireysel mahremiyetin korunmasi,
geleneksel anonimlestirme yontemlerinin yetersiz kalmasi
nedeniyle kritik bir zorluk haline gelmistir. Diferansiyel
Mahremiyet (DP), bu soruna matematiksel olarak kanitlanabilir
garantiler sunarak modern veri analizi icin altin standarttir.

Bu boliimde, Merkezi DP modelinde kullanilan Laplace
Mekanizmas1 igin gizlilik—fayda dengesini nicel olarak
karakterize eden bir analiz cercevesi sunulmaktadir. Sayma
sorgular1 i¢in mekanizmanin varyans ve Ortalama Mutlak Hata
(MAE) agisindan teorik davranisi tiiretilmekte, ardindan kurgusal
bir veri seti Uzerinde gergeklestirilen 5000 tekrarli
simiilasyonlarla dogrulanmaktadir.

Farkl1 gizlilik (¢) degerleri boyunca elde edilen sonuglar,
(¢) ile hata metrikleri arasindaki ters ve yaklasik logaritmik
iligkiyi ortaya koymakta; ayrica kabul edilebilir sonug yiizdesi
tizerinden pratik bir gliven oOl¢iiti tanimlanmaktadir. Analiz,
Ozellikle € < 1 araliginda kiigiik artislarin fayday1 hizli bi¢imde
yiikselttigini, € > 3 sonrasinda ise marjinal kazanimlarin sinirl
kaldigin1  gostermektedir. BoOlim, bu bulgulara dayanarak
uygulayicilar i¢in sayma sorgulari baglaminda somut & se¢im
rehberleri 6nermekte ve diferansiyel mahremiyetli sistemlerin

L Dr. Ogr. Uyesi, Aydin Adnan Menderes Universitesi, Séke Saghk Hizmetleri

Meslek Yiksekokulu, Tibbi Hizmetler ve Teknikler Boliimii, Tibbi Gorlntiileme
Teknikleri Pr., ORCID: 0000-0001-5901-3699.
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tasariminda gizlilik ile analitik dogruluk arasinda yapilacak
uzlasmanin  nasil nicel olarak  degerlendirilebilecegini
gOstermektedir

1.1. Diferansiyel Mahremiyetin Ortaya Cikisi ve
Uygulama Ornekleri

Dijital  ekosistemde veri toplamanin  neredeyse
“varsayilan” hale gelmesi, saglik, finans ve kamu politikalar1 gibi
yuksek etkili alanlarda guclt analitik imkanlar sunarken, bireysel
mahremiyet risklerini de belirgin bi¢cimde artirmaktadir.
Geleneksel anonimlestirme teknikleri, 6zellikle de k-anonimlik
gibi ¢erceveler, kigisel verilerin tekrar-6zdeslestirilmesini
onlemede smirli kalmakta hem kuramsal hem de pratik saldiri
senaryolar1 karsisinda kirilganlik sergilemektedir (Sweeney,
2002).

Netflix Prize veri kiimesi iizerinde gerceklestirilen
yeniden kimliklendirme ¢alismasi, dis kaynaklarla iliskilendirme
(linkage) yoluyla “anonim” oldugu iddia edilen biiylik Slgekli
veri setlerinin dahi birey diizeyinde agiga ¢ikabilecegini carpici
bicimde ortaya koymustur (Narayanan & Shmatikov, 2008). Bu
tiir sonuglar, anonimlestirme tabanli yaklagimlarin, o6zellikle
Biiylik Veri baglaminda, mahremiyeti korumak i¢in tek basina
yeterli olmadigin1 gostermektedir. Bu boslugu doldurmak {izere
ortaya ¢ikan Diferansiyel Mahremiyet (Differential Privacy, DP),
bir bireyin verisinin veri kiimesinde yer almasinin ya da
almamasinin, analizin ¢iktisin1 yalnizca sinirli ve matematiksel
olarak kontrol edilen bir dl¢iide degistirmesine izin veren bir
guvence cercevesi sunar (Dwork & Roth, 2014). Boylece, veri
yayimlayicilar1 ve analistler, belirli bir gizliligi ¢ altinda,
yaptiklar1 hesaplamalarin bireyler hakkinda ne kadar bilgi agiga
cikarabilecegini nicel olarak ifade edebilmektedir. Bu giiglii
kuramsal altyap1, DP’yi modern veri analizi ve makine 6grenimi
uygulamalari i¢in “referans standart” haline getirmistir. Nitekim
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Google’1n son kullanici yazilimlarindan istatistik toplamak tizere
gelistirdigi RAPPOR sistemi (yerel DP) ve ABD Niifus Sayim
Biirosu’nun 2020 sayiminda benimsedigi merkezi DP tabanli
koruma mekanizmasi, bu yaklagimin biiyiik 6l¢ekli gergek diinya
sistemlerine  basariyla  uygulanabilecegini  gdstermektedir
(Abowd, 2018; Erlingsson, Pihur, & Korolova, 2014).

1.2. Modern Gelismeler: DP-SGD, LLM’ler ve Fair-
DP

Son yillarda, diferansiyel mahremiyet alani makine
ogrenimi ve Ozellikle derin 6grenme ile birleserek yeni bir ivme
kazanmistir. DP-SGD (Differentially Private Stochastic Gradient
Descent) algoritmasi, derin sinir aglariin, egitim verisindeki
bireyleri “ezberlemeden” O6grenmesini miimkiin kilan temel
araclardan biri olarak one ¢ikmaktadir (Abadi et al., 2016). Aym
dénemde, biiyiik dil modelleri (LLM’ler) ve diger genel modeller
icin diferansiyel mahremiyetli ince ayar (fine-tuning) teknikleri
gelistirilmis; bu sayede, kullanici etkilesimlerinden O6grenen
modeller i¢in yeni gizlilik garantileri tartisilir hale gelmistir. Buna
paralel olarak, DP garantili sentetik veri liretimi alaninda da
onemli gelismeler yasanmis; tablo verileri i¢in diferansiyel
mahremiyetli GAN ve difiizyon tabanli modeller, gizlilik—fayda
dengesini iyilestirme potansiyeliyle 6ne ¢ikmistir (Truda, 2023).
Ote yandan, DP mekanizmalarinin ekledigi giiriiltiiniin, azinlk
gruplar tlizerindeki orantisiz performans kayiplarina yol
acabilecegine dair bulgular, Adil Diferansiyel Mahremiyet (Fair
DP) baglig1 altinda yeni bir arastirma hattinin dogmasina neden
olmustur (Hansen & Segaard, 2024).

Bu zengin literatiire karsin, uygulamada karsilagilan en
temel sorulardan biri hala agik sekilde yanitlanmamustir. Belirli
bir analiz gorevi i¢in & nasil se¢ilmelidir ve bu se¢im hata
metrikleri Uzerinde nicel olarak ne anlama gelir? Mevcut
calismalarin  6nemli bir kismu ya karmasik Ogrenme
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algoritmalarina (6rn. DP-SGD ile derin 6grenme) ya da gelismis
genel modellere odaklanmakta; buna karsin, pratikte ¢ok sik
kullanilan basit sayma sorgulari i¢in bile, farkli ¢ degerlerinin
hataya ve belirsizlige etkisini dogrudan gosteren, erisilebilir ve
ogretici analizler smrli kalmaktadir. Ozellikle veri koruma
birimlerinde ¢alisan uygulayicilar icin, “e =0.lilee =1
arasindaki fark, ortalama mutlak hata veya kabul edilebilir sonug
ylizdesi agisindan ne ifade ediyor?” sorusuna sayisal ve gorsel
olarak yanit veren araglara ihtiyag¢ vardir.

Bu kitap boliimiin temel amaci, diferansiyel mahremiyetin
teorik cekirdegini olusturan gizlilik—fayda dengesi kavramini,
merkezi DP modelinde kullanilan Laplace Mekanizmasi 6zelinde
analitik ve sayisal bir ¢cer¢eveyle incelemektir. Calismada, sayma
sorgulart igin:

e Laplace mekanizmasinin varyans ve Ortalama Mutlak
Hata (Mean Absolute Error, MAE) acisindan teorik
davranisi tiiretilmekte,

e Genis bir € araliginda (yaklasik 0.03—-10) 5000 tekrarlt
simiilasyonlarla bu teorik sonuglar dogrulanmakta ve
sonuclar, kabul edilebilir sonuc yiizdesi gibi pratik
fayda gostergeleri tlizerinden  gorsellestirilerek,
uygulayicilar i¢in  somut & se¢im rehberleri
onerilmektedir.

2. DIFERANSIYEL MAHREMIYETIN
KURAMSAL TEMELI

Bu boliimde, merkezi diferansiyel mahremiyet (Central
Differential Privacy, CDP) modelinde kullanilan Laplace
Mekanizmasi temel alinmaktadir. CDP modelinde veriler nce
giivenilir bir merkezi sunucuya toplanir; daha sonra
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yayimlanacak istatistiksel sorgularin ¢iktisina rastgele giiriiltii
eklenerek mahremiyet saglanir (Dwork & Roth, 2014).

2.1. Diferansiyel Mahremiyet Tanim

Merkezi modelde diferansiyel mahremiyet su sekilde
tanimlanir. D ve D' yalnizca tek bir bireyin kayd: bakimindan
farkli olan iki komsu veri kiimesi olsun, M rastgele bir
mekanizma olmak tizere, her olgiilebilir ¢ikt1 kiimesi S i¢in

P(M(D)eS) <e®-P(M(D')€ES)
esitsizligi  saglaniyorsa, M  mekanizmas1 e-diferansiyel
mahremiyetli (veya saf diferansiyel mahremiyetli) olarak
adlandirilir (Dwork & Roth, 2014). Bu tanim, herhangi bir bireyin
verisinin veri kiimesine eklenmesinin veya ¢ikarilmasinin,

mekanizmanin  ¢iktisim  en  fazla ef

carpani  kadar
degistirebilecegini garanti eder, dolayisiyla gézlemci, tek bir

bireyin katilim1 hakkinda yalnizca sinirl bilgi elde edebilir.
2.2. Global Hassasiyet ve Gizlilik

Diferansiyel mahremiyetli mekanizmalarin tasariminda
temel kavramlardan biri de global hassasiyettir (global
sensitivity). Tek deger dondiiren bir sorgu fonksiyonu f: D™ — R
icin global hassasiyet

S(f) = maxp p|f(D) — f(D")]
seklinde tanimlanir, burada maksimum, tiim komsu veri kiimesi
ciftleri D, D" iizerinde alinir (Dwork, McSherry, Nissim, & Smith,
2006). Sayma sorgulart i¢in tek bir bireyin eklenmesi veya
cikarilmast sonucu en fazla 1 birimlik degisim olacagindan
S(f) =1 elde edilir; bu ¢alisma boyunca sayma sorgulari i¢in
kullanilan temel varsayim budur. Kiiguk & degerleri, komsu veri
kiimeleri i¢in ¢iktilar arasinda ¢ok kiiciik farklara izin vererek
gliclii bir gizlilik garantisi saglar. Buna karsilik giirtiltii miktar1
artar ve analitik fayda azalir. Daha biiyiik € degerleri ise daha
zay1f bir gizlilik garantisi karsiliginda daha yiiksek fayda sunar.
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Dolayisiyla,  diferansiyel =~ mahremiyetli =~ mekanizmalarin
tasariminda & parametresi, gizlilik-fayda dengesini belirleyen
temel "ayar diigmesi" dir.

2.3. Laplace Mekanizmasi

Laplace Mekanizmasi, sayisal ¢iktilar lireten sorgular i¢in
en temel ve yaygin kullanilan diferansiyel mahremiyet
mekanizmalarindan biridir (Dwork et al., 2006). Mekanizmanin
tek boyutlu hali asagidaki gibidir:

M) =f(D)+Y
burada f(D): veri kimesi D Uzerindeki sorgunun gercek
(gurdiltistz) sonucudur ve Y, Laplace dagilimina sahip rastgele
gurdlty terimidir. Guraltd terimi Y~Laplace(0,b), b = S(f)/e,
yani Laplace dagiliminin konum parametresi 0, 6l¢ek parametresi

b = % dir. Sayma sorgulart i¢in S(f) = 1 varsaymm altinda

Olgek b = é olur. Laplace dagiliminin yogunluk fonksiyonu

py(y) = %e("y'”’), yER
seklindedir. Laplace mekanizmasi’nin istatistiksel 6zellikleri, bu
calismada incelenen gizlilik—fayda dengesi agisindan dogrudan
belirleyicidir. Bu durumda diferansiyel mahremiyetli ¢iktt M (D)
icin asagidaki temel moment iliskileri gecerlidir. Eger
Y ~ Laplace(0,b) ise beklenen deger E[Y] = 0 olur.
Dolayisiyla mekanizma yansizdir:

EM(D)] = E[f(D) +Y] = f(D).
Varyans:
Var(Y) = 2b% =2 - (S(f)/¢e)?
bu ifade, ¢ azaldik¢a (daha giiglii gizlilik) eklenen giiriiltiiniin
varyansinin ~ karesel = bigimde  biiyidigini = gosterir.
Ortalama mutlak sapma (MAE agisindan):

E[IYII=b=S5(f)/e
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Buna gore, diferansiyel mahremiyetli ¢ikisin ger¢ek degerden
ortalama mutlak sapmasi

E[IM(D) — fD)IT = EIYI] = S(f)/¢

olur, yani teorik olarak beklenen MAE, 1 / ¢ ile ters orantilidir.

Sayma sorgulari i¢in S(f) = 1 alindiginda, teorik olarak
beklenen MAE ~ 1 /¢ seklinde elde edilir. Bu analitik iliski,
calismanin  dordunct boliminde rapor edilen simulasyon
bulgularinin yorumlanmasinda temel rol oynamaktadir. Ayrica
Laplace Mekanizmasi’nin, yiliksek gizlilik rejiminde (e
kiigiikken) belirli optimalite Ozelliklerine sahip oldugu, yakin
tarihli calismalarda ayrintili bicimde incelenmistir (Geng &
Viswanath, 2016).

3. LAPLACE MEKANIZMASI iCiN GiZLIiLiK-
FAYDA ANALIZI

Laplace Mekanizmasi’nin gizlilik—fayda dengesini nicel
olarak incelemek i¢in simiilasyon tabanli bir analiz tasarimi
benimsenmistir. Amag, farkli gizliligi € degerleri altinda
diferansiyel mahremiyetli sayma sorgularinin istatistiksel
davranmigin1 ~ sistematik bi¢imde gozlemlemektir. Tasarim,
diferansiyel mahremiyet literatiriinde mekanizma duzeyinde
yapilan teorik ve sayisal incelemelerle uyumludur (Dwork et al.,
2006; Dwork & Roth, 2014; Geng & Viswanath, 2016).

Analiz, kurgusal bir “Sehir Saglik Anketi” senaryosu
lizerinden gercgeklestirilmistir. Bu senaryoda toplam niifus
biiyiikliigii N = 20,000 olarak alinmus, ilgilenilen ¢ikt1 ise "X
Hastaligina sahip kisi sayis1" bi¢imindeki bir sayma sorgusu
olarak modellenmistir. Calisma boyunca, gercek (giiriiltiisiiz)
sorgu sonucu sabit bir deger f(D) =750 olarak kabul
edilmektedir.
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Bdylece similasyon, veri dretim surecine dair ek
rastgelelik icermeksizin, Laplace Mekanizmasi’nin giiriiltii
davranisini izole etmeye odaklanmaktadir. Sayma sorgulari igin
global hassasiyet S(f) = 1 olarak alinmistir (Dwork et al., 2006).
Bu varsayim altinda, her bir € > 0 i¢in Laplace guralti terimi

e - ©) ple) =S¥ _ 1
Y Laplace(0, b®),b® === =,

&
dagilimma sahip olacak sekilde iiretilmektedir. Diferansiyel

mahremiyetli sayma sorgusu ¢iktisi ise her bir simulasyon icin

MP =fD)+Y®,  i=12 .., Ny

seklinde tanimlamir, burada N, = 5000 tekrar sayisini, Y (@ ise
dagilimindan bagimsiz ¢ekilen giiriilti Orneklerini ifade
etmektedir. Baslangicta, mekanizmanin sezgisel davranisini
gostermek Uzere ¢ temsilci gizlilik degeri segilmistir. Bu (¢
senaryo, sirastyla “yiiksek gizlilik”, “dengeli yaklasim” ve
“ylksek fayda” durumlarmi temsil etmekte ve Tablo 1’de
gosterilmistir.

Tablo 1. Deney Senaryolar: ve Parametreleri

Deney . 'F-,ap'ace Oleek | Gizlilik / Fayda
Senaryosu & Degeri arametresi Dengesi
(b=15/¢)
Yiksek Yiksek Gizlilik
Gizlilik 0.1 10.0 (Cok Gilrilti)
Dengeli Dengeli Yaklagim
Yaklagim 0.8 1.25 (Orta Gilriiltii)
Yuksek Yiksek Fayda
Fayda 3.0 0.33 (Az Giriiltii)

Her bir & degeri i¢in N, adet giiriiltiilii ¢1ikt1 tizerinden
ornek ortalama, drnek standart sapma, Ortalama Mutlak Hata
(MAE) ve “kabul edilebilir sonug ylzdesi” gibi nicel gostergeler
hesaplanmuistir.
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Ardindan, & parametresinin fayda metrikleri tzerindeki
etkisini daha genis bir aralikta incelemek iizere logaritmik 6lgekli
bir tarama yapilmistir. Bu amagla, ¢, € [0.03,10], k =
1,2, ..., K, seklinde yaklasik logaritmik olarak artan bir € 1zgarasi
tamimlanmus, her bir & icin ayn1 prosedlr yeniden uygulanarak
N, adet giriiltili ¢ikt1 Gretilmistir. Her g igin, MAE (&),
standart sapma (og;) ve gercek degerin belirli bir hata payi
(6rnegin +50) i¢inde kalan sonuglarin goreli sikligina dayali
“kabul edilebilir sonu¢ yiUzdesi” (U,.(¢)) degerleri
hesaplanmaistir.

3.1. Simulasyonlarda Kullamlan Fayda Metrikleri

Laplace mekanizmasinin tirettigi giiriiltiilii sayma sorgusu
ciktilarinin kalitesini degerlendirmek i¢in ii¢ temel istatistiksel
fayda metrigi kullanilmistir:

o Ornek standart sapma,
o Ortalama Mutlak Hata ,
. Kabul edilebilir sonug yuzdesi.

Bu metrikler, diferansiyel mahremiyetli mekanizmalarin
hata davranigini inceleyen literatiirde yaygin bicimde
kullanilmaktadir. Sabit bir € > 0 igin diferansiyel mahremiyetli
sayma sorgusu ¢iktilari

M® = fD)+Y®,i=12,..., Ny, ,
seklinde elde edilir. Burada f(D) gercek (gurltiisiz) sayma
sorgusu sonucunu, Yi(s) ise Laplace dagilimindan ¢ekilen giiriiltii
terimlerini ifade eder.

Ornek Standart Sapma: Once 6rnek ortalama

Nsim

— 1
M(s) _ z Mi(S)
Nsim =1

hesaplanmakta, ardindan buna karsilik gelen 6rnek varyans
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Nsim
A 1 —(e)\ 2
2(6)=—— ) (M® - M
(o) (5) Nsim _ 1 Zl ( i )
=

ve Ornek standart sapma

6(e) = ,ffﬁ(s)

denklemleri ile elde edilmektedir.

Ortalama Mutlak Hata (MAE): Diferansiyel
mahremiyetli ¢iktinin gergek degerden ortalama sapmasini
olgmek icin her bir € degeri altinda MAE metrigi kullanilmustir.
MAE,

Nsim

___ 1
MAE() = —— ) |[M© - £(D)
sim =

seklinde tanimlanir. Laplace mekanizmasi i¢in teorik olarak
denklem~\egref{eq:mae-theoretical} gecerlidir; buna gore
beklenen MAE yaklasik 1/¢ ile ters orantilidir. Bu calismada elde
edilen MAE(g) degerleri, s6z konusu teorik iliskinin genis bir &
araliginda sayisal olarak gozlemlenmesi ve gorsellestirilmesi
amaciyla kullanilmistir.

Kabul Edilebilir Sonu¢ Yuzdesi: Pratik uygulamalarda
analistler cogu zaman belirli bir hata esigi i¢inde kalan sonuglari
“"kabul edilebilir" olarak degerlendirir. Bu sezgiyi yakalamak i¢in
her bir & degeri altinda kabul edilebilir sonu¢ yiizdesi
tanimlanmistir. Onceden belirlenen bir tolerans T > 0 (bu
calismada t = 50) icin, i’inci similasyon sonucunun kabul
edilebilir olup olmadigin1 gosteren gosterge fonksiyonu

1© = {1, eger |Ml.(£) —fD)| <t
' 0, aksi takdirde
bu durumda kabul edilebilir sonug¢ orani
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Nsim

1
Uacc(s) = N § 158)
sim £=

olarak hesaplanmakta; ylizde cinsinden ifade edildiginde

Kabul edilebilir sonug yiizdesi(g) = 100 X U,..(&)
seklinde raporlanmaktadir.

Bu metrik, farkli € degerleri i¢in “gercek degerin *t
araliginda kalan sonuglarin orani"ni1 dogrudan gosterdiginden,
veri koruma uzmanlarinin ve analistlerin c¢esitli  gizlilik
seviyelerinde ne Olclide analitik dogruluk elde edebileceklerini
pratik olarak yorumlamalarina imkéan vermektedir.

4. BULGULAR

Laplace mekanizmasiin davramigini  sezgisel olarak
ortaya koymak amaciyla segilen ti¢ temsilci gizliligi olan € €
{0.1,0.8,3.0} icin N, = 5000 adet gurultili sorgu sonucu
tiretilmis, bu sonuclar tzerinden 6rnek ortalama, 6rnek standart
sapma ve Ol¢ek parametresi hesaplanmistir. Elde edilen 6zet
istatistikler Tablo 2’de sunulmaktadir.

Tablo 2. Farkh € Degerleri icin Simiilasyon Sonuclarimin Ozeti

Standart Laplace

Epsilon | Ortalama s Olgek Gizlilik/Fayda

apma . .
(e) Sonug (o) Parametresi Dengesi

(b =S/¢)
0.1 749.94 13.72 10.00 Yiksek Gizlilik
Dengeli

0.8 749.97 1.78 1.25 Yaklagim
3.0 750.02 0.50 0.33 Yiksek Fayda

Tablo 2'deki bulgular, € ile o arasinda giiglii bir ters oranti
oldugunu gostermektedir. & = 0.1 senaryosunda ¢ = 13.72
iken, & =3.0 senaryosunda o degeri 0.50'ye diismiistiir.
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Ortalama sonuglarin ise tiim senaryolarda ger¢ek degere (750)
cok yakin oldugu goézlemlenmistir, bu da Laplace
Mekanizmasi'nin yansizligia iliskin teorik sonucun sayisal
olarak dogrulandigin1 géstermektedir.

Ornek standart sapma degerleri, beklenen teorik
davranisla uyumludur. Kiiciik & degerinde (yiiksek gizlilik),
gliriltiiniin varyans1 belirgin bi¢cimde bliytimekte; biiyiikk &
degerinde (yiiksek fayda) ise varyans hizla azalmaktadir. Bu
azalma hizi, Laplace dagilimi i¢in teorik olarak elde edilen

Var (MO (D)) =2(b®@)",  p© =1,

iliskisiyle tutarli olacak sekilde, yaklastk 1/£? 6lgeginde
g6zlenmektedir.

MAE degerleri, ¢ arttik¢a beklenildigi gibi azalmaktadir.
Ozellikle yuksek gizlilikte (¢ = 0.1) MAE, orta ve yliksek fayda
senaryolarina kiyasla birkag¢ kat daha biiyiik iken, € = 3.0 i¢in
MAE, gercek sayma degeri d6lgegine gore oldukca kiiciik bir
seviyeye inmektedir. Bu bulgu, teorik olarak beklenen
E|M® (D) — f(D)| = 1/¢
davranisinin pratik bir dogrulamasi niteligindedir.

Kabul edilebilir sonug yiizdesi (6rnegin, |Mi(£) - 750| <

50 kosulunu saglayan sonuclarin orani), € biiylidiikkge hizla
artmaktadir. Yiiksek gizlilikte bu oran belirgin sekilde daha diisiik
iken, dengeli yaklagim ve yiiksek fayda senaryolarinda sonuglarin
bliyiik bir kismi istenen hata pay1 icerisinde kalmaktadir.

Bu temel senaryolar, Laplace Mekanizmasi i¢in ¢
parametresinin dogrudan "ayar diigmesi" olarak islev gordiigiinii,
gizlilik lehine yapilan segimlerin (kiiciik &) varyans ve hata
maliyetini 6nemli Ol¢lide artirdigini, buna karsin daha biiyiik &
degerlerinin analitik fayday:r hizli bigimde iyilestirdigini nicel
olarak gostermektedir.
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Tablo 3. Farkh & degerleri icin giiriiltiilii sayma sorgusu sonuclari

£ b MAE g Uy (e)
0.031623 | 31.623 31.303 44.3 80.56
0.057362 | 17.433 17.014 23.88 95
0.10405 | 9.6108 9.7444 13.711 99.58
3.0392 | 0.32903 0.2298 0.50302 100
10 0.1 0.005 0.070715 100

Sekil 1. (Solda) £’ye karst MAE egrisi (logaritmik eksen); (sagda)
&’ye karsi kabul edilebilir sonuc yiizdesi

Sekil 1 ve Tablo 3, MAE’nin ¢ arttikga hizla azaldigini
gostermektedir. Ozellikle &< 1 araliginda &’deki Kkiiguk
artislarin MAE’yi ¢ok belirgin 6l¢iide diisiirdiigii gozlenmistir.
Bu hizli azalma, teorik olarak beklenen MAE =~ 1/¢ iliskisiyle
uyumludur ve logaritmik Olgekte neredeyse dogrusal bir yapi
sergilemektedir. Buna karsilik, € belirli bir esik degerini (6rnegin
¢ = 3) astiktan sonra MAE’deki marjinal iyilesmeler giderek
kiigiilmekte; egri, yiiksek fayda bolgesinde doyuma yaklasan bir
profil gcizmektedir.

Kabul edilebilir sonug yiizdesi a¢isindan bakildiginda, €
ile birlikte monoton ve hizli bir artis gézlenmektedir. Diistik &
araliginda U,..(e) gorece sinirhi kalirken, €’nin orta degerlere
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(yaklasik 0.5 — 1.0 aralig1) yiikselmesiyle bu oranlarda keskin bir
artis gerceklesmektedir. Daha yiiksek € degerlerinde ise kabul
edilebilir sonug yuzdesi neredeyse %100 seviyesine yaklagmakta
ve ilave gizlilikten feragat etmenin fayda artis1 agisindan anlaml
bir katki saglamadig goriilmektedir.

Sekil 2°de sirasiyla e = 0.1, e = 0.8 ve ¢ = 3.0 iginelde
. () o .. o . -
edilen M;™ degerlerinin dagilimi, histogramlar araciligiyla
gorsellestirilmistir. 750 merkezi etrafinda olusan giiriiltiilii sorgu
sonuglarinin dagilimlar1 yan yana gosterilmektedir.

« = 0.1 Senaryosu ((hcek b = 10.00) = o= 0.8 Senaryosu (Ohgek b = 1.25) = « ® 3.0 Senaryoss (Clcek b = .53

Sekil 2. Farkh gizlilik icin diferansiyel mahremiyetli sayma
sorgusu sonuclarinin histogramlari

Sekil 2 ’de su ozellikler agik bi¢imde goriilmektedir:
Yuksek gizlilikte (¢ = 0.1), dagilim genis ve gorece diiz bir
yaptya sahiptir. Bu durumda, giiriiltii terimi Y ® biytik bir 8lgek
parametresiyle {iretildiginden, sayma sonuclar1 750 etrafinda
oldukca yaygin bir aralikta dagilmakta, hatta belirli bir oranda ug
degerler (6rnegin 700’in alt1 veya 800’ln {istii) ortaya
cikmaktadir. Dengeli yaklasim olarak secilen &= 0.8
senaryosunda dagilim, yiiksek gizlilik senaryosuna kiyasla daha
dar bir bantta yogunlasmakta ve gercek deger etrafindaki
oynaklik belirgin bigimde azalmaktadir. Ylksek faydada ise (e =
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3.0), histogram keskin bir zirve seklini almakta; sonuglar biiyiik
Olctide 750’ nin hemen ¢evresinde toplanmakta ve genis kuyruklar
neredeyse tamamen ortadan kalkmaktadir.

5. SONUC

Bu c¢alismada, merkezi diferansiyel mahremiyet
modelinde kullanilan Laplace Mekanizmasi igin gizlilik-fayda
dengesini nicel olarak inceleyen basit fakat agiklayici bir analiz
cercevesi sunulmustur. Cergeve, bir yandan mekanizmanin temel
teorik dzelliklerini (yansizlik, varyans ve ortalama mutlak hata
davranisi) agikca ortaya koymakta, diger yandan da genis bir €
araliginda gerceklestirilen simiilasyonlar araciligiyla bu teorik
sonuglarin pratik yansimalarini goriiniir kilmaktadir.

Bu ¢alisma, sayma sorgular i¢in Laplace Mekanizmasi
baglaminda su tiir bir prattk mesaj sunmaktadir:
Cok kuclk & degerleri, giiclii gizlilik garantileri saglamakla
birlikte analitik a¢idan yiiksek belirsizlik maliyetine sahiptir. Orta
biylklikte & degerleri hem MAE hem de kabul edilebilir sonug
ylzdesi agisindan ¢ofu uygulama i¢in makul bir denge
saglamaktadir. Cok biyUk & degerlerinde ise ek fayda artis1 sinirli
olup, buna karsin gizlilik seviyesi hissedilir Olciide
zayiflamaktadir. Dolayisiyla, € se¢iminin yalnizca normatif veya
politik bir karar degil, ayn1 zamanda nicel olarak analiz edilebilir
bir mithendislik problemi oldugu vurgulanmaktadir.

Sonug olarak, teorik sonuglar ile simiilasyon bulgularini
birlestiren bu ¢ergeve, hem egitim/6gretim amach bir ara¢ olarak
hem de gercek sistemlerde & se¢imine iliskin ilk
degerlendirmelerin yapilabilece§i basit bir baslangic noktasi
olarak kullanilabilir. Daha karmasik mekanizmalar, 6grenme
algoritmalar1 ve adalet odakli senaryolar icin gelistirilecek
genigletmeler, diferansiyel mahremiyetin pratik tasarim
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kararlarini daha seffaf ve hesap verebilir hale getirme potansiyeli
tasimaktadir.
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A MATHEMATICS-DRIVEN HYBRID NEURO-
FUZZY APPROACH FOR PREDICTING
BREAST CANCER RECURRENCE!

Seda GOKTEPE KORPEOGLU?
Seydanur CELIK?3

1. INTRODUCTION

Breast cancer remains one of the leading causes of cancer
mortality worldwide (World Health Organization [WHOY], 2023).
With overall cancer incidence reaching nearly 20 million cases in
2022, breast cancer constitutes a substantial share of the total, and
projections indicate continued growth by 2050 in the absence of
targeted prevention, effective screening, and equitable access to
treatment ([IARC], 2024). Clinically, accurate early diagnosis
and recurrence risk stratification are crucial for guiding therapy—
such as adjuvant chemotherapy and radiotherapy—while
balancing the risks of overtreatment against undertreatment
(Asselain et al.,2018). However, decision-making is complicated
by heterogeneous, noisy, and sometimes incomplete clinical data.
Prognostic factors such as tumor size, nodal status, degree of
malignancy, and irradiation history often interact in nonlinear
ways, and recurrence datasets typically suffer from class
imbalance (Wishart et al., 2012). Classical statistical approaches
are frequently insufficient to capture such nonlinearities and

L Some of this study's results were obtained with the support of TUBITAK 2209-A—
University Students Research Projects Support Programme.
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3 Student, Yildiz Techical University, Chemical and Metalurgical Engineering,
Mathematical Engineering, ORCID: 0009-0008-0865-219X.
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uncertain boundaries among predictors (Alizadehsani et al.,
2020).

Breast cancer prediction has become a prominent research
area in medical data science, aiming to improve early diagnosis
and recurrence risk assessment. Traditional statistical approaches
often struggle to handle high-dimensional, imbalanced, and
uncertain medical data (Rashed & Popescu, 2024; Gorgel et al.,
2013).

From a mathematical and computational perspective,
modeling complex and uncertain data structures is a fundamental
challenge. Medical datasets, particularly those involving class
imbalance and noise, exemplify this problem. In this context,
Adaptive Neuro-Fuzzy Inference Systems (ANFIS)—which
combine fuzzy logic with artificial neural networks—stand out
for their capacity to represent nonlinear relationships through an
interpretable rule base. Yet ANFIS is not without limitations; its
most significant drawback is the rule explosion problem. As the
number of input variables and membership functions increases,
the rule base grows exponentially, leading to excessive
computational cost and reduced generalizability. Thus,
controlling model complexity is essential for the practical
adoption of ANFIS in healthcare applications (Huang et al.,
2012).

Among neuro-fuzzy techniques, ANFIS, introduced by
Jang (1993), integrates the learning capability of neural networks
with the transparency of fuzzy inference. ANFIS learns
membership function parameters and rule consequents from data
while retaining interpretable rule-based reasoning, a desirable
property in clinical contexts where explainability complements
accuracy (Huang et al., 2012; Jain & Abraham, 2004). A growing
body of evidence supports neuro-fuzzy and hybrid approaches for
cancer-related classification tasks, including breast cancer
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diagnosis and recurrence prediction. Recent studies report that
ANFIS and its hybrids can achieve competitive performance
when paired with effective feature selection and
membership-function tuning, and can complement tree-based or
deep models by providing interpretable decision rules (Haznedar
et al., 2021). However, the predictive performance of ANFIS is
highly sensitive to the choice and parameterization of
membership functions (e.g., triangular, Gaussian, differential
sigmoidal) and the resulting rule base.

2. METHODOLOGY
2.1. Dataset

The Breast Cancer dataset obtained from the UCI
Machine Learning Repository forms the foundation of this study.
It includes 286 instances described by 10 clinical and
demographic attributes (Zwitter & Soklic, 1988). These variables
consist of both categorical (e.g., age groups, menopausal status,
tumor location) and binary features (e.g., node-caps, irradiate).
The diversity of variable types underscores the need for
systematic preprocessing before applying hybrid neuro-fuzzy
modeling techniques. Table 1 summarizes the dataset variables.

Table 1. Variables of Breast Cancer Dataset.

Variable Role Type Description / Range
Class Target  Binary Class label: no-recurrence, recurrence
Age Feature Categorical Age groups: 10-19, 20-29, ..., 90-99

Inv-nodes Feature Categorical
Tumor-size  Feature Categorical 0-4, 5-9, 10-14, ..., 55-59
Menopause  Feature Categorical 1t40, ge40, premeno

Node-caps  Feature Binary yes, no

Deg-malig Feature Integer Degree of malignancy: 1, 2, 3

Breast Feature Binary left, right

Breast-quad Feature Categorical left-up, left-low, right-up, right-low,
central

Irradiate Feature Binary yes, no
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2.2. Dataset Preprocessing

Preprocessing constitutes a vital stage to transform
heterogeneous raw data into an analyzable structure. The steps
conducted include handling missing data, transforming
categorical variables into numerical representations, scaling
features to a common range, and performing feature selection.
These procedures mitigate the risks of bias, overfitting, and
computational inefficiency.

2.2.1.Missing Data Analysis

The dataset contained only nine missing entries,
distributed across two features (‘node-caps' and 'breast-quad’).
Considering the low proportion of missing values, mode
imputation was applied. This choice preserved the integrity of
categorical variables without introducing additional complexity.
After imputation, the dataset was complete and ready for further
analysis.

There are missing values in a total of 2 columns in the
dataset. Below are the columns with missing data: Node-caps: 8
missing values, Breast-quad: 1 missing value.

2.2.2.Data Transformation

Since most machine learning models, including ANFIS,
operate exclusively on numerical input, categorical variables
were transformed accordingly. Label encoding was applied to
variables with ordinal characteristics, while one-hot encoding
was employed for nominal categories such as 'breast-quad'.
Ordered variables, such as age ranges and tumor size intervals,
were converted into continuous numeric representations by
calculating their mean values. This ensured that medical
information embedded in categorical formats was preserved in a
computationally tractable manner.
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The data in the dataset were analyzed and the following
strategies were applied for numerical transformation:

» Columns with label encoding applied: Menopause,
Node-caps, Breast, Irradiate.

e Column with one-hot encoding applied: Breast-quad.

* Columns converted to numeric format by calculating
the range mean of each categorical value: Age,
Tumor-size, Inv-nodes.

2.2.3.Feature Scaling

Feature scaling was conducted to ensure that attributes
with different ranges contributed equally to the learning process.
Min-max normalization mapped all numeric features into the
[0,1] interval, thereby standardizing the input space. This
procedure prevented the dominance of variables with larger
ranges, which could otherwise bias the training process.

In a dataset, some features may have a wide range of
values while others may have a narrower range. For example,
“tumor-size” has 12 categories in the range 0-60, while “deg-
malig” in the range 1-3. In this case, the model cannot give equal
weight to the features. This causes the model to learn unbalanced.
It either overfit these features or ignores them. Normalization
brings all features into the same range. It prevents this imbalance
by equally weighting features. All numerical features are
normalized to the interval [0, 1] with min-max normalization.
This means that 0 is the lowest value and 1 is the highest value.

2.2.4.Feature Selection

Feature selection is defined as selecting the features that
best represent the dataset. The aim is to reduce the number of
inputs by determining the most useful and most important
features for the problem. By evaluating the features, the best k
features are selected from the n features in the dataset according
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to the algorithms used. In this way, the training time of the model
is decreased, and the generalization ability is increased (Guyon &
Elisseeff, 2003).

In this study, the main reason for feature selection is to
control the number of input variables used in the ANFIS model.
ANFIS creates rules for each input variable and membership
value. The number of rules changes depending on the number of
input variables and membership values. In the data set, the
number of input variables is 12:

e If the membership value is 3: 312 = 531.441, rules are
generated.

e If the membership value is 5: 512 = 244.140.625, rules
are generated.

Through feature selection, only meaningful and effective features
are identified, and the model runs more efficiently. In this study,
different feature selection methods were used:

Correlation Analysis: Pearson correlation coefficient was used to
measure the linear relationship between features. The correlation
matrix is given in Figure 1.

SelectKBest (Chi-Square Test): Chi-square test was applied to
measure the effect of each feature on the target variable.

Random Forest Importance Score: It ranked the importance of
features based on the voting of decision trees.

RFE (Recursive Feature Elimination): The Recursive feature
elimination method was applied with Decision Tree. This method
identifies the optimal sub-features by removing the least effective
feature at each step.

Comparative results of the methods are given in Table 2.
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Class
age - 0. - 0.8
menopause - O
- 0.6
twumor-size -
inv-nodes - .
node-caps -
deg-malig -
breast - - 0.0
imadiat - 0.
breast-quad_left_low -

breast-quad_left_up - 0.

breast-guad_right_low - 0.

breast-quad_right_uip -

menopause - ¢
tumorsize - |
inv-nodes -
node-caps -
deg-malig

breast-quad_left_up -
breast-quad_nght_up -

breast-quad_left_low -
breast-quad_right_low -

Figure 1. Correlation matrix.

Table 2. Feature selection.

Correlation SelectKBest Random Forest RFE
deg-malig X N4 N4
node-caps N4 v X
inv-nodes N4 N4 X
tumor-size X v N4
irradiat v v X
age X v v
breast X v X
menopause X v X
breast-quad_right_up X X X
breast-quad_left_low X X X
breast-quad_left_up X X X
breast-quad_right_low X X X

According to the results of these methods, the features that
have a meaningful relationship with the target variable were
selected by majority voting: deg-malig (degree of malignancy),
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node-caps, inv-nodes (number of involved lymph nodes), tumor-
size, and irradiate.

These attributes formed the input space for all ANFIS
configurations evaluated in this study.

3. PROPOSED MODEL DEVELOPMENTS AND
TECHNIQUES

3.1. Fuzzy Logic

Fuzzy logic is a modeling approach that seeks to replicate
two core human faculties—reasoning and the capacity to perform
various cognitive tasks—by mechanizing them (Zadeh, 1965). In
this framework, rather than strictly relying on numerical values,
linguistic terms are employed for modeling. Essentially, fuzzy
modeling functions as a rule-based methodology, often referred
to as a fuzzy inference system (FIS). As illustrated in Figure 1, a
typical fuzzy logic system is composed of four main components.
When constructing a fuzzy rule-based model, several key steps
are involved:

Identification of Variables: Determine the input and
output variables.

Definition of Fuzzy Sets: Specify the fuzzy sets for each
variable.

Creation of Membership Functions: Develop membership
functions for all fuzzy inputs and outputs.

Formulation of Fuzzy IF-THEN Rules: Establish the rules
that relate input variables to output variables.

Specification of the Inference Process: Choose between
common FIS types—primarily Sugeno or Mamdani (Takagi &
Sugeno, 1985). These differ in certain respects: Sugeno produces
linear or constant outputs and typically relies on training with a
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data set, whereas Mamdani generates outputs expressed as
membership functions (e.g., triangular or trapezoidal) and draws
on expert knowledge. In this study, a Mamdani-type fuzzy
inference system is selected to benefit from domain expertise.
Under the Mamdani framework, input variables are first fuzzified
according to relevant membership functions. Subsequently, fuzzy
operators such as “AND” or “OR” combine these inputs to form
a single value, and the weight of each rule is determined before
applying the rule’s implication. All rules are then aggregated—
methods for this include max (maximum), probor (probabilistic
OR), or sum. The aggregated fuzzy output ultimately requires
defuzzification (Mamdani & Assilian, 1975).

Defuzzification: Convert the aggregated fuzzy result into
a crisp output.

By following these steps, a robust fuzzy logic system can
be developed that mimics human-like reasoning processes and
handles linguistic information effectively.

3.2. Adaptive neuro-fuzzy inference systems (ANFIS)

The term "neuro-fuzzy" introduces the hybrid
methodology that combines artificial neural networks (ANN) and
fuzzy logic (FL). It was first presented by Jang in the beginning
of the 1990s (Jang, 1993). It demonstrates ANN learning
capabilities with FL decision-making skills and adjusts its
parameters according on inputs. Mamdani and Takagi-Sugeno are
the two types of fuzzy inference systems (FIS) (Mamdani &
Assilian, 1975; Takagi & Sugeno, 1985). Similar to the structure
of an ANN, the ANFIS architecture is made up of nodes grouped
in layers with specific functions. Additionally, the membership
functions MF use IF-THEN fuzzy rules to determine the
connections between the premise and consequences, which are
the primary components of ANFIS. Figure 2 illustrates the five
layers that make up the ANFIS structure.
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Layer1l Layer2 Layer3 Layer4  Layer5

f
C : Output

Figure 2. ANFIS Structure (Jang, 1993).

We assume the following two fuzzy if-then rules to explain the
rules of each layer:

Rule 1: if x is A; and y is By then f; = pyx + q1y + 14, Q)
Rule 2: if x is A, and y is B, then f, = p,x + q,y + 1, 2

where f is the output (linguistic variables), x and y are the input
variables, and A; and B; are fuzzy sets. The following parameters
should be measured during the ANFIS training process:
{pi, qi,1;}. Each layer's function can be quantified as follows
(Jang, 1993):

Layer 1 (Fuzzification): A membership function defines each
node, i, in this layer. Membership functions are used in fuzzy
logic to make the variables fuzzy. These membership functions
are curves that specify the mapping from a point in the input space
to a membership value in the [0,1] interval.

01,i = O'Al.(x), fori = 1,2,..,n (3)

01 = OB;_,(y) fori =34,..,n 4)
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O3; =@, = fori =1,2. (6)

(1)1+(A)2
where n is the number of fuzzy sets for each input variable, and
O,x) aNd o5, _, (5, are membership functions.

Layer 2 (Product Layer): This layer, also referred to as the firing
strength of a rule, receives input values from the first layer and
outputs the following:

02,i = W; = 04;(x)9B;(y): fori =1,2. (5)

Layer 3 (Normalized Layer): Layer 3's output is calculated as
follows:

w, is arule's normalized firing strength.

Layer 4 (Defuzzification): The following formula is used to
determine Layer 4's output:

04; = o, f; = w0,(pix + q;y +1;), fori = 1,2. (7)

Layer 5 (Output Layer): The arrival signals are added up to form
the output model.

Os; = overall output = Y, o, f; = Zl ‘f‘ ,fori =1,2. 8

The parameters of the adaptive neural fuzzy inference system are
trained to minimize the error term between the predicted and
actual output. The process is as follows: the least square estimator
updates the consequent parameters (r;, gq; and p;) during the
forward pass, while gradient descent and neural network trains
update the premise parameters (in the membership functions)
during the backward phase.
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4. MODELING RESULTS

The input data must be normalized before being used in
the models because the independent variables were collected in
various units. In order to improve learning speed and model
stability, data normalization results in dimensionless input data
that stays between 0 and +1.

4.1. ANFIS Configuration

In this study, ANFIS model is applied using deg-malig,
node-caps, inv-nodes, tumor-size, and irradiate features. ANFIS
is a hybrid model that combines both the flexibility of fuzzy logic
and the learning ability of artificial neural networks. Using a
given input/output dataset, the ANFIS toolbox creates a fuzzy
inference system (FIS) that is tuned by combining the
membership function parameters with a back-propagation
algorithm or a method such as least squares. This regularization
makes it possible for fuzzy systems to learn from the data they are
modeling.

i Untitled3
i e filu)
- (sugeno)
-
-

Figure 3. Structure of the fuzzy rule-based model.
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Figure 4. ANFIS structure with five inputs and two membership
rules.

ANFIS is formed by the combination of points in layers
as shown in Fig. 3 and Fig. 4. The first layer contains the inputs,
and the last layer contains the output.

In order to use the Fuzzy and ANFIS model, the number
and type of MFs as well as the number of iterations (epoch
number) must be set. The first step in modeling is the creation of
pattern vectors; the second step is pattern development using an
input condition vector and matching target vector. It is impossible
to overlook the input and output data range when adjusting
different operating range settings. The ANFIS may be effectively
taught by scaling or normalizing without degrading the outcomes.
One of the major difficulties in modeling nonlinear systems is
choosing the input parameter for learning, which is crucial for
ANFIS. As a result, the processed data needs to be divided into
train and test datasets. The dataset is split into 70% training and
30% testing. This ratio is a standard approach to evaluate the
generalization performance of the model. In the initial stage of
the training, as shown in Figure 3, the Sugeno type fuzzy model
was used, and the input variables were determined. For the
training process, the epoch value was set to 1000 and the error
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value to 0. The error value of the model was monitored and
stopped manually after it stopped decreasing for a while.

There are no precise techniques or procedures to forecast
the required MFs number, as the literature states (Wang &
Mendel, 1992). The ANFIS model uses commonly used
membership functions to transform the input data into fuzzy
logic. These are dsigmf (differential sigmoid membership
function) and trimf (triangular membership function) with
configurations 22222 and 33333, and gausmf (Gaussian
membership function) with configurations 33333. The meaning
of 33333 is that 3 membership functions are used for each input.
Likewise, 22222 means 2 membership functions are used for each
input.

4.2. Findings

Two ANFIS structures were systematically compared to
explore the trade-off between complexity and performance:

22222 Configuration — each of the five inputs represented by two
membership functions (MFs), yielding

R(x) = 2% = 32 rules

This structure represents a lightweight system with
reduced computational burden and enhanced interpretability.

33333 Configuration — each input represented by three
MFs, yielding

R(x) = 3% = 243 rules

This structure provides higher modeling flexibility but
introduces substantial rule growth.

Three MF types—Gaussian (gausmf), triangular (trimf),
and difference of sigmoids (dsigmf)—were examined for both
configurations. The number of premise parameters p, is defined
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by each MF type. For instance, for p, = 2 Gaussian, which has an
immediate impact on the overall number of parameters:

d 9)
P(x) = zmi.pt +(d+1).R(x)
i=1

Configurations 33333 and 22222 are compared in terms
of the metrics mentioned. For a better understanding of the
performance differences, both configurations are analyzed
separately.

In this study, the ANFIS model is tested with different
membership functions and configurations, focusing on
classification performance. The performance of the model was
evaluated with accuracy, precision, recall, F1 score and Area
Under the ROC Curve (AUC) values.

The results produced by ANFIS are categorized with a
cut-off value of 0.5. Those below this value are categorized as “0”
and those above this value are categorized as “1”. In this way, the
success rate of the system could be calculated.

The model was tested on the “No Recurrence” and
“Recurrence” classes. Table 3 presents the results of the different
membership functions and configurations:

Table 3. Classification metrics for recurrence class.

Number Typeof  Accuracy Precision Recall F1 AUC
of MF MFE Score

33333 dsignmf 81 0.83 0.46  0.59 0.7095
22222 dsignmf 80 0.85 0.4 0.54 0.6851
33333 trimf 81 0.83 0.46  0.59 0.7095
22222 trimf 80 0.81 041 055 0.6860
33333 gausmf 81 0.83 046  0.59 0.7095

Accuracy rates for all models were similar. Accuracy rates
between 80% and 81% were obtained with both dsigmf, trimf
and gausmf membership functions. Although the 33333-
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configuration increased complexity by generating more rules, it
did not provide a significant advantage in terms of accuracy. This
shows that similar accuracy rates can be obtained with fewer
membership functions (22222).

AUC is an important metric that shows the overall
discriminative capacity of the models. With both membership
functions, the highest AUC value of 0.7095 was obtained in
configuration 33333. However, with the 22222-configuration, the
AUC value decreased to around 0.685. This shows that when
fewer membership functions are used, the discriminative ability
of the model decreases.

The 33333-configuration performed slightly better than
the other configuration with an F1 score of 0.59. This is due to
the balanced values of both precision and recall. The trimf 22222-
configuration provides a slightly greater value (0.41) for recall
but performs lower in terms of precision and F1 score. In general,
configuration 33333 with more membership functions was more
effective in increasing the correct prediction rate. The low recall
rates (in the range of 40-46%) suggest that the model needs
further optimization to increase its capacity to make accurate
predictions in this class. This could be improved with a more
balanced data set or different modeling techniques.

The membership functions dsigmf and trimf gave similar
accuracy and AUC results with different configurations. From
this situation, it can be concluded that the choice of the
membership function does not have a major impact on the overall
performance of the model. The gausmf membership function was
only tested with the 33333 configuration and provided the same
results as dsigmf. This suggests that more complex membership
functions do not always give better performance.
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5. DISCUSSION

In this study, using the UCI Breast Cancer dataset, the
ANFIS model was developed, and its performance was evaluated
in detail. The dataset was applied to data preprocessing to be
suitable for the model. Since the model gives memory error when
it is tried to be evaluated with more inputs, the number of inputs
was decreased. For this purpose, various feature selection
methods were used and inputs were selected by majority voting.

The performance of the ANFIS model was evaluated with
different membership functions (dsigmf, trimf, gausmf) and
different configurations (33333 and 22222). The model is
analyzed with classification metrics. The dsigmf 33333 model
stood out with an accuracy of 81% and an AUC value. However,
it was shown that the sensitivity (recall) was low in the
“Recurrence” class. It brought a new perspective to the literature
by analyzing the effects of different membership functions and
configurations on model performance. The imbalance of the
dataset was a factor affecting the performance of the
“Recurrence” class in specific. Only specific membership
functions and configurations were tested in the study.

More comprehensive testing could be applied. Different
results can be obtained by applying methods to improve the
balance of the dataset. Different fuzzy logic methods or hybrid
approaches (e.g. a combination of ANFIS and optimization
algorithms) could be tested. The generalizability of the model can
be studied with larger and different data sets. The ANFIS model
has important potential in breast cancer prediction. The results
show that model performance is directly affected by the choice
and configuration of the membership function. The results of this
study have both helped in the development of breast cancer
prediction models and showed the applicability of the ANFIS
method in the health field.
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THE ENDOMOPRHISM GREEN FUNCTOR IN
MACKEY FUNCTOR THEORY!

Mehmet UC?

1. INTRODUCTION

The theory of Mackey functors, originally developed to
unify the phenomena of induction, restriction, and conjugation in
representation theory and algebraic topology, has evolved into a
powerful categorical framework for examining how group actions
behave in algebraic structures (Thévenaz & Webb, 1995; Uc,
2008). While classical representation theory examines these
phenomena at the level of modules on a group algebra, Mackey
functors broaden the perspective, organizing information that
extends to all subgroups of a finite group. In this context, transfer
maps, restriction morphisms, and conjugation actions coexist
within a coherent system governed by the Mackey axiom. This
categorical structure allows for the establishment of
decomposition theorems, analysis of some correspondences, and
structural invariants that are not accessible solely through module
theory.

One of the most influential ideas in classical modular
representation theory is Green correspondence, introduced by J.
A. Green in the 1960s (Green, 1964). Green correspondence
relates indecomposable kG-modules to their counterparts on
appropriate subgroups; it identifies the vertex and source
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structures of these modules and sheds light on the study of blocks
and defect groups (Alperin, 1982; Green, 1964). The strength of
this approach lies in its ability to make representation problems
that seem difficult across the whole group more understandable
by reducing them to manageable subgroups. Over the last few
decades, significant work has been done to extend this approach
to broader contexts, such as biset functors, Mackey functors,
cohomological functors, and other equivariant algebraic
structures.

In this respect, Sasaki's contribution is a turning point
(Sasaki, 1982). Sasaki named Mackey functors with additional
structural compatibility conditions G-functors and established a
Green correspondence for these structures. This generalization
relies on the use of the endomorphism Green functor defined for
a Mackey functor. While the classical Green correspondence
works with modules (Alperin, 1982; Green, 1964), Sasaki's
approach uses an internal hom-functor that captures the
endomorphisms of a Mackey functor across all subgroups of a
finite group (Sasaki, 1982; Thévenaz & Webb, 1995; Uc, 2008).
The resulting structure is not merely a collection of
endomorphism rings but a Green functor, that is a ring-valued
Mackey functor that satisfies a Frobenius reciprocity condition
generalizing the algebraic behavior of induction and restriction.
This functorial perspective shows that the vertices and
correspondents of a Mackey functor can be understood through
primitive idempotents of its endomorphism Green functor.

Despite its fundamental importance, the endomorphism
Green functor (Sasaki, 1982; Uc, 2008) has not been discussed in
sufficient detail in the literature. Most sources merely introduce
this structure, leaving the verification of the axioms to the reader,
or summarize the process without going into detail. Therefore,
critical points such as how the interaction between transfer and
restriction occurs in their internal hom-objects, or how Frobenius
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reciprocity is fully validated at the functorial level, have not been
clearly and systematically set forth. However, these details are of
great importance: establishing Green correspondence for Mackey
functors depends on proving that the endomorphism construction
actually yields a Green functor and that this functorial behaves
consistently under induction and restriction.

The aim of this chapter is to present a comprehensive and
explicit examination of the endomorphism Green functor
associated with a Mackey functor (Sasaki, 1982; Uc, 2008). Our
goal is twofold. First, we verify in a complete and detailed manner
that the endomorphism structure satisfies all the axioms of a
Green functor, including the Frobenius axioms and the Mackey
axiom expressed at the level of morphism families. Unlike
previous works, we make the subtle interaction between the
Mackey structure and the algebraic structure of the
endomorphism rings transparent by carefully considering each
step (Uc, 2008). In this respect, we believe that we offer a
comprehensive and systematic verification available in the
literature.

Secondly, we highlight the conceptual role of the
endomorphism Green functor in the context of Green
correspondence (Sasaki, 1982; Uc, 2008). Specifically, the
endomorphism Green functor is a categorical replacement for the
endomorphism rings seen in classical representation theory.
When examining a Mackey functor M, the concept of a vertex can
be reduced to the vertex of the related endomorphism, the Green
functor; similarly, Green counterparts are obtained by observing
the behavior of primitive idempotents under restriction. Thus, the
correspondence for Mackey functors becomes a functorial
counterpart to Green's classical correspondence. This perspective
unifies different approaches within a single framework and
reveals the structural importance of internal endomorphisms in
equivariant algebra.
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The importance of the endomorphism Green functor
extends beyond Green correspondence. Green's functors are
fundamental algebraic objects in many areas, including biset
functor theory, Burnside rings, and representation theory-based
Mackey categories. Therefore, the internal structure of
endomorphism Green functor is an important tool in studying
decomposition phenomena, projectivity, defect groups, and other
structural properties. For instance, identifying a Mackey functor's
vertex through its endomorphism Green functor allows the
transfer of many classical tools, e.g., relative projectivity and
source modules, into the domain of functor categories.
Furthermore, understanding how conjugation interacts with
endomorphisms is critical to determining whether a Mackey
functor is irreducible or whether two functors belong to the same
Green correspondence class (Sasaki, 1982; Thévenaz & Webb,
1995; Uc, 2008).

This chapter is structured to increase accessibility while
maintaining full mathematical rigor. First, we give the definition
of the Green functor. Next, we give the definition of the
endomorphism Green functor for a Mackey functor M and
explicitly specifying the restriction, transfer, and conjugation
maps on each component Endy(M). We then demonstrate that
these maps satisfy the Mackey axiom, using a careful analysis of
double coset decompositions and the functorial behavior of
morphisms. We also verify the Frobenius axiom highlighting how
compatibility between transfer and restriction manifests at the
level of internal hom-objects. Finally, we discuss the significance
of these results.

The aim of this review is not only to formalize the
structure of the endomorphism Green functor, but also to
highlight how concepts from classical representation theory are
transferred to functor categories. By offering a unified conceptual
framework, this chapter positions the endomorphism Green
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functor as a fundamental tool in Mackey functor theory, biset
functors, and equivariant algebra.

2. THEORETICAL BACKGROUND

The study of the endomorphism Green functor (Sasaki,
1982; Uc, 2008) lies within a broader hierarchy of functorial
structures designed to encode restriction, induction, and
conjugation phenomena along a subgroup lattice of a finite group.
To contextualize the results presented in this section, it is
important to explicitly define the relationship between four
fundamental concepts: Mackey functors (Thévenaz & Wehb,
1995; Uc, 2008), G-functors (Sasaki, 1982), Green functors (Bouc
et al.,, 1997; Thévenaz & Webb, 1995; Uc, 2008), and the
endomorphism Green functor of a Mackey functor (Sasaki, 1982;
Uc, 2008).

For a finite group G, the Mackey functor is a pair of
covariant and contravariant functors that define transfer and
restriction maps among the subgroups of G. These maps satisfy
the Mackey axiom, which describes the linearity conditions and
the interaction between induction and restriction via double coset
decompositions (Thévenaz & Webb, 1995; Uc, 2008). Mackey
functor generalizes many classical structures such as fixed-point
functors, cohomology functors, and Burnside rings, offering a
unifying framework for equivariant algebraic structures.

In Sasaki's definition (Sasaki, 1982), a G-functor is a
Mackey functor equipped with an additional family of
conjugation maps that satisfy the appropriate consistency
conditions. This additional structure allows the functor to respond
naturally to the conjugation effect of G. Every Green functor is a
G-functor, but not every G-functor carries the richer algebraic
properties required of a Green functor.
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A Green functor is a ring-valued G-functor such that for
each subgroup H < G, the value A(H) is a unital associative
algebra, and the restriction and conjugation maps are algebra
homomorphisms. Furthermore, Green functors satisfy the
Frobenius reciprocity axioms, which generalize the compatibility
between induction and restriction in modular representation
theory. These axioms guarantee that transfer images form two-
sided ideals and that the induction is compatible with the
algebraic structure (Bouc et al., 1997).

Within this hierarchy, the endomorphism Green functor
occupies a special position. Given a Mackey functor M, the
collection of sets Endy (M) = Hompyaci, iy (Ui M, L M) across

all subgroups H < G forms a family of algebras via composition.
Restriction, transfer, and conjugation maps can be defined
functorially, and as Sasaki has shown, this structure forms a
Green functor (Sasaki, 1982; Uc, 2008). Thus, the endomorphism
Green functor emerges as a categorical analogue of the
endomorphism algebras in modular representation theory.

This conceptual framework allows for the natural
extension of Green classical correspondence from modules to
Mackey functors. The determination of the vertex of a Mackey
functor through primitive idempotents in the endomorphism
Green functor exhibits a complete parallel with the classical
theory of indecomposable modules. Similarly, Green
correspondences are obtained by tracing the behavior of these
idempotents under restriction. This categorical perspective not
only unifies ideas from representation theory but also reveals
structural similarities between modules and functors.

This background forms the theoretical basis for the results
developed in this section and highlights the central role of the
endomorphism Green functor in equivariant algebra and functor
categories.
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3. GREEN FUNCTOR

A Green functor for G over R is defined as a Mackey
functor A such that, for every subgroup H in S(G), the component
A(H) is equipped with a unital associative R-algebra structure.
Here, S(G) denotes the family of all subgroups of G. These
structures are subject to the following axioms:

e All restriction maps ri:A(H) - A(K) and the
conjugation  maps clg{:A(H)—>A(K) are unitary
homomorphisms of R-algebras.

e (Frobenius Axiom) For all K€ H, a € A(K), B € A(H),
then

tk (. 1K (B)) = ti (). B
tR (T (B). @) = B.ti ()

It should be stressed that ti does not, in general, define a
ring homomorphism. In fact, the Frobenius axiom ensures that the
image of tll is a two sided ideal in A(H). The expressions
occurring in the Frobenius axiom are often known as the
projection formulas (Bouc et al., 1997; Uc, 2008).

Since the conjugation maps are unitary homomorphisms
of R-algebras, G acts on []yes)A (H) as a group of algebra
automorhisms, and in particular N(H) acts on A(H) as a group of
algebra automorphisms. So, A(H) is an N(H)-algebra, and in
particular A(1) is equipped with an action of G by R-algebra
automorphisms (Bouc et al., 1997; Uc, 2008).

Furthermore, there is a natural notion of a morphism
between Green functors: a morphism ¢ from the Green functor A
to the Green functor B is a morphism of Mackey functors such
that, for any subgroup H of G, the morphism ¢y: A(H) = B(H) is
a morphism of rings. The morphism ¢ is said to be unitary if the
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morphism ¢y preserves the unit for all H. It is enough that
morphism ¢ preserves the unit, since

de(Lagn) = S (i) lac = ridc(la) = rilsc = lew):

A module over the Green functor A, or A-module, is
defined as a Mackey functor M for the group G, such that for any
subgroup H of G, the module M(H) has a structure of A(H)-

module with unit. Furthermore, the structure must be compatible
with the Mackey structure, in the following sense:

e IfxeGandK <€ G, let m »* m be the conjugation by x
from M(K) to M(*K). If a € A(K) and M € m(K), then
*(a.m) =*(a).2 (m).

e |If H < Kare subgroups of G, if a € A(K) and m € M(K),
then ri(a.m) = r(a).r¥(m).

¢ In the same conditions, if a € A(K) and m € M(H), then

a.tf(m) = t§(rf(a). m)
and if a € A(H) and m € M(K), then
t&(@).m = t¥(a.r¥(m)).

A morphism ¢ from the A-module M to the A-module N
is @ morphism of Mackey functors from M to N such that any
subgroup H of G, the morphism ¢y is a morphism of A(H)-
modules (Bouc et al., 1997; Thévenaz & Webb, 1995; Uc, 2008)..

We now introduce another category, denoted Ay (G),
which we define as a subcategory of Mack, (G) as follows:

Definition 3.1. Let A, B be Green functors where G is a
group. Then a ring homomorphism ¢ = (6y)ycg:A — B is a
morphism between Green functors such that each 0y is an algebra
of Macky (G) whose objects are all Green functors and morphisms
are ring homomorphisms (Bouc et al., 1997; Uc, 2008)..
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A fundamental example of a Green functor is given by
End(M), arising from any Mackey functor M via the following
procedure

End(M)(H) = Endy(M) = Hompgaein (4§ M, 1§ M)
(Sasaki, 1982; Thévenaz & Webb, 1995; Uc, 2008). We will
examine End(M) in the next section.

4. ENDOMORPHISM GREEN FUNCTOR

Let G be a finite group and M a Mackey functor. In this
section, we investigate the Green functor defined by Sasaki
(Sasaki, 1982), referred to as the endomorphism Green functor
associated with a Mackey functor M (Sasaki, 1982; Thévenaz &
Webb, 1995; Uc, 2008). The endomorphism Green functor plays
a crucial role in the Green correspondence for Mackey functors,
as the vertex of a Mackey functor M is defined to be the vertex of
its associated endomorphism Green functor (Sasaki, 1982;
Thévenaz & Webb, 1995; Uc, 2008).

We start by introducing the notion of the endomorphism
Green functor and subsequently demonstrate that it complies with
the axiomatic framework of Green functors.

Definition 4.1. Let M be a Mackey functor for G over k. Then
the Green functor Endy (M) = (Endy (M), T, R, C) is defined as

follows. For each HcG we define
Endy(M) = Hompyae (Ui M, U M), the set of morphisms
from &M to &M in Macky (H).

Let HSKCSG and geG. Define the transfer map;
TX:Endg(M) —» Endg(M): 8 » TE(0) as follows. Writing
(0y)ycn = ((TF(®))ick then, for LCSK, the map
(TE(8)): M(L) - M(L) is such that, for x € M(L), we have
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X Z tgngLCgeHgnLrggnLcﬁ_l(X)-
HgLZK
Define the restriction map; R¥:Endg(M) - Endg(M): ¢y =

RE () as follows. Writing (Ury)yek = ((RE(W))p)pen then for
E € K, the map (RK(Y))p: M(E) —» M(D) is such that, for y €
M(D), we have y - yp(y). Define the conjugation map;
Ch:Endy(M) - Endey(M): @ > CE(@) as follows. Writing

(Oy)yek = ((CE(®))p)pcen then for ECK, the map
(CH((p))E M(E) —» M(E) is such that, for z € M(E), we have z —

CgE cngC (z) (Sasaki, 1982; Uc, 2008).

We now proceed to demonstrate in detail that the
endomorphism Green functor Endg(M) satisfies the full
collection of axioms required of a Green functor, thereby
confirming that it fits naturally into the general framework of
Green functor theory.

Theorem 4.2. If M is a Mackey functor for the group G, then
(Endg (M), T, R, C) is a Green functor (Sasaki, 1982; Uc, 2008).

Proof. Let M be a Mackey functor for G.
(1) For L < K < H, RKRY = R,

Indeed, if D € K, m € M(D), and ¢ € Endg(M), then Rt (o) €
Endg (M) satisfies

(RR(9))(m) = (@p)pck(m).
For E € L and RY € Endg (M), we get

RERR (@) (M) = (((®)p)E)pek et (M) = (@§)Ecr (M)
= (R (9))(m)
where ¢ € Endy(M).

(2) ForL < K < H, T{TK = T§.
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Indeed, if S € K, m € M(S), and ¢ € End; (M), then TX(¢) €
Endg (M) satisfies

TE@E)s = Dt Fogiorien, cf (m).
SKLEK,keK

If R € K, n € M(R) and § € Endg(M), then TE(Y) € Endy(M)
satisfies

(@R = Y g Mgy ().
RhKEH,heH

IfR € H,n € M(R) and ¢ € End, (M), then

H 7K _ R h K RP k1
WAEDO = ) B ek 0
RhKCH,heH
K _ RPNK Rhk
(TEW)(M)ghng = Z tRhARNkL, € q"thﬁKkﬁLrthnKknL T
(RhnK)KLEK,heK
So,
h hk k h 1
W TEW) = e € tRnkkL Wik ki € TRk R
(RPNK)KLEK,RhKeH
RnPK RNPK R
= tRnthRR kL C WRXAKNLC™ FRQthxLI’RﬂhK
(RPNK)KLEK,RhKeH

L X x1
E tRaxnL) € WRXAKNLE  TRAX(HAL)-
RXLCH

where x = hk.

The conclusion is exactly what we asserted, because as k
and h vary over double coset representatives RkKK € H and (R" n
K)hL € H, then x = hk exhaust the set of double coset
representatives RkK < H.

(3) For a finite group H, Rf; = idgnay )

If D<H, meM(D) and € Endy(M), then REW) €
Endy (M) satisfies

(REW))(m) = (Wp)peu(m).

Since (Yp)pcy is a family of homomorphisms over D € H, then
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(Wp)peu(m) = Y(m)

(4) For a finite group H, T = idgpa, -

Indeed, if S < H, m € M(S) and ¢ € Endy (M), then T (V) €

Endy (M) satisfies

Tii () (m)

s

tsnny € LIJShnH ShnH (m).
ShHCH,heS

S .h sh h-t

t3 CohapWshaulshayCs (M)
ShHCH,heS

t3 cshtpshrshcs (m)
ShHCH,heS

Ygh (m)
ShHCH,hes

Ygh (m)
ShHCH,heH
Y(m)

as previously claimed.

(5) For a finite group G with a subgroup H, we have

Cflh = CrngCg where h, g € G.

Indeed, if m € M(E),

Endy (M) satisfies

(CE")(m)

E <& Hand « € Endy (M), then C&(«) €
15—1
(m)

-1 g—l
ChE(CE(XEgth—1E)CE (m)

B (CH(@gen)cE (m)
Cir,, CHi (m).

gh h~
Cg OgghCgnp
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(6) For a finite group H and h € H, C": Endy(M) — Endy(M) is
the identity.

Indeed, if m € M(E), where E P H = H, and if 6 € Endy (M),
then
(CBO)NM) = b (Bng)ngeych(m)
= 0(m)

with  (Bng)ngcy denoting the corresponding family of
homomorphisms.
(7) Let G be finite group, K € H € G, and g € G. Then, we have

CERY = RgilcE.
Indeed, if D € K, E €8 K, m € M(D) and a € Endy (M), then
CERH(c)(m) = C&(ap)(m)
-1
= C§E (an)gECE(m)
g! g
= CgE agECE(m)
_ gt g
= (ng agyCy)g(m)
= REK(CE, aeyCE)(m)
= ReCH(@)(m)
where Y €8 H.
(8) (Mackey axiom) Let 6 € Endy(M). If L, K € H, then we have
RETE®) = D Thoe Rifecck ().
LgK<H,geH
Indeed, we must prove that for any X € L

RETOX® = D (ThsRikexCEODx()
LgKcH,geH
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where x € L. We now demonstrate that the expressions on the
left-hand side (LHS) and the right-hand side (RHS) are equal.
LHS is the following:

(RETH(O))x(®) = Ru(TH(0)x(X)
= (T (O)x(®)

X x8 g7t
txnek CBOxenkTxenkCxy  (X)
XgKCH

RHS is the following:

(ThaRiSaCEOIXE = > (s (RiKecCEO x(0)
LgKcH,geH LgKcH,geH

X g XLl -1
BXnuwnegk) c"(Cx(8))xun(Lneky I'xun(LneK) x (%)
LEKCH Xu(LNEK)CL

X Xu -1
Xnuwnek) Cu(C]g((e))X“n(LngK)rX“n(LngK) x (¥
LEKEH Xu(LNEK)CL

X u -1 xu u-t
txnu(Lnek) €18 (0) (xun(Lnek)eC® Txunwner)C” (X
LgK<SH Xu(LN&K)SL

X Xu8 —-1,-1
txnuLnek) € 8(0) xuenwnek))ETXugnLagk)sC® 1 (X)
LgKEH,Xu(LngK)EL

X x8 gt
txnek C8OxenkIxenkCy (X
XgKEH

because u and g runs over Xu(L N8 K) and LgK, respectively, then
ug runs over XugK. Since X € L and u € L, then ug runs over
XgK. It follows that the left-hand side and the right-hand side are
indeed equal.

(9) (Frobenius axiom) If K € H, a € Endg(M), B € Endyz(M),
then the following multiplicative structures are both satisfied:

Tk (. RR(B)) = T¢' (). B
Tg (RK(B). @) = B. T ()

Indeed, for the first assertion of the Frobenius axiom, we verify
that the left-hand side coincide with the RHS. Let S € H.

LHS:
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H H = S h H sh pt
TH@REE) = D 6 (@ REB))gnrpcr et
ShKSH,heH
S h H Sh h-1
a Z t5nnk € aShnK(RK(B))ShnKrShnKCS
ShKSH,heH
S h Sh h—1
Lsang € O‘shnKBshnKrshnKCs
ShKSHheH

RHS:

S sh -1

@B = () tongagnrhnged B
ShKcH,heH

S h sh h1

tthKC aShnKBShnKrshnKCS
ShKcH,heH
by application of conjugation and restriction on . Because the
left-hand side agrees with the right-hand side, the first statement

of the Frobenius axiom is satisfied.

In a similar manner, the endomorphism Green functor also
satisfies the second assertion of the Frobenius axiom. We may
therefore conclude that the endomorphism Green functor fulfils
all the axioms required in the definition of a Green functor.
Hence, Endg (M) can be regarded as a fully valid Green functor,
compatible with the underlying Mackey functor structure and the
axiomatic operations of restriction, induction, and conjugation
(Uc, 2008).

Example 4.3. In this example, we consider the Klein four group
V, = {1,a,b,ab} to illustrate the structure and operation of the
endomorphism Green functor through a clear calculation. This
group is abelian, and each element has order 2. The subgroup
lattice {1} consists of three 2-order subgroups, H, = (a),H, =
(b), H; = (ab), and the whole group V,. Since V, is abelian, all
conjugation operations are trivial; this allows for a simplified
examination of the internal algebraic structure of the
endomorphism Green functor.
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We consider a Mackey functor M obtained from the
permutation module k[V, /1]. Explicitly, M(1) = k, M(H;) = k?
for each subgroup of order two, and M(V,) = k*. The restriction
maps M(V,) — M(H;) correspond to summing coordinates along
cosets ofH;, while transfer maps M(H;) - M(V,) duplicate
coordinates along cosets in the opposite direction. These linear
structures allow us to compute the endomorphism Green functor
Endg (M), whose value at each subgroup H is Endg(M)(H) =
Endmaci 1) (1§ M) the algebra of natural transformations of the

restricted Mackey Functor 1§ M.

ForH = 1, we have Endg(M)(1) = Endy (k) = k, since
M(1) is one-dimensional. For any order-two subgroup H;, the
Mackey restriction lﬁi M behaves as a two-point permutation
representation, giving Endg(M)(H;) = M,(k), the full 2 x 2
matrix algebra. At the full group V,, the functor M(V,) = k* with
decomposition into four orbits gives Endg(M)(V,) = M, (k).
Each algebra Endg(M)(H) is thus explicitly computable, and
together these algebras form the values of the endomorphism
Green functor.

The restriction maps RE:Endg(M)(H) - Endg(M)(K)
arise by pre- and post-composition with the restriction maps of M.
Similarly, transfer maps Tg correspond to conjugation of
endomorphisms through the transfer structure of M. Since
conjugation in 'V, is trivial, the conjugation maps
Cg: Endg(M)(H) — Endg(M)(H) for g€V, reduce to the
identity. One may verify directly that these maps satisfy the
axioms of a Green functor: compatibility of restriction with
multiplication, Frobenius reciprocity expressed via the identity
TH (. RE(B)) = T (). B, and associativity of endomorphism
composition.
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This example clearly demonstrates how the
endomorphism Green functor organizes the internal algebraic
structure of a Mackey functor across all subgroups of a finite
group. Even in the simple case of V,, the functor organizes the
matrix algebras and homomorphisms reflecting the transfer-
restriction structure. Such calculations provide a powerful
intuition for understanding the fundamental role of the
endomorphism Green functor in analyzing the behavior and
internal symmetries of Mackey functors.

5. CONCLUSION

The endomorphism of the Green functor plays a central
role in extending Green correspondence from the classical
module theory to Mackey functors, a broader and more flexible
structure. This work establishes a robust algebraic foundation for
the study of vertex, correspondence, and decomposition
structures within functor categories by demonstrating that the
endomorphism structure rigorously satisfies all the axioms of a
Green functor, including the Mackey axiom, Frobenius
reciprocity, and the internal compatibility of constraint, transfer,
and conjugation maps.

The results show that many structural concepts associated
with modular representation theory; for example, primitive
idempotent decompositions and related projectivity; can be
naturally generalized when the internal endomorphism structure
is added to Mackey functors. In particular, the determination of
the vertex of a Mackey functor through primitive idempotents in
the endomorphism Green functor is identical to the classical
theory of indecomposable modules. This functorial perspective
clarifies the internal algebraic behavior of Mackey functors and
unifies many ideas in representation theory under a single
categorical framework.
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This approach has given rise to numerous promising
research directions. One of these is investigating how
endomorphism Green functors interact with biset functors,
particularly in the context of block decompositions and defect
group structures. Another line of research is the development of
novel structural tools such as functorial radicals or homological
invariants that can be derived from the endomorphism Green
functor. Extending the theory to infinite groups, derived Mackey
functors may reveal deeper structural relationships. Finally,
developing computational methods for calculating vertices and
Green correspondents using endomorphism Green functors could
contribute to clear classification results for small or complex
groups.

In conclusion, the endomorphism Green functor offers a
conceptually elegant and structurally powerful tool for extending
Green correspondence to the level of Mackey functors. The
richness of this field suggests it will continue to guide future
developments in representation theory and functor categories.
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ON COMPLEX FIBONACCI AND LUCAS
HYBRID NUMBERS

Ali Imad Mohammed QARAH BASH!
Anil ALTINKAYAZ?*

1. INTRODUCTION

W. R. Hamilton introduced quaternions in order to extend
complex numbers to a three-dimensional space. The quaternion
set constitutes a real algebra in which multiplication is not
commutative. In this algebra, a quaternion is expressed in the
form [2]:

H={q=a+ bi + ¢j + dk: a,b,c,d €R}, (1.1)

where i?2 = j2 = k? = —1. One of the most striking properties is
that multiplication is not commutative, meaning that in general,
ij # ji. This structure allows transformations to be represented
more compactly compared to matrices. Therefore, quaternions are
widely used in computer graphics, robotics, aeronautics, and all
fields where 3D rotations are computed. The n — th Fibonacci
and Lucas quaternions were described by the following
definitions [3]:

HF, = By + Fppal + Fpyaj + Foask, (1.2)
HL, = Ly + Lyyql + Lpy2j + Lyysk, (1.3)
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where F, =F, 1+ F,_,, Fp=0F =1 and L,=L,_;+
Ln—ZrLO = Z,Ll = 1.

The literature includes several studies related to
Fibonacci and Lucas quaternions [4-9]. According to [4], Halici
focused on the quaternionic extensions of the Fibonacci and
Lucas sequences and derived their generating functions as well as
Binet-type formulas, enriching the existing literature on number
sequences in non-commutative algebraic structures. In [8], the
authors gave some characterizations for the Pell quaternions and
k-Fibonacci quaternions.

Complex Fibonacci numbers were introduced by
Horadam, these numbers are simply pairs expressed as [3]:

F, = F, + iFyy, (1.4)

where i = 1. The discovery of complex Fibonacci numbers led to
many studies in the field of complex analysis and number theory.
Complex Fibonacci numbers form interesting spiral-like
geometric shapes in the complex plane and produce visually and
analytically rich results in areas such as dynamical systems,
fractal structures, and chaos theory. After the discovery of
complex numbers, many authors have studied on complex
Fibonacci quaternions. Some of these are [11-14]. In [11], Halici
specified the complex Fibonacci and Lucas quaternions and
discovered the relations between these quaternions. In [14],
Aydin denoted the bicomplex Fibonacci quaternions and studied
some algebraic properties of these numbers.

In [1], M. Ozdemir introduced hybrid numbers as an
algebraic structure that unifies complex, dual, and hyperbolic
numbers, given by:

K={a + bi + ce + dh: i* = -1, = 0,h? = 1},(1.5)

89



Matematik

FH, = F, 4 Fpi1i + Fpi2¢ + Fyi3h(1.6)
LHy= Ly + Lyyii + Lysse + Lpish.(1.7)

In [15], Liana gave some properties of Horadam-type
hybrid sequences, including their Binet representation and
generating function.

This study first defines complex Fibonacci-type and
complex Lucas-type hybrid numbers, and presents a detailed
account of their fundamental algebraic properties. Following
these definitions, the Binet formula for complex Fibonacci-type
hybrid sequences is derived, and the Cassini identity, one of the
classical Fibonacci identities, is proven in the context of this new
number system. Finally, the generating function for complex
Fibonacci-type hybrid sequences is derived, offering an
alternative approach for analytically expressing them. Thus, the
study expands the range of applications of hybrid numbers in the
literature and reveals new and original results for complex
Fibonacci-type and Lucas-type hybrid sequences, which have not
been previously studied.

2. PRELIMINARIRES

The complex numbers are defined by the set C =
{z=12z +iz,:2,2, €ER, i? = —1}. The addition and
multiplication on this set are given as follows [16]:

(Zl + iZZ) + (Wl + in) = (Zl + Wl) + i(ZZ + Wz),

(Zl + iZZ). (Wl + iWZ) = (Z]_W]_ - 22W2) + i(Z]_WZ + Zzwl).

For any complex number z =2z +iz,, 2z =
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1 i e h
1 1 i e h
i i -1 1-h e+i
g g h+1 0 -&
h h -&-i e 1

(Re(2)),z, = (Im(2)). The hybrid number set is defined by
[1]:
For any hybrid number a = a, + a;i + a,e + ash,
the scalar component of a is represented as
Sq. = ay,
and the vector component is represented as
V, = aii + aye + ash.

Given two hybrid numbersa = a, + a;i + a,e + aszh,
b =by, + byi + bye + bsh, their addition is written as

a+ b = S(a+b) + V(a+b)'
Product of two hybrid numbers is defined by

ab s (ao + ali + a2£ +a3h)(b0 + bll + bzg +
bsh), (2.2)

which is obtained by performing the algebraic expansion
in the standard way [1]. The product of scalar is defined as [1]:

a=S,-V,.

In [10], the authors introduced the Binet’s formula for
the Fibonacci-type and Lucas-type hybrid numbers as:

A —fry

== 2.3
LHy =75 41 + 7213, (24)
where 77 = 1+ 7,1 +rfe + 19h, n =2, r, =128
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3. COMPLEX FIBONACCI AND LUCAS HYBRID
NUMBERS

Definition 3.1. The n*"* complex Fibonacci-type and Lucas-
type hybrid sequences are defined by

FH, = FH, + iFH,,,, (3.1)
LH, = LH, + iLH,,,, (3.2)

respectively.Here FH,, = F, + Fu 10 + Fpipe + Fuu3h
and LH, = Ly, + Ly i + Lype + Lpsh are nth
Fibonacci-type and Lucas-type hybrid sequences. i
denotes the imaginary unit (i = — 1), ¢ denotes the
complex unit (¢2 = 0) and h denotes the hyperbolic
unit (h? = 1).

If the complex Fibonacci hybrid number is arranged
according to the previous definition, we get

FFHn = (Fy + Fppa U + Fuyze + Fuygh) +i(Frgq + Foyo
+ Fn+3£ + Fn+4h)

:(Fn + iFn+1)+ (Fn+1 + iFn+2)i + (Fn+2 + iFn+3)£ + (Fn+3 +
iFn+4)h

:F:l + Fn+1i + Fn+2€ + Fn+3h'
Similarly, we can write
LH, =L, + Lyqi + Lysp6 + Ly3h.

Theorem 3.1. Let FH,, be any complex Fibonacci hybrid
number and LH,, be any complex Lucas hybrid number. Then,
we have the following equations:

i) FHyyq + FHy = FHpy
i) LH, 1 + LH, = LH,,,
iii) FH,,_, + FH, ., = LH,
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iv) FH,., — FH,_, = LH,

Proof. i) By applying the addition rule for complex
Fibonacci-type hybrid sequences, we get

FHn+1 + FHn = (FHn+1 + iFHn+2) + (FHn + iFHn+1)
= (FHy41 + FHy) + {(FHp 45 + FHpy )

= ((Fp41 + Frao i + Fpyze + Fppgh) + (B, + Fpq @+
Fn+2£ + Fn+3h) +i((Fn+2 + Fn+3i + Fn+4£ + Fn+5h) +
(Fn+1 + Fn+2i + Fn+3£ + Fn+4h))

= (Fpp1 + By) +i(Fpyz + Frpy)i + (Fpys + Fppp)e +
(Frta + Fryz)h + i((Fpiz + Frar) + (Fpys + Frpp)i +
(Fn+4 + Fn+3)€ + (Fn+5 + Fn+4)h)

= (Fuyz2 + Fuasl + Fpya€ + Frysh) + i(Fpys + Fopal + Fpyse
+Fn+6h)

=FHn+2 + iFHn+3
=FHy 5.

ii) Similarly, if we use the addition property of the complex
Lucas hybrid number, we get

LHy 1 + LFHn = (LHp4y + iLHpyo) + (LH, + iLHpyq)
= (LHpy4q + LHy) + i(LHpyp + LHp i q)
=LHyp + iLHp 3
=LHn+2-

iii) Considering the identity F,,_; + F,,4+1 = L, we
can write

FHy_y + FHpy1 = (FHy_y + iFHy) + (FHpyq + (FHyyp)
= (FHp_1 + FHpy1) + i(FH, + FHy . 5)
=LH, +iLH, 4
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= LH,,.

iv) Similarly, from the identity F,,,, — F,,_, = L,,we
have

FHyy, — FHy_; = (FHpyp + iFHyy3) — (FHy_p + iFH,_;)
= (FHyp42 — FHy ) + i(FHyy3 — FHy 1)
= LH, +iLH,,,
= LH,.

Theorem 3.2. Let FH,, be any complex Fibonacci hybrid
number and LH,, be any complex Lucas hybrid number. For
each integer n > 0, the Binet type formulas of FH,, and LH,,
take the following form:

a7 _ =)'y
FH, =020, (3.3)
LH, = r{r] + (r,)*rd, (3.4)

wherery = 7 (1+ir), 7 =1+ ni+rfe+rfhand ()" =
Bl +iry), 7 =1+ nri+rfe+1r5h.

Proof. Using (3.1) and the Binet representation of the
Fibonacci-type hybrid sequences, we have

FH, = FH, + iFH, .,

At —fry Attt =t
= +1
n—-n n—n
_ AL+ i) = AP (L + i)

n—-n

_nn =)'y

n—n

From the equations (3.2) and the Binet representation of the
Lucas-type hybrid sequences, we obtain
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LH, = LH, +iLH, .,
= (7 + 1 + /) +iE + 7
=7l (1 +in) + 5 (1 +iry)
=1+ ()
Theorem 3.3. Let FH, and LH, denote the n-th complex
Fibonacci-type hybrid sequence and the n-th complex Lucas-

type hybrid sequence. When, n = 1, the Cassini identities of
FH, and LH,, are given by:

FE= Py — 2 = O e prnry
- B =——F——nrn —nrn),
n-1t il n NG 11212 — 121
—_— —— —_— r*r* r*r*
LH, LH,, — LA, = (_1)11—1\/3( 12 T2 1>'
TZ 'r1

Proof. By using (3.3) and (3.4), we can calculate the following
equations:

FH,_1FHyy; — FH,
(rfn”‘l - (m)*r{“) <r1*r1”+1 — (rz)*rz’l“)

n—-n n—-n

~ (rf‘n“ - (rz)*@)z

n—n

_ DA — T — () ey T 4 ()20

(ry —1)?
DA = it = ) () + ()2 ()?
(ry —1)?
_ T (= 1) = i (i — 1)
(ry —1p)?2

_rrr i = e

n—-n
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_ o

V5

—_— —~ 2

LH,_41LHy4q — LHy
— *.M—1 *,,M—1 *..M+1 *..M+1
=" A )T )

— (i +1515)?

(rirzry = 151(1).

— *\2,.2N * %, N—1..n+1

=)t A T+

* k.. n—1,.n+1 *\2..2MN *\2,.2N
iy o+ ()t = ()"t —
rirritrt + it

_ Jg r*r* r*r*
=rry (=" 1r—(—1 2 421 1).
2 2 T

Theorem 3.4. Let FH,, be any complex Fibonacci hybrid number.
Then the generating function of FH,, is given as follows:

FH, + x(FH, — FHy)

G(x) = 1—x—x2
_ (B3—2e+4+3h) +x(2—2e+2h)
N 1—x—x2 '

Proof. Suppose that G (x) is a generating function of complex
Fibonacci hybrid number FH,,. Then we get,

G(x) = z FH, x™
n=0

If we organize this equality, we have
G(x) = FHy + xFH, + x*FH, + -
xG(x) = xFHy + x*FH, + x3FH, + ---
x2G(x) = x?FHy + x3FH, + x*FH, + ---
G(x) —xG(x) — x*G(x) = FHy + x(FH, — FH,) +
x*(FH, — FH, — FH,) + ---.

So, we can write,
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FH, + x(FH, — FHy)

G(x) =

1—x—x2
_ (83—2e+3h) +x(2—2¢+2h)
- 1—x—x2 '

4. CONCLUSION

Hybrid number system combines these three different
algebraic structures into a single structure, creating a new
algebraic structure. While various studies on hybrid numbers
have been conducted in the literature, no research exists on
complex Fibonacci and complex Lucas hybrid numbers. In the
third part of this article, we first define the n-th complex
Fibonacci-type hybrid sequence and the n-th complex Lucas-type
hybrid sequence. Through these definitions, we clearly
demonstrate the relationship of hybrid numbers to complex
Fibonacci and Lucas sequences. Then, we derive some
fundamental relations for complex Fibonacci-type and complex
Lucas-type hybrid numbers and demonstrate the role of these
relations within the hybrid number structure. Finally, we prove
Binet's formulas for these hybrid numbers and use these formulas
to derive the Cassini identities. Showing that the Cassini
identities hold in the context of hybrid numbers reveals the
similarities and differences between the algebraic properties of
hybrid numbers and those of classical Fibonacci-type and Lucas-
type sequences. Finally, we find the generating function for
complex Fibonacci and complex Lucas hybrid numbers and
explain how this function can be used to investigate the analytic
properties of hybrid numbers.
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THE CONCEPT OF INEQUALITY IN
MATHEMATICS: MATHEMATICAL
MEANING, HISTORICAL DEVELOPMENT,
THEORETICAL POWER, AND DIDACTIC-
PHILOSOPHICAL DIMENSIONS

Alaattin AKYAR!

1. INTRODUCTION

Mathematics is often seen as the "science of equality.” In
students' early encounters with mathematics, the main focus is
solving equations and ensuring that both sides are equal. This
approach presents mathematics mostly as a task of finding the
right answer and leads to the idea that mathematical knowledge
is about reaching correct results.

However, when we look deeper into mathematical
thinking, we see that inequalities play an equally important, often
even more fundamental role. Mathematics is not only about
determining what is equal but also about understanding what is
greater or smaller, what stays within certain limits, and how we
can measure being "close enough” in a precise way (Apostol,
1974; Rudin, 1976). In this sense, mathematics deals not only
with results but also with behaviors and their boundaries.

In modern analysis, core concepts such as limit,
continuity, derivative, and integral are defined using inequality-
based structures (Apostol, 1974; Cauchy, 1821/2009;
Weierstrass, 1874/1986). Whether a function approaches a value,
is continuous, or is integrable depends on satisfying specific

1 Dlzce University, Diizce Vocational School, ORCID: 0000-0003-4759-8313.
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inequalities. Concepts like convergence, compactness, and
continuity are built upon the idea of “reducing the margin of error
as much as desired,” and the language used to express this idea is
the language of inequalities (Rudin, 1976).

Therefore, inequality is not just a tool using symbols like
<, >, <, > to compare values; it is a theoretical language that
organizes mathematical objects, limits behaviors, and makes
mathematical precision possible. Yet, this role of inequality is
often underestimated. In textbooks and teaching practices,
inequalities are usually presented only as technical steps or tools,
without highlighting their foundational role in mathematical
thought.

However, many modern mathematical definitions cannot
be clearly expressed or logically secured without inequalities. In
this context, inequality is not just a tool used in mathematics, it is
a fundamental way of thinking that makes mathematical
knowledge possible.

This chapter aims to explore the mathematical meaning
and foundational role of inequality through conceptual, historical,
and philosophical lenses. It will examine the historical
development of inequality and key turning points that shaped the
foundations of analysis. It will also show in detail why key
mathematical concepts must be defined using the language of
inequalities. Furthermore, it will discuss the theoretical insights
provided by classic inequalities such as Cauchy-Schwarz,
Holder, Minkowski, and Jensen, and critically analyze why
inequality often fails to gain its deserved central place in math
education. Finally, it will explore the difference between the
value-neutral use of inequality in mathematics and the moral or
ethical meanings attached to the term “inequality” in every day
and philosophical contexts highlighting why this distinction is
important for mathematical thinking and teaching (Lakatos, 1976;
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Tall, 2013; Tall & Vinner, 1981; Ubuz, 1999; Baki, 2018; Altun,
2014; Doruk & Kaplan, 2013; Inam, 1995; Ciicen, 2012).

2. LIMIT: NOT “REACHING” BUT
“APPROACHING”

In everyday thinking, a limit is often seen as a quantity
“reaching” a certain value. In daily language and early math
education, this is expressed as a function or sequence getting
closer to a specific point over time. However, this kind of
explanation is mathematically vague, it does not tell us how close
we get or how that closeness is measured. In modern
mathematics, the concept of a limit becomes precise and
controllable through inequalities. This precision is given by the
classical -5 definition of a limit:

Ve>0,36>0suchthat0<|[x—a]<d=|f(X)-L|<e

In this definition, the important part is not saying “f(x)
becomes L,” but showing that the difference between f(x) and L
can be made smaller than any € (Apostol, 1974). Thus, a limit is
not about achieving equality but about controlling the difference.

Historically, this idea becomes even clearer. In ancient
mathematics, especially in Archimedes' method of exhaustion,
values like area and volume were not calculated directly. Instead,
they were bounded from above and below, and the gap between
them was gradually reduced. Archimedes’ method can be seen as
an early version of the modern idea of a limit. Here too, the goal
was not to “reach” a value but to trap it between two inequalities
in a narrowing interval.

The modern form of the limit was formalized in the 19th
century during the foundation of analysis by Cauchy and
Weierstrass. Weierstrass’s €-0 approach replaced vague ideas
like “it looks like it’s getting closer” with inequalities that could
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be quantitatively controlled (Cauchy, 1821/2009; Weierstrass,
1874/1986).

Philosophically, the concept of a limit clearly shows how
mathematics connects precision and approximation. A limit does
not aim for absolute equality. Instead, it provides assurance that
one can stay within an arbitrarily small error margin. Inequalities
are the mathematical language of this “small enough.” In this
sense, a limit is not just a technical term in analysis, it is a
fundamental example of how mathematical thinking works.

2.1. Continuity: A Quantitative Guarantee of Local
Behavior

In mathematical intuition, continuity is often associated
with the idea that a graph can be “drawn without lifting the pen.”
While this visual idea is useful in geometric contexts, it is
mathematically vague it doesn’t specify what a “small” change
means or how this smallness is measured. In modern
mathematics, continuity is formalized through a precise,
inequality-based definition that removes this vagueness. Formal
definition: For all € > 0, there exists§ > 0 such that if |x —
al| < 6,then|f(x) — f(a)| < e

Here, continuity is not expressed as a visual “smoothness”
but as the ability to control how a small change in the input affects
the output (Rudin, 1976). In other words, continuity guarantees
that the function’s local behavior can be controlled within a
certain margin of error.

Historically, this approach became important during the
19th-century formalization of analysis. As more pathological
examples were discovered, the modern approachwhich separates
continuity from visual intuition and reduces it to a system of
inequality-based error control—became dominant.
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Philosophically, continuity represents the technical side of
the idea of “local reliability” in mathematics: the reliability of
behavior depends not on exact equalities but on tolerances.

From a teaching perspective, studies in Turkey show that
many students struggle with limits and continuity because they
have difficulty internalizing the e-0 idea of control (Ubuz, 1999;
Baki, 2018). Focusing only on graphical representations of
continuity tends to push the foundational role of inequality into
the background.

2.2. Derivative: Controlling the Difference Quotient

The derivative is usually understood intuitively as the
“rate of change at a point” or the “slope of the tangent line.” In
modern analysis, the derivative is defined as the limit of a
difference quotient at a specific point:

) ) —f(a)
@ ==
What matters in this definition is not whether the quotient
is exactly equal to some value, but whether its behavior near that
point can be controlled using inequalities. To show that a
derivative exists, we usually need to prove that the expression

[f () — f(a)]

(x—a)
can be made arbitrarily small. This requires bounding the error
term using suitable inequalities. So the derivative, both in its

definition and in its proof, fundamentally relies on inequalities
(Apostol, 1974).

Historically, this modern approach helped resolve logical
problems in early differential calculus, which tried to explain
change using “infinitely small increments.” Limit-based
definitions replaced vague notions of infinitesimals with precise
control over difference quotients. This shift turned the derivative
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from a mere computational tool into a clearly defined
mathematical concept.

Philosophically, the derivative can be seen as another
expression of the idea of “local reliability” in mathematics. What
matters is not the specific value of the quotient but how this value
behaves in the neighborhood of the point and whether this
behavior can be kept within certain bounds. In this way, the
derivative shows that mathematical precision is built not on
absolute equalities, but on controlled approximations and
restrictions.

2.3. Integral: Bounding from Above and Below (The
Darboux Approach)

Although the concept of the integral is often associated, at
an intuitive level, with the idea of “area calculation,” its precise
meaning in modern mathematics is based on an understanding of
bounding through inequalities. In particular, the Darboux
approach defines the integrability of a function not through
directly calculating area, but by being able to bound that area from
above and below. In this approach, the value of the integral is not
determined by finding a single number, but by identifying the
bounds within which that number can be reliably located. The key
criterion for integrability is that the difference between the lower
and upper Darboux sums can be made arbitrarily small (Courant
& John, 1999). The mathematical significance lies not in exactly
calculating the area, but in the ability to trap the value within an
increasingly narrow band between two inequalities. In this sense,
the integral represents one of the paradigmatic examples in
mathematics of transitioning from approximate to exact
knowledge.

The historical roots of this idea go back to Archimedes'
method of exhaustion. Rather than computing areas and volumes
directly, Archimedes aimed to surround these quantities from
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above and below, progressively reducing the difference between
the bounds. Modern integral theory builds on this intuitive idea,
formalizing it through inequalities into a systematic and
controllable structure.

From a philosophical perspective, the integral shows that
mathematical precision is often achieved not through direct
calculation, but through processes of controlled bounding and
error management. In this context, the integral stands as one of
the core concepts demonstrating how the relationship between
exactness and approximation is established in mathematics. This
perspective reveals that inequality-based approaches used in
defining and teaching the integral are not just technical
constructions they represent a foundational way of thinking that
shows how approximate values can be transformed into reliable
knowledge within specified error tolerances.

2.4. Convergence, metric, and norm: The language of
"how close?"

Concepts like convergence of sequences, uniform
convergence of function sequences, closeness in metric spaces,
and size measurement in normed spaces are all systematic
mathematical answers to the question: "How close?" The
mathematical language for expressing this question relies directly
on inequalities. For example, a sequence is defined as Cauchy
using the following inequality: For all € > 0, there exists N such
that forallm,n > N, we have |a, — an| < &

The focus of this definition is not on the value the
sequence converges to, but on the ability to make the difference
between its terms as small as desired (Rudin, 1976). Here,
convergence is no longer just about reaching a specific target; it
becomes a matter of internal consistency and control. Likewise,
the concepts of metric and norm are also based on inequalities: a
norm expresses size, while a metric expresses distance, both in a
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quantitative way. Their meaning is shaped by how these values
behave within specific bounds.

3. HISTORICAL TURNING POINTS AND
STORIES: CERTAINTY  BUILT WITH
INEQUALITY

This section explores how inequality emerged in the
history of mathematics not just as a tool for supporting certain
computational techniques, but as a fundamental way of thinking
that plays a central role in establishing and securing mathematical
certainty. The selected historical examples and narratives aim to
show why inequality is indispensable in mathematics not merely
for producing results, but for revealing how mathematical
meaning and reliability are constructed.

3.1. Story 1: Archimedes did not find the truth; he
surrounded it

Archimedes' method of exhaustion is fundamentally
different from the modern idea of “directly finding the value.”
When calculating the area of a circle or the volume of a sphere,
Archimedes did not aim to reach the result in a single step.
Instead, he built geometric quantities that bounded the true value
from above and below. The gap between these bounds was
systematically reduced, and the true value was located within an
increasingly narrow interval (Heath, 1921).The mathematical
achievement here lies not in explicitly calculating the final result,
but in securing the interval in which that result lies.

What matters in this method is not knowing the exact
value of the result but being able to control the inequalities that
surround it. Archimedes' approach clearly shows that
mathematical certainty often arises not from direct calculation,
but from systematic processes of bounding and enclosing. In this
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way, the method of exhaustion can be seen as a historical
precursor to the inequality-based understanding of precision in
modern analysis. This approach can be summarized as follows:
In mathematics, certainty often comes not from directly
producing a value, but from being able to squeeze that value into
a narrower and narrower range between two inequalities.

3.2. Story 2: The crisis of analysis and the € -6
revolution

In the early stages of differential calculus, mathematicians
frequently relied on intuitive notions of "infinitesimally small*
quantities. Although this approach was highly successful in
calculations, it led to a serious foundational crisis in analysis,
raising questions like “how small is infinitesimal?” and “how can
it be controlled?”

In the 19th century, this crisis was resolved by
systematically adopting a language based on inequalities.
Cauchy’s work on convergence and continuity, along with
Weierstrass’s € — § formalism, replaced intuitive descriptions
with a framework of quantitative control (Cauchy, 1821/2009;
Weierstrass, 1874/1986; Boyer & Merzbach, 2011).

The philosophical message of this transformation is clear:
it is not enough to say that “it seems to be approaching.” One must
express the degree of approach and how arbitrarily small this
difference can be made using inequalities.

This historical shift carries both philosophical and didactic
implications. Saying “it looks like it’s getting close” is not
sufficient for mathematical precision. The degree of closeness,
the conditions under which it occurs, and the extent to which it
can be reduced must all be clearly defined. The -6 approach is
not just a technical tool but a mode of thinking that shows how
mathematical reasoning should be controlled.
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In this context, inequalities become essential tools that
transform the student’s intuitive sense of closeness into a
quantitative and manageable structure. In teaching analysis, € —
6 definitions should be seen not merely as formal requirements,
but as a language that explains how mathematical reliability is
established. This perspective deepens conceptual understanding
and makes the intellectual discipline of mathematics more visible.

3.3. Story 3: Letting go of "visual intuition™

Modern analysis, shaped by the Weierstrass tradition,
consciously limited the reliance on visual and geometric
intuitions in mathematical reasoning. Descriptions like “the graph
looks smooth” or “it seems to be approaching” were no longer
accepted as sufficient to guarantee the correctness of a
mathematical claim. Instead, there emerged a demand for
justifications that clearly specify the conditions and extent to
which a mathematical statement holds, in a way that can be
quantitatively verified.

This type of reasoning was established primarily through
error control and bounding schemes expressed via inequalities
(Weierstrass, 1874/1986; Apostol, 1974).

With this transformation, the focus of mathematical
inquiry also shifted: the central question was no longer simply “is
the equality satisfied?” but rather “to what extent, and under what
conditions, can the difference between related quantities be
controlled?”

In modern analysis, answers to this question are inevitably
formulated using a language based on inequalities.
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4. INEQUALITIES AS A MATHEMATICAL
TOOL: CLASSICAL INEQUALITIES AND THE
CULTURE OF PROOF

4.1. Classical inequalities are not merely technical

In the history of mathematics, some inequalities have gone

beyond being mere tools for solving specific problems. These
inequalities act as theoretical keys that reveal the internal
structure of mathematical objects and deepen intuition:

Cauchy-Schwarz Inequality: Forms the foundation of
concepts such as angle, norm, and projection in inner
product spaces.

Holder Inequality: Controls the integrability of products
in LP spaces and determines the structure of function
spaces.

Minkowski Inequality: Extends the triangle inequality to
LP spaces, ensuring the consistency of the norm concept.

Jensen Inequality: Allows the analysis of average
behavior and variations through the concept of convexity.

These inequalities are not just "useful” technical results;

they are structural principles that show under what limitations
mathematical reasoning remains consistent (Hardy, Littlewood,
& Pélya, 1952).

In this context, there is a strong conceptual continuity

between classical inequalities and € — § definitions and proof
schemes. Like the € — & approach, classical inequalities aim to
demonstrate within what bounds mathematical behavior can be
considered reliable. Showing the existence of a limit, checking
the integrability of a function, or justifying the convergence of a
sequence often depends on controlling error terms via a suitable
inequality. In this respect, inequalities like Cauchy-Schwarz,
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Holder, or Minkowski are not only results used in advanced
analysis but can also be seen as reflections of €-6 thinking in more
general and abstract settings. Inequality-based reasoning thus
serves as a common language that links different levels of
analysis.

Despite this, the teaching of these inequalities at the
undergraduate level is often disconnected from this holistic
framework. Students frequently perceive classical inequalities as
"tools to be applied when appropriate” or as "technical results that
must be proven but whose necessity is not discussed.” This leads
to the structural and regulatory role of inequalities in
mathematical thought becoming invisible.

However, these inequalities clearly show why
mathematics does not rely solely on exact equalities, but rather on
constraints; why approximate results can become reliable
knowledge under certain conditions; and why proof is often built
around processes of comparison and control. For this reason, the
teaching of classical inequalities should be approached in a way
that not only explains how to use them but also reveals the
intellectual needs from which they arise.

4.2. Proof strategies: bounding, approximation,
comparison

A significant portion of mathematical proofs is built
around strategies based on inequalities. Especially in analysis,
verifying the correctness of a result often does not involve
showing a single equality, but rather proving that certain
quantities can be kept within appropriate bounds.

In this context, three main strategies come to the forefront:

e Bounding from above and below: Trapping a complex
quantity between two simpler and more controllable
expressions.
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e Approximation: Showing that the difference can be
controlled appropriately for every e > 0.

o Comparison: Relating a complex problem to a well-
known and manageable one.

Together, these strategies show that proof is not merely an
activity of “reaching the result,” but also a process of ensuring
reliability and control (Hardy et al., 1952; Apostol, 1974).

The way these strategies function can be illustrated
through a simple convergence proof. For example, to show that a
sequence is Cauchy, it is not necessary to know what value the
sequence converges to. What matters is demonstrating that the
differences between the terms can be made as small as desired.
This is done by finding a suitable N for each € > 0 such that, for
m,n = N, the inequality|a, — an| < e€holds. The key
element in the proof is not any particular equality, but the ability
to control the difference using inequalities. Similarly, proofs of
limits, continuity, and integrability often rely on appropriate
bounding and approximation arguments.

From a didactic perspective, these proof strategies are
especially important because they show students that
mathematics is not just about producing results, but about
constructing trust and ensuring reliability. However, in teaching,
these strategies are often left implicit; students are expected to
“apply” certain steps without adequately discussing the
underlying reasoning behind them.

Explicitly highlighting inequality-based strategies such as
bounding, approximation, and comparison can help students
understand mathematical proof not as a mechanical confirmation
of results, but as a thoughtful process of managing error and
limiting behavior. This approach makes the intellectual structure
of analysis more visible and supports a deeper and more
meaningful internalization of the culture of proof.
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5. WHAT IF THERE WERE NO INEQUALITY? (A
COUNTERFACTUAL ARGUMENT)

This section aims to highlight the foundational role of
inequality in mathematics by illustrating the conceptual gaps that
would emerge in its absence. If the language of mathematics
allowed only for equalities, much of modern mathematics would
remain either purely intuitive or formally undefinable. This is
because the essence of many concepts in modern analysis lies not
in satisfying an exact equality, but in being able to control an
error.

This issue is particularly evident in the following
concepts:

o Limit: Not about “reaching” a value, but about making the
difference as small as desired (Apostol, 1974).

o Continuity: A quantitative guarantee that small input
changes produce small output changes (Rudin, 1976).

o Convergence: Gradually reducing the differences between
terms (Rudin, 1976).

« Integrability: Bringing the difference between upper and
lower sums closer to zero (Courant & John, 1999).

In this context, the following claim is defensible: Without the
concept of inequality, modern analysis would remain more of an
intuitive narrative than a system of definitions. Therefore,
inequality is not merely a technical tool in mathematics; it is an
essential linguistic and conceptual instrument that enables the act
of defining, establishing precision, and constructing proofs.
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6. INEQUALITY IN EVERYDAY LIFE: A
CONCEPT LOADED WITH NORMATIVE AND
ETHICAL MEANING

In everyday language, the term “inequality”” often evokes
injustices in economic, social, or political contexts. This usage
inherently carries normative content meaning it involves value
judgments and is usually regarded as a problem that should be
reduced or eliminated. In this sense, inequality is a central concept
in ethical and social responsibility discussions.

In contrast, the concept of “inequality” in mathematics
serves a descriptive and regulatory function, independent of value
judgments. In mathematical contexts, inequality not only
expresses size relations between objects but also enables core
cognitive operations such as setting bounds, making comparisons,
and controlling error. Therefore, there is no essential
contradiction between these two uses of the term; the same word
functions differently in two distinct domains:

e Inmathematics: structure-building, bounding, and control
(epistemic function)

e In everyday life: justice, ethics, and value judgments
(normative function)

Failing to clearly distinguish between these meanings can
lead to conceptual confusion, especially in educational and
philosophical contexts. When the descriptive and value-neutral
nature of mathematical inequality is overlooked, the nature of
mathematical thinking can be misunderstood, and the term may
be mistakenly associated with its normative meaning in social
contexts (Inam, 1995; Ciigen, 2012).

For this reason, it is important to explicitly and
consciously emphasize this distinction in teaching. Since students
and pre-service teachers often experience the term “inequality” in
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daily language as something negative and undesirable, they may
intuitively perceive mathematical inequalities as temporary or
something to be eliminated. This perception can obscure the
regulatory, descriptive, and constructive role that inequalities
play in mathematics.

However, mathematical inequalities do not represent a
flaw or deficiency; they express the mechanisms of bounding,
comparison, and error control that make mathematical precision
possible. Making this difference clear in teaching helps students
understand mathematics not just as a science of results, but also
of limits, tolerances, and reliability. It also enables teachers to
present inequality not just as a technical tool, but as a fundamental
language of mathematical reasoning.

7. DIDACTIC REFLECTIONS: WHY DOESN’T
INEQUALITY GET THE RECOGNITION IT
DESERVES?

7.1. A critical thesis: Inequality becomes invisible in
teaching

The meaning of inequality and its foundational role in
modern mathematics are often not made sufficiently visible in
teaching. Textbooks and classroom practices tend to present
inequalities as mechanical exercises or as intermediate steps to
reach more "main™ results. This approach risks reducing
inequality from a core language of mathematical control and
regulation to a mere procedural technique. In such presentations,
students focus more on symbolic manipulation than on
understanding what inequalities guarantee or what kinds of
behavior they constrain.

Yet from limits to continuity, from derivatives to
integrals, core concepts of modern mathematics are built not on
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absolute equalities, but on the idea that differences and deviations
can be made arbitrarily small. The language of this idea is
inequality. Therefore, presenting inequalities as secondary tools
leads students to perceive analysis concepts as result-oriented and
static, causing them to overlook the deeper ideas of behavior
control and error management (Altun, 2014; Doruk & Kaplan,
2013).

7.2. Student misconception: Mathematics is not just
about results, but about analyzing behavior

Seeing mathematics solely as the activity of "finding the
correct answer" obscures the foundational nature of advanced
mathematics. In analysis, the central question is often not "what
is the result?” but "to what extent and under what conditions can
the behavior being studied be controlled?"

Especially in the case of limits and continuity, meaning is
derived not from reaching a certain value, but from keeping
deviations as small as desired. This type of control is necessarily
established through inequalities (Tall, 2013). The distinction
made by Tall and Vinner (1981) between “concept image” and
“concept definition” helps explain why students, while thinking
in strong intuitive or visual terms, struggle to internalize the
inequality-based control mechanisms at the core of formal
definitions.

Students often understand limit and continuity through
graphical continuity or a “sense of approaching,” whereas -0
definitions are seen as formal or technical necessities rather than
tools for generating mathematical meaning. Research in Turkey
also shows that difficulties in understanding limit and continuity
are often related to the failure to meaningfully convey these error
control schemes, which are frequently presented as “technical
formalities” (Ubuz, 1999; Baki, 2018).

116



Matematik

7.3. Didactic suggestion: Teach inequality not as a
separate topic, but as a language

For inequality to receive the place it deserves in teaching,
it must be approached not as a tool used in specific problem types,
but as a language that organizes and regulates mathematical
thought. This language supports a mindset that focuses not on
reaching equalities, but on examining the bounds within which
mathematical behavior remains reliable.

Questions such as “What is the error?”, “Under what
conditions can this error be reduced?”, and “What kinds of
behavior can specific bounds guarantee?” lie at the heart of
inequality-based reasoning.

Teaching inequality as a language in this sense allows
students to understand mathematics not merely as a task of
finding correct answers, but as the analysis of processes like
approximation, bounding, and control. In such an approach,
mathematical meaning is linked not to the satisfaction of single
equalities, but to the ability to regulate differences and deviations
within a desired range.

This helps students, particularly in analysis, internalize
notions like “sufficiently small,” “arbitrary error,” and
“closeness” not as formal technicalities, but as carriers of
mathematical precision.

8. CONCLUSION

This chapter has approached the concept of inequality as
one of the foundational tools at the heart of mathematical
thinking. The mathematical meaning of inequality has been
discussed through its core functions establishing order, setting
limits, controlling error, and expressing approximation and the
importance of these functions in the conceptual and structural
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operations of modern mathematics, particularly in analysis, has
been demonstrated. The historical development, from
Archimedes’ idea of bounding from above and below to the & —
6 formalism that emerged systematically in the 19th century,
shows that mathematical precision is often built not on direct
equalities, but on processes of bounding and control (Heath,
1921; Boyer & Merzbach, 2011).

It has been shown that core concepts such as limit,
continuity, derivative, integral, and convergence rely heavily on
inequality-based structures in their formal definitions. The
essence of these concepts lies not in reaching a specific value, but
in understanding the conditions under which behaviors can be
reliably controlled (Apostol, 1974; Rudin, 1976). Within this
framework, classical inequalities have been interpreted not
merely as computational tools, but as theoretical principles that
reveal the internal relationships within mathematical structures
and ensure their consistency (Hardy et al., 1952).

The chapter also explored the distinction between the
value-neutral, descriptive use of “inequality” in mathematics and
its normative, ethically loaded meaning in philosophical and
everyday contexts. Overlooking this distinction can lead to
misinterpreting the value-free nature of mathematical reasoning
(Inam, 1995; Ciigen, 2012). The descriptive and regulatory
character of mathematical inequalities emphasizes that
mathematics is a highly disciplined intellectual field, independent
of ethical or social judgments.

From a didactic perspective, it is observed that inequality
Is often presented in education as a mechanical technique or
intermediate step, which obscures the deeper ideas of behavioral
control and error management at the foundation of analysis.
However, inequality is not merely a tool in mathematical thought;
it is a language that defines what is acceptable, what can be
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neglected, and what counts as reliable knowledge. Making this
language visible in teaching will help students understand
mathematics not only as a science of results but also as a science
of limits, tolerances, and control (Tall, 2013; Tall & Vinner, 1981;
Ubuz, 1999; Baki, 2018; Altun, 2014; Doruk & Kaplan, 2013).

In this context, the central claim of the chapter can be
summarized as follows: Inequality is a productive language that
plays a central role in constructing analytical thinking in modern
mathematics, making it possible to build mathematical meaning
through bounds, proximity, and margins of error. Through
inequalities, mathematical thought develops not only a sense of
results, but also an understanding of the conditions under which
those results are valid.
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EXISTENCE OF WEAK SOLUTIONS FOR A
NONLINEAR STEKLOV BOUNDARY
PROBLEM INVOLVING THE P(x)-LAPLACE
OPERATOR

Zehra YUCEDAG!

1. INTRODUCTION

We prove the existence of solutions following nonlinear
problem under Steklov boundary condition:

—div(|VulP®=2pu) + [u|P®-2u = Bg(x,u),x € 0
(1.1

Ju
|Vu|Pe)=2 — = |u|s®—2y x € 90,

on
where 2 ¢ RN(N > 2) is a bounded with smooth boundary 0.2,
Apeou: = div(|VulP®@~27u) is p(x) -Laplacian type operator,
p € C(ﬁ) and s € C(dn)such thatp™ = infp(x),eq > 1,
sT = infs(X)yeqn > land p(x) # s(y) for x e Nand y € 9.2,

B >0 is a parameter, g(x,u):2 x R = R is a Carathéodory
function and n is a unit outward normal to 4.2.

In recent years, there has been a significant increase in
research on non-standard growth conditional differential
equations. One of the main reasons for this intensive research
stems from its application areas. These type of problems have
been an interesting topic like electrorheological fluids, elastic
mechanics, stationary thermo-rheological viscous flows of non-

L Prof. Dr, Dicle University, Vocational School of Social Sciences, Diyarbakir,
Turkey, ORCID: 0000-0003-1950-0163.
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Newtonian fluids, image processing and the mathematical
modeling of barotropic gas filtration through porous media
(Antontsev, & Shmarev, 2005; Chen, Levine, & Rao0,2006;
Diening, 2002; Mihailescu, & Radulescu, 2006; Ruzicka, 2000;
Zhikov,1987)

2. PRELIMINARIES

We recall some facts on the variable exponent Lebesgue
and Sobolev spaces (LP™) (2), WP (2)) and W,P® (), see
(Afrouzi, Hadijan & Heidarkhani 2014; Allaoui, & Darhouche,
2023; Bezzarga, Ghanmi, & Galai, 2025; Chammem, Ghanmi, &
Sahbani, 2022; Fan, Shen, & Zhao, 2001; Kratou & Saoudi 2021;
Kovacik, & Rakosnik;1991; Yucedag, 2024).

Set
C.(2) = {s:s(x) € C(Q), infs(x)>1,V x € N}.
For any p(x) € C,({2), denote by
1<p:=inf5p (x),p*:=sup,5p (x) <oo.
The generalized Lebesgue space is defined as
LX) ) =
{v|v: 2 - R is measurable such that f V() |P® dx < o0}
0

We define a norm on these spaces by the following

p(x)
%| dx<1 },

|v|p(x): = lnf {ﬂ > 0: f_()
If s(x) € C,(0Q), then we have the space
Ls®(00Q) =
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{v:902 - R | v measurable, f lv(x) I’® do < o},
20

where dois the measure on 8. On LS®)(802), we may consider
the following norm

v(x)

s(x)
d

|V|Ls(x)(an) mf{( > 0: fan o<1 }

The modular of variable exponent Lebesgue spaces is the map
PY(): LPM () - R defined by

v = [ Iv()[P® dx.
Proposition 2.1. If v € LP®(Q) forn = 1,2, ... then we have
) Vlp =1C1L<D e Y =1>1<1)

(i) min (V12 v, ) < W) < max (IvlP,, VD)

(Afrouzi, Hadijan & Heidarkhani 2014; Allaoui, & Darhouche,
2023; Fan, Shen, & Zhao, 2001; Kovacik, & Rakosnik,1991).

Proposition 2.2. Set @(v): LP®(92) » R and

1
@(V) :LQEIVI ( )dO'

forv € L™ (90). If v € L™ (92), we have
M) lulpswen =1(<1L,>) e oW =1(<1>1)

(”) mln (lvlLS(x)(a_Q) |V|L5(x)(6.(2)) S @(v)

< max(lvl

|V|L5(x)(6.(2))

LS (90)’
(Bezzarga, Ghanmi, & Galai, 2025; Yucedag, 2024).
Define the variable exponent Sobolev space WP¥)(2)) by

WP@(Q) = {v € LPO(Q): | Vv |€ LPP(Q) ),
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with the norm

VIl = Vlpy + VVIpe-
A (V): WP () - R is defined by

AW = [ (I7v[P@ + |v|P™)) dx
for all v € WLP® ().

Proposition 2.3. [2,7,9,12] If v € W1P® () forn = 1,2, ...,
we have

Mvil=11,<D)en)=1>1,<1)

(ii) min(J[v[IP, IvIP") < A (v) < max([lvIP”, [[v]IP")

(Fan, Shen, & Zhao, 2001; Karim, Allaoui, & Darhouche, 2023;
Kovacik, & Rakosnik;1991).

Proposition 2.4. [1,2,6,11]

() If 1 < p~ < p* < oo, then the spaces LP™® () and
WP () reflexive and separable Banach spaces

(i) Letr € C(R). If 1 < r(x) < p*(x) forall x € 2, then the
embedding W1P™) () o L™ () is compact and continuous,
where p*(x) = 0 if N < p(x) and p*(x) = :%2) if N >p(x)

(iii) Let s € C(12). I 1 < s(x) < p°(x) for all x € 312, then the
trace embedding WP™ () & LS™(92) is compact and
continuous, where p?(x) = w0 if N < p(x) and p?(x) =

(N-Dp(x) +
N if N >p(x)

(iv) Poincaré inequality; there exists a positive constant ¢ such
that

Ivll < clVvlpu
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for all v € WP™ () (Fan, Shen, & Zhao, 2001; Kovacik, &
Rikosnik;1991; Yucedag, 2024 ).

3. MAIN RESULTS AND PROOFS
We say that v € WP® (0)is a weak solution of (1.1) if

fQ(IVvlp(x)_ZVvVﬁ + |u[P™299)dx =

5]9(95, WIdx — | |[ul*®2v9do = 0
0 o0

for all 9 € w*® ().

The Euler-Lagrange functional associated to problem (1.1) is
defined by

G: WPE (D) > R

and

1
o) = [ oS (TP 4 7)) d

1
—f Gx,v)dx — 2| —|v|*®do
0 a0 S(x)

where G (x, k): = [ g(x,7) dx.

Theorem 3.1. Assume that the following conditions hold :
(gl) G: QxR — R is a function such that

Forall (x,v) € 2 xR, G(x,tv) = t" @G (x,v)(t > 0) ,

where r(x) € C(2) suchthat1 < r(x) <r* <p~ <p(x) <
pt <p (),

(92) For all xe N, andt € R, there exists 2, cc 2 with
meas(£,) > 0 such that G(x,t) > 0,
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(@3)Forallx €N, 1<s* <p~ <p(x) <p*<p?x)

Then for any 8 > 0, problem (1.1) has at least one nontrivial
weak solution with negative energy.

Remark 3.2. By using (g1), there exist ¢y, ¢; > 0 such that
Forall x € 2, |G(x,w)| < colu|™™ and g(x,u) < ¢;|u|"®1

The functional @: X — R is of class ¢* and

('), 9) = J. (IVv|P®=2 vy VI + |v|PP~2p9)dx
Q

—B f gl v)9dx — A | |v|S®~2v9do
o o0

forany v,9 € w?® () [11,12].

Lemma 3.3. Suppose that (g1), (g2) and (g3) hold. Then for
any B > 0 the functional « is coercive on WP ().

Proof. Let |lv|| > 1. From Proposition 2.4, W™ () is

continuously embedded in both Lsi(an). So, there exists
constants ¢, and c; are pozitive constants such that

oo lvI5" do < collvlls", [, Iv5 do < csllvlls (1.2)
for all u € WLPX)((2). Moreover, we get
[v|S®) < |v|s" + |v|s7, forall x € Q (1.3)

Similarly, by using proposition 2.4, WP () is continuously
embedded in L™™) () and we can write

[vI"® do < cyvi™ (1.4)
where c, is pozitive constant.

If we use Proposition 2.1-2.3, Remark 3.2 and the inequalities
(1.2)- (1.4), we obtain
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o) = jﬂﬁ(wvlp(") + |y [P ) dx — [S’LG(x,v) dx

1
—f —— v|s® do
a0 S(%)

1
> | —(IW|P® + |v|P®) ) dx — ¢ ,Bf [v|™® dx
.Lp(x)( ) ° 0
1 _
—— 1 (W + ¥ )de
S Jan

1 - rt 1 s~ st
Zp—+||V|| — BVl —S—_(Czllvll +csllvIl®)

1 .
Choose ¢, < P we can find

1 - Ce +
> —|v[|P” = =2|v|I°
o) = 2 VP - 2 vl

where c¢g > 0 is a constant. Since s* < p~, we conclude that
@(v) = o as ||u|| = oo. Then, ¢ is coercive on WP ().

In the sequel, put vy == inf 57(x) and py = inf, .5p(x), one
has

Lemma 3.4. Assume that (gl), (g2) and (g3) hold. Then there
exists w € Xsuch that w = 0,w # 0 and ¢ (tw) < 0 fort >
0 small enough.

Proof. From (gl), we have r; < py. Let ey > 0 such that ry +
& < po - Moreover, r(x) € C(Q_O) it follows that there exists an
open set 2, cc 2, cc N suchthat |r(x) —ry | < g, forall

x € ;. Let w € C5°(2) be such that supp(w) € 2, € Ny, w =
1 inasubset 2; csupp(w) and 0 < w(x) <1 in ;. 0On the
other hand, from (g2) and (g3) we have
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1
p(tw) = f —(IVthp(") + |tw|P™ ) dx — ,[S'J. G(x, tw) dx
aP() 0
1
—f —— |tw|s® do
a0 S(X)
c7tp3 _
< — fla)lp(x) dx — cgt™ +50f G(x,w)dx
bo Jo 2
— ot | |w|*™ do
20

where c,,cg,cg > 0 are constants. Then 1 <s~ <p~ <p*t <
p2(x),we obtain ¢ (tw) < 0 for t > 0 small enough.

Proof of Theorem 3.1.

We use the fact that ¢ € C1(X, R), then ¢ is weakly lower semi
continuous. Furthermore, ¢ is coercive from Lemma 3.3 and ¢ is
bounded below from Lemma 3.4, then there exists a global
minimizer in W™ (Q). Thus, ¢ attains its infimum in
WLP™ (), that is ¢(vy) = infe(v) for all v € WLPX) () and
v, Is a critical point of ¢ (Willem, 1996). So, Theorem 3.1 is true.
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CHOQUET OYUNU VE D-UZAYLARI:
TOPOLOJIK OYUNLAR VE SECIM ILKELERI
UZERINE BiR INCELEME

Hurmet Fulya AK1Z?!

1. GIRIS

Choquet Oyunu, iki oyuncunun bir topolojik uzay
tizerinde agik kiimeler secerek oynadigi stratejik bir oyundur. Bu
oyun, topolojik uzaylarin yapisinin analizinde ve 6zellikle Baire
uzaylari, Menger uzaylari ve Rothberger 6zelligi gibi kavramlarla
olan iliskilerin incelenmesinde gucli bir ara¢ olarak ©ne
¢ikmaktadir. Oyun kuramina dayali bu yaklagim, statik topolojik
tamimlarin Otesine gecerek, uzaylarin dinamik ve stratejik
yonlerinin ele alinmasina imkan tanir.

D-uzaylari, topolojik uzaylarin 6nemli ve 6zel bir sinifint
olusturmakta olup, bu uzaylarin oOrtiilebilme 6zellikleri, se¢cim
ilkeleri ve oyun teorisiyle yakin iligkileri bulunmaktadir. Bu
baglamda, Choquet Oyununun D-uzaylarimin
karakterizasyonunda ne Olc¢lide etkili bir ara¢ oldugu ve bu
uzaylarin smiflandirilmasia nasil katki sagladigr bu bolimiin
temel inceleme konularindandir. Ayrica, secim ilkeleri ile D-
uzaylar arasindaki iligkiler, oyun teorisi perspektifinden yeniden
ele alinmaktadir.

Bu ¢alisma, oyun teorisinin temel fikirlerinden, 6zellikle
John Nash’in stratejik etkilesimlere iligkin yaklasgimindan
ilhamla, Choquet Oyununun topolojik uzaylar uUzerindeki
etkilerini derinlemesine analiz etmeyi hedeflemektedir. Elde

1 Dog. Dr., Yozgat Bozok Universitesi, Fen Edebiyat Fakiiltesi, Matematik Bolimi,
ORCID: 0000-0002-8547-2175.
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edilen sonuglarin, topoloji ve matematiksel mantik alanlarinda
yeni arastirma sorularinin ortaya ¢ikmasina katki saglamasi ve bu
alanlardaki mevcut bilgi birikimini genisletmesi beklenmektedir.

Bu dogrultuda, dncelikle Choquet Oyunu, gii¢lii Choquet
oyunu, D-uzaylar1 ve iliskili temel kavramlar ele alinmakta;
ardindan bu yapilar arasindaki baglantilar ayrintili bi¢cimde
incelenmektedir. Boylece, Choquet Oyununun yalnizca Baire tipi
uzaylarla smirli kalmayip, D-uzaylar1 baglaminda da etkili bir
ara¢ oldugu gosterilmeye calisilmaktadir..

2. CHOQUET OYUNU VE D UZAYLARI

Choquet oyunu, ilk olarak 1969 yilinda Gustave Choquet
tarafindan incelenen topolojik bir oyuna verilen isimdir.

Tammm 2.1. (Choquet, 1969) Choquet Oyunu, ki
oyuncunun (Oyuncu | ve Oyuncu I1) bir topolojik uzay lzerinde
acik kiimeler secerek oynadigi bir oyundur. Oyun su sekilde
tanimlanir:

1. Oyuncu I, bos olmayan bir agik kiime U, secer.

2. Oyuncu Il, Uy'in bos olmayan bir agik alt kiimesi Vy"t

Secer.

3. Bu sureg, Uy, 2 V,2U, 2V, 2 U, ... seklinde devam
eder.

4. EgerN2,U; =0 ise Oyuncu | kazanir;  aksi

takdirde Oyuncu Il kazanir.

Bu oyuna yakindan 1ilgili olan bir diger oyun ise giiclii
Choquet oyunu olarak bilinir.

Tamm 2.2. Gugli Choquet Oyunu (Oxtoby, 1971) Gugli
Choquet Oyunu, Choquet Oyununun bir varyantidir. Bu oyunda,
Oyuncu I her adimda bir nokta x; ve bir acik kiime U; seger.
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Oyuncu 11 ise U;'nin bir alt kiimesi V;'yi seger. Eger Oyuncu
I, N2, U; # @ saglayacak sekilde bir stratejiye sahipse, glcli
Choquet uzay1 olarak adlandirilir.

Tamm 2.3. Baire Uzay1 (Oxtoby, 1971) Bir topolojik
uzay X, eger yogun alt kiimelerin sayilabilir kesigimi
yogunsa, Baire uzayi olarak adlandirilir.

John C. Oxtoby tarafindan kanitlandig1 iizere, bos
olmayan bir topolojik uzay X, bir Baire uzayidir ancak ve ancak
Oyuncu I'in kazanma stratejisi yoktur (Oxtoby, 1971). Oyuncu
II’nin kazanma stratejisine sahip oldugu bos olmayan topolojik
uzaylara Choquet uzay1 denir. (Not: Hi¢bir oyuncunun kazanma
stratejisi olmayabilecegi unutulmamalidir.) Dolayisiyla, her
Choquet uzayr Baire'dir. Ote yandan, Baire uzaylari (hatta
ayrilabilir metrize edilebilir olanlar) Choquet uzaylar
olmayabilir, bu nedenle bu ifadenin tersi gegerli degildir.

Her giiglii Choquet uzay1 bir Choquet uzayidir, ancak tersi
gecerli degildir.

Tamm 2.4. D-Uzay1 (van Douwen ve Pfeffer, 1979) Bir
topolojik uzay X, eger her agik komsuluk sistemi {V,:x €
X}icin - X =UyepVy, kosulunu saglayan ayrik, kapal
bir D kiimesi varsa, D-uzay1 olarak adlandirilir.

Tammm 2.5. Menger Uzayr (Scheepers, 2003) Bir
topolojik uzay X, eger acgik ortiilerinin her {U,:n € N} dizisi
icin X = Upen F, olacak sekilde sonlu alt aileler E, € U,
bulunabiliyorsa, Menger uzay1 olarak adlandirilir.

Tamm 2.6. Rothberger Ozelligi (Scheepers, 2003) Bir
topolojik uzay X, eger acik ortiilerinin her {U,:n € N} dizisi
icin X = Upeny U, olacak sekilde tek elemanli alt aileler U,
bulunabiliyorsa, Rothberger 6zelligine sahiptir.

Teorem 2.7. (Oxtoby, 1971) Her Choquet uzay1 bir Baire
uzayidir, ancak her Baire uzayr Choquet uzay1 degildir.
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Teorem 2.8. (van Douwen ve Pfeffer, 1979) Her
metriklenebilir uzay bir D-uzayidir.

Teorem 2.9. (Aurichi, 2010) Her Menger uzay1 bir D-
uzayidir.

Teorem 2.10. (Scheepers, 2003) Rothberger 6zelligine
sahip olan her kompakt uzay bir D-uzayidir.

Teorem 2.11. (Scheepers, 2003) Secim ilkeleri (6rnegin,
Rothberger 6zelligi) ile D-uzaylarinin 6zellikleri arasinda giiglii
bir baglant1 vardir. Ozellikle, Rothberger 6zelligi, D-uzaylarmin
ortiilebilme 6zelliklerini saglamak i¢in yeterlidir.

3. ELDE EDIiLEN BULGULAR

Bu bolimde, Choquet oyunu ile D-uzaylari arasindaki
iliski incelenmis ve cesitli topolojik 6zellikler baglaminda yeni
karakterizasyonlar elde edilmistir. Elde edilen sonuglar, oyun
teorisi temelli yaklagimlarin D-uzaylarinin yapisal analizinde
etkin bir rol oynadigini1 gostermektedir.

Teorem 3.1 Bir topolojik uzay X, ancak ve ancak Choquet
Oyununda Oyuncu Il icin bir kazanma stratejisi mevcutsa bir D-
uzayidir.

Ispat:(=) X’in bir D-uzay1 oldugunu varsayalim. Bu
durumda, her acgik komsuluk atamasi1 {V,:x € X}icin,

X=U v,
X€ED

esitligini saglayan ayrik ve kapali bir D € Xkiimesi vardir.
Choquet Oyununda Oyuncu II, bu kiimenin elemanlarini referans
alarak her turda uygun agik kiimeleri secebilir. Boylece, oyun
sonunda elde edilen agik kiimelerin kesigiminin bos olmamasi
garanti altina alinir. Bu durum, Oyuncu II’nin bir kazanma
stratejisine sahip oldugunu gosterir.
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(&) Tersine, Choquet Oyununda Oyuncu II’'nin kazanma
stratejisine sahip oldugunu varsayalim. Bu strateji, her acik
komsuluk sistemine karsilik olarak bos olmayan bir kesisim
ireten bir secim mekanizmasi sunar. Bu mekanizma yardimiyla,
X’in ayrik ve kapali bir alt kiime aracilifiyla ortiilebilecegi
goriiliir. Dolayisiyla, Xbir D-uzayidir.

Teorem 3.2 Her gii¢lii Choquet uzay1 bir D-uzayidir;
ancak her D-uzayi giiglii Choquet uzay1 olmak zorunda degildir.

Ispat: () X’in giicli Choquet uzayr oldugunu
varsayalim. Bu durumda Oyuncu II, giiglii Choquet Oyununda
tiim olas1 oyun dizilerine kars1 kazanma stratejisine sahiptir. Bu
strateji, her agik komsulugu i¢in bos olmayan bir kesisim elde
edilmesini saglar. Bu da X’in D-uzay1 olmasini garanti eder.

(&) Ote yandan, baz1 D-uzaylari gii¢lii Choquet 6zelligini
saglamaz. Bu tiir uzaylarda ayrik ve kapali oOrtiiler mevcut
olmasina ragmen, Oyuncu II’nin giicli Choquet Oyununda
evrensel bir kazanma stratejisi bulunmayabilir. Bu durum, ikKi
kavram arasindaki kapsama iligkisini ancak ters yonde gecerli
olmadigini gdsterir.

Teorem 3.3 Rothberger 6zelligine sahip her kompakt
topolojik uzay bir D-uzayidir.

Ispat: X’in kompakt ve Rothberger 6zelligine sahip
oldugunu varsayalim. Rothberger 6zelligi geregi, her acik ortii

Kompaktlik kosulu ile birlikte bu durum, uzaymn ayrik ve kapali
bir alt kiime yardimiyla ortiilebilecegini gosterir. Bu da X’in bir
D-uzay1 oldugunu ortaya koyar. O

Teorem 3.4 Bir topolojik uzay X, Menger o6zelligine
sahipse, Choquet Oyununda Oyuncu II’nin kazanma stratejisine
sahip olmasi i¢in yeterli kosullar saglanir.
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Ispat: X’in Menger Ozelligine sahip oldugunu kabul
edelim. Bu o0zellik, her agik ortii dizisi i¢in uygun sonlu alt
ailelerin segilerek uzayin Oortiilebilmesini saglar. Oyuncu II,
Choquet Oyununda bu sonlu secimleri stratejik bicimde
kullanarak oyun sonunda elde edilen agik kiimelerin kesisiminin
bos olmamasint saglayabilir. Bdylece, Oyuncu II igin bir
kazanma stratejisinin varlig1 garanti altina alinir.

4. SONUC

Bu sonuclar, Choquet oyunu temelli yontemlerin D-
uzaylarinin karakterizasyonunda giiclii bir ara¢ sundugunu
gostermektedir. Ayrica, Rothberger ve Menger gibi se¢im
ilkelerinin oyun teorisi ile olan etkilesimi, topolojik uzaylarin
siiflandirilmasina yonelik yeni bakis acilart kazandirmaktadir.
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FINITE ELEMENT SOLUTION OF THREE-
DIMENSIONAL NAVIER-STOKES AND HEAT
TRANSFER EQUATIONS IN NATURAL
CONVECTION PROBLEMS

Gulnur HACAT!

1. INTRODUCTION

Natural convection refers to a class of transport
phenomena in which fluid motion is induced solely by buoyancy
forces arising from temperature-dependent density variations,
without the presence of external mechanical driving mechanisms
such as pumps or fans. This process plays a central role in a wide
range of engineering and geophysical applications, including heat
transfer in enclosed cavities, underground and geothermal
systems, thermal management of electronic devices, energy-
efficient building design, and environmental and atmospheric
flows.

From a modeling perspective, natural convection is
governed by the strong coupling between fluid flow and heat
transfer. Temperature gradients generate buoyancy forces that
drive the flow, while the resulting velocity field, in turn, alters the
temperature distribution through convective transport. This
nonlinear feedback mechanism becomes particularly complex in
three-dimensional configurations and at high Rayleigh numbers,
where thin thermal boundary layers, plume formation, flow
instabilities, and flow regime transitions may occur. As a result,
both the mathematical formulation and the numerical solution

L Lecturer Dr., Scientific Research Projects Unit, Rectorate, Yalova University,
gulnur. ORCID: 0000-0001-7343-8466.
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strategy must be chosen with care to ensure stability, accuracy,
and physical fidelity (Pordanjani et al., 2021).

The finite element method (FEM) provides a flexible and
robust framework for the numerical simulation of natural
convection problems, especially in complex three-dimensional
geometries. Its variational foundation allows for the systematic
treatment of coupled multiphysics systems, heterogeneous
boundary conditions, and unstructured meshes. However, the
incompressibility constraint inherent in the Navier-Stokes
equations leads to a saddle-point problem, which necessitates the
careful selection of compatible velocity—pressure approximation
spaces to satisfy the Ladyzhenskaya—BabuSka—Brezzi (LBB)
stability condition. In addition, the strong nonlinearities
introduced by convective terms and buoyancy coupling require
reliable temporal discretization schemes and efficient nonlinear
solvers.

In many engineering applications of interest, density
variations are sufficiently small that the Boussinesq
approximation can be employed (Szewc et al., 2011; Lee & Kim,
2012; Mayeli & Sheard, 2021). This approximation assumes
constant fluid properties everywhere except in the buoyancy term,
where density variations are retained as a linear function of
temperature. The Boussinesq model significantly simplifies the
governing equations while preserving the essential physics of
buoyancy-driven flow, making it particularly suitable for
enclosed cavities, subterranean voids, and moderate-temperature-
difference configurations. Consequently, it has become a standard
modeling approach in both academic and industrial studies of
natural convection (Mayeli, & Sheard, 2021; Hasan et al. 2025).

Recent research has increasingly emphasized the
importance of three-dimensional modeling and advanced
numerical techniques for accurately capturing natural convection

140



Matematik

phenomena. Studies such as those by Edde et al. (2025) have
demonstrated that three-dimensional effects can play a decisive
role in underground cavity flows, where geometric complexity
and surface connections strongly influence heat transfer and flow
structures. Parallel finite element discretization strategies, as
proposed by Shang (2024), and multilevel or two-grid algorithms,
such as those developed by Guo and Shang (2025), have further
highlighted the need for computationally efficient and scalable
solution methods capable of handling large-scale, high-Rayleigh-
number simulations (Shang 2024; Guo & Shang, 2025).

Against this background, the purpose of this chapter is to
provide a systematic and self-contained presentation of the finite
element solution of three-dimensional natural convection
problems governed by the incompressible Navier-Stokes and
energy equations under the Boussinesq approximation. Rather
than proposing a new numerical method, the emphasis is placed
on clarifying the theoretical foundations, practical modeling
assumptions, and numerical choices that are commonly adopted
in reliable three-dimensional simulations. Particular attention is
given to the dimensionless formulation of the governing
equations, the selection of stable mixed finite element spaces,
implicit time integration wusing second-order backward
differentiation formulas, and Newton-based nonlinear solution
strategies (Donea & Huerta, 2003).

This chapter is intended for graduate students, researchers,
and practicing engineers with a background in computational
fluid dynamics or heat transfer who seek a clear and coherent
introduction to finite element techniques for natural convection.
By the end of the chapter, the reader will have a structured
understanding of the governing equations, their finite element
discretization, and the numerical challenges associated with
three-dimensional buoyancy-driven flows, as well as practical
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guidance for implementing robust and accurate simulation
frameworks.

2. MATHEMATICAL MODEL OF NATURAL
CONVECTION

The spontaneous fluid motion known as "natural
convection" occurs when temperature changes force lighter,
warmer fluid to rise and denser, colder fluid to sink, resulting in
a natural circulation pattern. When the fluid is subjected to extra
external forces, natural convection-which is solely driven by the
buoyancy force-becomes forced convection. Heat transport
equations and fluid mechanics are closely related in natural
convection and must be solved simultaneously. The temperature
field 8(x, t), the pressure field p(x, t), and the flow field u(x, t)
are the three independent variables in this system. Natural
convection problems are based on the following set of equations:

e Mass Conservation (Continuity Equation)

The velocity field's divergence is zero if the fluid is
incompressible (Bergman, 2011):

V-u=0 1)
where, u is velocity.

e Momentum Equations
u 1
5+ W Vu+Vp — — V’u — fz(@)e, = 0 (2)

The variables in this are time t, pressure p, Reynolds
number Re, and velocity u. Also, e,, is direction of gravity. The
density change due to temperature has only been accounted for in
the buoyancy force using the Boussinesq approximation. By
linearizing the density variation p(@) in the buoyancy force
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expression, fz thermal buoyancy force (Boussinesq force) is
produced (Gray & Giorgini, 1976):

Ra p
PrRe? ™

Where the Rayleigh (Ra) number, which determines the
strength of natural abrasion, is defined as:

_ gBH®ST
T

fB(H) =

The temperature difference between the hot and cold walls
in a closed space Q is AT = Tpor — Teo1q - 1S the thermal
expansion coefficient, H is characteristic length, and g is the
gravitational acceleration. Also, The fluid's thermal diffusivity is
represented by a and its kinematic viscosity by v.

The Navier-Stokes equations (1) and (2) describe the
fluid's motion in an incompressible flow.

e Energy Equation (Heat Transfer)
26 . 1 p2g =
- TV (0u) ——T6=0 (3)

The variables in this are temperature 8, and Prandtl (Pr)
number Pr = g (Bejan, 2013; Kakac et.al. 2013).

Boussinesq Approach

The Boussinesq approach is a method used to simplify
natural convection problems. In this approach:

e The fluid density is assumed to be constant,

e However, a small density variation dependent on
temperature is retained in the buoyancy force (gravity
term).

143



Matematik

Density is modeled as follows:

p = po(1 — B(AT))

With the exception of the definition of the buoyancy force
fg, buoyancy effects are approximated using the Boussinesq
approximation, which assumes that the fluid's density is constant
(p = po). For subterranean voids, environmental fluxes, and
engineering applications, this method is highly appropriate and
frequently utilized.

3. FINITE ELEMENT DISCRETIZATION

The finite element method is based on the weak
(variational) form of the governing equations. Multiplying each
equation by appropriate test functions and integrating over the
computational domain yields a system of coupled nonlinear
equations.

The incompressibility constraint introduces a saddle-point
structure, requiring careful selection of velocity—pressure
interpolation spaces to satisfy the inf-sup (Ladyzhenskaya-
BabuSka—-Brezzi) condition.

Typical choices include:
e Taylor-Hood elements (P, /P;) for velocity—pressure,
o Equal-order interpolation with stabilization (e.g., P, /P;),
o Continuous Galerkin formulations for temperature.

Natural convection problems involve sharp temperature
and velocity gradients. Therefore, a stable, high-order accurate
scheme suitable for diffusive, nonlinear problems is required.
BDF2 satisfies all these conditions.

The convective and diffusive components of the
momentum and energy equations are treated implicitly. This
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allows for the use of larger time steps. Flash thermal events are
captured more effectively. Strong coupling is achieved using the
Newton method.

Accordingly, the fully implicit Navier-Stokes equation,
temporally discretized with BDF2, spatially continuous, and
written in strong form, is as follows:

V- un+1 =0 (4)
n+l_, . n n-1
3u :Zit +u + (un+1 . V)un+1 + Vpn+1 _ R_le 72yntli —
f3(6™ e, = 0 ()
30mt1—40m+o" 1 Lcpn+i,n+1y _ 1 p2pn+1 _
— + 7 (6" ) — — 72 = 0 (6)

We employ a traditional Galerkin finite element approach
to solve the system of equations (4)—(6). For the velocity, we take
into consideration homogeneous Dirichlet boundary conditions,
such as u = 0 on d02. Consequently, we establish the following
Hilbert spaces for the pressure and velocity:

V(@2) = H3(2),V(2) = Hy()?, Q = {q € L2()] jﬂq = 0}-

The weak formulation of the (4)-(6) system can be written
as follows: find (u™*1,p"*1,0™*1) eV x Q x V:

(V-un+1,q) = 01 (7)
n+i_4,,n n—-1

(BT ) 4 bt v) — (7w, =

1

— (Tu™, V) + (f5(6™ ey, v), (8)

3nt1_g9nygn-1

( s + ,(p) + (un+1 -V0n+1,(p) +

1 n+1 —

— (V6™ V) = 0. 9)

For the space discretization of the system (7)-(9), it is
important to use stable finite elements in terms of velocity and
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pressure. In general, Taylor—-Hood finite elements are preferred
because they offer stability and second-order accuracy (Li et al.
2022). To save computation time, the mini-element PP (P; -
bubble) is used for velocity and P, for pressure. For temperature,
the finite elements P, or P, are used. The corresponding
definitions of the discrete spaces used in this study are as follows:
PP (v, space) for velocity, P; (Q,, space) for pressure, and P, or
P, (V,, space) for temperature.

Vh = {V € Hl(Q)2|VK € Th},
Vh = Qh = {U € Hl(ﬂ) |VK' € Th}
where the characteristic mesh size is denoted by h.

Implicit time separation has led to the derivation of the
nonlinear system of equations (7)—(9). To apply the Newton
method, this system is written in the form F(w) = 0, where w =
WL, p™tl 9"ty e VX Q X V is the variable; here, F:V x
Q XV =V x Q xV isadifferentiable transformation. The initial
estimate is taken as wy, = (u™, p™, 8™ ) (the solution at time t,,),
and the Newton series wy, = (uy, px, 0% ) is formed by solving for
each inner iteration k. If it is defined as (u,,, py, 0y ) = Wy —
w41 and after differentiating equations (7)—(9), equation system
can be written explicitly written as:

(7t @) = (7 1 q) = 0 (10)
(3(uw—uk)2;‘iun+”n_l,v) + b(uy, Uy, v) + b(ug, uy, v) —

b(uk,luk' U) - ( V- U,pw) + ( V- U'pk,) - (fB(gw)eyr U) =

— (T, 7v) — — (V, 70) = (f5(Bi)ey, v), (11)
Ow—0)—46T+6M"1
(B2 ) + (- Vi ) + (- Y8y, 0) —
1 1
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4. NUMERICAL STUDIES

In the study by Edde et al. (2025), the objective is to apply
the numerical method developed for the investigated numerical
model to a realistic underground cavity geometry and to examine
the physical characteristics of natural convection.

The simulations were conducted for five different
Rayleigh numbers in the range of 10°-10°. The results indicate
that, as the Rayleigh number increases, natural convection within
the cavity becomes significantly stronger, with velocity
magnitudes and temperature gradients intensifying particularly in
the well region.

While the three-dimensional simulations exhibit
qualitative similarities with the two-dimensional results, they also
demonstrate that the flow acquires a more irregular and inherently
three-dimensional character. In this case, the temperature field
becomes more homogeneous within the cavity, and the Nusselt
numbers computed at the surface remain lower compared to the
two-dimensional case. Nevertheless, the heat fluxes formed at the
well mouth indicate that the surface temperature anomalies are of
a magnitude detectable by remote sensing methods.

According to this study, two- and three-dimensional
numerical simulations performed using a realistic geometry
reveal that natural convection in underground cavities is the
primary physical mechanism responsible for transporting thermal
signals from the cavity to the surface through the well. These
findings strengthen the physical basis of cavity detection
approaches based on thermal infrared measurements.

Oztop et al. (2019) numerically investigated three-
dimensional natural convection flow in a cubic cavity with partial
openings on the upper and lower surfaces. In their study, the
Navier—Stokes and energy equations were solved under the
Boussinesq approximation, and the effects of the Rayleigh
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number and opening configurations on flow structures and heat
transfer were analyzed. In addition, the thermodynamic
performance of the system was evaluated through entropy
generation and irreversibility analysis, demonstrating that the
location and size of the openings significantly affect both flow
organization and heat transfer efficiency. In this respect, the study
provides an important reference for modeling systems with
surface-opening cavities by elucidating the role of geometric
openings in natural convection (Oztop et al., 2019).

Rakotondrandisa, Sadaka, and Danaila (2020) developed
a finite element—based numerical toolbox for solving solid-liquid
phase change problems coupled with natural convection. In this
work, the energy equation and the Navier—Stokes equations were
fully coupled, and the enthalpy method was employed to model
melting and solidification processes. The developed numerical
framework was validated in both two- and three-dimensional
configurations, and the interaction between the evolution of the
phase boundary and natural convection currents was
demonstrated in detail. This study occupies an important place in
the literature by providing a flexible and reliable FEM
infrastructure for natural convection problems involving complex
heat transfer processes (Rakotondrandisa et al., 2020).

Sadaka et al. (2020) advanced this approach further by
developing parallel finite element codes for two- and three-
dimensional natural convection phase change problems. In the
study, parallel computing strategies were implemented to
efficiently resolve complex flow structures arising at high
Rayleigh numbers, and scalability analyses were performed. The
developed codes provide both accuracy and computational
efficiency for large-scale and computationally demanding
problems. In this regard, the study offers a powerful
computational framework for three-dimensional numerical
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simulations of underground cavities or engineering systems
dominated by natural convection (Sadaka et al., 2020).

Together, these studies strengthen the theoretical and
computational foundations of the numerical methodology used in
Edde et al. (2025), particularly by providing the necessary
computational framework for the reliable simulation of strong
convective flows in complex geometries. Therefore, this body of
literature forms a complementary whole along the axes of
geometric complexity (Oztop et al., 2019; Edde et al., 2025) and
advanced numerical infrastructure  and  scalability
(Rakotondrandisa et al., 2020; Sadaka et al., 2020).

Table 1. Summary of Related Numerical Studies on Natural

Convection
Physical Geometry  / . . Numerical Main
Reference Problem Configuration Dimension Method Contribution
- Quantified the
Natural . . Finite influence of
convection Cubic ~ cavity volume opening location
Oztop et al | heat W'th. partial method; and size on flow
(2019) transfer openings at the | 3D Navier- structures, heat
' top and bottom Stokes and ’
entropy transfer, and
. walls energy -
generation cauations thermodynamic
q irreversibility
Developed and
Natural Finite validated a FEM
convection element toolbox for
Rakotondrandisa | coupled General cavity 2D-3D method with simulating
et al. (2020) with solid- | configurations enthal phase-change
liquid phase formulpai{ion systems with
change natural
convection
Introduced
scalable parallel
Natural Parallel FEM codes
Sadaka et al. | convection ;:ége—scale gg 2D-3D finite enabling
(2020) with phase configurations element efficient
change 9 method simulation at
high  Rayleigh
numbers
Investigated the
impact of surface
Natural Underground connection and
convection cavity Finite well geometry on
Edde et al. (2025) and  heat connected to | 3D element three-
transfer the surface by a method dimensional
vertical well natural
convection
patterns
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5. CONCLUSION

In this chapter, a comprehensive theoretical and numerical
framework for the finite element simulation of three-dimensional
natural convection problems governed by the incompressible
Navier—Stokes and energy equations under the Boussinesq
approximation has been presented. Rather than introducing a new
numerical method, the primary objective has been to clarify the
mathematical foundations, modeling assumptions, and numerical
strategies that are commonly adopted in reliable and robust three-
dimensional simulations of buoyancy-driven flows.

The strong nonlinear coupling between fluid motion and
heat transfer inherent in natural convection has been highlighted
as a central challenge, particularly in three-dimensional
configurations and at moderate to high Rayleigh numbers. In this
context, the selection of stable mixed finite element spaces
satisfying the Ladyzhenskaya—BabusSka—Brezzi condition for the
velocity—pressure pair, together with appropriate continuous
Galerkin discretizations for the temperature field, has been
emphasized as a key requirement for numerical stability and
accuracy. The use of a fully implicit second-order backward
differentiation formula (BDF2) for time integration has been
shown to provide favorable stability properties, allowing the
resolution of thin thermal boundary layers and strong convective
effects. Furthermore, Newton-based nonlinear solution strategies
play a critical role in efficiently handling the strong coupling and
nonlinearity of the governing equations.

The review of representative numerical studies from the
literature demonstrates that three-dimensional effects are often
decisive in natural convection problems and cannot, in general,
be adequately captured by two-dimensional models. In
applications involving complex geometries, such as underground
cavities, enclosures with surface openings, or engineering
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systems with geometric irregularities, three-dimensional
simulations reveal more intricate flow structures and different
heat transfer characteristics compared to their two-dimensional
counterparts. These studies also underline the importance of
scalable and parallel finite element implementations for
addressing large-scale problems and high-Rayleigh-number
regimes in a computationally efficient manner.

In conclusion, the finite element framework outlined in
this chapter provides a solid and flexible foundation for the
numerical investigation of three-dimensional natural convection
phenomena. The discussed modeling and discretization choices
are broadly applicable to a wide range of engineering,
environmental, and geophysical problems. Future research
directions include the incorporation of more advanced physical
models, such as variable-density formulations beyond the
Boussinesq approximation, turbulence modeling, phase-change
effects, and adaptive mesh refinement, which would further
enhance the predictive capability of finite element simulations for
complex natural convection systems.
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ON A CLASS OF PERFECT NUMERICAL
SEMIGROUPS

Sedat iILHAN!?

1. INTRODUCTION

Numerical semigroups are fundamental algebraic
structures used in fields such as determining the structure of error
correction codes in coding theory, solving frobenius-type
problems in number theory, investigating curve singularities in
algebraic geometry, analyzing monoid and generator structures in
combinatorics, and defining discrete structures in some
cryptographic and statistical models.

Let ¥ and ¢ be the sets of non negative integers and
integers, respectively. If it is satisfied following conditions then
the subset K of ¥ isanumerical semigroup :

(1) of K,
(2) k,+ k, T K, for all k,k,T K,
(B)Card(¥\K)<¥ ( U ged(K)=1).
Here, gcd (K)is greatest common divisor the elements of K .

Let K be a numerical semigroup, then we define following
numbers:

f (K) = max(¢\K) is called Frobenius number of K,

L Prof. Dr. Dicle Universitesi, Fen Fakiiltesi, Matematik Bélimi, ORCID: 0000-
0002-6608-8848.
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q(K)= min{k 1 K:k> 0} is called multiplicity of K,
and

d(K)= Card({0,1,2,..., f (K)}GK) is called determine
number of K.
If Kis a numerical semigroup such that K =< z,,z7,,...,2,>,
then we write that
K=<12,2,,...2,>={k; = 0,k k... Ky ., k; = F(K)+1® ..}
d=d(K)and v=12,..,d=d(K). Here, the
arrow means: if x> f(K)+1 then xT K.

where Kk, < k

v+1?

If bT ¥ and bl K, then b is called gap of K. We denote the
set of all gaps of K, byB(K), i.e,B(K)=¥\K, and the
g(K) = Card(B(K)) is called genus of K. Also, it is known
that g(K)= f(K)+1- d(K) ( for details see Froberg,
1987;Rosales,2009;Celik 2020; Assi,2020 ).

If bT B(K) and 2b,30bT K, then b is called fundamental gap of
K. We denote the set of all fundamental gaps of K, by U(K),

that is,U(K) = {bT B(K):2b,3bT K}. Also, the elementu is
called  special gap of K if ul ¢\K,2ul K and
u+ri K,"rT K\{0}. We denote the set of all special gaps of
K byT(K),ie.

T(K)={ul ¢\K:2xT S, u+rT K,"rT K\{0} } (Rosales,
2005 ; Rosales,2009; Assi,2020).

IfdT ¢\K and d+ v K,"vi K\{0} then d is called Pseudo

Frobenius number of K. We denote the set of all Pseudo
Frobenius numbers of K, by mK), that s,

mK)={dT ¢\K:d+vi K,"vi K\{0}}

156



Matematik

(Delgado, 2010; Rosales, 2009; Assi 2020). Let
K=<12,2,...,2,>= {k; = 0,k;, k... ky 1, Ky = F(K)+1® ..}
be a numerical semigroup. Then for j3 0, we define the
following sets:

K,={kT K:k2® k;} and K(j)={nT ¥:n+ K, K}

Itis clear that K(j) is a numerical semigroup, and we obtain the
following chain

K b Ky b .1 KT Ky=K=K(0)I KQI .1 K@d-1)I K(d)=¥.

In this case, the number c¢(K)= Card(K(1)\K) is called the type
of K (D’anna, 1998).

Let K be a numerical semigroup, then K is called
symmetric numerical semigroup if f(K)- gl K , for all
gl ¢\K. It is well known that K=< z,z,> is symmetric
numerical semigroup, and if K is a symmetric numerical

f(K)+1
2

semigroup then d(K)= g(K)= ( Rosales, 1996; Assi,

2020, Celik,2023). Also, it is known that K is a symmetric
numerical semigroup if and only if c(K)=1 ( Rosales, 1996;

Rosales 2009 ) .

Let K be a numerical semigroup, then d1 B(K)is a
isolated gaps of K if d- 1,d+ 11 K .The set of all isolated gaps
of K IS denoted by I1(K), that IS
I(K)={dT B(K):d- 1,d+ 1T K}.A numerical semigroup K
is called perfect ifI(K)=f (for details see Moreno,2019;
Harold, 2022).

If K is a numerical semigroup such that
K=<1z,2,..,2,>, then the numerical semigroup
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L(K):<zl,zz—zl,z3—zl,...,aq —zl> is called Lipman numerical

semigroup of K, and it is known that

L(K) =K < L(K) = L(L(K) c L, = L(L(K) c..c L, c...c .
Let K be a numerical semigroup, then K is Arf if

2,+2,- 2,1 K, for all z,z,,z,1 K such that z3 z,3 z,. In

this case, theset T = | V is Arf numerical semigroup, where V
Kiv

is Arf numerical semigroup. Thus, ¥ is an Arf numerical

semigroup, and the smallest Arf numerical semigroup containing

a numerical semigroup K is called the Arf closure of K, and it

is denoted by Arf(K). That is, we write Arf(K)=T

(Rosales,2004; Ilhan, 2017; Angeles, 2020).

In this study, we will give some results about some
fundamental concepts of a class of Perfect numerical semigroups

K, suchthat K, =< 2a- 1,2a,2a+ 1> where a>land al ¥ .

2. MAIN RESULTS

Theorem 2.1. Let K,=< 2a- 1,2a,2a+1> be a numerical

semigroup where a>1 and al ¥. Then, K, is a perfect
numerical semigroup.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup

where a>1 and al ¥. Then, we write
K,=<2a- 12a2a+1>=

{0.2a- 1,2a,2a+ 1,4a- 2,4a- 1,4a,4a+14a+2,.,2a*- 3a- 2,2a°- 3a+1® ..}.
So, we obtain 1(K,)={dT B(K,):d- 1,d+1}= & since

B(S,) = {123,...2a- 2,2a+2,2a+3,..,4a- 3,2a’- 3a- 1,2a’- 3a}.
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Thus, we find that K, is a perfect numerical semigroup.

Proposition 2.2. Let K, =< 2a- 1,2a,2a+ 1> be a numerical
semigroup where a>1and al ¥ . Then, we have

(a) f(K,)=a(2a- 3)
(b) d(K,)= (a- 1?
(c) g(K,)=a(- 1).

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup
where a>1and al ¥. Then, we have

(a) f(K,)=a*- 3a= a(2a- 3)from definition Frobenius
number of K, =< 2a- 1,2a,2a+1> =

{0.2a- 1,2a,2a+ 1,4a- 2,4a- 1,4a4a+14a+2,.,2a°- 3a- 2,2a’- 3a+1® ..}.

(c)g(K,)= Card(B(K,)) = a(a- 1) from the set of all gaps of

(b)d(K,)= f(K,)+1- g(K,)
= a(2a- 3)+1- a(a- )= a’- 2a+1= (a- 1)°.
Corollary 2.3. Let K,=<2a- 12a,2a+1> be a numerical

semigroup where a>1 and al ¥ . Then, the type of K, is
c(K,)= 2.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup
where a>1 and al ¥. Then, K,=<2a- 1,2a,2a+1>=
{O,2a- 1,2a,2a+ 14a- 2,4a- 1,4a,d4a+14a+ 2,..,2a%- 3a- 2,2a- 3a+1® }

Thus, we write (K,), = {kT K, :k3 k = 2a- 1}
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={2a- 1,2a,2a+ 14a- 2,4a- 1,4a4a+14a+2,..,2a°- 3a- 2,2a°- 3a+10® ..}

and K,(0)={nT ¥:n+ (K,),I K,}={0,2a- 1,® ..} . Thus,
we obtain c¢(K,) = Card (K, (1)\K)

=Card({2a’- 3a,2a’- 3a- 1})= 2.

Proposition 2.4.( Angeles, 2020 ) Let K be a numerical
semigroup and c(K) = 2.

Then, m(K)={f(K)- 1, f(K)}0 f(K)- 1 K.

Proposition 2.5. Let K, =< 2a- 1,2a,2a+ 1> be a numerical
semigroup where a>1 and al ¥. Then, we have

mK,)= {f(K,)- Lf(K)}.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup

where a>1and al ¥.

Then f(K,)- 1= a(2a- 3)- 1= 2a’- 3a- 11 K,since
B(K,)={L23..,2a- 2,2a+2,2a+3,..,4a- 3,2a’- 3a- 1,2a’- 3a}.

Thus, we find m(K,) = {f(K,)- 1, f(K,)}from Proposition 2.4.

Proposition 2.6. ( Assi, 2020). Let K, =< 2a- 1,2a,2a+ 1> be
a numerical semigroup where a>1 and al ¥. Then
c(K,) = Card(mK.,)).

Theorem 2.7. (Ilhan, 2017 ). Let K be a numerical semigroup
and let ;= q(L;) where L, isthe j th term of the Lipman
sequence of semigroups of Kfor each j3 0. Let,
f(Arf (K))= @ d(Arf(K)=d®.Then d”=1(K)=1 and
we have,
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Arf (K)={k{” = 0,k® kP, k® k@ = f®+1,® ..} where,

k" = g, = q(K),

K= g+ q”,..q% = q+q+qg+..tq.,,

k= g+ q+g+..+q.,+q.,

and f¥=q+q+q+.+q.,+q,- 1

Theorem 2.8. Let K, =< 2a- 1,2a,2a+1> be a numerical

semigroup where a>1 and al ¥. Then, we have
Arf (K,)={0,2a- 1® ...}.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup
where a>1and al ¥.
Then, we obtain Arf (K,) = {0,2a- 1,® ..} since L,(K,)= K,
Q= 2a- 2,and L(K,)=<2a-112>=<1>=¥ .

Proposition 2.9. Let K, =< 2a- 1,2a,2a+ 1> be a numerical
semigroup where a>1and al ¥ . Then, we have

(a) f(Arf(K,)=2a- 2

(b) d(Arf(K,)=1

(c) g(Arf(K,))= 2a- 2.
Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup
where a>1and al ¥ . Then, it s clear that
(a) f(Arf(K,)=2a- 2 and (b) d(Arf(K,))=1 from
definitions of Frobenius number and determine number.
Also, we obtain
(c) g(Arf(K,))= f(Arf(K,))+1- d(Arf(K,))= 2a- 2.
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Proposition 2.10. Let K, =< 2a- 1,2a,2a+ 1> be a numerical

semigroup where a>1 and al ¥. Then, we have
m(Arf (K,)) = B(Arf (K,)).

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup
where a>1 and al ¥ .Then, we  write
Arf (K,)= {0,2a- 1® ...}and

B(Arf(K,))= {12,3,...,2a- 2}.Thus,we obtain
m(Arf (K,)) = {xT B(Arf (K,):x+ h1 Arf(K,),"hT Arf(K,),h? 0}
= {1,2,3,....2a- 2}= B(Arf(K,)).

Corollary 2.11. Let K, =< 2a- 1,2a,2a+ 1> be a numerical
semigroup where a>1and al ¥ . Then c(Arf (K,)) = 2a- 2.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical semigroup

where a>1 and  al ¥ .Thenwe  write
c(Arf (K,)) = Card(m(Arf (K,))) = 2a- 2from Proposition 2.6.

Corollary 2.12. Let K, =< 2a- 1,2a,2a+ 1> be a numerical
semigroup where a>1and al ¥ . Then, we have

(a) f(K,)= f(Arf(K,))+ 2a’- ba+ 2
(b) d(K,)= (a- D*d(Arf(K,))
(c) 9(K,)= g(Arf(K,)+a’- 3a+2.

Proof. Let K, =< 2a- 1,2a,2a+ 1> be a numerical

semigroup where a>1 and al ¥ . Then, we obtain
f(Arf (K,))+ 2a®- 5a+ 2= 2a- 2+ 2a*- 5a+ 2= 2a*- 3a= f(S,).

(a- 1)°d(Arf (K,))= (a- 1)° = d(K,), and
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g(Arf (K,))+ a’- 3a+2=2a- 2+a’- 3a+2=a’- a= g(K,).
Example 2.13. We put a=3 in the numerical semigroup
K,=<?Z2a- 1,2a,2a+1> .

Then, we have K, = (5,6,7 )= {0,5,6,7,10,® ...}

In this case, we obtainq(K,)=5, f(K,)=9, d(K,)= 4,
B(K;)=1{12,34,8,9}, and g(K,)= Card(B(K,))= 6. Also,
U(K,)={dT B(K,):2d,3d T K,}={8,9},

mK,) = {xT B(K;):x+rT K;,"rT K,\{0}}= {8,9} and

T(S;)={ul B(K,):2uT Kyand u+ yT K,"yT K,\{0}}={8,9}.
So, ¢(K;)= 2 since

(K,), = {kT K:k® k = 5}={56,7,10,® ..} and

K,Q={nT ¥ :n+ (K,),I K}={0,56® ..}, then

c(K;) = Card(K,(1)\K,) = Card({8,9}) = 2.

Here, the numerical semigroup

K,;=(5,6,7)={0,5,6,7,10,® ...} is perfect since

I(Ky)={bT B(K,):b- Lb+ 11 K,}= A&. On the other hand,

we write that Arf (K,) = {0,5,® ...}since
L,(K;)= K,=<5,6,7>;q,= 5 and
L(K;)= L(L(K,) = L(<56,7>)=<512>=<1>=¥;q=1.

Thus, f(Arf(K,))= 4, d(Arf(K,))=1 ,
B(Arf (K,)) = {1,2,3,4} and

g(Arf (K,)) = Card(B(Arf (K,))= 4. Also,

U (Arf(K,))={dT B(Arf(K,)):2d,3d T Arf(K,)}= {34},
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T(Arf(K,) = {uT B(Arf(K,)):2uT Arf(K,), u+ rT Arf(K,),"rT Arf(K)\{0}}= {34}
and
m(Arf (K,))= {ul B(Arf(K,)):u+ yT Arf(K,),"yT Arf (K )\{0}}= {1234},

c(Arf (K,)) = Card(m(Arf (K,))) = 4 . In fact ; we find that
f(K,)=3(2.3- 3)=9, d(S,)= (3- 1)*= 4 and

9(S;) = 3(3- 1)= 6 from Propotion 2.2. Also,

mK,) = {f(K,)- 1 f(K,)}= {89} and

c(K,) = Card(mK,)) = 2 from Proposition 2.5 and Proposition

2.6., respectively. So, we write
Arf (K,) = {0,2.3- 1,® ..}={0,5,® ...} from Theorem 2.8.

Also, f(Arf(K,))=23- 2= 4, d(Arf(K;))=1and

g(Arf (K,))= 2.3- 2= 4 from Proposition 2.9. On the other
hand, m(Arf (K,)) = {1,2,3,4} = B(Arf (K,)) and

c(Arf (K,))= 2.3- 2= 4 from Proposition 2.10 and Proposition
2.11, respectively. Finally, we have

f(K,)= f(Arf(K,))+ 29- 53+2=9,

d(K,) = (3- 1)*d(Arf(K,))= 4.1= 4 and

g(K,) = g(Arf (K,))+ 3°- 3.3+ 2= 4+ 2= 6 from Corollary
2.12.
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MATEMATIKSEL DUGUM VE TOPOLOJI

Nazmiye ALEMDAR?

1. GIRIS

Diigiim teorisi, matematikte {i¢ boyutlu kapali egrilerin
incelendigi bir teoridir. Bir diigiimii, matematiksel olarak bir ipin
iki ucunun birlestirilmesiyle olusan kapali egri olarak gérmek
kolay bir yaklasim olmakla birlikte, teorisi, yani diigiim teorisi, o
kadar da basit degildir. Son yillarda birgok bilim alaninda diigiim
teorisi ile ilgili caligmalar yapilmis ve makaleler yazilmistir.
Matematik ve diigiim teorisi arasinda vazgegilmez ve bir o kadar
da 6nemli bir baglant1 vardir; zira matematik, pek ¢ok disiplinde
oldugu gibi, diigiim teorisinin dogurdugu problemlerin ¢6zimde
temel bir aractir.

Cok eski zamanlardan beri insanlar diiglimlere ihtiyag
duymustur. Farkli amaglar i¢in farkli diiglim tiirleri kullanmistir.
Diigtimler ag 6rmek, bir seyleri birbirine baglamak, kumas ve
hasir 6rmek, kopriiler insa etmek, tepelere tirmanmak vb. igin
kullanmistir. Diigiimler kullanilarak giizel dekoratif esyalar, dikis
ve nakis isleri yapilmaktadir.

Diigiimlerin tarihgesi yazinin icadindan 6ncesine uzansa
da, diigiim teorisinin matematiksel bir disiplin haline gelmesi
daha ge¢ bir donemde gergeklesmistir. Matematikcileri bu alanda
calismaya ¢eken motivasyon, teorinin kimyada, daha sonra fizikte
ve daha yakin zamanda da biyolojide uygulamalarinin
matematikle agiklanmasi gerekliligi ile olmustur.

1 Dog. Dr., Erciyes Universitesi, Fen Fakiiltesi, Matematik Bolimi, ORCID: 0000-
0002-0819-6613.
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Diiglim teorisi, genetikten kuantum mekanigine kadar
cesitli alanlarda var olmustur. Bilimin kendine 6zgii sirlar1 oldugu
ve diigiimlerin bunlar1 ¢ézmek ic¢in uygulanan girisimlerden
sadece biri oldugu iyi bilinmektedir. Bu ¢alismanin amaci diigiim
teorisinin temel kavramlarini ve gelisimini 6rnekleri ile sunmak
ve okuyucuya matematik ve topolojinin diiglim teorisi igin
vazgecilmez oldugunu anlatmaktir. Bunun ic¢in oncelikle diigiim
teorisi ile ilgili matematiksel temel tanim ve kavramlar
verilecektir. Daha sonra ise dugiim teorisinin tarihsel geligimi
uygulamalar1 ve teoride matematik ve topolojinin gerekliligi
sebepleri ile anlatilacaktir.

2. TEMEL KAVRAMLAR ve TANIMLAR

Bu bolimde verilen temel kavramlar Murasugi (1996)
kaynagindan alinmistir.

Ip kullanilarak atilabilen en kolay diigiimler, el Usti
diigiimii ve sekiz rakami diigiimiidiir.

Sekil 1. El Ustii Diigiimii ~ Sekil 2. Sekiz Diigiimii

Ipin iki ucu birbirine yapistirildiginda bir ilmek olusur. Bu
ilmege Matematiksel Diiglim denir. Matematikte asikar bir
diiglim (yani diigiimlenmemis) dolasik olmayan bir ilmek, ii¢
boyutlu, kapal1 ve kendi kendini kesmeyen bir egridir.

O

Sekil 3. Asikar Diigiim
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Tanm 1: R3 de S* = {(x,y,2):x* + y* = 1,z = 0}
cemberi ile topolojik olarak denk (homeomorfik) olan herhangi
bir kiimeye diigiim denir. Dolayisiyla diigiim, uzayda bir kapali
egridir. Baska bir deyisle diigiim, birim ¢emberin uzaydaki
konumudur.

Diigiimlerin kendi icinde kesisen noktalar1 olabilir.
Diigiim ya kendi lizerinden ya da altindan geger ki bunlara ge¢is
denir.

G

Sekil 4. Bir gecisli diigiimler

Lot oD T e

Sekil 5. Tki gecisli diigiimler

Diigiim teorisinde, U¢ Yaprakli Diigiim (trefoil) en basit,
asikar olmayan diigiimdiir. Sekil 1 de verilen El Ustii Diigiimiiniin
gevsek uclarmin birlestirilmesiyle elde edilir. Bu diigimi
kesmeden asikar diigiim elde etmek miimkiin degildir. Sekil 2 de
verilen sekiz digiimiiniin gevsek uglar1 birlestirildiginde ise
sekizli digimii elde edilir.

G &

Sekil 6. U¢ Yaprakh Diigiim  Sekil 7. Sekizli Diigiimii

Daha once belirttigimiz gibi bir diiglim kapali bir egridir.
Dolayisiyla bu egrinin bir baslangic ve bitis noktas1 yoktur.
Diigiimleri ayirt etmenin bir yolu egriye bir yon vermektir. Ozel
olarak, egri lizerine eklenen bir okla bir diigiimiin yonii gosterilir.
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Sekil 8 de goriildiigii gibi herhangi bir diigiim i¢in olasi iki yon

& &

Sekil 8. Sag ve Sol Yonli Ug Yaprakh Diigiimler

Birbiri ile kesismeyen sonlu ve diizenli bir diigim
topluluguna baglant1 denir. Asagidaki sekilde ikiser diiglimden
olusan iki baglant1 6rnegi goriilmektedir.

O &

Sekil 9. Baglantih Diigiimler

Dolagik bir kapali ip diigiimii, kesmeden kendi i¢inde
cekistirip hareket ettirilerek deforme edildiginde ortaya ¢ikan
diigiim tamamen farkli bir diigiim gibi goriiniir. Ancak deforme
edilen bu diiglim, orijinal diiglimle ayni1 kabul edilir. Asagidaki
sekilde verilen iki diigiim tamamen farkli goriinmesine ragmen
denk diigiimlerdir. Bu diiglimler, Perko'nun diigiim cifti olarak
adlandirilir.

Sekil 10. Perko’nun Diigiim Cifti
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Sekil 10 da verilen Perko'nun diigiim ¢ifti yon verilmemis
denk iki digiimdiir. Sekil 8 de verilen iki diigiim yonlendirme
yapilmadan once denk iki diiglimken yonli olarak denk
degildirler. Yonlii iki diigiimiin denkligi i¢in asagidaki teorem
verilmistir.

Teorem 2: R3 de K; Ve K, yonlii iki diigiim olsun. Eger bu
iki dliglim arasinda yonii koruyan bir homeomorfizm varsa K; ve
K, diigiimleri birbirine denktir denir.

Iki diigiim denk ise, ayn1 tiirden olduklar1 sdylenir.

3. DUGUM TEORISININ TARIiHI GELIiSiMi,
UYGULAMALARI VE TOPOLOJI
Burada diigiim teorisinin tarihi gelisimi olusturulurken

Silver (2006), Przytycki (1995) ve Sunitha (2016) kaynaklar:
temel olarak kullanilmistir.

Herhangi bir sekilde ve sayida i¢ ice ge¢mis diigiimlerden
olusan baglantilar, Antik Roma'da popdler bir motif olarak
genellikle evleri ve tapinaklari siisleyen mozaiklere eklenirdi.
Bunun en iyi 6rnekleri Kells Kitabi'nda bulunan Kelt diigiim ve
baglant1 desenleridir. 7. yiizyilda irlanda'da ortaya ¢ikmis ve
oradan Iskogya'ya yayilmustir.

Dugtim kavramina bir matematik konusu olarak ilk atif,
1771 yilinda Fransiz matematik¢i Theophil Vandermonde’nin
yazdig1 "Remarques sur les problems de situation” (Konum
Problemleri Uzerine Notlar) adli makalede yapilmustir. Ozellikle
orgulerin ve diigiimlerin konum geometrisinin konusu olarak ele
alindigi bu makalenin ilk paragrafinda Vandermonde sdyle
yazmistt: ““Uzaydaki bir iplik pargasinin kivrimlart ve doniisleri
ne olursa olsun, boyutlarinin hesaplanmasi i¢in her zaman bir
ifade elde edilebilir, ancak bu ifade pratikte pek ise
yaramayacaktir. Bir orgii, bir ag veya bazi diigiimler yapan
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zanaatkar, Ol¢im sorulariyla degil, konum sorulartyla
ilgilenecektir: orada gordigi sey, ipliklerin i¢ ice gecme
bicimidir’.

Giliniimiizde Diiglim Teorisi olarak adlandirilan
matematiksel diigiim teorisi, Alman matematik¢i Carl Friedrich
Gauss'un (1777-1855) diigiimlerin tablolastirilmasi igin bir
yontem gelistirdigi 19. ylizyila kadar uzanmaktadir. Dunnington
(1955) ve Stackel kaynaklarinda: “Gauss'a ait belgeler arasinda
bulunan en eski notlardan biri, 1794 tarihli bir kagittir. Baghiginda
“Diigiim koleksiyonu” yazan bu kagit, yanlarinda Ingilizce
isimleri yazili on ii¢ adet diizglin ¢izilmis diigim resmi
icermektedir... Bununla birlikte, diigiim resimleri iceren iki ek
kagit parcasi daha vardir. Biri 1819 tarihli; digeri ise ¢ok daha
sonraki bir tarihe aittir...” seklindeki ifadenin varligindan
bahsedilmektedir. Bu ise Gauus tarafindan ¢izilen diigiimlerin
bulundugu belgelerin hala kaybolmadigi anlamina gelir. Sekil 11
de 1794 yilindan kalma kagitta bulunan Gauss'un ¢izdigi 10.
diigiim olan i¢ i¢e gegme diigliimii verilmistir.

> »“ /\\

Sekil 11. Gauss'un I¢ ice Ge¢cme Diigiimii

Bir duvar ustasinin oglu ve doneminin en biiyik
matematik¢isi olan Johann Carl Friedrich Gauss, baglantilar
hakkinda asikar olmayan bir gercegi kesfeden ilk kisiydi. Gauss,
diigim kavramini elektrodinamik alanindaki calismalarinda
kullanmigtir. Kapali bir egri boyunca bir akim dongiisiiniin
varliginda manyetik kutup tizerinde ne kadar i yapildigini bilmek
istemistir. Birbirini kesmeyen iki dénglyu ele almistir. 1833'te,
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giinimiizde "Gauss baglant1 sayis1" olarak adlandirilan "birbirine
dolanma"  sayisimin  bir  integralle  hesaplanabilecegini
gOstermistir. 1876'da O. Boeddicker ise belli bir baglamda
baglanti sayisinin, ikinci egrinin birinci egri tarafindan siirlanan
bir yiizeyle kesisme noktalarinin sayisi oldugunu gézlemlemistir.

1847 yili, digiim teorisi (ayn1 zamanda graf teorisi ve
topoloji) icin ¢ok Onemli bir yildir. Gustav Robert Kirchoff
(1824-1887) elektrik devreleri Uzerine temel makalesini
yaymlamistir. Kirchhoff (1947) makalesi diigiim teorisi ile
iligkilidir ancak bu iliski yaklasik yiiz yil sonra kesfedilmistir
(6rnegin, bir devrenin Kirchhoff karmasikligi, devre tarafindan
belirlenen diiglimiin veya baglantinin determinantina karsilik
gelir).

Gauss’un, diigiimler iizerine c¢alismalarindan etkilenen
ogrencisi Johann Benedict Listing de (1808-1882) dugiimlerle
ilgilenmistir. Listing, konumun geometrisini tanimlamak ig¢in
Yunanca topos (yer) ve logos (akil) kelimelerinin birlesimi olan
topoloji kelimesine tiireten kisidir. “Topoloji” terimini ilk kez
kullandigr “Vorstudien zur Topologie” adli ¢alismasinda
matematiksel diiglimler ve bunlarin siniflandirilmasi lizerine bir
tartismaya yer vermistir. Ozellikle, diigiimlerin kiralitesiyle, yani
bir diigiim ile onun ayna goriintiisii arasindaki denklik iliskisiyle
ilgilenmistir. Sag Elli Ug¢ Yaprakli Diigiim ile Sol Elli Ug
Yaprakli Diigiimin denk olmadigini (birbirine
doniistiiriilemedigini) ifade eden ilk kigidir. Buna karsilik, Listing
diiglimii olarak da bilinen Sekizli Digiimuln akiral; yani kendi
ayna goruntisine denk oldugunu belirtmistir.

& &

(@)
Sekil 12. (a) Sag Elli ve (b)Sol Elli U¢ Yaprakh Diigiimler
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1860'arda iinlii Ingiliz fizik¢i Sir William Thomson
(1824-1907) (daha sonra Lord Kelvin olarak bilinecek), fizikgi
Herman von Helmholtz'un (1821-1894) girdap hareketi lzerine
yaptig1 c¢alismalardan ve Peter Gurthrie Tait'in (1831-1901)
girdap duman halkalar1 tiretme gosterisinden ilham almistir. Tait,
Alman bilim insam1 Hermann von Helmholtz'un bir
makalesinden, ideal bir akiskandaki girdap halkasinin kararli ve
kalic1 olacagini 6grenmistir. Hava ideal bir akiskan olmamasina
ragmen Tait yaklasik bir model olusturmustur. Tahta bir kutunun
bir ucuna biyuk bir delik agmistir ve diger ucunu sikica gerilmis
bir havluyla degistirmistir. Kutunun igine gicli bir amonyak
cozeltisi serpmistir ve tizerine yemek tuzu dokiilmiis stlfiirik asit
igeren bir kap yerlestirmistir. Tait yedi y1l sonra bir konferansta,
havluyu yere vurdugunda, girdap halkalar1 ortaya ¢iktigin1 ve
siddetle titrestiklerini, sanki kat1 kaucuk halkalarmis gibi
olduklarin1 agiklamigtir. Tait bunlarin kararliligina hayran
kalmistir. Yuvarlak bir delik yerine eliptik veya kare bir delik
kullanilsaydi, girdap sekli sallanip titreserek dairesel bir sekil
alirdi. Tait, Thomson'n girdap halkalar1 kavrammi 1874'te
yaymlanan bir dizi konferansta agiklamistir. Girdap Atomlari
Teorisi (Theory of Vortex Atoms); Sir William Thomson
tarafindan 19. yiizyilda ortaya atilan, atomlarin eterdeki (o
donemde varsayilan bir ortam) kararli girdap halkalar1 (vortex
rings) oldugu fikrine dayanan hipotezdir. Bu teori, elementlerin
farkli ozelliklerini, bu girdaplarin farkli diigiimlii yapilartyla
aciklamay1 amacglamigtir. Girdap halkalarinin etkilesimlerini, bir
cay kasigimi bir fincan ¢ayin yiizeyinde gezdirmenin etkileriyle
karsilagtirmistir. William Thomson'a gore tiim madde atomlari-
zorunlu olarak sonsuz olmalidir, yani uglar1 herhangi bir sayida
kivrim veya diiglimlenmenin en sonunda birlesmis olmalidir.
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Sekil 13. William Thomson'a (Kelvin) ait 1867 tarihli diigiimler ve
baglantilar

Modern diigiim teorisinin kokeni dort fizikgiyle
iliskilendirilebilir: Hermann von Helmholtz, William Thomson
(Lord Kelvin), Maxwell ve Peter Guthrie Tait.

James Clerk Maxwell (1831-1879) ile Tait ilk kez
Edinburgh Akademisi'nde 6grenciyken tanismiglardi. Daha sonra
meslektas olarak, iki arkadas neredeyse her giin yeni yarim
penilik kartpostallarla yazismislardir. Knott (1911) ve Lomonaco
(1996), Maxwell’in 13 Kasim 1867 tarihinde Tait’e yazdig1 bir
mektuptan bahsetmektedir; bu mektuptan, Maxwell’in diiglimler
hakkindaki fikirlerini arkadasiyla paylastigi anlasilmaktadir.
Maxwell'in  diiglimlere ve topolojiye olan derin ilgisi,
muhtemelen Thomson'n girdap-atom teorisinden ve Tait'in
etkisinden kaynaklanmistir. James Clerk Maxwell, elektrik ve
manyetizma tiizerine yaptigi c¢alismalarinda, Ozellikle yeni
yayimmlanan Gauss'un derlenmis eserlerinden esinlenerek,
diigiimler ve baglantilar hakkinda baz1 teorik yaklagimlar
gelistirmistir. Ustten ve alttan gecisleri belirten diigiim
diyagramlar1  olusturmustur. 3  Reidemeister  hareketini
tanimlamistir. Maxwell, iki diiglimiin baglant1 sayisinin fiziksel
bir 6nemi oldugunu agiklamistir. Bir diiglimden elektrik akimi
gectiginde manyetik alan olusturdugunu sdylemistir. Baglanti
say1s1, esasen ikinci diigiimiin yolu boyunca hareket eden yUklu
bir parcaci@in yaptigi istir demistir. Maxwell, baglant1 sayisin
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Gauss'un daha once kesfettigi bir ¢ift katli integral olarak ifade
etmistir. Ayrica, ayrilamayan ancak Gauss integral degeri sifira
esit olan Sekil 14 de verilen iki kapali egriden olusan baglantiy1
tanimlamustir.

Sekil 14. Maxwell’e ait baglanti

Atom  teorisinin  girdap  modeli,  dugiimlerin
smiflandirilmasini gerektiriyordu. Fizikgi Peter Gurthrie Tait,
1867'de diigiimlerin ilk tablosunu olusturmaya baslamistir. Tait;
Rahip Thomas Penyngton Kirkman (1806-1895) ile is birligi
icinde ve Charles Newton Little’dan bagimsiz olarak, diigtimleri
numaralandirma problemi iizerinde Onemli bir ilerleme
kaydetmistir. Bu sayede 1900 yilina gelindiginde, on gegisli
diigiimlere kadar olan (asal) diigiim tablolar1 Tait (1877),
Kirkman (1885), Little (1885), Little (1889) kaynaklarinda
yayinlamistir. Bu tablolar, Haseman’in (1918) doktora teziyle
kismen genisletilmistir. 11 gecis sayisina kadar olan diigiimlerin
numaralandirilmasi ise Conway (1969) da verilmistir. 13 gecise
kadar olan diigiimler, Dowker ve Thistlethwaite (1983) ve
Thistlethwaite (1985) de numaralandirilmistir. Tait, diigim
tablolar1 olusturabilmek amaciyla Tait Varsayimlari olarak
adlandirilan ii¢ temel ilke ortaya koymustur. Bu varsayimlarin
tamami yakin zamanda ¢6ziime kavusturulmustur.

Diigiim teorisindeki en temel problem, denk olmayan
diigiimleri birbirinden ayirt edebilmektir. Jules Henri Poincaré
(1854-1912), Poincaré (1895) 'Analysis Situs' isimli makalesinde
cebirsel topolojinin temellerini atana kadar basit iki diigiim olan
Asikar Diigiim ile Ug¢ Yaprakli Diigiimiin birbirinden ayirt
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edilmesi miimkiin olmamistir. Heinrich Tietze (1880-1964) ise
Asikar Diigiimii, U¢ Yaprakli Diigiimden ayirt etmek i¢in diigiim
grubu olarak adlandirilan bir diigiimiin R® icindeki dis ylizeyinin
temel grubunu kullanmustir (Tietze, 1908). Temel grup, esasen
Poincaré (1895) makalesinde tanitilmistir. Buradan anlasilacagi
Uzere diiglim teorisindeki en temel problem olan denk olmayan
diigtimleri ayirt etmek i¢in matematigin konum geometrisi ile
ilgilenilen alan1 topoloji ve cebir ile topolojinin birlikte ¢aligildigi
alan cebirsel topoloji kullanilmistir.

Kiralite kavrami, Diigiim Teorisi ile kimya arasindaki en
gucliu koprudir. Digliim teorisinde bir diigiim, eger siirekli bir
deformasyonla (pargalar1 kesip yapistirmadan sadece esnetip
biikerek) kendi ayna goriintiisiine doniistiiriilemiyorsa topolojik
olarak kiral kabul edilir.

Kimyasal baglar1 ayn1 olan ancak topolojik yapilar
(diiglimlenme veya halkalanma bi¢imleri) farkli olan molekiillere
topolojik  stereoizomerler  denir.  Kimyagerler, topolojik
stereoizomer giftlerini sentezleyebilmek igin bir diigiimiin kiral
mi yoksa akiral mi oldugunu bilmelidir. Sol-elli kiral bir molekul,
sag-elli muadilinden farkli fiziksel veya kimyasal ozellikler
sergileyebilir. Bu ozellik farki, kiralite calismalarini kimya
biliminde kritik bir konuma tasimaktadir. Bir Kkimyager,
laboratuvarda diiglimlii bir molekiil sentezlediginde, bunun hangi
el yonunde kiral oldugunu belirlemek i¢in Jones Polinomu gibi
matematiksel araclara ihtiya¢ duyar. Bu da matematik ve
topolojinin diigiimliic bir molekiilun Kiralitesini belirlemede
kullanildigin1 gostermektedir.

Genetik bilimindeki en 6nemli kirilma noktalarindan biri,
1950'li yillarda James Watson ve Francis Crick'in DNA'nin ¢ift
sarmall1 yapisin1 kesfetmesiyle yasanmistir. Bu yapisal model,
DNA replikasyonunun mekanizmasinin aydinlatilmasina olanak
saglamistir. Watson ve Crick'in bu modeli, DNA'mmn iki uzun
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polimer zincirinden olustugunu ve bu zincirlerin birbirine
tamamlayict baz eslesmeleriyle baglandigin1 = gostermistir:
Adenin (A) her zaman Timin (T), Guanin (G) ise her zaman
Sitozin (C) ile eslesir. Bu yapi, DNA replikasyonunun
(eslenmesinin) temel mekanizmasin1 da ortaya ¢ikarmistir. Bu
baglar, baz istiflenmesi etkilesimleriyle birlikte DNA zincirini bir
arada tutmaktadir. Sarmalin iki kolu bir fermuar gibi agildiginda,
her bir kol yeni sentezlenecek olan zincir i¢in bir kalip goérevi
goriir. Baz eslesme kurali sayesinde, orijinal dizilim tam
dogrulukla kopyalanabilir.

Sekil 15. DNA’nmin birincil ve ikincil yapisi

DNA'nin ¢ift sarmal yapisi ile Diigiim Teorisi arasindaki
iliski, modern molekiiler biyolojinin en biiyiileyici konularindan
biridir. DNA, hiicre ¢ekirdegine sigabilmek icin siki bir sekilde
paketlenmis durumdadir. Bu paketlenme ve replikasyon
(eslenme) siireci sirasinda DNA zincirlerinin diigtimlenmesi ve
birbirine dolanmasi kag¢inilmazdir.

Liu ve Davis (1981) calismasinda ilk kez laboratuvar
ortaminda diiglimlenmis DNA molekiillerini izole etmislerdir.
Deneysel olarak DNA  diiglimlerini ve baglantilari
ayristirmanin  veya analiz etmenin iki yolu bulunmaktadir:
elektron mikroskobu veya elektroforetik go¢ (Krasnow et al.,
1983; Trigueros et al., 2001; Zechiedrich & Crisona, 1989).
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Sekil 16. Diigiimlenmis DNA'min elektron mikroskop goérintiisu

DNA, hiicre c¢ekirdegi igerisinde olduk¢ca yogun
(kompakt) bir bicimde muhafaza edilmektedir. Halkasal bir
DNA’nin stper-sarmal, diigimlenmis ve baglantili olmak tzere
tc topolojik temel formu vardir. Replikasyon, verilen bir DNA
molekiiliinlin  kopyalanmas1 siirecidir. DNA kopyalanirken
sarmal agildiginda, fermuarin 6n kisminda asir1 bir burulma
(stiper kivrilma) olusur. Eger bu gerilim ¢6ziilmezse DNA zinciri
kopabilir veya kopyalama durabilir. Watson ve Crick'in kesfettigi
cift sarmal, matematiksel olarak iki kapali halkanin birbirine
dolanmasi (baglanti1) gibidir. Hiicrelerimizde Topoizomeraz adi
verilen 6zel enzimler yani dogal diigiim ¢o6ziiciiler bulunur. Bu
enzimler, DNA zincirini keserler sonra dolanmis olan diger
zinciri bu kesigin i¢inden gegirirler ve son olarak kesigi tekrar
yapistirirlar. Bu reaksiyon sonunda, niikleotid dizilimi ve temel
baglar (fosfodiester baglari) degismez ki bu Diigiim Teorisi'ndeki
"Reidemeister Hamleleri"ne (diigiimii bozmadan yapilan temel
hareketler) biyolojik bir 6rnektir. Ancak bu halkalarin birbirinden
ayrilmasi igin topolojik bir degisim gerekir. Buck (2009),
Demidov (2002), Ketron ve Osheroff (2014) vb. bir¢ok ¢alismada
DNA topolojisi ¢aligiimustir.

Topolojik enzimoloji, enzimlerin (6zellikle topoizomeraz
ve rekombinazlarin) DNA'nin diigiimlenme veya baglantili olma
durumunu nasil degistirdigini inceleyen disiplinler arasi bir
daldir.
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Bilim insanlari, DNA'nin topolojik formunu inceleyerek
hangi enzimin nasil ¢alistigini1 anlarlar. Bu yaklasimla, enzimleri
dogrudan gozlemlemek yerine, onlarin DNA iizerinde biraktigi
"topolojik imzalar1" (olusturduklar1 diigiim ve halka tiirlerini)
inceleyerek calisma mekanizmalari ¢6zUlur. Ornegin, bir deney
tiipiindeki DNA'nin elektron mikroskobu altindaki goriintiisiinde
bir U¢ Yaprakli Diigiim olusmussa, bu durum belirli enzimlerin o
bolgede islem yaptigini kanitlar. Eger diigiim ¢0ziilmezse hiicre
bdliinemez ve dliir. Birgok kanser ilaci ve antibiyotik, tam olarak
bu siireci hedef alir; yani topoizomeraz enzimlerini durdurarak
kanserli hiicrenin DNA diiglimlerini ¢6zmesini engeller ve
hiicrenin kendi diigimlerinde bogulmasini dolayisiyla yok
olmasin1 saglar.

DNA digiimleri ile ilgili ¢alismalarda matematik ve
topolojinin gerekliligi agikca goriilmektedir.

4. SONUGC

Bu calisma; diigiim teorisinin tarihi gelisim siirecinde
matematik ve topoloji kullanilmasina neden gerek duyuldugunu,
bu alandaki ¢alismalarin giincelligini/6nemini, teorinin ele aldigi
temel kavramlari, konunun tarihsel siiregteki yavas gelisimini ve
disiplinler arasi alanlardaki uygulamalarini inceleyen bir literatiir
taramasi niteligindedir.

180



Matematik

KAYNAKCA

Boeddicker, O. (1876a). Beitrag zur Theorien des Winkels
(Doktora tezi). Géttingen Universitesi, Almanya.

Boeddicker, O. (1876b). Erweiterung der Gausschen Theorie der
Verschlingungen. Stuttgart, Almanya.

Buck, D. (2009). DNA topology. Proceedings of Symposia in
Applied Mathematics, 66, 47-79.

Conway, J. H. (1969). An enumeration of knots and links. J.
Leech (Ed.), Computational problems in abstract algebra
icinde (ss. 329-358). Oxford, Ingiltere: Pergamon Press.

Demidov, V. (2002). On proteins, DNA and topology. Trends in
Biotechnology, 20(6), 234.

Dowker, C. H., & Thistlethwaite, M. B. (1983). Classification of
knot projections. Topology and Its Applications, 16(1),
19-31.

Dunnington, G. W. (1955). Carl Friedrich Gauss: Titan of
science. New York, NY: Hafner Publishing Co.

Haseman, M. G. (1918). On knots, with a census of the
amphicheirals with twelve crossings. Transactions of the
Royal Society of Edinburgh, 52(11), 235-255.

Ketron, A. C., & Osheroff, N. (2014). DNA topology and
topoisomerases. Molecular Life Sciences icinde (ss. 1-
19). New York, NY: Springer.

Kirchhoff, G. R. (1847). Uber die Auflésung der Gleichungen,
auf welche man bei der Untersuchung der linearen
Verteilung galvanischer Strome gefihrt wird. Annalen der
Physik und Chemie, 148(12), 497-508.

Kirkman, T. P. (1885). The enumeration, description and
construction of knots with fewer than ten crossings.

181



Matematik

Transactions of the Royal Society of Edinburgh, 32, 281—
309.

Knott, C. G. (1911). Life and scientific work of Peter Guthrie Tait.
Cambridge, Ingiltere: Cambridge University Press.

Krasnow, M. A., Stasiak, A., Spengler, S. J., Dean, F., Koller, T.,
& Cozzarelli, N. R. (1983). Determination of the absolute
handedness of knots and catenanes of DNA. Nature,
304(5926), 559-560.

Little, C. N. (1885). On knots, with a census for order ten.
Transactions of the Connecticut Academy of Arts and
Sciences, 18, 374-378.

Little, C. N. (1899). Non-alternate knots. Transactions of the
Royal Society of Edinburgh, 39(3), 771-778.

Liu, L. F., & Dauvis, J. L. (1981). Novel topologically knotted
DNA from bacteriophage P4 capsids: Studies with
topoisomerases. Nucleic Acids Research, 9(16), 3979-
3989.

Lomonaco, S. L. (1996). The modern legacies of Thomson’s
atomic vortex theory in classical electrodynamics.
Proceedings of Symposia in Applied Mathematics, 51,
145-166.

Murasugi, K. (1996). Knot theory and its applications. Boston,
MA: Birkhauser.

Poincaré, H. (1895). Analysis situs. Journal de I'Ecole
Polytechnique, 1, 1-121.

Przytycki, J. H. (1995). Knot theory from Vandermonde to Jones.
George Washington University.
https://arxiv.org/abs/math/0703096

Silver, D. S. (2006). Knot theory’s odd origins. American
Scientist, 94(2), 158-165.

182


https://arxiv.org/abs/math/0703096

Matematik

Stéckel, P. (t.y.). Gauss als Geometer. Gauss’ collected works
icinde (Cilt 10).

Sunitha, K. G. (2016). Knot theory (Final Project Report No.
F.MRP / 12th Plan / 14-15 / KLCA 025). Ottapalam,
Hindistan: N. S. S. College, Department of Mathematics.

Tait, P. G. (1898-1900). On knots I, II, Ill. Scientific papers
icinde. Cambridge, ingiltere: Cambridge University Press.
(Orijinal calisma 1877°de yayimlanmistir)

Thistlethwaite, M. B. (1985). Knot tabulations and related topics.
I. M. James & E. H. Kronheimer (Ed.), Aspects of
topology icinde (ss. 1-76). Cambridge, Ingiltere:
Cambridge University Press.

Tietze, H. (1908). Uber die topologischen Invarianten
mehrdimensionaler Mannigfaltigkeiten. Monatshefte fur
Mathematik und Physik, 19(1), 1-118.

Trigueros, S., Arsuaga, J., Vazquez, M. E., Sumners, D. W., &
Roca, J. (2001). Novel display of knotted DNA molecules
by two-dimensional gel electrophoresis. Nucleic Acids
Research, 29(13), e67.

Zechiedrich, E. L., & Crisona, N. J. (1989). Coating DNA with
RecA protein to distinguish DNA path by electron
microscopy. M. Bjornsti & N. Osheroff (Ed.), Methods in
molecular biology: DNA topoisomerase protocols iginde
(Cilt 1, ss. 99-108). Totowa, NJ: Humana Press.

183



Matematik

PARAMETER ESTIMATION OF UNIT-
TEISSIER DISTRIBUTION UNDER DIFFERENT
SAMPLING SCHEMES

Hasan Huseyin GUL!

1. GIRIS

Sampling designs have long been employed as an
effective tool to reduce the cost and effort associated with data
collection, particularly in studies where full observation of all
units is impractical. Among these designs, simple random
sampling (SRS) remains the most commonly used approach due
to its simplicity. However, in many applications the precision of
estimators obtained from SRS may be improved if additional
information about the relative ordering of units is available.

Ranked set sampling (RSS) represents one such approach
in which auxiliary ranking information is incorporated into the
sampling process. The method was first introduced by Mclintyre
(1952) in the context of agricultural studies, where measuring
pasture yield was costly but visual ranking of plots could be
performed with little effort. Since then, the theoretical properties
of RSS have been investigated extensively, and it has been shown
that estimators based on RSS can achieve higher efficiency than
those based on SRS without increasing the number of measured
observations (Takahasi and Wakimoto, 1968; Dell and Clutter,
1972).

The RSS procedure relies on a structured selection
mechanism. Instead of measuring all sampled units, several SRS

L Dog. Dr., Giresun Universitesi, Fen-Edebiyat Fakiiltesi, Veri Bilimi ve Analitigi,
ORCID: 0000-0001-9905-8605.
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of equal size are drawn from the population, and the units within
each sample are ordered using judgmental criteria or auxiliary
variables. Only one unit from each ranked sample is then selected
for actual measurement, and the procedure is repeated over
multiple cycles to obtain the desired sample size. This strategy
allows ranking information to be exploited while keeping
measurement costs fixed.

Motivated by these properties, a wide range of
modifications of RSS have been proposed in the literature to
address practical issues such as ranking errors and sample
wastage. These extensions have been applied to parameter
estimation problems for various probability distributions,
including the Kumaraswamy distribution (Hussian, 2014), the
exponential distribution (Samuh and Qtait, 2015), and the
Rayleigh-type models (Dey et al., 2016; Esemen and Girler,
2018), among others. The growing interest in RSS-based
estimation highlights its usefulness as an alternative sampling
framework in both theoretical and applied studies.Khamnei et al.
(2022) focused on the exponentiated Pareto distribution, and
Shaaban (2023) studied parameter estimation for the inverted
topp-Leone distribution under different RSS variants. Gul (2023)
examined the Lomax distribution under RSS using genetic
algorithm.  Additional related contributions can be found in
weighted exponential distribution by Deng and Chen (2024),
transmuted inverse Rayleigh distribution by Al-Omari et al.
(2025), exponential-Poisson distribution by Chen et al. (2025),
Birnbaum-Saunders distribution by Zhang et al. (2025),
lognormal distribution by Tiwari et al. (2025) and Gompertz
distribution by Gul and Kocer (2025).

In addition to the classical RSS framework, several
modified designs have been proposed in the literature to improve
efficiency and robustness against ranking errors. Among these,
extreme ranked set sampling (ERSS), introduced by Samawi et
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al. (1996). Other notable extensions include median ranked set
sampling proposed by Muttlak (1997), double ranked set
sampling developed by Al-Saleh and Al-Kadiri (2000), and multi-
stage ranked set sampling introduced by Al-Saleh and Al-Omari
(2002). Furthermore, ranked set sampling has been adapted to
incorporate auxiliary or concomitant information, leading to
designs such as two-layer ranked set sampling (Chen and Shen,
2003). Additional variants, including moving extreme ranked set
sampling (Al-Saleh and Al-Hadrami, 2003) and L-ranked set
sampling based on L-statistics (Al-Naseer, 2007), have also been
proposed as effective alternatives within the ranked set sampling
family. More recently, folded ranked set sampling (FRSS) was
introduced by Bani-Mustafa et al. (2011) with the aim of reducing
the wastage of sampling units while maintaining high estimation
efficiency. By combining information from both lower and upper
ranked observations within each cycle, FRSS provides a more
balanced utilization of ranked units.

In the folded RSS design, a total of [(/m + 1)/2] random
samples, each of size m are initially drawn from the population.
Within each sample, the units are ordered according to the
variable of interest using inexpensive ranking procedures such as
visual judgment or auxiliary information. Under the FRSS
scheme, the selection of units for actual measurement is carried
out symmetrically from both ends of the ranked sets. Specifically,
the smallest and largest units are measured from the first ranked
sample, followed by the second smallest and the (m — 1)th units
from the second sample. This alternating selection pattern
continues in a folded fashion until all required ranks are
exhausted. Repeating this process over multiple cycles yields a
folded ranked set sample of the predetermined size.

The main objective of this work is to investigate the MLE
of the unknown parameter of the Unit-Teissier (UT) distribution
under different sampling strategies, namely SRS, RSS and FRSS.
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The UT distribution is a bounded model obtained from the
classical Teissier distribution, which was originally proposed by
Georges Teissier to describe mortality behavior in animal
populations driven by aging effects. Let X denote a random
variable following the Unit-Teissier distribution with parameter
6 The corresponding probability density and distribution
functions are given by Equations (1) and (2), respectively

fx) =0(x - 1)x_(9+1)e_x_9 +1, xe(0,1) @))

Fx) =x%>*" + 1. (2)

To examine the impact of the sampling design on
estimation accuracy, a detailed Monte Carlo simulation study is
conducted. The performance of the maximum likelihood
estimator is evaluated using bias and mean squared error for
different combinations of sample sizes and parameter values.
Furthermore, a real data example is analyzed to demonstrate the
applicability of the proposed estimation procedures and to
highlight the comparative performance of SRS, RSS, and FRSS
in practice.

2. PARAMETER ESTIMATION

This section presents the MLE of the UT distribution
parameter under different sampling designs. The estimation
procedures for SRS, RSS and FRSS are discussed in the
subsections that follow.

2.1. MLE BASED ON SRS

Consider an independent sample X, X5, ..., X,, from the
UT distribution with probability density function presented in Eq.
(1). The resulting likelihood function for the parameter 6 takes
the form
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L(O;x) = 6™ [Ty x; OO, (79 — 1) e 2= R (g

and the log likelihood function is

1(0) =nn(®) — (@ + DX In(x) + T In(x;% — 1) —
ri(x?-1) (4)

Then the MLE of 6, say 8, is obtained by maximizing [(8)
with respect to 6. The likelihood equation of 8 is given by

dl log(x;) _
E_g_ tiln(x) - X _3g1’“ + 2 X eln(x) (5)

These equations do not admit closed-form solutions and
therefore must be solved using numerical optimization
techniques.

2.2. MLE BASED ON RSS

Let Xmyjpi = 1,...,m;j =1,..,r be a RSS from UT
distribution with sample size n=mr where m is the set size and r
is the number of cycles. We denote X(;..,); by X;;. Then, the pdf
of X;; is given by

y(xij; 9) = #(T!n_i)!f(xiji 9) (F(xij; 9))i_1 X (1 -
F(xij3 9))m_l (6)

where f(x;;; 6) is the pdf and F(x;; 6) is the cumulative
distribution function of X. The likelihood function of RSS is given
by

L(6; x) = r’:1 Hﬁﬂ’(xiji 9) =

O™ I TR ( (9+1)(x 1)6_2?:1(’(5'9_1) + 1) X
(-1 —g (m=D)
(x]"e 5’ 4 1) l (x‘ee_xiig) " ()

where C; = m!/(m —i)! (i — 1)!. The log-likelihood function is
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1(6) = mrIn(C,) + mrin(8) — (6 + 1) Xfoy X2, In(x;;) +
ym ln(x-‘.e -1)— Z§=1Z§’;1(xi‘j-9 —1)+mr—
Z 12 - 1)ln(xl-j) — Y= 2ima (i — 1)xi}9 +
12 = (i —Dmr— 921 1 2 (m— l)ln(xij) -
12 Z1(m— l)(xij ) (8)
The likelihood equation of 6 is given by

xl-_-g In(x;)

al
0 % - §=1 Diz1 ln(xij) + Z;=1 Z:Z13161—19__1 -
i 12?1xi_j9 ln(xij) — Xj=1 i (i - Dln("!’j) -
j=1 2ie1( — Ue ln(xl]) =1 2iz(m — l)ln(xij) -
T Xmi(m — Dx;? In(x;;) = 0. (9)
2.3. MLE BASED ON FRSS

The FRSS sample can be constructed as X:{X(i)ji:

m+1 m+1

12,0, "0 = 1o 1) UK oy = 12,0, o5 = 1,7,
Based on thls sampllng scheme, the likelihood functlon for the UT
distribution is expressed as follows:

m

b0 = ;:1 M2, CZf(xij;/1'5)[F(xij;l,ﬁ)]i_1[1 -
F(xl-j; A,ﬁ)]m_l X

m_+1 —
Y | sz(xij(m—iﬂ);ﬂ’ﬁ)[F(xij(m—i+1);ﬂ’ﬁ)]m l
i<m-i+1
x[1- F(xij(m—iﬂ);/l,ﬁ)]i_l (10)

m+1
mr ([ —(0+1) [ Y (b
=" 0™ [[j= I1,2, (x..( )(xijg ~1)e Zin’ 1) 4

y

1) (sgte " +1) 7 (egte )
m_+1

T 2 —(6+1) -0 _
j=1 1 i=1 (xij(m—i+1) Xij(m—i+1)
i<m-i+1
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D e _ 8 .
1)6 Zl:l(xl](m—l+1) 1) + 1) X (xij?m—i+1)e Xij(m—-i+1) 4

(m-i) , I N ()]

1) (xij?m—i+1)e x”(m_l“)) (11)
2 m! 2 - - -

where C; = (C,)* = (m) . The log-likelihood function

is then given by

1(8) = mrIn(C3) + mrin(8) — (0 + 1) X', Z% ln(xl-j) +

m+1 m+1

- - 2 (,—6
j=1221 ln(xij9 -1)- Y122 (xij —1) +mr -
m+1 m+1
0 %)t 3,2, (= Din(xyy) = it 5,2, (= D +
m+1 mt1
T X2 = Dmr —0Y X2 (m—Din(x;) —
m+1
f=1 22 m =) (x5) — (6 +
m+1
DY X 2y W(xijom-ien) +
i<m—i+1
m+1
-6
XX finy n(xGlmeiiny — 1) —
i<m-i+1
m+1 U
-0 {
§=1Z % izt (xij(m—i+1) - 1) +mr — 92‘5:12 Yo (-
i<m—i+1 i<m-i+1
m+1
1)ln(xij(m—i+1)) - Z;=1Z 21:1 (U 1)xi_1‘((9m—i+1) +
i<m-—i+1
m+1 mrl
fmX iy @—Dmr—0Yi,% %_, (m-—
i<m—i+1 i<m-i+1
m+1
i)ln(xif(m—i+1)) - Z§=1Z 2i=1 (m— i)(xi_j?m—iﬂ))' (11)
i<m-i+1

The likelihood equation of 8 is given by
m+1 m+1

al _ mr r 2 T 2
56 =5~ Lim1 2 In(xy) + ) 2

x;% In(xp) B

—0
x -1
m+1 m+1

T 202 x50 In(xyy) = X5, 2,2 (= Din(xy) -
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m+1 m+1
Te 2 (= 1)xi_je In(x;;) = X7oq 2,2, (m = Din(x;;) —
m+1
j=1 X2y (m = Dxj;® In(x;) —
m+1
i=12 Zioq ln(xij(m—i+1)) +
i<m-—i+1
roxz XimeienInGe)
j=12 i=1 x,_ﬂ . -1 -
i<m—i+1 TH0Mm=i+D)
m+1 m+1
-0
"1 X Yy X0 In(xgiomoten) — X1 X 2o (m—
i<m-i+1 i<m-i+1
m+1
. N .. —0
l)ln(xij(m—i+1)) - Z§=1Z 2i=1 (m— l)xij ln(xij(m—i+1)) -
i<m-—i+1
m+1 m+1
;:12 21':1 (i - 1)ln(xij(m—i+1)) - Z;=1Z 2i=1 (i -
i<m-—i+1 i<m-—i+1
1)xl_]9 ln(xl](m_l+1)) =0. (12)

Since a closed-form solution is not available, the estimate
of 8 is obtained by solving the corresponding normal equations.

3. SIMULATION STUDY

Since closed-form expressions for the finite-sample
properties of the proposed ML estimators are not available, a
Monte Carlo simulation study is performed to assess their
performance under different sampling schemes. The study
focuses on the estimation of the UT distribution parameter using
SRS, RSS and FRSS. The estimators are compared with respect
to bias and MSE across a range of sample sizes and parameter
configurations. The simulation experiments are carried out in
MATLAB with 10,000 replications. The details of the simulation
procedure are outlined below.

o SRS of sizes n = 12,24,36,48 are generated
from the UT distribution. In addition, RSS and FRSS samples are
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constructed using different set sizes and numbers of cycles for the
same parameter configurations.

o For each generated sample and for each sampling
design, the MLE derived in Section 2 is computed to obtain
parameter estimates corresponding to the selected sample size.

o The above steps are repeated N = 10.000 times.
Based on the resulting estimates, the bias and MSE of the
estimators are calculated to assess and compare their finite-
sample performance.

Table 1. Bias values for the parameter 6.

gmle
0 n m;r SRS RSS FRSS
3.4 0.0069 0.0067
12 43 0.0095 0.0067 0.0066
6:2 0.0067 0.0065
3.8 0.0064 0.0065
24 46 0.0078 0.0063 0.0064
0 6.4 0.0063 0.0064
: 312 00077 0.0064 0.0064
36 4:9 : 0.0061 0.0063
6:6 0.0058 0.0061
3.16 0.0056 0.0060
48 412 0.0075 0.0056 0.0059
6:8 0.0054 0.0058
3.4 0.0175 0.0173
12 43 0.0221 0.0168 0.0169
6:2 0.0167 0.0163
3.8 0.0162 0.0160
24 46 0.0181 0.0159 0.0161
05 6.4 0.0159 0.0160
: 312 0.0159 0.0162
36 4:9 0.0177 0.0151 0.0161
6:6 0.0127 0.0137
3.16 0.0149 0.0154
48 412 0.0173 0.0142 0.0149
6:8 0.0141 0.0144
3.4 0.0699 0.0666
20 12 43 0.0931 0.0688 0.0671
' 6:2 0.0667 0.0661
24 3.8 0.0765 0.0662 0.0680
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4;6 0.0575 0.0677
6,4 0.0514 0.0548
3;12 0.0640 0.0646
36 4;9 0.0750 0.0535 0.0539
6,6 0.0543 0.0545
3;16 0.0611 0.0612
48 4;12 0.0739 0.0586 0.0595
6;8 0.0569 0.0580
34 0.1348 0.1345
12 4;3 0.1759 0.1361 0.1344
6;2 0.1398 0.1366
3;8 0.1272 0.1393
24 4,6 0.1453 0.1277 0.1279
40 6,4 0.0997 0.1096
' 3;12 0.1273 0.1285
36 4;9 0.1429 0.1163 0.1274
6,6 0.1069 0.1272
3;16 0.1085 0.1231
48 4;12 0.1416 0.1072 0.1228
6,8 0.1022 0.1137

Table 2. MSE values for the parameter 6.

gmle

6 n m;r SRS RSS FRSS
3;4 0.0009 0.0011
12 4;3 0.0021 0.0008 0.0010
6;2 0.0008 0.0009
3;8 0.0007 0.0009
24 4,6 0.0015 0.0006 0.0008
0.2 6,4 0.0005 0.0008
' 3;12 0.0005 0.0007
36 4,9 0.0009 0.0004 0.0006
6,6 0.0002 0.0005
3;16 0.0002 0.0004
48 4;12 0.0008 0.0001 0.0003
6,8 0.0001 0.0003
3;4 0.0015 0.0016
12 4;3 0.0027 0.0013 0.0016
6,2 0.0010 0.0011
0.5 3;8 0.0006 0.0007
24 4,6 0.0015 0.0006 0.0006
6;4 0.0005 0.0005
36 3;12 0.0012 0.0005 0.0005
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4;9 0.0005 0.0005

6,6 0.0005 0.0005

3;16 0.0004 0.0004

48 4,12 0.0009 0.0004 0.0004

6,8 0.0005 0.0005

3;4 0.0251 0.0272

12 4;3 0.0447 0.0210 0.0263

6,2 0.0160 0.0183

3;8 0.0103 0.0105

24 4,6 0.0239 0.0090 0.0100

20 6,4 0.0082 0.0087
' 3;12 0.0076 0.0077
36 4,9 0.0188 0.0073 0.0077

6,6 0.0072 0.0074

3;16 0.0071 0.0072

48 4,12 0.0154 0.0072 0.0071

6,8 0.0073 0.0072

3;4 0.0986 0.1097

12 4;3 0.1769 0.0803 0.0967

6,2 0.0622 0.0729

3;8 0.0399 0.0430

24 4;6 0.1046 0.0366 0.0411

40 6,4 0.0330 0.0342
' 3;12 0.0301 0.0320
36 4,9 0.0932 0.0295 0.0306

6,6 0.0287 0.0292

3,16 0.0288 0.0291

48 4;12 0.0853 0.0286 0.0287

6,8 0.0289 0.0286

e Across all parameter settings and sample sizes, the

ranked set based designs yield clearly improved
accuracy relative to SRS. In particular, RSS and FRSS
consistently produce smaller absolute biases and
markedly lower MSE values than SRS for the same
nominal sample size, indicating that incorporating
ranking information substantially enhances estimation
efficiency under the UT model.

For each fixed 8 both bias and MSE decrease as the
sample size increases from n =12 to n =48
reflecting the expected improvement in finite-sample
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performance of the MLE. This monotone reduction is
especially evident in the MSE values, where the
decline is pronounced under SRS and remains visible
though at a lower scale under RSS and FRSS,
suggesting greater stability of ranked set based
estimators even at moderate sample sizes.

e The bias values indicate that both ranked set based
sampling designs outperform SRS for all parameter
values and sample sizes. Compared with SRS, RSS and
FRSS consistently produce smaller bias, confirming
the benefit of incorporating ranking information. When
RSS and FRSS are compared, RSS generally yields
slightly lower bias across most configurations,
particularly for small and moderate values of 6.
Although the difference between RSS and FRSS is
modest, the results suggest that RSS provides the most
accurate estimates in terms of bias, while FRSS
remains a competitive alternative.

e Compared with FRSS, RSS generally achieves smaller
MSE values across most (m;r) configurations,
indicating superior overall estimation accuracy when
both variance and bias are taken into account. This
advantage of RSS is particularly pronounced for larger
values of 8 where the MSE reduction relative to FRSS
becomes more evident. Although FRSS still provides a
clear improvement over SRS, the results suggest that
RSS offers the most efficient performance in terms of
MSE for the MLE of the UT distribution parameter.

4. CONCLUSION

The parameter estimation problem for the UT distribution
was studied under SRS and two ranked set based sampling
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designs. The comparison focused on the MLE and aimed to
evaluate the effect of using ranking information within the
sampling process.

The simulation results confirm that incorporating ranking
information improves estimation accuracy. In all examined
settings, estimators obtained from ranked set based samples
exhibit smaller bias and MSE than those based on SRS. The
improvement is visible for both small and large sample sizes,
indicating that the benefit of ranking is not limited to asymptotic
situations.

When the two ranked set based designs are compared,
RSS tends to perform better than FRSS in terms of mean squared
error. Although FRSS reduces the loss of sampling units and
performs well relative to SRS, its estimation accuracy is generally
slightly lower than that of RSS, especially for larger parameter
values.

In practical applications, these findings suggest that RSS
IS a suitable choice when estimation accuracy is the main
objective. FRSS may still be attractive in situations where
operational considerations, such as reducing sample wastage, are
important. Further work could explore alternative estimation
methods, interval estimation, or other ranked set based designs
for the UT distribution and similar bounded models.
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