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NULL MAGNETIC CURVES ON 3D SEMI-
RIEMANNIAN MANIFOLDS IN THE CONTEXT 

OF KILLING VECTOR FIELDS 

Fatma ALMAZ1 

1. INTRODUCTION

3-dimensional semi-Riemannian geometry, a broad
branch of differential geometry, arises by relaxing the 
requirement that the metric tensor be positive definite. This plays 
a vital role in modeling physical systems, particularly the space-
time geometry of general relativity. Unlike classical Riemannian 
geometry, vectors on semi-Riemannian manifolds can have 
space-like, time-like, or null (light-like) characteristics, 
significantly affecting the internal structure of the manifold and 
the dynamics on it. 

This study focuses on the study of null magnetic curves 
on a 3-dimensional semi-Riemannian manifold defined by an 
adapted frame consisting of two null vectors and a time-like 
vector. This particular choice of frame allows for a more in-depth 
analysis of the specific metric and topological properties of space. 
Magnetic curves are non-geodesic curves that represent the 
motion of a charged particle placed in a magnetic field and are 
derived from the Lorentz force equations. A null curve means that 
the norm of its tangent vector is zero, suggesting that these curves 
have a character similar to the trajectories of massless particles 
moving at the speed of light. 

1  Assist. Prof. Dr, Batman University, Faculty of Arts and Sciences, Department of 
Mathematics, ORCID: 0000-0002-1060-7813. 
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Null magnetic curves are of great interest in both 
differential geometry and theoretical physics, particularly in 
understanding high-energy astrophysical phenomena and 
cosmological models. The study of such curves illuminates the 
behaviour of the Lorentz force equations in degenerate metric 
spaces and also provides important information on how magnetic 
fields interact with the curvature of spacetime. This introductory 
section will discuss the theoretical basis of null magnetic curves, 
the importance of the frenet frame structure in 3-dimensional 
semi-Riemannian space, and the fundamental concepts necessary 
for characterizing these curves. The ultimate goal is to develop 
new insights into the dynamics of these complex systems by 
elucidating the existence of these special curves, their geometric 
properties, and their relationship to the structure of the magnetic 
field. 

Studies on magnetic curves in Lightike cone space have 
been done by the authors in references (Almaz & Kulahci, 2018, 
2020, 2021). Some mathematical results have been obtained by 
the authors in reference (Drut-Romaniuc & Munteano, 2011) on 
magnetic curves corresponding to killing magnetic fields, some 
results on contact magnetic flow in 3D Sasakian manifolds and 
magnetic vortex filament flows are given in references ((Barros 
& Romero, 2007), (Cabrerizo & Gomez, 2009)). 

 

2. PRELIMINARIES 

Let (𝑀𝑀3,𝑔𝑔) be a real 3𝐷𝐷 semi-Riemannian manifold of 
index   𝑞𝑞 = 1 and for a smooth null curve                                       
𝛾𝛾(𝑡𝑡) = �𝑥𝑥0(𝑡𝑡), 𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡)�;  𝑡𝑡 ∈ 𝐼𝐼 ⊂ ℝ in 𝑀𝑀3 the tangent vector 
field of 𝛾𝛾 satisfies  

𝜁𝜁 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (
𝑑𝑑𝑥𝑥0

𝑑𝑑𝑑𝑑
,
𝑑𝑑𝑥𝑥1

𝑑𝑑𝑑𝑑
,
𝑑𝑑𝑥𝑥2

𝑑𝑑𝑑𝑑
);𝑔𝑔(𝜁𝜁, 𝜁𝜁) = 0;𝑔𝑔𝑖𝑖𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥𝑗𝑗

𝑑𝑑𝑑𝑑
= 0, 
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where 𝑔𝑔𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝜕𝜕𝑖𝑖 ,𝜕𝜕𝑗𝑗) and 𝑖𝑖, 𝑗𝑗 ∈ {0,1,2}. 𝑇𝑇𝑇𝑇 is the tangent bundle 
of 𝛾𝛾 and 𝑇𝑇𝑇𝑇 is defined as follows (see (O’Neill, 1983)) 

𝑇𝑇𝛾𝛾⊥ =∪𝑃𝑃∈𝛾𝛾 𝑇𝑇𝑃𝑃𝛾𝛾⊥;𝑇𝑇𝑃𝑃𝛾𝛾⊥ = {𝑃𝑃 ∈ 𝑇𝑇𝑃𝑃𝑀𝑀:𝑔𝑔(𝑊𝑊𝑃𝑃, 𝜁𝜁𝑃𝑃) = 0}, 

where 𝜁𝜁𝑃𝑃 is null vector tangent of 𝛾𝛾 at any 𝑃𝑃 ∈ 𝛾𝛾(𝑡𝑡), 𝑇𝑇𝛾𝛾⊥ is a 
vector bundle of 𝛾𝛾 of rank 2. Hence, the tangent bundle 𝑇𝑇𝑇𝑇 is a 
vector subbundle of 𝑇𝑇𝛾𝛾⊥, of rank 1 and this implies that 𝑇𝑇𝛾𝛾⊥ is 
not complementary to 𝑇𝑇𝑇𝑇 in 𝑇𝑇𝑇𝑇|𝛾𝛾, according to the classical non-
degeneracy theory, there must be a vector bundle complementary 
to 𝑇𝑇𝑇𝑇 in the 𝑇𝑇𝑇𝑇, this bundle will play the role of the normal 
bundle 𝑇𝑇𝛾𝛾⊥. 

Theorem 1. Let γ be a null curve of a semi-Riemannian manifold 
(M, g) and S(Tγ⊥) a screen vector bundle of γ. Then, there exists 
a unique vector bundle E of rank 1 of the curve γ, such that over 
each coordinate neighbourhood V ⊂ γ, there exists a unique 
partition N ∈ Γ(E|V) satisfying the following equation 

𝑔𝑔(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,𝑁𝑁) = 1,𝑔𝑔(𝑁𝑁,𝑁𝑁) = 𝑔𝑔(𝑁𝑁,𝑋𝑋) = 0,∀𝑋𝑋 ∈ Γ(𝑆𝑆(𝑇𝑇𝛾𝛾⊥)|𝑉𝑉 , (2.2) 

for the null transversal bundles 𝐸𝐸 and 𝑁𝑁 of 𝛾𝛾 and �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,𝑁𝑁� is a null 

basis of   Γ((𝑇𝑇𝑇𝑇 ⊕ 𝐸𝐸)|𝑉𝑉), which is  

𝑇𝑇𝑇𝑇|𝛾𝛾 = (𝑇𝑇𝑇𝑇 ⊕ 𝐸𝐸) ⊥ 𝑆𝑆(𝑇𝑇𝛾𝛾⊥), 

((Duggal & Bejancu, 1996), (O’Neill, 1983)).  

Let 𝛾𝛾 be a null curve of an 3𝐷𝐷 semi-Riemannian manifold 
(𝑀𝑀2,𝑔𝑔) of index 2 and 𝑁𝑁 be the null vector field. For 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜁𝜁  and 

the Levi-Civita connection ∇ on 𝑀𝑀2, and from 𝑔𝑔(𝜁𝜁, 𝜁𝜁) = 0 and 
𝑔𝑔(𝜁𝜁,𝑁𝑁) = 1 one has 𝑔𝑔(∇𝜁𝜁𝜁𝜁, 𝜁𝜁) = 0, 𝑔𝑔(∇𝜁𝜁𝜁𝜁,𝑁𝑁) = −𝑔𝑔(𝜁𝜁,∇𝜁𝜁𝑁𝑁) =
ℎ, where ℎ is a smooth function. The null Frenet equations are 
written as  
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∇𝜁𝜁𝜁𝜁 = ℎ𝜁𝜁 + 𝑘𝑘1𝑊𝑊 

 

     ∇𝜁𝜁𝑁𝑁 = −ℎ𝑁𝑁 + 𝑘𝑘2𝑊𝑊 (2.1) 

 

∇𝜁𝜁𝑊𝑊 = 𝑘𝑘2𝜁𝜁 + 𝑘𝑘1𝑁𝑁, 

where {ℎ, 𝑘𝑘1,𝑘𝑘2} are curvature functions of 𝛾𝛾, 𝑊𝑊 ∈ Γ(𝑆𝑆(𝑇𝑇𝛾𝛾⊥)) 
and 𝑔𝑔(𝑊𝑊,𝑊𝑊) = −1. Then, for screen vector bundle 𝑆𝑆(𝑇𝑇𝛾𝛾⊥), 
Frenet frame on 𝑀𝑀 along 𝛾𝛾 can be written as {𝜁𝜁,𝑁𝑁,𝑊𝑊}, ((Graves 
& Nomizu, 1978), (Ikawa, 1985)). 

The Lorentz force of  magnetic field 𝐹𝐹 on 𝑀𝑀 is described 
to be a skew symetric operator Φ given by  

        𝑔𝑔(Φ(𝑋𝑋),𝑌𝑌) = 𝐹𝐹(𝑋𝑋,𝑌𝑌),∀𝑋𝑋,𝑌𝑌 ∈ 𝜘𝜘(𝑀𝑀)          (2.2) 

and the mixed product of the vector fields İs given as  

𝑔𝑔(𝑋𝑋 × 𝑌𝑌,𝑍𝑍) = 𝑑𝑑𝑣𝑣𝑔𝑔(𝑋𝑋,𝑌𝑌,𝑍𝑍),∀𝑋𝑋,𝑌𝑌,𝑍𝑍 ∈ 𝜘𝜘(𝑀𝑀). (2.3) 

The magnetic trajectories of 𝐹𝐹 are curves 𝛾𝛾 on 𝑀𝑀3 which 
satisfy the Lorentz equation 

         ∇𝜁𝜁𝜁𝜁 = Φ(𝜁𝜁). (2.4) 

Let Ϝ be a Killing vector field on 𝑀𝑀3 which is 𝐹𝐹𝑣𝑣 = 𝚤𝚤𝑣𝑣𝑑𝑑𝑣𝑣𝑔𝑔, 
where 𝚤𝚤 is denoted the inner product. In this context, the Lorentz 
force of the 𝐹𝐹𝑣𝑣 is given as 

       Φ(𝑋𝑋) = Ϝ × 𝑋𝑋     (2.5) 

and Lorentz force equation is defined as 

          ∇𝜁𝜁𝜁𝜁 = Ϝ × 𝜁𝜁. (2.6) 

Proposition 1. Let γ be a curve in a 3D semi Riemannian 
Manifold and Ϝ be a vector field along the curve γ. The, for a 
variation of a in the direction of Ϝ, a map Γ: I × (−ε, ε) → M 
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which satisfies  

    Γ(s, 0) = γ(s), (∂Γ
∂s

(s, t)) = Ϝ(s). (2.7) 

Then, for the curvature function κ(s, t) of the γ, the following 
expressions are provided  

         Ϝ(𝑣𝑣) = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑠𝑠, 𝑡𝑡)�
𝑡𝑡=0

= 𝑔𝑔(∇𝜁𝜁Ϝ, 𝜁𝜁)𝑣𝑣              (2.8) 

 

Ϝ(𝜅𝜅) = �
𝜕𝜕𝜅𝜅
𝜕𝜕𝜕𝜕

(𝑠𝑠, 𝑡𝑡)�
𝑡𝑡=0

= 𝑔𝑔�∇𝜁𝜁2Ϝ,𝑁𝑁� − 2𝜅𝜅𝑔𝑔�∇𝜁𝜁Ϝ, 𝜁𝜁� 

                                               +𝑔𝑔(𝑅𝑅(Ϝ, 𝜁𝜁)𝜁𝜁,𝑁𝑁) (2.9) 

 

where  

     𝑣𝑣(𝑠𝑠, 𝑡𝑡) = �𝜕𝜕Γ
𝜕𝜕𝜕𝜕

(𝑠𝑠, 𝑡𝑡)�, (2.10) 

(Barros, Cabrerizo & Gomez, 2009).  

Proposition 2. Let Ϝ(s) be the restriction to γ of a Killing vector 
field. In this case, the following expression for Ϝ is satisfied 

      Ϝ(v) = Ϝ(κ) = 0, (2.11) 

(Barros, Cabrerizo & Gomez, 2009).   

 

3. THE NULL MAGNETIC CURVES IN 3D SEMI-
RIEMANNIAN MANIFOLD 

In this section, by consider the null magnetic curves 
whose Frenet frame is made up of two null vectors 𝜁𝜁 and 𝑁𝑁, 𝑊𝑊 is 
timelike vector. and some characterizations of the null helices are 
expressed according to the null frenet frame in 3𝐷𝐷 semi-
Riemannian nanifold of index 2. 
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The following theorems were tried to be expressed. 

 

Definition 1. Let γ be a null curve in 3D semi-Riemannian 
Manifold and with the Frenet apparatus {ζ, N, W, h, k1, k2} and let 
F be a magnetic vector field along null curve γ on M2

3. If the 
Lorentz force equation given below, expressed for null N-
magnetic vector field γ, the null curve γ is called an N-magnetic 
curve, is satisfied  

∇ζN = ΦN(N) = ϜN × N. (3.1) 

  

Theorem 2. Let γ be a null N-magnetic curve in 3D semi-
Riemannian Manifold and with the Frenet apparatus 
{ζ, N, W, h, k1, k2}. Then, the Lorentz force in the Frenet frame is 
given as 

�
ΦN(ζ)
ΦN(N)
ΦN(W)

� = �
h 0 −Θ1
0 −h −k2
k2 Θ1 0

� �
ζ
N
W
�,              (3.2) 

where Θ1 = g(ΦN(W), ζ). 

 

Proof. Let γ be a null N-magnetic curve in (M2
3, g) with the Frenet 

apparatus {ζ, N, W, h, k1, k2}. Then,  

ΦN(ζ) = λ1ζ + λ2N + λ3W 

and from (3.1) and (2.2), one gets  

λ1 = g(ΦN(ζ), N) = F(ζ, N) = −F(N, ζ) = −g(Φ(N), ζ) = h 

λ2 = g(ΦN(ζ), ζ) = 0 

λ3 = −g(ΦN(ζ), W) = −Θ1. 

Thus, one writes 
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ΦN(ζ) = hζ − Θ1W. 

Similarly, the Lorentz force functions ΦN(N) and ΦN(W) can be 
calculated that 

ΦN(N) = −hN − k2W;ΦN(W) = k2ζ + Θ1N. 

  

Theorem 3. Let γ be null N-magnetic trajectory of a magnetic 
field ϜN in 3D semi-Riemannian Manifold with the Frenet 
apparatus {ζ, N, W, h, k1, k2} if and only if ϜN is satisfied 

 

     ϜN(s) = c(s)
h(s)

(−k2(s)ζ(s) + Θ1(s)N(s) + h(s)W(s)). (3.3) 

 

Proof. Let γ be null N-magnetic trajectory of a magnetic field ϜN. 
In a 3D semi-Riemannian manifold, the vector product of two 
time-like vectors usually produces a space-like vector that is 
orthogonal to both time-like vectors with respect to the metric 
tensor. If null vectors are linearly dependent, their vector product 
yields the zero vector. If null vectors are linearly independent, 
their vector product generally produces a space-like vector. This 
resulting vector is orthogonal to both null vectors with respect to 
the metric tensor. Let’s prove the theorem using the case of linear 
dependence. Then, by using (2.5) and theorem 2, from ϜN = aζ +
bN + cW, where a, b, c ∈ C∞ one obtains  

ϜN =
c
h

(−k2ζ + Θ1N + hW), 

where  

hζ − Θ1W = cN1;  −hN − k2W = cN2;  

          k2ζ + Θ1N = −aN1 − bN2, (3.4) 

where N1, N2 are spacelike vector fields.  
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Theorem 4. Let ϜN be a Killing vector field 3D semi-Riemannian 
Manifold with the Frenet apparatus {ζ, N, W, h, k1, k2} for the null 
N −magnetic curve γ. Then, the following equations are satisfied 
for the given null N −magnetic curve 

Θ1 =
−h
c(s)

e∫hds �� c(s)k1e∫hdsds�, 

 

−((fk2)′)′ − (fk2)′h + ((fh)′ − fk1k2 + fk2Θ1) = 0, 

where f = c
h

, c ∈ C∞.  

 

Proof. For a null magnetic vector field ϜN in (M3, g), from (3.3) 
and by differentiating of (3.3) with respect to parameter s, one 
gets 

   ∇ζϜN = (−f ′k2 + fl1)ζ + (f ′Θ1 + fl2)N + (f ′h + fl3)W, (3.5) 

where  

f =
c
h

; l1 = −k2′ ; l2 = Θ1′ − hΘ1 + hk1; 

        l3 = −k1k2 + k2Θ1 + h′. (3.6) 

By differentiating of (3.5) with respect to s and from (2.1), one 
gets 

∇ζ2ϜN = �m1
′ + m1h

+m3k2
� ζ + �m2

′ − m2h
+m3k1

�N 

                                     + �m3
′ + m2k2

+m1k1
�W (3.7) 

where  

m1 = −f ′k2 + fl1; m2 = f ′Θ1 + fl2; m3 = f ′h + fl3 
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and from (2.8), (2.9) and (2.11), ϜN(v) = 0, one has 

f ′Θ1 + fl2 = 0 ⇒ �c
h
�
′
Θ1 + c

h
(Θ1′ − hΘ1) = 0        (3.8) 

and 

  Θ1 = −h(s)
c(s)

e∫hds�∫ c(s)k1e∫hdsds�                  (3.9) 

and from ϜN(κ) = 0, one obtains  

(−f ′k2 + fl1)′ + (−f ′k2 + fl1)h + (f ′h + fl3)k2
+ g(R(Ϝ, ζ)ζ, N) = 0 

from C is constant curvature g(R(ϜN, ζ)ζ, N) = Cg(ϜN, N) = 0, 
one gets  

(−f ′k2 + fl1)′ + (−f ′k2 + fl1)h + (f ′h + fl3)k2 = 0 

and  

−((fk2)′)′ − (fk2)′h + ((fh)′ − fk1k2 + fk2Θ1) = 0.   (3.10) 

  

Definition 2. Let γ be null curve in 3D semi-Riemannian 
Manifold and with the Frenet apparatus {ζ, N, W, h, k1, k2} and let 
F be a magnetic vector field along the curve γ on M2

3. If the 
Lorentz force equation given below, expressed for null 
W −magnetic vector field, the curve γ is called null W −magnetic 
curve, is satisfied 

∇ζW = ΦW(W) = ϜW × W.                     (3.11) 

Theorem 5. Let γ be null W-magnetic curve in 3D semi-
Riemannian Manifold and with the Frenet apparatus 
{ζ, N, W, h, k1, k2}. Then, the Lorentz force in the Frenet frame is 
given as 

�
ΦW(ζ)
ΦW(N)
ΦW(W)

� = �
Θ2 0 −k1
0 −Θ2 −k2
k2 k1 0

� �
ζ
N
W
�,              (3.12) 
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where Θ2 = g(ΦW(ζ), N).  

 

Proof. Let γ be a null W-magnetic curve in (M2
3, g) with the 

Frenet apparatus {ζ, N, W, h, k1, k2}. Then,  

ΦW(ζ) = η1ζ + η2N + η3W 

and from (3.11) and (2.2), one gets  

η1 = g(ΦW(ζ), N) = Θ2; η2 = g(ΦW(ζ), ζ) = 0; 

η3 = −g(ΦW(ζ), W) = −k1, 

one writes  

ΦW(ζ) = Θ2ζ − k1W. 

Similarly, the Lorentz force functions ΦW(N) and ΦW(W) can 
be calculated that 

ΦW(N) = −Θ2N − k2W;ΦW(W) = k2ζ + k1N. 

  

Theorem 6. Let γ be a null W-magnetic trajectory of a magnetic 
field ϜW in 3D semi-Riemannian Manifold with the Frenet 
apparatus {ζ, N, W, h, k1, k2} if and only if ϜW is satisfied 

    ϜW(s) = z(s)
Θ2(s)

(k2(s)ζ(s) − k1(s)N(s) + Θ2(s)W(s)). (3.13) 

Proof. Let γ be null W-magnetic trajectory of a magnetic field 
ϜW. Then, the vector product of two time-like vectors produces a 
space-like vector that is orthogonal to both time-like vectors, 
since null vectors product yields the zero vector, by using (2.5) 
and theorem 5, from Ϝ = xζ + yN + zW, where x, y, z ∈ C∞ one 
obtains 

ϜW =
z
Θ2

(k2ζ − k1N + Θ2W), 

where  
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Θ2ζ + k1W = zN1
∗,−Θ2N − k2W = zN2

∗; 

         k2ζ + k1N = −xN1
∗ − yN2

∗ , (3.14) 

where N1
∗, N2

∗  are spacelike vector fields.  

  

Theorem 7. Let ϜW be a Killing vector field 3D semi-Riemannian 
Manifold with the Frenet apparatus {ζ, N, W, h, k1, k2} for the null 
N-magnetic curve γ. Then, the following equations are satisfied 
for the given null W-magnetic curve 

�−(gk1)′ + k1g(h + Θ2)�′ − �−(gk1)′ + k1g(h + Θ2)�h        

  +(gΘ2)′k1 = 0 

 

�(gk2)′ + k2g(h + Θ2)′ + h�−(gk1)′ + k1g(h + Θ2)�
+ k2(gΘ2)′� = 0, 

where g = z
Θ2

, z ∈ C∞.  

 

Proof. For a null magnetic vector field ϜW in (M3, g), by 
differentiating of (3.13) according to parameter s, one gets 

∇ζϜW = �(gk2)′ + k2g(h + Θ2)�ζ 

+�−(gk1)′ + k1g(h + Θ2)�N + (gΘ2)′W (3.15) 

where  

                            g = z
Θ2

. (3.16) 

By differentiating of (3.15) with respect to s and from (2.1), one 
has 

∇ζ2Ϝ = �(gk2)′ + k2g(h + Θ2)′ + h�−(gk1)′ + k1g(h + Θ2)�
+ k2(gΘ2)′�ζ 
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+(�−(gk1)′ + k1g(h + Θ2)�′ − �−(gk1)′ + k1g(h + Θ2)�h 

 +(gΘ2)′k1)N 

+�
((fΘ2)′)′ + �−(gk1)′ + k1g(h + Θ2)�k2

+�
(gk2)′ + k2g(h + Θ2)′

+h�−(gk1)′ + k1g(h + Θ2)� + k2(gΘ2)′� k1
�W 

and from (2.8), (2.9) and (2.11), ϜW(v) = 0, one has 

�−(gk1)′ + k1g(h + Θ2)�′ − �−(gk1)′ + k1g(h + Θ2)�h 

                      +(gΘ2)′k1 = 0 (3.17) 

and from ϜW(κ) = 0, one obtains  

�(gk2)′ + k2g(h + Θ2)′ + h�−(gk1)′ + k1g(h + Θ2)�
+ k2(fΘ2)′� + g(R(Ϝ, ζ)ζ, N) = 0, 

from C is constant curvature g(R(ϜW, ζ)ζ, N) = Cg(ϜW, N) = 0, 
one gets  

 

(gk2)′ + k2g(h + Θ2)′ + h�−(gk1)′ + k1g(h + Θ2)�
+k2(gΘ2)′ = 0.

 (3.18) 

  

4. CONCLUSION 

            In this study, we consider the interactions between null 
magnetic curves and Killing vector fields on defined 3-
dimensional semi-Riemannian manifolds. Null magnetic curves 
represent light-like trajectories under the influence of the Lorentz 
force, while Killing vector fields characterize the isometries of 
the manifold, i.e., metric tensor-preserving symmetries. Our 
findings demonstrate that the geometric and kinematic behavior 
of null magnetic curves in this particular space is directly related 
to the existence and structure of Killing vector fields. In 

Matematik

12



particular, the influence of a Killing vector field on the null 
magnetic curve provides important clues to the existence of 
conserved magnitudes of the curve and, consequently, to the 
integrability of the equations of motion. The results provide a 
valuable framework for the application of these manifolds in 
physical models and point to new directions for future research. 
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ON 𝒒𝒒-LEONARDO SPLIT QUATERNION 
POLYNOMIALS 

 

Ali ATASOY1 

 

1. INTRODUCTION 

Quantum calculus (𝑞𝑞-calculus) has garnered significant 
scholarly attention, demonstrating broad applicability in pure 
mathematics (e.g., combinatorics, special functions) and applied 
fields, including fractal analysis, multifractal measures, and the 
entropy formulations of chaotic dynamical systems. The present 
study introduces the concept of quantum split quaternion 
polynomials, establishing their fundamental properties and 
associated identities. 

Integer sequences represent a cornerstone of mathematical 
inquiry and remain an active research domain. Canonical 
examples, particularly the Fibonacci and Lucas sequences, are 
considered foundational. This status is attributable to their 
complex structural characteristics, profound interconnections 
with diverse mathematical fields, and extensive applicability in 
disciplines ranging from biology and physics to statistics and 
computer science. 

Classical studies on Fibonacci and Lucas numbers form 
the foundational background of many modern recursive 
structures. Early works such as A Primer for the Fibonacci 
Numbers provide a comprehensive introduction to these 
sequences and their mathematical behavior (Bicknell, Hoggatt, & 
Verner, 1972). Koshy’s well-known monograph further expands 
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this framework with formal properties and applications in various 
mathematical domains (Koshy, 2001). More recent contributions 
examine number theoretic representations, showing that integers 
can be expressed through combinations of Fibonacci and Lucas 
numbers (Park, Cho, Cho, Cho, & Park, 2020). Classical 
references, including those by Vajda (1989) and by Verner and 
Hoggatt (1969), detail the connections between these sequences 
and the golden ratio. Extensions of these ideas to hypercomplex 
systems were advanced by Halıcı (2012) through the study of 
Fibonacci quaternions. Foundational sequence generalizations 
were introduced in a series of works by Horadam (1961, 1963, 
1965), who developed generalized Fibonacci sequences, explored 
their complex analogues, and established fundamental structural 
properties that continue to influence contemporary recursive 
sequence theory.  

The recursive formulations of the Fibonacci and Lucas 
sequences are given by the following relations: 

F𝑛𝑛 = F𝑛𝑛−1 + F𝑛𝑛−2 ;  F0 = 0, F1 = 1, 

L𝑛𝑛+2 = L𝑛𝑛+1 + L𝑛𝑛  ; L0 = 2, L1 = 1. 

The Fibonacci and Lucas sequences can be expressed 
explicitly through their well-known Binet formulas. 

F𝑛𝑛 = 𝜑𝜑𝑛𝑛−𝜓𝜓𝑛𝑛

𝜑𝜑−𝜓𝜓
,  L𝑛𝑛 = 𝜑𝜑𝑛𝑛 + 𝜓𝜓𝑛𝑛.  (1.1) 

For 𝑛𝑛 ≥ 2, Fibonacci polynomials are given as follows: 

F𝑛𝑛(𝑥𝑥) = 𝑥𝑥F𝑛𝑛−1(𝑥𝑥) + F𝑛𝑛−2(𝑥𝑥) ;  F0(𝑥𝑥) = 0, F1(𝑥𝑥) = 1. 

Recent advancements in Leonardo number theory have 
expanded the classical framework into new algebraic and analytic 
domains. A modern treatment of the Leonardo sequence, 
incorporating dual vector and dual angle representations, has been 
proposed by Babadağ and Atasoy (2024), offering an enriched 
geometric interpretation of these numbers. The structural 
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properties of Leonardo sequences were further addressed in 
several studies, including those by Catarino and Borges (2019) 
and by Alp and Koçer (2021), who investigated combinatorial 
and arithmetic behaviors of the sequence. Extended 
generalizations, such as those presented by Shannon and Deveci 
(2022), highlight the adaptability of Leonardo-type recursions to 
broader number-theoretic contexts. Complex-valued extensions 
of Leonardo numbers were explored by Karataş (2022), providing 
insights into their behavior within complex algebraic structures. 
Complementary to these contributions, Shattuck (2022) offered 
combinatorial proofs for generalized Leonardo identities, thereby 
strengthening the theoretical foundations of Leonardo number 
analysis. 

The Leonardo number sequence Le𝑛𝑛 is defined through the 
recurrence relation 

Le𝑛𝑛 = Le𝑛𝑛−1 + Le𝑛𝑛−2 + 1 

starting with the terms Le0 = Le1 = 1. Then, 

Le𝑛𝑛 − Le𝑛𝑛+1 = Le𝑛𝑛−1 + Le𝑛𝑛−2 + 1 − Le𝑛𝑛 − Le𝑛𝑛−1 − 1 
Le𝑛𝑛+1 = 2Le𝑛𝑛 − Le𝑛𝑛−2 

(Mangueira, Vieira, Alves, & Catarino, 2022). 

For 𝑛𝑛 ≥ 3, Leonardo polynomials are given as follows: 

Le𝑛𝑛(𝑥𝑥) = 2𝑥𝑥Le𝑛𝑛−1(𝑥𝑥) − Le𝑛𝑛−3(𝑥𝑥) 

where Le0(𝑥𝑥) = Le1(𝑥𝑥) = 1 and Le2(𝑥𝑥) = 3. 

Leonardo numbers are explicitly defined by Binet’s formulas: 

Le𝑛𝑛 = 2F𝑛𝑛+1 − 1 = 2𝜑𝜑𝑛𝑛+1−2𝜓𝜓𝑛𝑛+1

𝜑𝜑−𝜓𝜓
− 1,   𝑛𝑛 ≥ 0. (1.2) 

The study of special number sequences and polynomial 
structures has led to significant advances in discrete mathematics, 
particularly through identities and summation formulas derived 
using generating functions. These constructions play a central 
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role in mathematical physics, modeling, and analytic number 
theory (Nallı & Haukkanen, 2009; Horadam, 1996). Within this 
context, Lee and Asci expanded classical recursive systems by 
establishing fundamental properties of the (𝑝𝑝, 𝑞𝑞)-Fibonacci and 
(𝑝𝑝, 𝑞𝑞)-Lucas polynomials (Lee & Asci, 2012). Catarino 
subsequently introduced ℎ(𝑥𝑥)-Fibonacci quaternion polynomials, 
linking special sequences to quaternionic algebra (Catarino, 
2015). More recently, Zhang, Khan, and Kızılateş analyzed 
(𝑝𝑝, 𝑞𝑞)-Fibonacci and (𝑝𝑝, 𝑞𝑞)-Lucas polynomials associated with 
Changhee numbers, further broadening the algebraic framework 
of generalized Fibonacci-type structures (Zhang, Khan, & 
Kızılateş, 2023). 

Further developments in generalized Fibonacci-type 
structures have emerged through the integration of quantum 
calculus and its extensions. Zhang and friends offered an 
advanced treatment of (𝑝𝑝, 𝑞𝑞)-Fibonacci and (𝑝𝑝, 𝑞𝑞)-Lucas 
polynomials associated with Changhee numbers, providing new 
insights into their algebraic and combinatorial behavior (Zhang, 
Khan, & Kızılateş, 2023). Parallel contributions by Babadağ 
explored quantum-calculus-based approaches to dual and hyper-
dual number sequences, demonstrating the applicability of q-
analogue methods to broader algebraic systems (Babadağ, 2023a; 
Babadağ, 2023b). Foundational work on quantum calculus by 
Kac and Cheung (2002) established the theoretical framework 
upon which many recent generalizations depend, while the 
analysis of quantum integers by Le Stum and Quirós further 
clarified structural properties relevant to sequence theory (Le 
Stum & Quirós, 2015). Akkuş and Kızılaslan (2019) argued that 
the quantum calculus approach provides novel methods for 
quaternion analysis. Additional extensions of quantum-calculus-
based recursive systems, including dual bicomplex Fibonacci and 
Lucas numbers, were introduced by Kome and friends, marking 
another significant step in the integration of quantum operators 
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with hypercomplex number systems (Kome, Kome, & Catarino, 
2022).  

For arbitrary integers 𝑛𝑛 and 𝑚𝑚, we introduce the function 

[𝑛𝑛]𝑞𝑞 =
1 − 𝑞𝑞𝑛𝑛

1 − 𝑞𝑞
= 1 + 𝑞𝑞 + ⋯+ 𝑞𝑞𝑛𝑛−1 

and 

[𝑚𝑚 + 𝑛𝑛]𝑞𝑞 = [𝑚𝑚]𝑞𝑞 + 𝑞𝑞𝑚𝑚[𝑛𝑛]𝑞𝑞 , 

[𝑚𝑚𝑚𝑚]𝑞𝑞 = [𝑚𝑚]𝑞𝑞[𝑛𝑛]𝑞𝑞𝑚𝑚 . 

If we take 𝑞𝑞 = 𝜓𝜓
𝜑𝜑

 in (1.1) and (1.2), we can write 𝑞𝑞-integer form 

respectively as: 

F𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 𝜑𝜑𝑛𝑛−1[𝑛𝑛]𝑞𝑞 = 𝜑𝜑𝑛𝑛
1 − 𝑞𝑞𝑛𝑛

𝜑𝜑 − 𝜑𝜑𝜑𝜑
, 

L𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 𝜑𝜑𝑛𝑛
[2𝑛𝑛]𝑞𝑞
[𝑛𝑛]𝑞𝑞

= 𝜑𝜑𝑛𝑛
1 − 𝑞𝑞2𝑛𝑛

1 − 𝑞𝑞𝑛𝑛
 

and 

Le𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 2𝜑𝜑𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞 − 1 = 2𝜑𝜑𝑛𝑛+1
1 − 𝑞𝑞𝑛𝑛+1

𝜑𝜑 − 𝜑𝜑𝜑𝜑
− 1 

(Akkuş & Kızılaslan, 2019). 

A split quaternion may be described as an ordered 
quadruple given by 

𝛾𝛾 = 𝛾𝛾0 + 𝛾𝛾1𝑖𝑖1 + 𝛾𝛾2𝑖𝑖2 + 𝛾𝛾3𝑖𝑖3 

with 𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3 ∈ ℝ (ℝ denotes the set of real numbers) and 
split quatenionic units 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3 satisfy 

𝑖𝑖12 = −𝑖𝑖22 = −𝑖𝑖32 = −1,   𝑖𝑖1𝑖𝑖2 = −𝑖𝑖2𝑖𝑖1 = 𝑖𝑖3,   𝑖𝑖2𝑖𝑖3 = −𝑖𝑖1.   (1.3) 

Addition and multiplication operations are defined as 
follows: 
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𝛾𝛾 + 𝛿𝛿 = �𝑆𝑆𝛾𝛾 + 𝑆𝑆𝛿𝛿� + �𝑉𝑉𝛾𝛾 + 𝑉𝑉𝛿𝛿�,
𝛾𝛾𝛾𝛾 = 𝑆𝑆𝛾𝛾𝑆𝑆𝛿𝛿 + ⟨𝑉𝑉𝛾𝛾,𝑉𝑉𝛿𝛿⟩ + 𝑆𝑆𝛾𝛾𝑉𝑉𝛾𝛾 + 𝑆𝑆𝛿𝛿𝑉𝑉𝛿𝛿 + 𝑉𝑉𝛾𝛾 × 𝑉𝑉𝛿𝛿 ,

 

where 𝛾𝛾 and 𝛿𝛿 are split quaternions (Atasoy, Ata, Yaylı, & 
Kemer, 2017). 

 

2. 𝒒𝒒-LEONARDO SPLIT QUATERNIONS 

The scope of this section encompasses the definition of 
the 𝑞𝑞-Leonardo and 𝑞𝑞-Lucas split quaternions, followed by the 
presentation of their key structural characteristics and associated 
algebraic identities. 

The associated 𝑞𝑞-Leonardo split quaternion polynomial 
sequences are introduced herein, and their fundamental properties 
are subjected to rigorous examination. 

Definition 2.1.  The  𝑛𝑛th  𝑞𝑞-Fibonacci split quaternions and the 
𝑞𝑞-Lucas split quaternions are defined as follows: 

ℱ𝑛𝑛(𝜑𝜑; 𝑞𝑞) = F𝑛𝑛(𝜑𝜑; 𝑞𝑞) + F𝑛𝑛+1(𝜑𝜑; 𝑞𝑞)𝑖𝑖1 + F𝑛𝑛+2(𝜑𝜑; 𝑞𝑞)𝑖𝑖2 + F𝑛𝑛+3(𝜑𝜑; 𝑞𝑞)𝑖𝑖3, 

ℒ𝑛𝑛(𝜑𝜑; 𝑞𝑞) = L𝑛𝑛(𝜑𝜑; 𝑞𝑞) + L𝑛𝑛+1(𝜑𝜑; 𝑞𝑞)𝑖𝑖1 + L𝑛𝑛+2(𝜑𝜑; 𝑞𝑞)𝑖𝑖2 + L𝑛𝑛+3(𝜑𝜑; 𝑞𝑞)𝑖𝑖3 

where 𝑖𝑖1, 𝑖𝑖2 and 𝑖𝑖3 are the imaginary basis elements whose 
products follow the multiplication rule stated in (1.3). 

The Binet formulas of these quaternions 

ℱ𝑛𝑛(𝜑𝜑; 𝑞𝑞) = �
𝜑𝜑𝑛𝑛+1𝜑𝜑 − (𝜑𝜑𝜑𝜑)𝑛𝑛+1𝛽𝛽

𝜑𝜑 − 𝜑𝜑𝜑𝜑
�, 

ℒ𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 𝜑𝜑𝑛𝑛𝜑𝜑 + (𝜑𝜑𝜑𝜑)𝑛𝑛𝛽𝛽 

where 𝜑𝜑 = 1 + 𝜑𝜑𝑖𝑖1 + 𝜑𝜑2𝑖𝑖2 + 𝜑𝜑3𝑖𝑖3 and 𝛽𝛽 = 1 + (𝜑𝜑𝜑𝜑)𝑖𝑖1 + (𝜑𝜑𝜑𝜑)2𝑖𝑖2 +
(𝜑𝜑𝜑𝜑)3𝑖𝑖3. 

Definition 2.2.  The 𝑛𝑛th 𝑞𝑞-Leonardo split quaternion sequences is 
defined by 

Matematik

21



ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = L𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) + L𝑒𝑒𝑛𝑛+1(𝜑𝜑; 𝑞𝑞)𝑖𝑖1 + L𝑒𝑒𝑛𝑛+2(𝜑𝜑; 𝑞𝑞)𝑖𝑖2
+ L𝑒𝑒𝑛𝑛+3(𝜑𝜑; 𝑞𝑞)𝑖𝑖3

= 2𝜑𝜑𝑛𝑛+1
1 − 𝑞𝑞𝑛𝑛+1

𝜑𝜑 − 𝜑𝜑𝜑𝜑
+ 2𝜑𝜑𝑛𝑛+2

1 − 𝑞𝑞𝑛𝑛+2

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖1

+ 2𝜑𝜑𝑛𝑛+3
1 − 𝑞𝑞𝑛𝑛+3

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖2 + 2𝜑𝜑𝑛𝑛+4

1 − 𝑞𝑞𝑛𝑛+4

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖3

− (1 + 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3)                                                   (2.1) 

or equivalent 

ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 2�𝜑𝜑𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞 + 𝜑𝜑𝑛𝑛+1[𝑛𝑛 + 2]𝑞𝑞𝑖𝑖1 + 𝜑𝜑𝑛𝑛+2[𝑛𝑛 + 3]𝑞𝑞𝑖𝑖2
+ 𝜑𝜑𝑛𝑛+3[𝑛𝑛 + 4]𝑞𝑞𝑖𝑖3� − (1 + 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3).             (2.2) 

Theorem 2.1.  The Binet-like formula for the 𝑛𝑛th 𝑞𝑞-Leonardo split 
quaternions are 

ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 2ℱ𝑛𝑛(𝜑𝜑; 𝑞𝑞) −𝒜𝒜 = 2 �
𝜑𝜑𝑛𝑛+1𝜑𝜑−(𝜑𝜑𝜑𝜑)𝑛𝑛+1𝛽𝛽

𝜑𝜑−𝜑𝜑𝜑𝜑
� −𝒜𝒜      (2.3) 

or equivalent 

ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = 2 �𝜑𝜑𝑛𝑛[𝑛𝑛]𝑞𝑞𝜑𝜑 + (𝜑𝜑𝜑𝜑)𝑛𝑛𝜓𝜓� −𝒜𝒜 

where,  

𝒜𝒜 = 1 + 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3,   

𝜑𝜑 = 1 + 𝜑𝜑𝑖𝑖1 + 𝜑𝜑2𝑖𝑖2 + 𝜑𝜑3𝑖𝑖3, 

𝜓𝜓 = 1 + 𝜑𝜑[2]𝑞𝑞𝑖𝑖1 + 𝜑𝜑2[3]𝑞𝑞𝑖𝑖2 + 𝜑𝜑3[4]𝑞𝑞𝑖𝑖3,  

𝛽𝛽 = 1 + (𝜑𝜑𝜑𝜑)𝑖𝑖1 + (𝜑𝜑𝜑𝜑)2𝑖𝑖2 + (𝜑𝜑𝜑𝜑)3𝑖𝑖3. 

Proof. Using equations (2.1) and (2.2) and carrying out the 
corresponding computations, we obtain 
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ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = L𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) + L𝑒𝑒𝑛𝑛+1(𝜑𝜑; 𝑞𝑞)𝑖𝑖1 + L𝑒𝑒𝑛𝑛+2(𝜑𝜑; 𝑞𝑞)𝑖𝑖2
+ L𝑒𝑒𝑛𝑛+3(𝜑𝜑; 𝑞𝑞)𝑖𝑖3

= 2𝜑𝜑𝑛𝑛+1
1 − 𝑞𝑞𝑛𝑛+1

𝜑𝜑 − 𝜑𝜑𝜑𝜑
+ 2𝜑𝜑𝑛𝑛+2

1 − 𝑞𝑞𝑛𝑛+2

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖1

+ 2𝜑𝜑𝑛𝑛+3
1 − 𝑞𝑞𝑛𝑛+3

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖2 + 2𝜑𝜑𝑛𝑛+4

1 − 𝑞𝑞𝑛𝑛+4

𝜑𝜑 − 𝜑𝜑𝜑𝜑
𝑖𝑖3

− (1 + 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3)

= 2
𝜑𝜑𝑛𝑛+1

𝜑𝜑 − 𝜑𝜑𝜑𝜑
(1 + 𝜑𝜑𝑖𝑖1 + 𝜑𝜑2𝑖𝑖2 + 𝜑𝜑3𝑖𝑖3)

− 2
(𝜑𝜑𝜑𝜑)𝑛𝑛+1

𝜑𝜑 − 𝜑𝜑𝜑𝜑
(1 + (𝜑𝜑𝜑𝜑)𝑖𝑖1 + (𝜑𝜑𝜑𝜑)2𝑖𝑖2 + (𝜑𝜑𝜑𝜑)3𝑖𝑖3)

= 2�
𝜑𝜑𝑛𝑛+1𝜑𝜑 − (𝜑𝜑𝜑𝜑)𝑛𝑛+1𝛽𝛽

𝜑𝜑 − 𝜑𝜑𝜑𝜑
� −𝒜𝒜 

or equivalent 

ℒ𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) = L𝑒𝑒𝑛𝑛(𝜑𝜑; 𝑞𝑞) + L𝑒𝑒𝑛𝑛+1(𝜑𝜑; 𝑞𝑞)𝑖𝑖1 + L𝑒𝑒𝑛𝑛+2(𝜑𝜑; 𝑞𝑞)𝑖𝑖2
+ L𝑒𝑒𝑛𝑛+3(𝜑𝜑; 𝑞𝑞)𝑖𝑖3
= 2�𝜑𝜑𝑛𝑛[𝑛𝑛 + 1]𝑞𝑞 + 𝜑𝜑𝑛𝑛+1[𝑛𝑛 + 2]𝑞𝑞𝑖𝑖1
+ 𝜑𝜑𝑛𝑛+2[𝑛𝑛 + 3]𝑞𝑞𝑖𝑖2 + 𝜑𝜑𝑛𝑛+3[𝑛𝑛 + 4]𝑞𝑞𝑖𝑖3�
= 2𝜑𝜑𝑛𝑛�[𝑛𝑛]𝑞𝑞 + 𝑞𝑞𝑛𝑛� + 2𝜑𝜑𝑛𝑛+1�[𝑛𝑛]𝑞𝑞 + 𝑞𝑞𝑛𝑛[2]�𝑖𝑖1
+ 2𝜑𝜑𝑛𝑛+2�[𝑛𝑛]𝑞𝑞 + 𝑞𝑞𝑛𝑛[3]�𝑖𝑖2 + 2𝜑𝜑𝑛𝑛+3

= 2𝜑𝜑𝑛𝑛[𝑛𝑛]𝑞𝑞(1 + 𝜑𝜑𝑖𝑖1 + 𝜑𝜑2𝑖𝑖2 + 𝜑𝜑3𝑖𝑖2)
+ 2𝜑𝜑𝑛𝑛𝑞𝑞𝑛𝑛�1 + 𝜑𝜑[2]𝑞𝑞𝑖𝑖1 + 𝜑𝜑2[3]𝑞𝑞𝑖𝑖2 + 𝜑𝜑3[4]𝑞𝑞𝑖𝑖3�

= 2 �𝜑𝜑𝑛𝑛[𝑛𝑛]𝑞𝑞𝜑𝜑 + (𝜑𝜑𝜑𝜑)𝑛𝑛𝜓𝜓� −𝒜𝒜 

To illustrate, take the case where 𝑛𝑛 = 0 in (2.3). We will 
have 
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ℒ𝑒𝑒0(𝜑𝜑; 𝑞𝑞) = 2
𝜑𝜑 − 𝑞𝑞𝛽𝛽
(1 − 𝑞𝑞) −

(1 + 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3)

= 2
1 + 𝜑𝜑𝑖𝑖1 + 𝜑𝜑2𝑖𝑖2 + 𝜑𝜑3𝑖𝑖3 − 𝑞𝑞(1 + (𝜑𝜑𝜑𝜑)𝑖𝑖1 + (𝜑𝜑𝜑𝜑)2𝑖𝑖2 + (𝜑𝜑𝜑𝜑)3𝑖𝑖3)

(1 − 𝑞𝑞)
−𝒜𝒜

= 2
(1 − 𝑞𝑞) + 𝜑𝜑𝑖𝑖1(1 − 𝑞𝑞2) + 𝜑𝜑2𝑖𝑖2(1 − 𝑞𝑞3) + 𝜑𝜑3𝑖𝑖3(1 − 𝑞𝑞4)

(1 − 𝑞𝑞) −𝒜𝒜

= 2(1 + 𝜑𝜑[2]𝑖𝑖1 + 𝜑𝜑2[3]𝑖𝑖2 + 𝜑𝜑3[4]𝑖𝑖3) −𝒜𝒜. 

 

3. 𝒒𝒒-LEONARDO SPLIT QUATERNION 
POLYNAMIALS 

This section introduces the formal definition of the 𝑞𝑞-
Leonardo split quaternion polynomial. Following this, we 
establish the Binet formula and the generating functions 
associated with this class of polynomials, and present several key 
results concerning the behavior of the derived sequences. 

Definition 3.1. For complex polynomials 𝛼𝛼 = 𝛼𝛼(𝑥𝑥) and 𝜇𝜇 = 𝜇𝜇(𝑥𝑥), 
the 𝑞𝑞-Leonardo polynomial L𝑒𝑒𝑛𝑛(𝑥𝑥) is introduced using the 
recurrence relation 

L𝑒𝑒𝑛𝑛(𝑥𝑥) = 2𝛼𝛼L𝑒𝑒𝑛𝑛−1(𝑥𝑥) − 𝜇𝜇L𝑒𝑒𝑛𝑛−3(𝑥𝑥)    (3.1) 

with the initial conditions Le0(𝑥𝑥) = L𝑒𝑒1(𝑥𝑥) = 1, L𝑒𝑒2(𝑥𝑥) = 3 and 
L𝑒𝑒3(𝑥𝑥) = 6𝛼𝛼 − 𝜇𝜇, L𝑒𝑒4(𝑥𝑥) = 12𝛼𝛼2 − 2𝛼𝛼𝛼𝛼 − 𝜇𝜇,⋯ 

The Binet formula of the 𝑞𝑞-Leonardo polynomial can now 
be obtained. 

Theorem 3.1. Let 𝑡𝑡1 = 𝑡𝑡1(𝑥𝑥), 𝑡𝑡2 = 𝑡𝑡2(𝑥𝑥), 𝑡𝑡3 = 𝑡𝑡3(𝑥𝑥) be the roots 
of the characteristic equation roots of 

𝑡𝑡3 − 2𝛼𝛼𝑡𝑡2 + 𝜇𝜇 = 0 

in (3.1) where 𝑡𝑡 = 𝑡𝑡(𝑥𝑥). Then, for 𝑛𝑛 ≥ 0, the Binet formula for 
𝑞𝑞-Leonardo polynomials L𝑒𝑒𝑛𝑛(𝑥𝑥) is 
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L𝑒𝑒𝑛𝑛(𝑥𝑥) =  𝜌𝜌(𝑥𝑥)t1
𝑛𝑛(𝑥𝑥) + 𝜏𝜏(𝑥𝑥)t2

𝑛𝑛(𝑥𝑥) +𝜔𝜔(𝑥𝑥)t3
𝑛𝑛(𝑥𝑥) 

where 𝜌𝜌 = 𝜌𝜌(𝑥𝑥), 𝜏𝜏 = 𝜏𝜏(𝑥𝑥),𝜔𝜔 = 𝜔𝜔(𝑥𝑥) and 

𝜌𝜌 =
3 − 𝑡𝑡2 − 𝑡𝑡3 + 𝑡𝑡2𝑡𝑡3
(𝑡𝑡1 − 𝑡𝑡2)(𝑡𝑡1 − 𝑡𝑡3)

, 

𝜏𝜏 =
3 − 𝑡𝑡1 − 𝑡𝑡3 + 𝑡𝑡1𝑡𝑡3
(𝑡𝑡2 − 𝑡𝑡1)(𝑡𝑡2 − 𝑡𝑡3)

, 

𝜔𝜔 =
3 − 𝑡𝑡1 − 𝑡𝑡2 + 𝑡𝑡1𝑡𝑡2
(𝑡𝑡3 − 𝑡𝑡1)(𝑡𝑡3 − 𝑡𝑡2)

. 

Proof. The proof can be obtained by mathematical calculations 
for 𝑛𝑛 = 0,𝑛𝑛 = 1,𝑛𝑛 = 2.  

Definition 3.2. The 𝑞𝑞-Leonardo split quaternion polynomial 
ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) is recursively defined as follows: 

ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) = L𝑒𝑒𝑛𝑛(𝑥𝑥) + L𝑒𝑒𝑛𝑛+1(𝑥𝑥)𝑖𝑖1 + L𝑒𝑒𝑛𝑛+2(𝑥𝑥)𝑖𝑖2 + L𝑒𝑒𝑛𝑛+3(𝑥𝑥)𝑖𝑖3. 

The initial values for the 𝑞𝑞-Leonardo quaternion polynomials 
ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) are are given by: 

ℒ𝑒𝑒0(𝑥𝑥) = L𝑒𝑒0(𝑥𝑥) + L𝑒𝑒1(𝑥𝑥)𝑖𝑖1 + L𝑒𝑒2(𝑥𝑥)𝑖𝑖2 + L𝑒𝑒3(𝑥𝑥)𝑖𝑖3
= 1 + 𝑖𝑖1 + 3𝑖𝑖2 + �6𝛼𝛼(𝑥𝑥) − 𝜇𝜇(𝑥𝑥)�𝑖𝑖3,  

ℒ𝑒𝑒1(𝑥𝑥) = L𝑒𝑒1(𝑥𝑥) + L𝑒𝑒2(𝑥𝑥)𝑖𝑖1 + L𝑒𝑒3(𝑥𝑥)𝑖𝑖2 + L𝑒𝑒4(𝑥𝑥)𝑖𝑖3
= 1 + 3𝑖𝑖1 + �6𝛼𝛼(𝑥𝑥) − 𝜇𝜇(𝑥𝑥)�𝑖𝑖2
+ �12𝛼𝛼2(𝑥𝑥) − 2𝛼𝛼(𝑥𝑥)𝜇𝜇(𝑥𝑥) − 𝜇𝜇(𝑥𝑥)�𝑖𝑖3 

where the imaginary units 𝑖𝑖1, 𝑖𝑖2 and 𝑖𝑖3 adhere to the multiplication 
rule described in (1.3). 

Theorem 3.2. Consider ℒ𝑒𝑒𝐺𝐺(𝑡𝑡) as the generating function of the 
𝑞𝑞-Leonardo split quaternion polynomial ℒ𝑒𝑒𝑛𝑛(𝑥𝑥), which is defined 
by: 

ℒ𝑒𝑒𝐺𝐺(𝑡𝑡) =
ℒ𝑒𝑒0(𝑥𝑥) + [ℒ𝑒𝑒1(𝑥𝑥) − 2𝛼𝛼ℒ𝑒𝑒0(𝑥𝑥)]𝑡𝑡 + [ℒ𝑒𝑒2(𝑥𝑥) − 2𝛼𝛼ℒ𝑒𝑒1(𝑥𝑥)]𝑡𝑡2

1 − 2𝛼𝛼𝛼𝛼 + 𝑡𝑡3
. 
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Proof. The generating function of the 𝑞𝑞-Leonardo split 
quaternion polynomials ℒ𝑒𝑒𝑛𝑛(𝑥𝑥), denoted by ℒ𝑒𝑒𝐺𝐺(𝑡𝑡), is given by 
the series ∑ ℒ∞

𝑛𝑛=0 𝑒𝑒𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛. For 𝑛𝑛 ≥ 3, we write 

ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) − 2𝛼𝛼ℒ𝑒𝑒𝑛𝑛−1(𝑥𝑥) + 𝜇𝜇ℒ𝑒𝑒𝑛𝑛−3(𝑥𝑥) = 0 

�ℒ
∞

𝑛𝑛=3

𝑒𝑒𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛 − 2𝛼𝛼�ℒ
∞

𝑛𝑛=3

𝑒𝑒𝑛𝑛−1(𝑥𝑥)𝑡𝑡𝑛𝑛 + 𝜇𝜇�ℒ
∞

𝑛𝑛=3

𝑒𝑒𝑛𝑛−3(𝑥𝑥)𝑡𝑡𝑛𝑛 = 0 

�ℒ
∞

𝑛𝑛=0

𝑒𝑒𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛 − ℒ𝑒𝑒0(𝑥𝑥) − ℒ𝑒𝑒1(𝑥𝑥)t − ℒ𝑒𝑒2(𝑥𝑥)𝑡𝑡2

− 2𝛼𝛼𝛼𝛼 ��ℒ
∞

𝑛𝑛=0

𝑒𝑒𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛 − ℒ𝑒𝑒0(𝑥𝑥) − ℒ𝑒𝑒1(𝑥𝑥)t�

+ 𝜇𝜇𝑡𝑡3�ℒ
∞

𝑛𝑛=0

𝑒𝑒𝑛𝑛(𝑥𝑥)𝑡𝑡𝑛𝑛 = 0. 

Then, 

ℒ𝑒𝑒𝐺𝐺(𝑡𝑡)  − ℒ𝑒𝑒0(𝑥𝑥) − ℒ𝑒𝑒1(𝑥𝑥)t − ℒ𝑒𝑒2(𝑥𝑥)𝑡𝑡2

− 2𝛼𝛼𝛼𝛼�ℒ𝑒𝑒𝐺𝐺(𝑡𝑡)  − ℒ𝑒𝑒0(𝑥𝑥) − ℒ𝑒𝑒1(𝑥𝑥)t�
+ 𝜇𝜇𝑡𝑡3ℒ𝑒𝑒𝐺𝐺(𝑡𝑡) = 0. 

In the last equality, if we make the necessary calculations, we find 
the result as: 

ℒ𝑒𝑒𝐺𝐺(𝑡𝑡)

=
ℒ𝑒𝑒0(𝑥𝑥) + [ℒ𝑒𝑒1(𝑥𝑥) − 2𝛼𝛼ℒ𝑒𝑒0(𝑥𝑥)]𝑡𝑡 + [ℒ𝑒𝑒2(𝑥𝑥) − 2𝛼𝛼ℒ𝑒𝑒1(𝑥𝑥)]𝑡𝑡2

1 − 2𝛼𝛼𝛼𝛼 + 𝜇𝜇𝑡𝑡3
. 

The proof is completed.  

Theorem 3.3.  The Binet-like formula for the 𝑞𝑞-Leonardo split 
quaternion polynomial ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) is  

ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) = 𝜌𝜌t1𝑛𝑛𝑄𝑄1(𝑥𝑥) + 𝜏𝜏t2𝑛𝑛𝑄𝑄2(𝑥𝑥) + 𝜔𝜔t3𝑛𝑛𝑄𝑄2(𝑥𝑥) 
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where 𝑄𝑄1(𝑥𝑥) = +𝑡𝑡1𝑖𝑖1 + t12𝑖𝑖2 + t13𝑖𝑖3,  𝑄𝑄2(𝑥𝑥) = 1 + 𝑡𝑡2𝑖𝑖1 + t22𝑖𝑖2 +
t23𝑖𝑖3,𝑄𝑄2(𝑥𝑥) = 1 + 𝑡𝑡3𝑖𝑖1 + t32𝑖𝑖2 + t33𝑖𝑖3. 

Proof. Based on Theorem 3.1, the proof can be readily 
established by applying the Binet formula for the 𝑞𝑞-Leonardo 
split quaternion polynomial. For 𝑛𝑛 ≥ 0, 

ℒ𝑒𝑒𝑛𝑛(𝑥𝑥) = L𝑒𝑒𝑛𝑛(𝑥𝑥) + L𝑒𝑒𝑛𝑛+1(𝑥𝑥)𝑖𝑖1 + L𝑒𝑒𝑛𝑛+2(𝑥𝑥)𝑖𝑖2 + L𝑒𝑒𝑛𝑛+3(𝑥𝑥)𝑖𝑖3
= 𝜌𝜌t1𝑛𝑛 + 𝜏𝜏t2𝑛𝑛 + 𝜔𝜔t3𝑛𝑛

+ (𝜌𝜌t1𝑛𝑛+1 + 𝜏𝜏t2𝑛𝑛+1 + 𝜔𝜔t3𝑛𝑛+1)𝑖𝑖1
+ (𝜌𝜌t1𝑛𝑛+2 + 𝜏𝜏t2𝑛𝑛+2 + 𝜔𝜔t3𝑛𝑛+2)𝑖𝑖2
+ (𝜌𝜌t1𝑛𝑛+3 + 𝜏𝜏t2𝑛𝑛+3 + 𝜔𝜔t3𝑛𝑛+3)𝑖𝑖3
= 𝜌𝜌t1𝑛𝑛(1 + 𝑡𝑡1𝑖𝑖1 + t12𝑖𝑖2 + t13𝑖𝑖3)
+ 𝜏𝜏t2𝑛𝑛(1 + 𝑡𝑡2𝑖𝑖1 + t22𝑖𝑖2 + t23𝑖𝑖3)
+ 𝜔𝜔t3𝑛𝑛(1 + 𝑡𝑡3𝑖𝑖1 + t32𝑖𝑖2 + t33𝑖𝑖3)
= 𝜌𝜌t1𝑛𝑛𝑄𝑄1(𝑥𝑥) + 𝜏𝜏t2𝑛𝑛𝑄𝑄2(𝑥𝑥) + 𝜔𝜔t3𝑛𝑛𝑄𝑄2(𝑥𝑥). 

 

4. CONCLUSIONS 

In this study, split quaternion sequences are introduced 
using notations from quantum calculus. We introduce a novel 
class of q-Leonardo split quaternion polynomial sequences and 
explore a range of their properties. This representation obtain a 
new perspective on the structure of 𝑞𝑞-Leonardo split quaternions 
and give a deeper understanding of their geometric and algebraic 
interpretations and transformations. 
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DİFERANSİYEL MAHREMİYET VE MODERN 
UYGULAMALARI 

 

Muhammed HASDEMİR1 

 

1. GİRİŞ 

 Büyük Veri çağında bireysel mahremiyetin korunması, 
geleneksel anonimleştirme yöntemlerinin yetersiz kalması 
nedeniyle kritik bir zorluk haline gelmiştir. Diferansiyel 
Mahremiyet (DP), bu soruna matematiksel olarak kanıtlanabilir 
garantiler sunarak modern veri analizi için altın standarttır. 

 Bu bölümde, Merkezi DP modelinde kullanılan Laplace 
Mekanizması için gizlilik–fayda dengesini nicel olarak 
karakterize eden bir analiz çerçevesi sunulmaktadır. Sayma 
sorguları için mekanizmanın varyans ve Ortalama Mutlak Hata 
(MAE) açısından teorik davranışı türetilmekte, ardından kurgusal 
bir veri seti üzerinde gerçekleştirilen 5000 tekrarlı 
simülasyonlarla doğrulanmaktadır.  

Farklı gizlilik (𝜀𝜀) değerleri boyunca elde edilen sonuçlar, 
(𝜀𝜀) ile hata metrikleri arasındaki ters ve yaklaşık logaritmik 
ilişkiyi ortaya koymakta; ayrıca kabul edilebilir sonuç yüzdesi 
üzerinden pratik bir güven ölçütü tanımlanmaktadır. Analiz, 
özellikle 𝜀𝜀 < 1 aralığında küçük artışların faydayı hızlı biçimde 
yükselttiğini, 𝜀𝜀 > 3 sonrasında ise marjinal kazanımların sınırlı 
kaldığını göstermektedir. Bölüm, bu bulgulara dayanarak 
uygulayıcılar için sayma sorguları bağlamında somut 𝜀𝜀 seçim 
rehberleri önermekte ve diferansiyel mahremiyetli sistemlerin 

 
1  Dr. Öğr. Üyesi, Aydın Adnan Menderes Üniversitesi, Söke Sağlık Hizmetleri 

Meslek Yüksekokulu, Tıbbi Hizmetler ve Teknikler Bölümü, Tıbbi Görüntüleme 
Teknikleri Pr., ORCID: 0000-0001-5901-3699. 
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tasarımında gizlilik ile analitik doğruluk arasında yapılacak 
uzlaşmanın nasıl nicel olarak değerlendirilebileceğini 
göstermektedir 

1.1. Diferansiyel Mahremiyetin Ortaya Çıkışı ve 
Uygulama Örnekleri 

Dijital ekosistemde veri toplamanın neredeyse 
“varsayılan” hâle gelmesi, sağlık, finans ve kamu politikaları gibi 
yüksek etkili alanlarda güçlü analitik imkânlar sunarken, bireysel 
mahremiyet risklerini de belirgin biçimde artırmaktadır. 
Geleneksel anonimleştirme teknikleri, özellikle de k-anonimlik 
gibi çerçeveler, kişisel verilerin tekrar-özdeşleştirilmesini 
önlemede sınırlı kalmakta hem kuramsal hem de pratik saldırı 
senaryoları karşısında kırılganlık sergilemektedir (Sweeney, 
2002).  

Netflix Prize veri kümesi üzerinde gerçekleştirilen 
yeniden kimliklendirme çalışması, dış kaynaklarla ilişkilendirme 
(linkage) yoluyla “anonim” olduğu iddia edilen büyük ölçekli 
veri setlerinin dahi birey düzeyinde açığa çıkabileceğini çarpıcı 
biçimde ortaya koymuştur (Narayanan & Shmatikov, 2008). Bu 
tür sonuçlar, anonimleştirme tabanlı yaklaşımların, özellikle 
Büyük Veri bağlamında, mahremiyeti korumak için tek başına 
yeterli olmadığını göstermektedir. Bu boşluğu doldurmak üzere 
ortaya çıkan Diferansiyel Mahremiyet (Differential Privacy, DP), 
bir bireyin verisinin veri kümesinde yer almasının ya da 
almamasının, analizin çıktısını yalnızca sınırlı ve matematiksel 
olarak kontrol edilen bir ölçüde değiştirmesine izin veren bir 
güvence çerçevesi sunar (Dwork & Roth, 2014). Böylece, veri 
yayımlayıcıları ve analistler, belirli bir gizliliği 𝜀𝜀 altında, 
yaptıkları hesaplamaların bireyler hakkında ne kadar bilgi açığa 
çıkarabileceğini nicel olarak ifade edebilmektedir. Bu güçlü 
kuramsal altyapı, DP’yi modern veri analizi ve makine öğrenimi 
uygulamaları için “referans standart” haline getirmiştir. Nitekim 
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Google’ın son kullanıcı yazılımlarından istatistik toplamak üzere 
geliştirdiği RAPPOR sistemi (yerel DP) ve ABD Nüfus Sayım 
Bürosu’nun 2020 sayımında benimsediği merkezi DP tabanlı 
koruma mekanizması, bu yaklaşımın büyük ölçekli gerçek dünya 
sistemlerine başarıyla uygulanabileceğini göstermektedir 
(Abowd, 2018; Erlingsson, Pihur, & Korolova, 2014).  

1.2. Modern Gelişmeler: DP-SGD, LLM’ler ve Fair-
DP 

Son yıllarda, diferansiyel mahremiyet alanı makine 
öğrenimi ve özellikle derin öğrenme ile birleşerek yeni bir ivme 
kazanmıştır. DP-SGD (Differentially Private Stochastic Gradient 
Descent) algoritması, derin sinir ağlarının, eğitim verisindeki 
bireyleri “ezberlemeden” öğrenmesini mümkün kılan temel 
araçlardan biri olarak öne çıkmaktadır (Abadi et al., 2016). Aynı 
dönemde, büyük dil modelleri (LLM’ler) ve diğer genel modeller 
için diferansiyel mahremiyetli ince ayar (fine-tuning) teknikleri 
geliştirilmiş; bu sayede, kullanıcı etkileşimlerinden öğrenen 
modeller için yeni gizlilik garantileri tartışılır hâle gelmiştir. Buna 
paralel olarak, DP garantili sentetik veri üretimi alanında da 
önemli gelişmeler yaşanmış; tablo verileri için diferansiyel 
mahremiyetli GAN ve difüzyon tabanlı modeller, gizlilik–fayda 
dengesini iyileştirme potansiyeliyle öne çıkmıştır (Truda, 2023). 
Öte yandan, DP mekanizmalarının eklediği gürültünün, azınlık 
gruplar üzerindeki orantısız performans kayıplarına yol 
açabileceğine dair bulgular, Adil Diferansiyel Mahremiyet (Fair 
DP) başlığı altında yeni bir araştırma hattının doğmasına neden 
olmuştur (Hansen & Søgaard, 2024). 

Bu zengin literatüre karşın, uygulamada karşılaşılan en 
temel sorulardan biri hala açık şekilde yanıtlanmamıştır. Belirli 
bir analiz görevi için 𝜀𝜀 nasıl seçilmelidir ve bu seçim hata 
metrikleri üzerinde nicel olarak ne anlama gelir? Mevcut 
çalışmaların önemli bir kısmı ya karmaşık öğrenme 
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algoritmalarına (örn. DP-SGD ile derin öğrenme) ya da gelişmiş 
genel modellere odaklanmakta; buna karşın, pratikte çok sık 
kullanılan basit sayma sorguları için bile, farklı 𝜀𝜀 değerlerinin 
hataya ve belirsizliğe etkisini doğrudan gösteren, erişilebilir ve 
öğretici analizler sınırlı kalmaktadır. Özellikle veri koruma 
birimlerinde çalışan uygulayıcılar için, “𝜀𝜀 = 0.1 𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀 = 1 
arasındaki fark, ortalama mutlak hata veya kabul edilebilir sonuç 
yüzdesi açısından ne ifade ediyor?” sorusuna sayısal ve görsel 
olarak yanıt veren araçlara ihtiyaç vardır. 

Bu kitap bölümün temel amacı, diferansiyel mahremiyetin 
teorik çekirdeğini oluşturan gizlilik–fayda dengesi kavramını, 
merkezi DP modelinde kullanılan Laplace Mekanizması özelinde 
analitik ve sayısal bir çerçeveyle incelemektir. Çalışmada, sayma 
sorguları için: 

• Laplace mekanizmasının varyans ve Ortalama Mutlak 
Hata (Mean Absolute Error, MAE) açısından teorik 
davranışı türetilmekte, 

• Geniş bir 𝜀𝜀 aralığında (yaklaşık 0.03–10) 5000 tekrarlı 
simülasyonlarla bu teorik sonuçlar doğrulanmakta ve 
sonuçlar, kabul edilebilir sonuç yüzdesi gibi pratik 
fayda göstergeleri üzerinden görselleştirilerek, 
uygulayıcılar için somut 𝜀𝜀 seçim rehberleri 
önerilmektedir. 

 

2. DİFERANSİYEL MAHREMİYETİN 
KURAMSAL TEMELİ  

Bu bölümde, merkezi diferansiyel mahremiyet (Central 
Differential Privacy, CDP) modelinde kullanılan Laplace 
Mekanizması temel alınmaktadır. CDP modelinde veriler önce 
güvenilir bir merkezi sunucuya toplanır; daha sonra 
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yayımlanacak istatistiksel sorguların çıktısına rastgele gürültü 
eklenerek mahremiyet sağlanır (Dwork & Roth, 2014). 

 2.1. Diferansiyel Mahremiyet Tanımı  

Merkezi modelde diferansiyel mahremiyet şu şekilde 
tanımlanır. 𝐷𝐷 ve 𝐷𝐷′ yalnızca tek bir bireyin kaydı bakımından 
farklı olan iki komşu veri kümesi olsun, 𝑀𝑀 rastgele bir 
mekanizma olmak üzere, her ölçülebilir çıktı kümesi 𝑆𝑆 için 

𝑃𝑃(𝑀𝑀(𝐷𝐷) ∈ 𝑆𝑆) ≤ 𝑒𝑒𝜀𝜀 · 𝑃𝑃(𝑀𝑀(𝐷𝐷′) ∈ 𝑆𝑆) 
eşitsizliği sağlanıyorsa, M mekanizması ε-diferansiyel 
mahremiyetli (veya saf diferansiyel mahremiyetli) olarak 
adlandırılır (Dwork & Roth, 2014). Bu tanım, herhangi bir bireyin 
verisinin veri kümesine eklenmesinin veya çıkarılmasının, 
mekanizmanın çıktısını en fazla 𝑒𝑒𝜀𝜀 çarpanı kadar 
değiştirebileceğini garanti eder, dolayısıyla gözlemci, tek bir 
bireyin katılımı hakkında yalnızca sınırlı bilgi elde edebilir. 

2.2. Global Hassasiyet ve Gizlilik 

Diferansiyel mahremiyetli mekanizmaların tasarımında 
temel kavramlardan biri de global hassasiyettir (global 
sensitivity). Tek değer döndüren bir sorgu fonksiyonu 𝑓𝑓: 𝐷𝐷𝑛𝑛 → 𝑅𝑅 
için global hassasiyet 

𝑆𝑆(𝑓𝑓) = 𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷,𝐷𝐷′|𝑓𝑓(𝐷𝐷) − 𝑓𝑓(𝐷𝐷′)| 
şeklinde tanımlanır, burada maksimum, tüm komşu veri kümesi 
çiftleri 𝐷𝐷, 𝐷𝐷′ üzerinde alınır (Dwork, McSherry, Nissim, & Smith, 
2006). Sayma sorguları için tek bir bireyin eklenmesi veya 
çıkarılması sonucu en fazla 1 birimlik değişim olacağından 
𝑆𝑆(𝑓𝑓) = 1 elde edilir; bu çalışma boyunca sayma sorguları için 
kullanılan temel varsayım budur. Küçük ε değerleri, komşu veri 
kümeleri için çıktılar arasında çok küçük farklara izin vererek 
güçlü bir gizlilik garantisi sağlar. Buna karşılık gürültü miktarı 
artar ve analitik fayda azalır. Daha büyük 𝜀𝜀 değerleri ise daha 
zayıf bir gizlilik garantisi karşılığında daha yüksek fayda sunar. 
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Dolayısıyla, diferansiyel mahremiyetli mekanizmaların 
tasarımında 𝜀𝜀 parametresi, gizlilik-fayda dengesini belirleyen 
temel ''ayar düğmesi'' dir. 

 2.3. Laplace Mekanizması 

Laplace Mekanizması, sayısal çıktılar üreten sorgular için 
en temel ve yaygın kullanılan diferansiyel mahremiyet 
mekanizmalarından biridir (Dwork et al., 2006). Mekanizmanın 
tek boyutlu hali aşağıdaki gibidir: 

𝑀𝑀(𝐷𝐷) = 𝑓𝑓(𝐷𝐷) + 𝑌𝑌 
burada 𝑓𝑓(𝐷𝐷): veri kümesi 𝐷𝐷 üzerindeki sorgunun gerçek 
(gürültüsüz) sonucudur ve 𝑌𝑌, Laplace dağılımına sahip rastgele 
gürültü terimidir. Gürültü terimi 𝑌𝑌~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(0, 𝑏𝑏), 𝑏𝑏 = 𝑆𝑆(𝑓𝑓)/𝜀𝜀, 
yani Laplace dağılımının konum parametresi 0, ölçek parametresi 
𝑏𝑏 = S(f)

𝜀𝜀
 dir. Sayma sorguları için 𝑆𝑆(𝑓𝑓) = 1 varsayımı altında 

ölçek 𝑏𝑏 = 1
ε
 olur. Laplace dağılımının yoğunluk fonksiyonu  

𝑝𝑝𝑌𝑌(𝑦𝑦) =
1

2𝑏𝑏
𝑒𝑒(−|𝑦𝑦|/𝑏𝑏),   𝑦𝑦 ∈ 𝑅𝑅 

şeklindedir. Laplace mekanizması’nın istatistiksel özellikleri, bu 
çalışmada incelenen gizlilik–fayda dengesi açısından doğrudan 
belirleyicidir. Bu durumda diferansiyel mahremiyetli çıktı 𝑀𝑀(𝐷𝐷) 
için aşağıdaki temel moment ilişkileri geçerlidir. Eğer 
𝑌𝑌 ~ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(0, 𝑏𝑏) ise beklenen değer 𝐸𝐸[𝑌𝑌]  =  0 olur. 
Dolayısıyla mekanizma yansızdır: 

𝐸𝐸[𝑀𝑀(𝐷𝐷)] = 𝐸𝐸[𝑓𝑓(𝐷𝐷) + 𝑌𝑌] = 𝑓𝑓(𝐷𝐷). 
Varyans: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 2𝑏𝑏2 = 2 · (𝑆𝑆(𝑓𝑓)/𝜀𝜀)2 
bu ifade, 𝜀𝜀 azaldıkça (daha güçlü gizlilik) eklenen gürültünün 
varyansının karesel biçimde büyüdüğünü gösterir.  
Ortalama mutlak sapma (MAE açısından): 

𝐸𝐸[|𝑌𝑌|] = 𝑏𝑏 = 𝑆𝑆(𝑓𝑓)/𝜀𝜀 
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Buna göre, diferansiyel mahremiyetli çıkışın gerçek değerden 
ortalama mutlak sapması 

𝐸𝐸[|𝑀𝑀(𝐷𝐷) − 𝑓𝑓(𝐷𝐷)|] = 𝐸𝐸[|𝑌𝑌|] = 𝑆𝑆(𝑓𝑓)/𝜀𝜀 
olur, yani teorik olarak beklenen MAE, 1 / 𝜀𝜀 ile ters orantılıdır.  

Sayma sorguları için 𝑆𝑆(𝑓𝑓) = 1 alındığında, teorik olarak 
beklenen 𝑀𝑀𝑀𝑀𝑀𝑀  ≈  1 / 𝜀𝜀 şeklinde elde edilir. Bu analitik ilişki, 
çalışmanın dördüncü bölümünde rapor edilen simülasyon 
bulgularının yorumlanmasında temel rol oynamaktadır. Ayrıca 
Laplace Mekanizması’nın, yüksek gizlilik rejiminde (𝜀𝜀 
küçükken) belirli optimalite özelliklerine sahip olduğu, yakın 
tarihli çalışmalarda ayrıntılı biçimde incelenmiştir (Geng & 
Viswanath, 2016). 

 

3. LAPLACE MEKANİZMASI İÇİN GİZLİLİK–
FAYDA ANALİZİ 

Laplace Mekanizması’nın gizlilik–fayda dengesini nicel 
olarak incelemek için simülasyon tabanlı bir analiz tasarımı 
benimsenmiştir. Amaç, farklı gizliliği 𝜀𝜀  değerleri altında 
diferansiyel mahremiyetli sayma sorgularının istatistiksel 
davranışını sistematik biçimde gözlemlemektir. Tasarım, 
diferansiyel mahremiyet literatüründe mekanizma düzeyinde 
yapılan teorik ve sayısal incelemelerle uyumludur (Dwork et al., 
2006; Dwork & Roth, 2014; Geng & Viswanath, 2016). 

Analiz, kurgusal bir “Şehir Sağlık Anketi” senaryosu 
üzerinden gerçekleştirilmiştir. Bu senaryoda toplam nüfus 
büyüklüğü 𝑁𝑁 = 20,000 olarak alınmış, ilgilenilen çıktı ise "X 
Hastalığına sahip kişi sayısı" biçimindeki bir sayma sorgusu 
olarak modellenmiştir. Çalışma boyunca, gerçek (gürültüsüz) 
sorgu sonucu sabit bir değer 𝑓𝑓(𝐷𝐷) = 750 olarak kabul 
edilmektedir. 
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Böylece simülasyon, veri üretim sürecine dair ek 
rastgelelik içermeksizin, Laplace Mekanizması’nın gürültü 
davranışını izole etmeye odaklanmaktadır. Sayma sorguları için 
global hassasiyet 𝑆𝑆(𝑓𝑓) = 1 olarak alınmıştır (Dwork et al., 2006). 
Bu varsayım altında, her bir 𝜀𝜀 > 0 için Laplace gürültü terimi  

𝑌𝑌(𝜀𝜀) ∼ Laplace�0, 𝑏𝑏(𝜀𝜀)�, 𝑏𝑏(𝜀𝜀) = 𝑆𝑆(𝑓𝑓)
𝜀𝜀

= 1
𝜀𝜀
,   

dağılımına sahip olacak şekilde üretilmektedir. Diferansiyel 
mahremiyetli sayma sorgusu çıktısı ise her bir simülasyon için 

𝑀𝑀𝑖𝑖
(𝜀𝜀) = 𝑓𝑓(𝐷𝐷) + 𝑌𝑌𝑖𝑖

(𝜀𝜀),  𝑖𝑖 = 1,2, … , 𝑁𝑁sim 
şeklinde tanımlanır, burada  𝑁𝑁sim = 5000 tekrar sayısını, 𝑌𝑌(𝜀𝜀) ise 
dağılımından bağımsız çekilen gürültü örneklerini ifade 
etmektedir. Başlangıçta, mekanizmanın sezgisel davranışını 
göstermek üzere üç temsilci gizlilik değeri seçilmiştir. Bu üç 
senaryo, sırasıyla “yüksek gizlilik”, “dengeli yaklaşım” ve 
“yüksek fayda” durumlarını temsil etmekte ve Tablo 1’de 
gösterilmiştir.  

Tablo 1. Deney Senaryoları ve Parametreleri 

 Her bir 𝜀𝜀 değeri için 𝑁𝑁sim adet gürültülü çıktı üzerinden 
örnek ortalama, örnek standart sapma, Ortalama Mutlak Hata 
(MAE) ve “kabul edilebilir sonuç yüzdesi” gibi nicel göstergeler 
hesaplanmıştır.  

Deney 
Senaryosu 𝜺𝜺 Değeri 

Laplace Ölçek 
Parametresi  
(𝒃𝒃 = 𝑺𝑺/𝜺𝜺) 

Gizlilik / Fayda 
Dengesi 

Yüksek 
Gizlilik 0.1 10.0 Yüksek Gizlilik 

(Çok Gürültü) 

Dengeli 
Yaklaşım 0.8 1.25 Dengeli Yaklaşım  

(Orta Gürültü) 

Yüksek 
Fayda 3.0 0.33 Yüksek Fayda  

(Az Gürültü) 
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Ardından, 𝜀𝜀 parametresinin fayda metrikleri üzerindeki 
etkisini daha geniş bir aralıkta incelemek üzere logaritmik ölçekli 
bir tarama yapılmıştır. Bu amaçla, 𝜀𝜀𝑘𝑘 ∈ [0.03,10], 𝑘𝑘 =
 1,2, … , 𝐾𝐾, şeklinde yaklaşık logaritmik olarak artan bir 𝜀𝜀 ızgarası 
tanımlanmış, her bir 𝜀𝜀𝑘𝑘 için aynı prosedür yeniden uygulanarak 
𝑁𝑁sim adet gürültülü çıktı üretilmiştir. Her 𝜀𝜀𝑘𝑘 için, MAE (𝜀𝜀𝑘𝑘), 
standart sapma (σ𝜀𝜀𝑘𝑘) ve gerçek değerin belirli bir hata payı 
(örneğin ±50) içinde kalan sonuçların göreli sıklığına dayalı 
“kabul edilebilir sonuç yüzdesi” (𝑈𝑈acc(𝜀𝜀)) değerleri 
hesaplanmıştır.  

3.1. Simülasyonlarda Kullanılan Fayda Metrikleri 

Laplace mekanizmasının ürettiği gürültülü sayma sorgusu 
çıktılarının kalitesini değerlendirmek için üç temel istatistiksel 
fayda metriği kullanılmıştır: 

• Örnek standart sapma, 

• Ortalama Mutlak Hata , 

• Kabul edilebilir sonuç yüzdesi. 

Bu metrikler, diferansiyel mahremiyetli mekanizmaların 
hata davranışını inceleyen literatürde yaygın biçimde 
kullanılmaktadır. Sabit bir ε >  0 için diferansiyel mahremiyetli 
sayma sorgusu çıktıları 

𝑀𝑀𝑖𝑖
(ε) = 𝑓𝑓(𝐷𝐷) + 𝑌𝑌𝑖𝑖

(ε), 𝑖𝑖 = 1,2, . . . , 𝑁𝑁sim, ,    
şeklinde elde edilir. Burada 𝑓𝑓(𝐷𝐷) gerçek (gürültüsüz) sayma 
sorgusu sonucunu, 𝑌𝑌𝑖𝑖

(ε) ise Laplace dağılımından çekilen gürültü 
terimlerini ifade eder. 

Örnek Standart Sapma: Önce örnek ortalama 

𝑀𝑀
(ε)

=
1

𝑁𝑁sim
� 𝑀𝑀𝑖𝑖

(ε)
𝑁𝑁sim

𝑖𝑖=1

 

hesaplanmakta, ardından buna karşılık gelen örnek varyans 
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σ2�(𝜀𝜀) =
1

𝑁𝑁sim − 1
� �𝑀𝑀𝑖𝑖

(𝜀𝜀) − 𝑀𝑀
(𝜀𝜀)

�
2

𝑁𝑁sim

𝑖𝑖=1

 

ve örnek standart sapma 

𝜎𝜎�(𝜀𝜀) = �σ2�(ε)  

denklemleri ile elde edilmektedir.  

Ortalama Mutlak Hata (MAE): Diferansiyel 
mahremiyetli çıktının gerçek değerden ortalama sapmasını 
ölçmek için her bir 𝜀𝜀 değeri altında MAE metriği kullanılmıştır. 
MAE, 

MAE�(ε)  =  
1

𝑁𝑁sim
��𝑀𝑀𝑖𝑖

(𝜀𝜀) − 𝑓𝑓(𝐷𝐷)�
𝑁𝑁sim

𝑖𝑖=1

 

şeklinde tanımlanır. Laplace mekanizması için teorik olarak 
denklem~\eqref{eq:mae-theoretical} geçerlidir; buna göre 
beklenen MAE yaklaşık 1/ε ile ters orantılıdır. Bu çalışmada elde 
edilen MAE�(ε) değerleri, söz konusu teorik ilişkinin geniş bir 𝜀𝜀 
aralığında sayısal olarak gözlemlenmesi ve görselleştirilmesi 
amacıyla kullanılmıştır. 

Kabul Edilebilir Sonuç Yüzdesi: Pratik uygulamalarda 
analistler çoğu zaman belirli bir hata eşiği içinde kalan sonuçları 
``kabul edilebilir'' olarak değerlendirir. Bu sezgiyi yakalamak için 
her bir 𝜀𝜀 değeri altında kabul edilebilir sonuç yüzdesi 
tanımlanmıştır. Önceden belirlenen bir tolerans τ >  0 (bu 
çalışmada τ =  50) için, 𝑖𝑖’inci simülasyon sonucunun kabul 
edilebilir olup olmadığını gösteren gösterge fonksiyonu 

1𝑖𝑖
(ε) = �1, eğer �𝑀𝑀𝑖𝑖

(𝜀𝜀) − 𝑓𝑓(𝐷𝐷)� ≤ 𝜏𝜏  
0, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

 

bu durumda kabul edilebilir sonuç oranı 
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𝑈𝑈acc(ε) =
1

𝑁𝑁sim
� 𝟏𝟏𝒊𝒊

(𝜀𝜀)
𝑁𝑁sim

𝑖𝑖=1

 

olarak hesaplanmakta; yüzde cinsinden ifade edildiğinde 

Kabul edilebilir sonuç yüzdesi(ε) = 100 × 𝑈𝑈acc(𝜀𝜀) 
şeklinde raporlanmaktadır. 

Bu metrik, farklı 𝜀𝜀 değerleri için ``gerçek değerin ±τ 
aralığında kalan sonuçların oranı''nı doğrudan gösterdiğinden, 
veri koruma uzmanlarının ve analistlerin çeşitli gizlilik 
seviyelerinde ne ölçüde analitik doğruluk elde edebileceklerini 
pratik olarak yorumlamalarına imkân vermektedir. 

 

4. BULGULAR 

Laplace mekanizmasının davranışını sezgisel olarak 
ortaya koymak amacıyla seçilen üç temsilci gizliliği olan ε ∈
{0.1, 0.8, 3.0} için 𝑁𝑁sim = 5 000 adet gürültülü sorgu sonucu 
üretilmiş, bu sonuçlar üzerinden örnek ortalama, örnek standart 
sapma ve ölçek parametresi hesaplanmıştır. Elde edilen özet 
istatistikler Tablo 2’de sunulmaktadır. 

Tablo 2. Farklı 𝛆𝛆 Değerleri İçin Simülasyon Sonuçlarının Özeti 

Epsilon 
(𝛆𝛆) 

Ortalama 
Sonuç 

Standart 
Sapma 
(𝛔𝛔) 

Laplace 
Ölçek 
Parametresi 
 (𝒃𝒃 = 𝑺𝑺/𝛆𝛆) 

Gizlilik/Fayda 
Dengesi 

0.1 749.94 13.72 10.00 Yüksek Gizlilik 

0.8 749.97 1.78 1.25 Dengeli 
Yaklaşım 

3.0 750.02 0.50 0.33 Yüksek Fayda 

 Tablo 2'deki bulgular, ε ile σ arasında güçlü bir ters orantı 
olduğunu göstermektedir.  𝜀𝜀 = 0.1 senaryosunda 𝜎𝜎 = 13.72 
iken, 𝜀𝜀 = 3.0 senaryosunda 𝜎𝜎 değeri 0.50'ye düşmüştür. 
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Ortalama sonuçların ise tüm senaryolarda gerçek değere (750) 
çok yakın olduğu gözlemlenmiştir, bu da Laplace 
Mekanizması'nın yansızlığına ilişkin teorik sonucun sayısal 
olarak doğrulandığını göstermektedir. 

 Örnek standart sapma değerleri, beklenen teorik 
davranışla uyumludur. Küçük 𝜀𝜀 değerinde (yüksek gizlilik), 
gürültünün varyansı belirgin biçimde büyümekte; büyük 𝜀𝜀 
değerinde (yüksek fayda) ise varyans hızla azalmaktadır. Bu 
azalma hızı, Laplace dağılımı için teorik olarak elde edilen 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑀𝑀(𝜀𝜀)(𝐷𝐷)� = 2�𝑏𝑏(𝜀𝜀)�
2

,   𝑏𝑏(𝜀𝜀) = 1
𝜀𝜀
 , 

ilişkisiyle tutarlı olacak şekilde, yaklaşık 1/𝜀𝜀2 ölçeğinde 
gözlenmektedir. 

 MAE değerleri, 𝜀𝜀 arttıkça beklenildiği gibi azalmaktadır. 
Özellikle yüksek gizlilikte  (𝜀𝜀 = 0.1) MAE, orta ve yüksek fayda 
senaryolarına kıyasla birkaç kat daha büyük iken, 𝜀𝜀 = 3.0 için 
MAE, gerçek sayma değeri ölçeğine göre oldukça küçük bir 
seviyeye inmektedir. Bu bulgu, teorik olarak beklenen   
𝐸𝐸�𝑀𝑀(𝜀𝜀)(𝐷𝐷) − 𝑓𝑓(𝐷𝐷)� = 1/𝜀𝜀 
davranışının pratik bir doğrulaması niteliğindedir. 

 Kabul edilebilir sonuç yüzdesi (örneğin, �𝑀𝑀𝑖𝑖
(𝜺𝜺) − 750� ≤

50 koşulunu sağlayan sonuçların oranı), 𝜀𝜀 büyüdükçe hızla 
artmaktadır. Yüksek gizlilikte bu oran belirgin şekilde daha düşük 
iken, dengeli yaklaşım ve yüksek fayda senaryolarında sonuçların 
büyük bir kısmı istenen hata payı içerisinde kalmaktadır. 

 Bu temel senaryolar, Laplace Mekanizması için 𝜀𝜀 
parametresinin doğrudan ''ayar düğmesi'' olarak işlev gördüğünü, 
gizlilik lehine yapılan seçimlerin (küçük 𝜀𝜀) varyans ve hata 
maliyetini önemli ölçüde artırdığını, buna karşın daha büyük 𝜀𝜀 
değerlerinin analitik faydayı hızlı biçimde iyileştirdiğini nicel 
olarak göstermektedir. 
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Tablo 3. Farklı 𝜺𝜺 değerleri için gürültülü sayma sorgusu sonuçları 

𝜺𝜺 𝒃𝒃 MAE 𝝈𝝈 𝑼𝑼acc(𝛆𝛆) 
0.031623 31.623 31.303 44.3 80.56 
0.057362 17.433 17.014 23.88 95 
0.10405 9.6108 9.7444 13.711 99.58 
3.0392 0.32903 0.2298 0.50302 100 

10 0.1 0.005 0.070715 100 

 

 Şekil 1 ve Tablo 3, MAE’nin 𝜀𝜀 arttıkça hızla azaldığını 
göstermektedir. Özellikle 𝜀𝜀 <  1 aralığında 𝜀𝜀’deki küçük 
artışların MAE’yi çok belirgin ölçüde düşürdüğü gözlenmiştir. 
Bu hızlı azalma, teorik olarak beklenen MAE ≈ 1/𝜀𝜀 ilişkisiyle 
uyumludur ve logaritmik ölçekte neredeyse doğrusal bir yapı 
sergilemektedir. Buna karşılık, 𝜀𝜀 belirli bir eşik değerini (örneğin 
𝜀𝜀 ≈ 3) aştıktan sonra MAE’deki marjinal iyileşmeler giderek 
küçülmekte; eğri, yüksek fayda bölgesinde doyuma yaklaşan bir 
profil çizmektedir. 

 Kabul edilebilir sonuç yüzdesi açısından bakıldığında, 𝜀𝜀 
ile birlikte monoton ve hızlı bir artış gözlenmektedir. Düşük 𝜀𝜀 
aralığında 𝑈𝑈acc(𝜀𝜀) görece sınırlı kalırken, 𝜀𝜀’nin orta değerlere 

Şekil 1. (Solda) 𝜺𝜺’ye karşı MAE eğrisi (logaritmik eksen); (sağda)  
𝜺𝜺’ye karşı kabul edilebilir sonuç yüzdesi 
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(yaklaşık 0.5 − 1.0 aralığı) yükselmesiyle bu oranlarda keskin bir 
artış gerçekleşmektedir. Daha yüksek 𝜀𝜀 değerlerinde ise kabul 
edilebilir sonuç yüzdesi neredeyse %100 seviyesine yaklaşmakta 
ve ilave gizlilikten feragat etmenin fayda artışı açısından anlamlı 
bir katkı sağlamadığı görülmektedir. 

Şekil 2’de sırasıyla 𝜀𝜀 = 0.1,  𝜀𝜀 = 0.8 ve  𝜀𝜀 = 3.0 için elde 
edilen 𝑀𝑀𝑖𝑖

(𝜀𝜀) değerlerinin dağılımı, histogramlar aracılığıyla 
görselleştirilmiştir. 750 merkezi etrafında oluşan gürültülü sorgu 
sonuçlarının dağılımları yan yana gösterilmektedir. 

 Şekil 2 ’de şu özellikler açık biçimde görülmektedir: 
Yüksek gizlilikte (𝜀𝜀 =  0.1), dağılım geniş ve görece düz bir 
yapıya sahiptir. Bu durumda, gürültü terimi 𝑌𝑌(𝜀𝜀) büyük bir ölçek 
parametresiyle üretildiğinden, sayma sonuçları 750 etrafında 
oldukça yaygın bir aralıkta dağılmakta, hatta belirli bir oranda uç 
değerler (örneğin 700’ün altı veya 800’ün üstü) ortaya 
çıkmaktadır. Dengeli yaklaşım olarak seçilen 𝜀𝜀 =  0.8 
senaryosunda dağılım, yüksek gizlilik senaryosuna kıyasla daha 
dar bir bantta yoğunlaşmakta ve gerçek değer etrafındaki 
oynaklık belirgin biçimde azalmaktadır. Yüksek faydada ise (𝜀𝜀 =

Şekil 2. Farklı gizlilik için diferansiyel mahremiyetli sayma 
sorgusu sonuçlarının histogramları 
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 3.0), histogram keskin bir zirve şeklini almakta; sonuçlar büyük 
ölçüde 750’nin hemen çevresinde toplanmakta ve geniş kuyruklar 
neredeyse tamamen ortadan kalkmaktadır. 

 

5. SONUÇ  

Bu çalışmada, merkezi diferansiyel mahremiyet 
modelinde kullanılan Laplace Mekanizması için gizlilik-fayda 
dengesini nicel olarak inceleyen basit fakat açıklayıcı bir analiz 
çerçevesi sunulmuştur. Çerçeve, bir yandan mekanizmanın temel 
teorik özelliklerini (yansızlık, varyans ve ortalama mutlak hata 
davranışı) açıkça ortaya koymakta, diğer yandan da geniş bir ε 
aralığında gerçekleştirilen simülasyonlar aracılığıyla bu teorik 
sonuçların pratik yansımalarını görünür kılmaktadır.  

Bu çalışma, sayma sorguları için Laplace Mekanizması 
bağlamında şu tür bir pratik mesaj sunmaktadır: 
Çok küçük 𝜀𝜀 değerleri, güçlü gizlilik garantileri sağlamakla 
birlikte analitik açıdan yüksek belirsizlik maliyetine sahiptir. Orta 
büyüklükte 𝜀𝜀 değerleri hem MAE hem de kabul edilebilir sonuç 
yüzdesi açısından çoğu uygulama için makul bir denge 
sağlamaktadır. Çok büyük 𝜀𝜀 değerlerinde ise ek fayda artışı sınırlı 
olup, buna karşın gizlilik seviyesi hissedilir ölçüde 
zayıflamaktadır. Dolayısıyla, 𝜀𝜀 seçiminin yalnızca normatif veya 
politik bir karar değil, aynı zamanda nicel olarak analiz edilebilir 
bir mühendislik problemi olduğu vurgulanmaktadır. 

Sonuç olarak, teorik sonuçlar ile simülasyon bulgularını 
birleştiren bu çerçeve, hem eğitim/öğretim amaçlı bir araç olarak 
hem de gerçek sistemlerde 𝜀𝜀 seçimine ilişkin ilk 
değerlendirmelerin yapılabileceği basit bir başlangıç noktası 
olarak kullanılabilir. Daha karmaşık mekanizmalar, öğrenme 
algoritmaları ve adalet odaklı senaryolar için geliştirilecek 
genişletmeler, diferansiyel mahremiyetin pratik tasarım 
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kararlarını daha şeffaf ve hesap verebilir hale getirme potansiyeli 
taşımaktadır. 
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1. INTRODUCTION 

Breast cancer remains one of the leading causes of cancer 
mortality worldwide (World Health Organization [WHO], 2023). 
With overall cancer incidence reaching nearly 20 million cases in 
2022, breast cancer constitutes a substantial share of the total, and 
projections indicate continued growth by 2050 in the absence of 
targeted prevention, effective screening, and equitable access to 
treatment ([IARC], 2024). Clinically, accurate early diagnosis 
and recurrence risk stratification are crucial for guiding therapy—
such as adjuvant chemotherapy and radiotherapy—while 
balancing the risks of overtreatment against undertreatment 
(Asselain et al.,2018). However, decision-making is complicated 
by heterogeneous, noisy, and sometimes incomplete clinical data. 
Prognostic factors such as tumor size, nodal status, degree of 
malignancy, and irradiation history often interact in nonlinear 
ways, and recurrence datasets typically suffer from class 
imbalance (Wishart et al., 2012). Classical statistical approaches 
are frequently insufficient to capture such nonlinearities and 
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uncertain boundaries among predictors (Alizadehsani et al., 
2020). 

Breast cancer prediction has become a prominent research 
area in medical data science, aiming to improve early diagnosis 
and recurrence risk assessment. Traditional statistical approaches 
often struggle to handle high-dimensional, imbalanced, and 
uncertain medical data (Rashed & Popescu, 2024; Görgel et al., 
2013). 

From a mathematical and computational perspective, 
modeling complex and uncertain data structures is a fundamental 
challenge. Medical datasets, particularly those involving class 
imbalance and noise, exemplify this problem. In this context, 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS)—which 
combine fuzzy logic with artificial neural networks—stand out 
for their capacity to represent nonlinear relationships through an 
interpretable rule base. Yet ANFIS is not without limitations; its 
most significant drawback is the rule explosion problem. As the 
number of input variables and membership functions increases, 
the rule base grows exponentially, leading to excessive 
computational cost and reduced generalizability. Thus, 
controlling model complexity is essential for the practical 
adoption of ANFIS in healthcare applications (Huang et al., 
2012). 

Among neuro-fuzzy techniques, ANFIS, introduced by 
Jang (1993), integrates the learning capability of neural networks 
with the transparency of fuzzy inference. ANFIS learns 
membership function parameters and rule consequents from data 
while retaining interpretable rule‑based reasoning, a desirable 
property in clinical contexts where explainability complements 
accuracy (Huang et al., 2012; Jain & Abraham, 2004). A growing 
body of evidence supports neuro‑fuzzy and hybrid approaches for 
cancer-related classification tasks, including breast cancer 
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diagnosis and recurrence prediction. Recent studies report that 
ANFIS and its hybrids can achieve competitive performance 
when paired with effective feature selection and 
membership‑function tuning, and can complement tree‑based or 
deep models by providing interpretable decision rules (Haznedar 
et al., 2021). However, the predictive performance of ANFIS is 
highly sensitive to the choice and parameterization of 
membership functions (e.g., triangular, Gaussian, differential 
sigmoidal) and the resulting rule base.  

 

2. METHODOLOGY 

2.1. Dataset 

The Breast Cancer dataset obtained from the UCI 
Machine Learning Repository forms the foundation of this study. 
It includes 286 instances described by 10 clinical and 
demographic attributes (Zwitter & Soklic, 1988). These variables 
consist of both categorical (e.g., age groups, menopausal status, 
tumor location) and binary features (e.g., node-caps, irradiate). 
The diversity of variable types underscores the need for 
systematic preprocessing before applying hybrid neuro-fuzzy 
modeling techniques. Table 1 summarizes the dataset variables. 

Table 1. Variables of Breast Cancer Dataset. 

Variable Role Type Description / Range 
Class Target Binary Class label: no-recurrence, recurrence 
Age Feature Categorical Age groups: 10-19, 20-29, …, 90-99 
Inv-nodes  Feature Categorical  
Tumor-size Feature Categorical 0-4, 5-9, 10-14, …, 55-59 
Menopause Feature Categorical lt40, ge40, premeno  
Node-caps Feature Binary yes, no 
Deg-malig Feature Integer Degree of malignancy: 1, 2, 3 
Breast Feature Binary left, right 
Breast-quad Feature Categorical left-up, left-low, right-up, right-low, 

central 
Irradiate Feature Binary yes, no 
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2.2. Dataset Preprocessing 

Preprocessing constitutes a vital stage to transform 
heterogeneous raw data into an analyzable structure. The steps 
conducted include handling missing data, transforming 
categorical variables into numerical representations, scaling 
features to a common range, and performing feature selection. 
These procedures mitigate the risks of bias, overfitting, and 
computational inefficiency. 

2.2.1. Missing Data Analysis 

The dataset contained only nine missing entries, 
distributed across two features ('node-caps' and 'breast-quad'). 
Considering the low proportion of missing values, mode 
imputation was applied. This choice preserved the integrity of 
categorical variables without introducing additional complexity. 
After imputation, the dataset was complete and ready for further 
analysis. 

There are missing values in a total of 2 columns in the 
dataset. Below are the columns with missing data: Node-caps: 8 
missing values, Breast-quad: 1 missing value. 

2.2.2. Data Transformation 

Since most machine learning models, including ANFIS, 
operate exclusively on numerical input, categorical variables 
were transformed accordingly. Label encoding was applied to 
variables with ordinal characteristics, while one-hot encoding 
was employed for nominal categories such as 'breast-quad'. 
Ordered variables, such as age ranges and tumor size intervals, 
were converted into continuous numeric representations by 
calculating their mean values. This ensured that medical 
information embedded in categorical formats was preserved in a 
computationally tractable manner. 
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The data in the dataset were analyzed and the following 
strategies were applied for numerical transformation: 

• Columns with label encoding applied: Menopause, 
Node-caps, Breast, Irradiate. 

• Column with one-hot encoding applied: Breast-quad. 
• Columns converted to numeric format by calculating 

the range mean of each categorical value: Age, 
Tumor-size, Inv-nodes. 

2.2.3. Feature Scaling 

Feature scaling was conducted to ensure that attributes 
with different ranges contributed equally to the learning process. 
Min-max normalization mapped all numeric features into the 
[0,1] interval, thereby standardizing the input space. This 
procedure prevented the dominance of variables with larger 
ranges, which could otherwise bias the training process. 

In a dataset, some features may have a wide range of 
values while others may have a narrower range. For example, 
“tumor-size” has 12 categories in the range 0-60, while “deg-
malig” in the range 1-3. In this case, the model cannot give equal 
weight to the features. This causes the model to learn unbalanced. 
It either overfit these features or ignores them. Normalization 
brings all features into the same range. It prevents this imbalance 
by equally weighting features. All numerical features are 
normalized to the interval [0, 1] with min-max normalization. 
This means that 0 is the lowest value and 1 is the highest value.  

2.2.4. Feature Selection 

Feature selection is defined as selecting the features that 
best represent the dataset. The aim is to reduce the number of 
inputs by determining the most useful and most important 
features for the problem. By evaluating the features, the best k 
features are selected from the n features in the dataset according 
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to the algorithms used. In this way, the training time of the model 
is decreased, and the generalization ability is increased (Guyon & 
Elisseeff, 2003). 

In this study, the main reason for feature selection is to 
control the number of input variables used in the ANFIS model. 
ANFIS creates rules for each input variable and membership 
value. The number of rules changes depending on the number of 
input variables and membership values. In the data set, the 
number of input variables is 12: 

• If the membership value is 3: 312 =  531.441, rules are 
generated. 

• If the membership value is 5: 512 =  244.140.625, rules 
are generated. 

Through feature selection, only meaningful and effective features 
are identified, and the model runs more efficiently. In this study, 
different feature selection methods were used: 

Correlation Analysis: Pearson correlation coefficient was used to 
measure the linear relationship between features. The correlation 
matrix is given in Figure 1. 

SelectKBest (Chi-Square Test): Chi-square test was applied to 
measure the effect of each feature on the target variable. 

Random Forest Importance Score: It ranked the importance of 
features based on the voting of decision trees. 

RFE (Recursive Feature Elimination): The Recursive feature 
elimination method was applied with Decision Tree. This method 
identifies the optimal sub-features by removing the least effective 
feature at each step. 

Comparative results of the methods are given in Table 2. 
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Figure 1. Correlation matrix. 

 

Table 2. Feature selection. 

Correlation SelectKBest Random Forest RFE 
deg-malig ✖ ✔ ✔ 
node-caps ✔ ✔ ✖ 
inv-nodes ✔ ✔ ✖ 
tumor-size ✖ ✔ ✔ 
irradiat ✔ ✔ ✖ 
age ✖ ✔ ✔ 
breast ✖ ✔ ✖ 
menopause ✖ ✔ ✖ 
breast-quad_right_up ✖ ✖ ✖ 
breast-quad_left_low ✖ ✖ ✖ 
breast-quad_left_up ✖ ✖ ✖ 
breast-quad_right_low ✖ ✖ ✖ 

According to the results of these methods, the features that 
have a meaningful relationship with the target variable were 
selected by majority voting: deg-malig (degree of malignancy), 
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node-caps, inv-nodes (number of involved lymph nodes), tumor-
size,  and irradiate. 

These attributes formed the input space for all ANFIS 
configurations evaluated in this study. 

 

3. PROPOSED MODEL DEVELOPMENTS AND 
TECHNIQUES 

3.1. Fuzzy Logic 

Fuzzy logic is a modeling approach that seeks to replicate 
two core human faculties—reasoning and the capacity to perform 
various cognitive tasks—by mechanizing them (Zadeh, 1965). In 
this framework, rather than strictly relying on numerical values, 
linguistic terms are employed for modeling. Essentially, fuzzy 
modeling functions as a rule-based methodology, often referred 
to as a fuzzy inference system (FIS). As illustrated in Figure 1, a 
typical fuzzy logic system is composed of four main components.  
When constructing a fuzzy rule-based model, several key steps 
are involved: 

Identification of Variables: Determine the input and 
output variables. 

Definition of Fuzzy Sets: Specify the fuzzy sets for each 
variable. 

Creation of Membership Functions: Develop membership 
functions for all fuzzy inputs and outputs.  

Formulation of Fuzzy IF-THEN Rules: Establish the rules 
that relate input variables to output variables. 

Specification of the Inference Process: Choose between 
common FIS types—primarily Sugeno or Mamdani (Takagi & 
Sugeno, 1985). These differ in certain respects: Sugeno produces 
linear or constant outputs and typically relies on training with a 
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data set, whereas Mamdani generates outputs expressed as 
membership functions (e.g., triangular or trapezoidal) and draws 
on expert knowledge. In this study, a Mamdani-type fuzzy 
inference system is selected to benefit from domain expertise. 
Under the Mamdani framework, input variables are first fuzzified 
according to relevant membership functions. Subsequently, fuzzy 
operators such as “AND” or “OR” combine these inputs to form 
a single value, and the weight of each rule is determined before 
applying the rule’s implication. All rules are then aggregated—
methods for this include max (maximum), probor (probabilistic 
OR), or sum. The aggregated fuzzy output ultimately requires 
defuzzification (Mamdani & Assilian, 1975). 

Defuzzification: Convert the aggregated fuzzy result into 
a crisp output.  

By following these steps, a robust fuzzy logic system can 
be developed that mimics human-like reasoning processes and 
handles linguistic information effectively. 

3.2. Adaptive neuro-fuzzy inference systems (ANFIS) 

The term "neuro-fuzzy" introduces the hybrid 
methodology that combines artificial neural networks (ANN) and 
fuzzy logic (FL). It was first presented by Jang in the beginning 
of the 1990s (Jang, 1993). It demonstrates ANN learning 
capabilities with FL decision-making skills and adjusts its 
parameters according on inputs. Mamdani and Takagi-Sugeno are 
the two types of fuzzy inference systems (FIS) (Mamdani & 
Assilian, 1975; Takagi & Sugeno, 1985). Similar to the structure 
of an ANN, the ANFIS architecture is made up of nodes grouped 
in layers with specific functions. Additionally, the membership 
functions MF use IF-THEN fuzzy rules to determine the 
connections between the premise and consequences, which are 
the primary components of ANFIS. Figure 2 illustrates the five 
layers that make up the ANFIS structure.  
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Figure 2. ANFIS Structure (Jang, 1993). 

We assume the following two fuzzy if-then rules to explain the 
rules of each layer: 

Rule 1: if 𝑥𝑥 is 𝐴𝐴1 and 𝑦𝑦 is 𝐵𝐵1 then 𝑓𝑓1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1,     (1) 

Rule 2: if 𝑥𝑥 is 𝐴𝐴2 and 𝑦𝑦 is 𝐵𝐵2 then 𝑓𝑓2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2,     (2) 

where 𝑓𝑓 is the output (linguistic variables), 𝑥𝑥 and 𝑦𝑦 are the input 
variables, and 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 are fuzzy sets. The following parameters 
should be measured during the ANFIS training process: 
{𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖}. Each layer's function can be quantified as follows 
(Jang, 1993): 

Layer 1 (Fuzzification): A membership function defines each 
node, 𝑖𝑖, in this layer. Membership functions are used in fuzzy 
logic to make the variables fuzzy. These membership functions 
are curves that specify the mapping from a point in the input space 
to a membership value in the [0,1] interval.  

𝑂𝑂1,𝑖𝑖 = 𝜎𝜎𝐴𝐴𝑖𝑖(𝑥𝑥), for 𝑖𝑖 = 1,2, … ,𝑛𝑛     (3) 

𝑂𝑂1,𝑖𝑖 = 𝜎𝜎𝐵𝐵𝑖𝑖−2(𝑦𝑦), for 𝑖𝑖 = 3,4, … ,𝑛𝑛     (4) 

𝚺𝚺 

Inputs Layer 1  Layer 2  Layer 3  Layer 4  Layer 5  

x 

y 

𝑨𝑨𝟏𝟏 

𝑨𝑨𝟐𝟐 

𝑩𝑩𝟏𝟏 

𝑩𝑩𝟐𝟐 

f Input
s   

𝝎𝝎𝟏𝟏 

𝝎𝝎𝟐𝟐 

 

 

𝑫𝑫 𝑵𝑵 

𝑵𝑵 𝑫𝑫 

𝝎𝝎𝟏𝟏���� 

𝝎𝝎𝟐𝟐���� 

Output   

Matematik

58



where 𝑛𝑛 is the number of fuzzy sets for each input variable, and 
𝜎𝜎𝐴𝐴𝑖𝑖(𝑥𝑥) and 𝜎𝜎𝐵𝐵𝑖𝑖−2(𝑦𝑦)  are membership functions. 

Layer 2 (Product Layer): This layer, also referred to as the firing 
strength of a rule, receives input values from the first layer and 
outputs the following: 

𝑂𝑂2,𝑖𝑖 = 𝜔𝜔𝑖𝑖 = 𝜎𝜎𝐴𝐴𝑖𝑖(𝑥𝑥)𝜎𝜎𝐵𝐵𝑖𝑖(𝑦𝑦), for 𝑖𝑖 = 1,2.      (5) 

Layer 3 (Normalized Layer): Layer 3's output is calculated as 
follows: 

𝜔𝜔𝚤𝚤���  is a rule's normalized firing strength. 

Layer 4 (Defuzzification): The following formula is used to 
determine Layer 4's output: 

𝑂𝑂4,𝑖𝑖 = 𝜔𝜔𝚤𝚤���𝑓𝑓𝑖𝑖 = 𝜔𝜔𝚤𝚤���(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖), for 𝑖𝑖 = 1,2.      (7) 

Layer 5 (Output Layer): The arrival signals are added up to form 
the output model. 

𝑂𝑂5,𝑖𝑖 = overall output = ∑ 𝜔𝜔𝚤𝚤���𝑓𝑓𝑖𝑖𝑖𝑖 = ∑ 𝜔𝜔𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝜔𝜔𝑖𝑖𝑖𝑖

, for 𝑖𝑖 = 1,2.  (8) 

The parameters of the adaptive neural fuzzy inference system are 
trained to minimize the error term between the predicted and 
actual output. The process is as follows: the least square estimator 
updates the consequent parameters (𝑟𝑟𝑖𝑖, 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝑖𝑖) during the 
forward pass, while gradient descent and neural network trains 
update the premise parameters (in the membership functions) 
during the backward phase. 

 

 

𝑂𝑂3,𝑖𝑖 = 𝜔𝜔𝚤𝚤��� = 𝜔𝜔𝑖𝑖
𝜔𝜔1+𝜔𝜔2

, for 𝑖𝑖 = 1,2.      (6) 
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4. MODELING RESULTS 

The input data must be normalized before being used in 
the models because the independent variables were collected in 
various units. In order to improve learning speed and model 
stability, data normalization results in dimensionless input data 
that stays between 0 and +1. 

4.1. ANFIS Configuration 

In this study, ANFIS model is applied using deg-malig, 
node-caps, inv-nodes, tumor-size, and irradiate features. ANFIS 
is a hybrid model that combines both the flexibility of fuzzy logic 
and the learning ability of artificial neural networks. Using a 
given input/output dataset, the ANFIS toolbox creates a fuzzy 
inference system (FIS) that is tuned by combining the 
membership function parameters with a back-propagation 
algorithm or a method such as least squares. This regularization 
makes it possible for fuzzy systems to learn from the data they are 
modeling. 

 
Figure 3. Structure of the fuzzy rule-based model. 
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Figure 4. ANFIS structure with five inputs and two membership 

rules. 

ANFIS is formed by the combination of points in layers 
as shown in Fig. 3 and Fig. 4. The first layer contains the inputs, 
and the last layer contains the output. 

In order to use the Fuzzy and ANFIS model, the number 
and type of MFs as well as the number of iterations (epoch 
number) must be set. The first step in modeling is the creation of 
pattern vectors; the second step is pattern development using an 
input condition vector and matching target vector. It is impossible 
to overlook the input and output data range when adjusting 
different operating range settings. The ANFIS may be effectively 
taught by scaling or normalizing without degrading the outcomes. 
One of the major difficulties in modeling nonlinear systems is 
choosing the input parameter for learning, which is crucial for 
ANFIS. As a result, the processed data needs to be divided into 
train and test datasets. The dataset is split into 70% training and 
30% testing. This ratio is a standard approach to evaluate the 
generalization performance of the model. In the initial stage of 
the training, as shown in Figure 3, the Sugeno type fuzzy model 
was used, and the input variables were determined. For the 
training process, the epoch value was set to 1000 and the error 
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value to 0. The error value of the model was monitored and 
stopped manually after it stopped decreasing for a while.  

There are no precise techniques or procedures to forecast 
the required MFs number, as the literature states (Wang & 
Mendel, 1992). The ANFIS model uses commonly used 
membership functions to transform the input data into fuzzy 
logic. These are dsigmf (differential sigmoid membership 
function) and trimf (triangular membership function) with 
configurations 22222 and 33333, and gausmf (Gaussian 
membership function) with configurations 33333. The meaning 
of 33333 is that 3 membership functions are used for each input. 
Likewise, 22222 means 2 membership functions are used for each 
input. 

4.2. Findings 

Two ANFIS structures were systematically compared to 
explore the trade-off between complexity and performance: 

22222 Configuration – each of the five inputs represented by two 
membership functions (MFs), yielding 

𝑅𝑅(𝑥𝑥) = 25 = 32 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

This structure represents a lightweight system with 
reduced computational burden and enhanced interpretability. 

33333 Configuration – each input represented by three 
MFs, yielding 

𝑅𝑅(𝑥𝑥) = 35 = 243 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

This structure provides higher modeling flexibility but 
introduces substantial rule growth. 

Three MF types—Gaussian (gausmf), triangular (trimf), 
and difference of sigmoids (dsigmf)—were examined for both 
configurations. The number of premise parameters 𝑝𝑝𝑡𝑡 is defined 
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by each MF type. For instance, for 𝑝𝑝𝑡𝑡 = 2 Gaussian, which has an 
immediate impact on the overall number of parameters:  

𝑃𝑃(𝑥𝑥) = �𝑚𝑚𝑖𝑖 .𝑝𝑝𝑡𝑡 + (𝑑𝑑 + 1).𝑅𝑅(𝑥𝑥)
𝑑𝑑

𝑖𝑖=1

 
(9) 

Configurations 33333 and 22222 are compared in terms 
of the metrics mentioned. For a better understanding of the 
performance differences, both configurations are analyzed 
separately. 

In this study, the ANFIS model is tested with different 
membership functions and configurations, focusing on 
classification performance. The performance of the model was 
evaluated with accuracy, precision, recall, F1 score and Area 
Under the ROC Curve (AUC) values. 

The results produced by ANFIS are categorized with a 
cut-off value of 0.5. Those below this value are categorized as “0” 
and those above this value are categorized as “1”. In this way, the 
success rate of the system could be calculated. 

The model was tested on the “No Recurrence” and 
“Recurrence” classes. Table 3 presents the results of the different 
membership functions and configurations: 

Table 3. Classification metrics for recurrence class. 

Number 
of MF 

Type of 
MF 

Accuracy Precision Recall F1 
Score 

AUC 

33333 dsignmf 81 0.83 0.46 0.59 0.7095 
22222 dsignmf 80 0.85 0.4 0.54 0.6851 
33333 trimf 81 0.83 0.46 0.59 0.7095 
22222 trimf 80 0.81 0.41 0.55 0.6860 
33333 gausmf 81 0.83 0.46 0.59 0.7095 

Accuracy rates for all models were similar. Accuracy rates 
between 80% and 81% were obtained with both dsigmf, trimf 
and gausmf membership functions. Although the 33333-
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configuration increased complexity by generating more rules, it 
did not provide a significant advantage in terms of accuracy. This 
shows that similar accuracy rates can be obtained with fewer 
membership functions (22222). 

AUC is an important metric that shows the overall 
discriminative capacity of the models. With both membership 
functions, the highest AUC value of 0.7095 was obtained in 
configuration 33333. However, with the 22222-configuration, the 
AUC value decreased to around 0.685. This shows that when 
fewer membership functions are used, the discriminative ability 
of the model decreases. 

The 33333-configuration performed slightly better than 
the other configuration with an F1 score of 0.59. This is due to 
the balanced values of both precision and recall. The trimf 22222-
configuration provides a slightly greater value (0.41) for recall 
but performs lower in terms of precision and F1 score. In general, 
configuration 33333 with more membership functions was more 
effective in increasing the correct prediction rate. The low recall 
rates (in the range of 40-46%) suggest that the model needs 
further optimization to increase its capacity to make accurate 
predictions in this class. This could be improved with a more 
balanced data set or different modeling techniques. 

The membership functions dsigmf and trimf gave similar 
accuracy and AUC results with different configurations. From 
this situation, it can be concluded that the choice of the 
membership function does not have a major impact on the overall 
performance of the model. The gausmf membership function was 
only tested with the 33333 configuration and provided the same 
results as dsigmf. This suggests that more complex membership 
functions do not always give better performance. 

 

 

Matematik

64



5. DISCUSSION 

In this study, using the UCI Breast Cancer dataset, the 
ANFIS model was developed, and its performance was evaluated 
in detail. The dataset was applied to data preprocessing to be 
suitable for the model. Since the model gives memory error when 
it is tried to be evaluated with more inputs, the number of inputs 
was decreased. For this purpose, various feature selection 
methods were used and inputs were selected by majority voting.  

The performance of the ANFIS model was evaluated with 
different membership functions (dsigmf, trimf, gausmf) and 
different configurations (33333 and 22222). The model is 
analyzed with classification metrics. The dsigmf 33333 model 
stood out with an accuracy of 81% and an AUC value. However, 
it was shown that the sensitivity (recall) was low in the 
“Recurrence” class. It brought a new perspective to the literature 
by analyzing the effects of different membership functions and 
configurations on model performance. The imbalance of the 
dataset was a factor affecting the performance of the 
“Recurrence” class in specific. Only specific membership 
functions and configurations were tested in the study.  

More comprehensive testing could be applied. Different 
results can be obtained by applying methods to improve the 
balance of the dataset. Different fuzzy logic methods or hybrid 
approaches (e.g. a combination of ANFIS and optimization 
algorithms) could be tested. The generalizability of the model can 
be studied with larger and different data sets. The ANFIS model 
has important potential in breast cancer prediction. The results 
show that model performance is directly affected by the choice 
and configuration of the membership function. The results of this 
study have both helped in the development of breast cancer 
prediction models and showed the applicability of the ANFIS 
method in the health field. 
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THE ENDOMOPRHISM GREEN FUNCTOR IN 
MACKEY FUNCTOR THEORY1 

 

Mehmet UC2 

 

1. INTRODUCTION 

The theory of Mackey functors, originally developed to 
unify the phenomena of induction, restriction, and conjugation in 
representation theory and algebraic topology, has evolved into a 
powerful categorical framework for examining how group actions 
behave in algebraic structures (Thévenaz & Webb, 1995; Uc, 
2008). While classical representation theory examines these 
phenomena at the level of modules on a group algebra, Mackey 
functors broaden the perspective, organizing information that 
extends to all subgroups of a finite group. In this context, transfer 
maps, restriction morphisms, and conjugation actions coexist 
within a coherent system governed by the Mackey axiom. This 
categorical structure allows for the establishment of 
decomposition theorems, analysis of some correspondences, and 
structural invariants that are not accessible solely through module 
theory.  

One of the most influential ideas in classical modular 
representation theory is Green correspondence, introduced by J. 
A. Green in the 1960s (Green, 1964). Green correspondence 
relates indecomposable kG-modules to their counterparts on 
appropriate subgroups; it identifies the vertex and source 

 
1  This chapter is derived from the author's master's thesis titled “Green 

Correspondence for Mackey Functors,” completed at the Institute of Engineering 
and Science, İhsan Doğramacı Bilkent University, Ankara, Türkiye, in 2008. 

2  Assistant Professor, Department of Mathematics, Faculty of Science and Letters, 
Burdur Mehmet Akif Ersoy University, ORCID: 0000-0003-3680-9103. 
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structures of these modules and sheds light on the study of blocks 
and defect groups (Alperin, 1982; Green, 1964). The strength of 
this approach lies in its ability to make representation problems 
that seem difficult across the whole group more understandable 
by reducing them to manageable subgroups. Over the last few 
decades, significant work has been done to extend this approach 
to broader contexts, such as biset functors, Mackey functors, 
cohomological functors, and other equivariant algebraic 
structures. 

In this respect, Sasaki's contribution is a turning point 
(Sasaki, 1982). Sasaki named Mackey functors with additional 
structural compatibility conditions G-functors and established a 
Green correspondence for these structures. This generalization 
relies on the use of the endomorphism Green functor defined for 
a Mackey functor. While the classical Green correspondence 
works with modules (Alperin, 1982; Green, 1964), Sasaki's 
approach uses an internal hom-functor that captures the 
endomorphisms of a Mackey functor across all subgroups of a 
finite group (Sasaki, 1982; Thévenaz & Webb, 1995; Uc, 2008). 
The resulting structure is not merely a collection of 
endomorphism rings but a Green functor, that is a ring-valued 
Mackey functor that satisfies a Frobenius reciprocity condition 
generalizing the algebraic behavior of induction and restriction. 
This functorial perspective shows that the vertices and 
correspondents of a Mackey functor can be understood through 
primitive idempotents of its endomorphism Green functor. 

Despite its fundamental importance, the endomorphism 
Green functor (Sasaki, 1982; Uc, 2008) has not been discussed in 
sufficient detail in the literature. Most sources merely introduce 
this structure, leaving the verification of the axioms to the reader, 
or summarize the process without going into detail. Therefore, 
critical points such as how the interaction between transfer and 
restriction occurs in their internal hom-objects, or how Frobenius 
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reciprocity is fully validated at the functorial level, have not been 
clearly and systematically set forth. However, these details are of 
great importance: establishing Green correspondence for Mackey 
functors depends on proving that the endomorphism construction 
actually yields a Green functor and that this functorial behaves 
consistently under induction and restriction.   

The aim of this chapter is to present a comprehensive and 
explicit examination of the endomorphism Green functor 
associated with a Mackey functor (Sasaki, 1982; Uc, 2008). Our 
goal is twofold. First, we verify in a complete and detailed manner 
that the endomorphism structure satisfies all the axioms of a 
Green functor, including the Frobenius axioms and the Mackey 
axiom expressed at the level of morphism families. Unlike 
previous works, we make the subtle interaction between the 
Mackey structure and the algebraic structure of the 
endomorphism rings transparent by carefully considering each 
step (Uc, 2008). In this respect, we believe that we offer a 
comprehensive and systematic verification available in the 
literature. 

Secondly, we highlight the conceptual role of the 
endomorphism Green functor in the context of Green 
correspondence (Sasaki, 1982; Uc, 2008). Specifically, the 
endomorphism Green functor is a categorical replacement for the 
endomorphism rings seen in classical representation theory. 
When examining a Mackey functor M, the concept of a vertex can 
be reduced to the vertex of the related endomorphism, the Green 
functor; similarly, Green counterparts are obtained by observing 
the behavior of primitive idempotents under restriction. Thus, the 
correspondence for Mackey functors becomes a functorial 
counterpart to Green's classical correspondence. This perspective 
unifies different approaches within a single framework and 
reveals the structural importance of internal endomorphisms in 
equivariant algebra. 
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The importance of the endomorphism Green functor 
extends beyond Green correspondence. Green's functors are 
fundamental algebraic objects in many areas, including biset 
functor theory, Burnside rings, and representation theory-based 
Mackey categories. Therefore, the internal structure of 
endomorphism Green functor is an important tool in studying 
decomposition phenomena, projectivity, defect groups, and other 
structural properties.  For instance, identifying a Mackey functor's 
vertex through its endomorphism Green functor allows the 
transfer of many classical tools, e.g., relative projectivity and 
source modules, into the domain of functor categories. 
Furthermore, understanding how conjugation interacts with 
endomorphisms is critical to determining whether a Mackey 
functor is irreducible or whether two functors belong to the same 
Green correspondence class (Sasaki, 1982; Thévenaz & Webb, 
1995; Uc, 2008). 

This chapter is structured to increase accessibility while 
maintaining full mathematical rigor. First, we give the definition 
of the Green functor. Next, we give the definition of the 
endomorphism Green functor for a Mackey functor M and 
explicitly specifying the restriction, transfer, and conjugation 
maps on each component EndH(M). We then demonstrate that 
these maps satisfy the Mackey axiom, using a careful analysis of 
double coset decompositions and the functorial behavior of 
morphisms. We also verify the Frobenius axiom highlighting how 
compatibility between transfer and restriction manifests at the 
level of internal hom-objects. Finally, we discuss the significance 
of these results.  

The aim of this review is not only to formalize the 
structure of the endomorphism Green functor, but also to 
highlight how concepts from classical representation theory are 
transferred to functor categories. By offering a unified conceptual 
framework, this chapter positions the endomorphism Green 
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functor as a fundamental tool in Mackey functor theory, biset 
functors, and equivariant algebra. 

 

2. THEORETICAL BACKGROUND 

The study of the endomorphism Green functor (Sasaki, 
1982; Uc, 2008) lies within a broader hierarchy of functorial 
structures designed to encode restriction, induction, and 
conjugation phenomena along a subgroup lattice of a finite group. 
To contextualize the results presented in this section, it is 
important to explicitly define the relationship between four 
fundamental concepts: Mackey functors (Thévenaz & Webb, 
1995; Uc, 2008), G-functors (Sasaki, 1982), Green functors (Bouc 
et al., 1997; Thévenaz & Webb, 1995; Uc, 2008), and the 
endomorphism Green functor of a Mackey functor (Sasaki, 1982; 
Uc, 2008). 

For a finite group G, the Mackey functor is a pair of 
covariant and contravariant functors that define transfer and 
restriction maps among the subgroups of G. These maps satisfy 
the Mackey axiom, which describes the linearity conditions and 
the interaction between induction and restriction via double coset 
decompositions (Thévenaz & Webb, 1995; Uc, 2008). Mackey 
functor generalizes many classical structures such as fixed-point 
functors, cohomology functors, and Burnside rings, offering a 
unifying framework for equivariant algebraic structures.  

In Sasaki's definition (Sasaki, 1982), a G-functor is a 
Mackey functor equipped with an additional family of 
conjugation maps that satisfy the appropriate consistency 
conditions. This additional structure allows the functor to respond 
naturally to the conjugation effect of G. Every Green functor is a 
G-functor, but not every G-functor carries the richer algebraic 
properties required of a Green functor. 
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A Green functor is a ring-valued G-functor such that for 
each subgroup H ≤ G, the value A(H) is a unital associative 
algebra, and the restriction and conjugation maps are algebra 
homomorphisms. Furthermore, Green functors satisfy the 
Frobenius reciprocity axioms, which generalize the compatibility 
between induction and restriction in modular representation 
theory. These axioms guarantee that transfer images form two-
sided ideals and that the induction is compatible with the 
algebraic structure (Bouc et al., 1997). 

Within this hierarchy, the endomorphism Green functor 
occupies a special position. Given a Mackey functor M, the 
collection of sets EndH(M) = HomMackk(H)(↓HG M, ↓HG M) across 
all subgroups H ≤ G forms a family of algebras via composition.  
Restriction, transfer, and conjugation maps can be defined 
functorially, and as Sasaki has shown, this structure forms a 
Green functor (Sasaki, 1982; Uc, 2008). Thus, the endomorphism 
Green functor emerges as a categorical analogue of the 
endomorphism algebras in modular representation theory. 

This conceptual framework allows for the natural 
extension of Green classical correspondence from modules to 
Mackey functors. The determination of the vertex of a Mackey 
functor through primitive idempotents in the endomorphism 
Green functor exhibits a complete parallel with the classical 
theory of indecomposable modules. Similarly, Green 
correspondences are obtained by tracing the behavior of these 
idempotents under restriction. This categorical perspective not 
only unifies ideas from representation theory but also reveals 
structural similarities between modules and functors. 

This background forms the theoretical basis for the results 
developed in this section and highlights the central role of the 
endomorphism Green functor in equivariant algebra and functor 
categories. 
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3. GREEN FUNCTOR 

A Green functor for G over R is defined as a Mackey 
functor A such that, for every subgroup H in S(G), the component 
A(H) is equipped with a unital associative R-algebra structure. 
Here, S(G) denotes the family of all subgroups of G. These 
structures are subject to the following axioms: 

• All restriction maps rKH: A(H) → A(K) and the 
conjugation maps cH

g : A(H) → A(K) are unitary 
homomorphisms of R-algebras. 

• (Frobenius Axiom) For all K ⊆ H, α ∈ A(K),β ∈ A(H), 
then 

tKH(α. rKH(β)) = tKH(α).β 

tKH(rKH(β).α) = β. tKH(α) 

It should be stressed that tKH does not, in general, define a 
ring homomorphism. In fact, the Frobenius axiom ensures that the 
image of tKH is a two sided ideal in A(H). The expressions 
occurring in the Frobenius axiom are often known as the 
projection formulas (Bouc et al., 1997; Uc, 2008). 

Since the conjugation maps are unitary homomorphisms 
of R-algebras, G acts on ∏ AH∈S(G) (H) as a group of algebra 
automorhisms, and in particular N‾ (H) acts on A(H) as a group of 
algebra automorphisms. So, A(H) is an N‾ (H)-algebra, and in 
particular A(1) is equipped with an action of G by R-algebra 
automorphisms (Bouc et al., 1997; Uc, 2008). 

Furthermore, there is a natural notion of a morphism 
between Green functors: a morphism ϕ from the Green functor A 
to the Green functor B is a morphism of Mackey functors such 
that, for any subgroup H of G, the morphism ϕH: A(H) → B(H) is 
a morphism of rings. The morphism ϕ is said to be unitary if the 
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morphism ϕH preserves the unit for all H. It is enough that 
morphism ϕG preserves the unit, since 

ϕG(1A(H)) = ϕG(rHG)1A(G) = rHGϕG(1A(G)) = rHG1B(G) = 1B(H). 

A module over the Green functor A, or A-module, is 
defined as a Mackey functor M for the group G, such that for any 
subgroup H of G, the module M(H) has a structure of A(H)-
module with unit. Furthermore, the structure must be compatible 
with the Mackey structure, in the following sense: 

• If x ∈ G and K ⊆ G, let m ↦x m be the conjugation by x 
from M(K) to M(xK). If a ∈ A(K) and M ∈ m(K), then 
x(a. m) = x(a).a (m). 

• If H ⊆ K are subgroups of G, if a ∈ A(K) and m ∈ M(K), 
then rHK(a. m) = rHK(a). rHK(m). 

• In the same conditions, if a ∈ A(K) and m ∈ M(H), then 

a. tHK(m) = tHK(rHK(a). m) 

  and if a ∈ A(H) and m ∈ M(K), then 

tHK(a). m = tHK(a. rHK(m)). 

A morphism ϕ from the A-module M to the A-module N 
is a morphism of Mackey functors from M to N such that any 
subgroup H of G, the morphism ϕH is a morphism of A(H)-
modules (Bouc et al., 1997; Thévenaz & Webb, 1995; Uc, 2008):. 

We now introduce another category, denoted 𝒜𝒜k(G), 
which we define as a subcategory of Mackk(G) as follows: 

Definition 3.1.  Let A, B be Green functors where G is a 
group. Then a ring homomorphism ψ = (θH)H⊆G: A → B is a 
morphism between Green functors such that each θH is an algebra 
of Mackk(G) whose objects are all Green functors and morphisms 
are ring homomorphisms (Bouc et al., 1997; Uc, 2008):. 
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A fundamental example of a Green functor is given by 
End(M), arising from any Mackey functor M via the following 
procedure 

End(M)(H) = EndH(M) = HomMack(H)(↓HG M, ↓HG M) 
(Sasaki, 1982; Thévenaz & Webb, 1995; Uc, 2008). We will 
examine End(M) in the next section. 

 

4. ENDOMORPHISM GREEN FUNCTOR 

Let G be a finite group and M a Mackey functor. In this 
section, we investigate the Green functor defined by Sasaki 
(Sasaki, 1982), referred to as the endomorphism Green functor 
associated with a Mackey functor M (Sasaki, 1982; Thévenaz & 
Webb, 1995; Uc, 2008). The endomorphism Green functor plays 
a crucial role in the Green correspondence for Mackey functors, 
as the vertex of a Mackey functor M is defined to be the vertex of 
its associated endomorphism Green functor (Sasaki, 1982; 
Thévenaz & Webb, 1995; Uc, 2008). 

We start by introducing the notion of the endomorphism 
Green functor and subsequently demonstrate that it complies with 
the axiomatic framework of Green functors. 

Definition 4.1.  Let M be a Mackey functor for G over k. Then 
the Green functor EndH(M) = (EndH(M), T, R, C) is defined as 
follows. For each H ⊆ G we define 
EndH(M) = HomMackk(H)(↓HG M, ↓HG M), the set of morphisms 
from ↓HG M to ↓HG M in Mackk(H). 
Let H ⊆ K ⊆ G and g ∈ G. Define the transfer map; 
THK: EndH(M) → EndK(M): θ ↦ THK(θ) as follows. Writing 
(θY)Y⊆H ↦ ((THK(θ))L)L⊆K then, for L ⊆ K, the map 
(THK(θ))L: M(L) → M(L) is such that, for x ∈ M(L),  we have  
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x ↦ � tH∩gL
H

HgL⊆K

cgθHg∩LrHg∩L
Hg cH

g−1(x). 

Define the restriction map; RH
K : EndK(M) → EndH(M):ψ ↦

RH
K(ψ) as follows. Writing (ψY)Y⊆K ↦ ((RH

K(ψ))D)D⊆H then for 
E ⊆ K, the map (RH

K(ψ))D: M(E) → M(D) is such that, for y ∈
M(D), we have y ↦ ψD(y). Define the conjugation map; 
CH
g : EndH(M) → EndgH(M):φ ↦ CH

g (φ) as follows. Writing 
(φY)Y⊆K ↦ ((CH

g (φ))E)E⊆gH then for E ⊆ K, the map 
(CHG(φ))E: M(E) → M(E) is such that, for z ∈ M(E), we have z ↦

CgE
g−1φgECE

g(z) (Sasaki, 1982; Uc, 2008). 

We now proceed to demonstrate in detail that the 
endomorphism Green functor EndG(M) satisfies the full 
collection of axioms required of a Green functor, thereby 
confirming that it fits naturally into the general framework of 
Green functor theory. 

Theorem 4.2.  If M is a Mackey functor for the group G, then 
(EndG(M), T, R, C) is a Green functor (Sasaki, 1982; Uc, 2008). 

Proof. Let 𝑀𝑀 be a Mackey functor for 𝐺𝐺. 

(1) For L ≤ K ≤ H, RL
KRK

H = RL
H.  

Indeed, if D ⊆ K, m ∈ M(D), and φ ∈ EndH(M), then RK
H(φ) ∈

EndK(M) satisfies 

(RK
H(φ))(m) = (φD)D⊆K(m). 

For E ⊆ L and RK
H ∈ EndK(M), we get 

RL
K(RK

H(φ))(m) = (((φ)D)E)D⊆K,E⊆L(m) = (φE)E⊆L(m)
= (RL

H(φ))(m) 

where φ ∈ EndH(M). 

(2) For L ≤ K ≤ H, THKTLK = THL. 
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Indeed, if S ⊆ K, m ∈ M(S), and φ ∈ EndL(M), then TLK(φ) ∈
EndK(M) satisfies 

(TLK(φ)(m))S = � tS∩kL
S

SkL⊆K,k∈K

ckφSk∩LrSk∩L
Sk cSk

−1(m). 

If R ⊆ K, n ∈ M(R) and ψ ∈ EndK(M), then TKH(ψ) ∈ EndH(M) 
satisfies 

(TKH(ψ)(n))R = � tR∩hK
R

RhK⊆H,h∈H

chψRh∩KrRh∩K
Rh cRk

−1(n). 

If R ⊆ H, n ∈ M(R) and φ ∈ EndL(M), then 

(TKH(TLK(ψ)(n))L = � tR∩hK
R

RhK⊆H,h∈H

ch(tLK)Rh∩KrRh∩K
Rh cRk

−1(n)

(TLK(ψ)(n))Rh∩K = � tRh∩K∩kL
Rh∩K

(Rh∩K)kL⊆K,h∈K

ckψRhk∩Kk∩LrRhk∩Kk∩L
Rhk∩Kk ck−1(n)

 

So, 

(TKH(TLK(ψ)) = � tR∩hK
R

(Rh∩K)kL⊆K,RhK∈H

chtRh∩K∩kL
Rh∩K ckψRhk∩Kk∩LrRhk∩Kk∩L

Rhk∩Kk ck−1rRh∩K
Rh cRh

−1

= � tR∩hK
R

(Rh∩K)kL⊆K,RhK∈H

tR∩xK∩xL
R∩hK cxψRx∩K∩Lcx−1rR∩hK∩xL

R∩hK rR∩hK
R

= � tR∩x(H∩L)
L

RxL⊆H

cxψRx∩K∩Lcx−1rR∩x(H∩L).

 

where 𝑥𝑥 = ℎ𝑘𝑘. 

The conclusion is exactly what we asserted, because as k 
and h vary over double coset representatives RkK ⊆ H and (Rh ∩
K)hL ⊆ H, then x = hk exhaust the set of double coset 
representatives 𝑅𝑅𝑅𝑅𝑅𝑅 ⊆ H. 

(3) For a finite group 𝐻𝐻, RH
H = idEndH(M). 

If D ≤ H, m ∈ M(D) and ψ ∈ EndH(M), then RH
H(ψ) ∈

EndH(M) satisfies 

(RH
H(ψ))(m) = (ψD)D⊆H(m). 

Since (ψD)D⊆H is a family of homomorphisms over D ⊆ H, then 
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(ψD)D⊆H(m) = ψ(m) 

as asserted above. 

(4) For a finite group 𝐻𝐻, THH = idEndH(M). 

Indeed, if  S ⊆ H, m ∈ M(S) and ψ ∈ EndH(M), then THH(ψ) ∈
EndH(M) satisfies 

THH(ψ)(m) = � tS∩hH
S

ShH⊆H,h∈S

chψSh∩HrSh∩H
Sh cSh

−1(m).

= � tSS

ShH⊆H,h∈S

cSh∩H
h ψSh∩HrSh∩H

Sh cSh
−1(m)

= � tSS

ShH⊆H,h∈S

cSh
h ψShrSh

ShcSh
−1(m)

= � ψSh

ShH⊆H,h∈S

(m)

= � ψSh

ShH⊆H,h∈H

(m)

= ψ(m)

 

as previously claimed. 

(5) For a finite group G with a subgroup H, we have 

CH
gh = ChH

g CHh  where h, g ∈ G. 

Indeed, if m ∈ M(E), E ⊆gh H and α ∈ EndH(M), then CH
gh(α) ∈

EndH(M) satisfies 

(CH
gh)(m) = cE

ghαEghcghE
h−1g−1(m)

= chE
g (cEhαEghcg−1E

h−1 )cE
g−1(m)

= chE
g (CHH(α)Egh)cE

g−1(m)

= ChH
g CHh(m).

 

Matematik

80



(6) For a finite group H and h ∈ H, Ch: EndH(M) → EndH(M) is 
the identity. 

Indeed, if m ∈ M(E), where E ⊆h H = H, and if θ ∈ EndH(M), 
then 

(CHh(θ))(m) = chE
h−1(θhE)hE⊆HcEh(m)

= θ(m)
 

with (θhE)hE⊆H denoting the corresponding family of 
homomorphisms. 
(7) Let G be finite group, K ⊆ H ⊆ G, and g ∈ G. Then, we have 

CK
gRK

H = RgK
gHCH

g . 

Indeed, if  D ⊆ K, E ⊆g K, m ∈ M(D) and α ∈ EndH(M), then 

CK
gRK

H(α)(m) = CK
g(αD)(m)

= CgE
g−1(αD)gECE

g(m)

= CgE
g−1αgECE

g(m)

= (CgY
g−1αgYCY

g)E(m)

= RgK
gK(CgY

g−1αgYCY
g)(m)

= RgK
gHCH

g (α)(m)

 

where Y ∈g H. 

(8) (Mackey axiom) Let θ ∈ EndH(M). If L, K ⊆ H, then we have 

RH
L THK(θ) = � TL∩gk

L

LgK⊆H,g∈H

RL∩gK
gK cK

g(θ). 

Indeed, we must prove that for any X ⊆ L 

(RH
L THK)X(x) = � (

LgK⊆H,g∈H

TL∩gk
L RL∩gK

gK CK
g(θ))X(x) 
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where x ∈ L. We now demonstrate that the expressions on the 
left-hand side (LHS) and the right-hand side (RHS) are equal. 
LHS is the following: 

(RH
L THK(θ))X(x) = RH

L (THK(θ))X(x)
= (TKH(θ))X(x)

= � tX∩gK
X

XgK⊆H

cgθXg∩KrXg∩K
Xg cX

g−1(x)
 

RHS is the following: 

� (
LgK⊆H,g∈H

TL∩gk
L RL∩gK

gK CK
g(θ))X(x) = � (

LgK⊆H,g∈H

TL∩gK
L �RL∩gK

gK CK
g(θ)�)X(x)

= � � tX∩u(L∩gK)
X

Xu(L∩gK)⊆LLgK⊆H

cu(CK
g(θ))Xu∩(L∩gK)rXu∩(L∩gK)

Xu cXu
−1(x)

= � � tX∩u(L∩gK)
X

Xu(L∩gK)⊆LLgK⊆H

cu(CK
g(θ))Xu∩(L∩gK)rXu∩(L∩gK)

Xu cXu
−1(x)

= � � tX∩u(L∩gK)
X

Xu(L∩gK)⊆LLgK⊆H

cucg(θ)(Xu∩(L∩gK))gcg−1rXu∩(L∩gK)
Xu cu−1(x)

= � tX∩u(L∩gK)
X

LgK⊆H,Xu(L∩gK)⊆L

cug(θ)(Xug∩(L∩gK))grXug∩(L∩gK)g
Xug cg−1u−1(x)

= � tX∩gK
X

XgK⊆H

cgθXg∩KrXg∩K
Xg cX

g−1(x)

 

because u and g runs over Xu(L ∩g K) and LgK, respectively, then 
ug runs over XugK. Since X ⊆ L and u ∈ L, then ug runs over 
XgK. It follows that the left-hand side and the right-hand side are 
indeed equal. 

(9) (Frobenius axiom) If K ⊆ H, α ∈ EndK(M),β ∈ EndH(M), 
then the following multiplicative structures are both satisfied: 

TKH(α. RK
H(β)) = TKH(α).β 

TKH(RK
H(β).α) = β. TKH(α) 

Indeed, for the first assertion of the Frobenius axiom, we verify 
that the left-hand side coincide with the RHS. Let S ⊆ H. 

LHS: 
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TKH(α. RK
H(β)) = � tS∩hK

S

ShK⊆H,h∈H

ch(α. RK
H(β))Sh∩KrSh∩K

Sh cSh
−1

= � tS∩hK
S

ShK⊆H,h∈H

chαSh∩K(RK
H(β))Sh∩KrSh∩K

Sh cSh
−1

= � tS∩hK
S

ShK⊆H,h∈H

chαSh∩KβSh∩KrSh∩K
Sh cSh

−1

 

RHS: 

TKH(α).β = ( � tS∩hK
S

ShK⊆H,h∈H

chαSh∩KrSh∩K
Sh cSh

−1).βH

= � tS∩hK
S

ShK⊆H,h∈H

chαSh∩KβSh∩KrSh∩K
Sh cSh

−1
 

by application of conjugation and restriction on βH. Because the 
left-hand side agrees with the right-hand side, the first statement 
of the Frobenius axiom is satisfied. 

In a similar manner, the endomorphism Green functor also 
satisfies the second assertion of the Frobenius axiom. We may 
therefore conclude that the endomorphism Green functor fulfils 
all the axioms required in the definition of a Green functor. 
Hence, EndG(M) can be regarded as a fully valid Green functor, 
compatible with the underlying Mackey functor structure and the 
axiomatic operations of restriction, induction, and conjugation 
(Uc, 2008). 

Example 4.3.  In this example, we consider the Klein four group 
V4 = {1, a, b, ab} to illustrate the structure and operation of the 
endomorphism Green functor through a clear calculation. This 
group is abelian, and each element has order 2. The subgroup 
lattice {1} consists of three 2-order subgroups, H1 = 〈a〉, H2 =
〈b〉, H3 = 〈ab〉, and the whole group V4. Since V4 is abelian, all 
conjugation operations are trivial; this allows for a simplified 
examination of the internal algebraic structure of the 
endomorphism Green functor. 
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We consider a Mackey functor M obtained from the 
permutation module k[V4/1]. Explicitly, M(1) ≅ k, M(Hi) ≅ k2 
for each subgroup of order two, and M(V4) ≅ k4. The restriction 
maps M(V4) → M(Hi) correspond to summing coordinates along 
cosets ofHi, while transfer maps M(Hi) → M(V4) duplicate 
coordinates along cosets in the opposite direction. These linear 
structures allow us to compute the endomorphism Green functor 
EndG(M), whose value at each subgroup H is EndG(M)(H) =
EndMackk(H)(↓HG M) the algebra of natural transformations of the 
restricted Mackey Functor ↓HG M. 

For H =  1, we have EndG(M)(1) ≅ Endk(k) ≅ k, since 
M(1) is one‑dimensional. For any order‑two subgroup Hi, the 
Mackey restriction ↓Hi

G M behaves as a two‑point permutation 
representation, giving EndG(M)(Hi) ≅ M2(k), the full 2 × 2 
matrix algebra. At the full group V4, the functor M(V4) ≅ k4 with 
decomposition into four orbits gives EndG(M)(V4) ≅ M4(k). 
Each algebra EndG(M)(H) is thus explicitly computable, and 
together these algebras form the values of the endomorphism 
Green functor. 

The restriction maps RK
H: EndG(M)(H) → EndG(M)(K) 

arise by pre‑ and post‑composition with the restriction maps of M. 
Similarly, transfer maps TKH correspond to conjugation of 
endomorphisms through the transfer structure of M. Since 
conjugation in V4 is trivial, the conjugation maps 
Cg: EndG(M)(H) → EndG(M)(H) for g ∈ V4 reduce to the 
identity. One may verify directly that these maps satisfy the 
axioms of a Green functor: compatibility of restriction with 
multiplication, Frobenius reciprocity expressed via the identity 
TKH(α. RK

H(β)) = TKH(α).β, and associativity of endomorphism 
composition. 
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This example clearly demonstrates how the 
endomorphism Green functor organizes the internal algebraic 
structure of a Mackey functor across all subgroups of a finite 
group. Even in the simple case of V4, the functor organizes the 
matrix algebras and homomorphisms reflecting the transfer-
restriction structure. Such calculations provide a powerful 
intuition for understanding the fundamental role of the 
endomorphism Green functor in analyzing the behavior and 
internal symmetries of Mackey functors. 

 

5. CONCLUSION 

The endomorphism of the Green functor plays a central 
role in extending Green correspondence from the classical 
module theory to Mackey functors, a broader and more flexible 
structure. This work establishes a robust algebraic foundation for 
the study of vertex, correspondence, and decomposition 
structures within functor categories by demonstrating that the 
endomorphism structure rigorously satisfies all the axioms of a 
Green functor, including the Mackey axiom, Frobenius 
reciprocity, and the internal compatibility of constraint, transfer, 
and conjugation maps. 

The results show that many structural concepts associated 
with modular representation theory; for example, primitive 
idempotent decompositions and related projectivity; can be 
naturally generalized when the internal endomorphism structure 
is added to Mackey functors. In particular, the determination of 
the vertex of a Mackey functor through primitive idempotents in 
the endomorphism Green functor is identical to the classical 
theory of indecomposable modules. This functorial perspective 
clarifies the internal algebraic behavior of Mackey functors and 
unifies many ideas in representation theory under a single 
categorical framework. 
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This approach has given rise to numerous promising 
research directions. One of these is investigating how 
endomorphism Green functors interact with biset functors, 
particularly in the context of block decompositions and defect 
group structures. Another line of research is the development of 
novel structural tools such as functorial radicals or homological 
invariants that can be derived from the endomorphism Green 
functor. Extending the theory to infinite groups, derived Mackey 
functors may reveal deeper structural relationships. Finally, 
developing computational methods for calculating vertices and 
Green correspondents using endomorphism Green functors could 
contribute to clear classification results for small or complex 
groups. 

In conclusion, the endomorphism Green functor offers a 
conceptually elegant and structurally powerful tool for extending 
Green correspondence to the level of Mackey functors. The 
richness of this field suggests it will continue to guide future 
developments in representation theory and functor categories. 
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ON COMPLEX FIBONACCI AND LUCAS 
HYBRID NUMBERS 

Ali Imad Mohammed QARAH BASH1  

Anıl ALTINKAYA2* 

1. INTRODUCTION

W. R. Hamilton introduced quaternions in order to extend
complex numbers to a three-dimensional space. The quaternion 
set constitutes a real algebra in which multiplication is not 
commutative. In this algebra, a quaternion is expressed in the 
form [2]: 

ℍ = {𝑞𝑞 = 𝑎𝑎 +  𝑏𝑏𝑏𝑏 +  𝑐𝑐𝑐𝑐 +  𝑑𝑑𝑑𝑑 ∶  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℝ},     (1.1) 

where 𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = −1. One of the most striking properties is 
that multiplication is not commutative, meaning that in general, 
𝑖𝑖𝑖𝑖 ≠  𝑗𝑗𝑗𝑗. This structure allows transformations to be represented 
more compactly compared to matrices. Therefore, quaternions are 
widely used in computer graphics, robotics, aeronautics, and all 
fields where 3D rotations are computed. The 𝑛𝑛 − 𝑡𝑡ℎ Fibonacci 
and Lucas quaternions were described by the following 
definitions [3]: 

         ℍ𝔽𝔽𝑛𝑛 = 𝐹𝐹𝑛𝑛 + 𝐹𝐹𝑛𝑛+1𝑖𝑖 + 𝐹𝐹𝑛𝑛+2𝑗𝑗 + 𝐹𝐹𝑛𝑛+3𝑘𝑘, (1.2) 

         ℍ𝕃𝕃𝑛𝑛 = 𝐿𝐿𝑛𝑛 + 𝐿𝐿𝑛𝑛+1𝑖𝑖 + 𝐿𝐿𝑛𝑛+2𝑗𝑗 + 𝐿𝐿𝑛𝑛+3𝑘𝑘, (1.3) 
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where 𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2, 𝐹𝐹0 = 0,𝐹𝐹1 = 1 and 𝐿𝐿𝑛𝑛 = 𝐿𝐿𝑛𝑛−1 +
𝐿𝐿𝑛𝑛−2, 𝐿𝐿0 = 2, 𝐿𝐿1 = 1.  

The literature includes several studies related to 
Fibonacci and Lucas quaternions [4-9]. According to [4], Halici 
focused on the quaternionic extensions of the Fibonacci and 
Lucas sequences and derived their generating functions as well as 
Binet-type formulas, enriching the existing literature on number 
sequences in non-commutative algebraic structures. In [8], the 
authors gave some characterizations for the Pell quaternions and 
k-Fibonacci quaternions. 

Complex Fibonacci numbers were introduced by 
Horadam, these numbers are simply pairs expressed as [3]: 

                       𝐹𝐹𝑛𝑛�  =  𝐹𝐹𝑛𝑛  +  𝑖𝑖𝐹𝐹𝑛𝑛+1,                                 (1.4) 

where i2 = 1. The discovery of complex Fibonacci numbers led to 
many studies in the field of complex analysis and number theory. 
Complex Fibonacci numbers form interesting spiral-like 
geometric shapes in the complex plane and produce visually and 
analytically rich results in areas such as dynamical systems, 
fractal structures, and chaos theory. After the discovery of 
complex numbers, many authors have studied on complex 
Fibonacci quaternions. Some of these are [11–14]. In [11], Halici 
specified the complex Fibonacci and Lucas quaternions and 
discovered the relations between these quaternions. In [14], 
Aydin denoted the bicomplex Fibonacci quaternions and studied 
some algebraic properties of these numbers. 

In [1], M. Özdemir introduced hybrid numbers as an 
algebraic structure that unifies complex, dual, and hyperbolic 
numbers, given by: 

𝕂𝕂 = {𝑎𝑎 +  𝑏𝑏𝑏𝑏 +  𝑐𝑐𝑐𝑐 +  𝑑𝑑ℎ ∶  𝑖𝑖2  =  −1, 𝜀𝜀2  =  0,ℎ2  =  1}, (1.5) 

 

Matematik

89



 

𝐹𝐹𝐻𝐻𝑛𝑛 =   𝐹𝐹𝑛𝑛  +  𝐹𝐹𝑛𝑛+1 𝑖𝑖 +  𝐹𝐹𝑛𝑛+2𝜀𝜀 +  𝐹𝐹𝑛𝑛+3ℎ(1.6) 

𝐿𝐿𝐻𝐻𝑛𝑛 =   𝐿𝐿𝑛𝑛  +  𝐿𝐿𝑛𝑛+1 𝑖𝑖 +  𝐿𝐿𝑛𝑛+2𝜀𝜀 +  𝐿𝐿𝑛𝑛+3ℎ. (1.7) 

In [15], Liana gave some properties of Horadam-type 
hybrid sequences, including their Binet representation and 
generating function. 

This study first defines complex Fibonacci-type and 
complex Lucas-type hybrid numbers, and presents a detailed 
account of their fundamental algebraic properties. Following 
these definitions, the Binet formula for complex Fibonacci-type 
hybrid sequences is derived, and the Cassini identity, one of the 
classical Fibonacci identities, is proven in the context of this new 
number system. Finally, the generating function for complex 
Fibonacci-type hybrid sequences is derived, offering an 
alternative approach for analytically expressing them. Thus, the 
study expands the range of applications of hybrid numbers in the 
literature and reveals new and original results for complex 
Fibonacci-type and Lucas-type hybrid sequences, which have not 
been previously studied. 

 

2. PRELIMINARIRES 

The complex numbers are defined by the set ℂ =
{𝑧𝑧 = 𝑧𝑧1 + 𝑖𝑖𝑧𝑧2 ∶ 𝑧𝑧1, 𝑧𝑧2 ∈ ℝ, 𝑖𝑖2 = −1}. The addition and 
multiplication on this set are given as follows [16]: 

 

(𝑧𝑧1 + 𝑖𝑖𝑧𝑧2) + (𝑤𝑤1 + 𝑖𝑖𝑤𝑤2) = (𝑧𝑧1 + 𝑤𝑤1) + 𝑖𝑖(𝑧𝑧2 + 𝑤𝑤2), 

(𝑧𝑧1 + 𝑖𝑖𝑧𝑧2). (𝑤𝑤1 + 𝑖𝑖𝑤𝑤2) = (𝑧𝑧1𝑤𝑤1 − 𝑧𝑧2𝑤𝑤2) + 𝑖𝑖(𝑧𝑧1𝑤𝑤2 + 𝑧𝑧2𝑤𝑤1). 

 

For any complex number 𝑧𝑧 = 𝑧𝑧1 + 𝑖𝑖𝑧𝑧2, 𝑧𝑧1 =
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�𝑅𝑅𝑅𝑅(𝑧𝑧)�, 𝑧𝑧2 = (𝐼𝐼𝐼𝐼(𝑧𝑧)). The hybrid number set is defined by 
[1]: 

For any hybrid number 𝑎𝑎 = 𝑎𝑎0  +  𝑎𝑎1𝑖𝑖 +  𝑎𝑎2𝜀𝜀 +  𝑎𝑎3ℎ, 

the scalar component of 𝑎𝑎 is represented as 

𝑆𝑆𝑎𝑎 = 𝑎𝑎0, 

and the vector component is represented as 

𝑉𝑉𝑎𝑎 = 𝑎𝑎1𝑖𝑖 +  𝑎𝑎2𝜀𝜀 +  𝑎𝑎3ℎ. 

Given two hybrid numbers 𝑎𝑎 = 𝑎𝑎0  +  𝑎𝑎1𝑖𝑖 +  𝑎𝑎2𝜀𝜀 + 𝑎𝑎3ℎ, 
𝑏𝑏 = 𝑏𝑏0  +  𝑏𝑏1𝑖𝑖 +  𝑏𝑏2𝜀𝜀 +  𝑏𝑏3ℎ, their addition is written as  

𝑎𝑎 + 𝑏𝑏 = 𝑆𝑆(𝑎𝑎+𝑏𝑏) + 𝑉𝑉(𝑎𝑎+𝑏𝑏). 

Product of two hybrid numbers is defined by  

𝑎𝑎𝑎𝑎 = ( 𝑎𝑎0  +  𝑎𝑎1𝑖𝑖 +  𝑎𝑎2𝜀𝜀 + 𝑎𝑎3ℎ)(𝑏𝑏0  +  𝑏𝑏1𝑖𝑖 +  𝑏𝑏2𝜀𝜀 +
 𝑏𝑏3ℎ), (2.2) 

which is obtained by performing the algebraic expansion 
in the standard way [1]. The product of scalar is defined as [1]: 

𝑎𝑎� = 𝑆𝑆𝑎𝑎 − 𝑉𝑉𝑎𝑎. 

In [10], the authors introduced the Binet’s formula for 
the Fibonacci-type and Lucas-type hybrid numbers as: 

                       𝐹𝐹𝐻𝐻𝑛𝑛 =
𝑟𝑟1�𝑟𝑟1𝑛𝑛 − 𝑟𝑟2�𝑟𝑟2𝑛𝑛

𝑟𝑟1 − 𝑟𝑟2
,                                               (2.3) 

                    𝐿𝐿𝐻𝐻𝑛𝑛 = 𝑟𝑟1� + 𝑟𝑟1𝑛𝑛 + 𝑟𝑟2�𝑟𝑟2𝑛𝑛,                                             (2.4) 

where 𝑟𝑟1� = 1 + 𝑟𝑟1𝑖𝑖 + 𝑟𝑟12𝜀𝜀 + 𝑟𝑟13ℎ,  𝑟𝑟1 = 1+√5
2

, 𝑟𝑟2 = 1−√5
2

. 

· 1 i ε h 
1 1 i ε h 
i i -1 1-h ε+i 
ε ε h+1 0 -ε 
h h -ε-i ε 1 
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3. COMPLEX FIBONACCI AND LUCAS HYBRID 
NUMBERS 

Definition 3.1. The 𝑛𝑛𝑡𝑡ℎ complex Fibonacci-type and Lucas-
type hybrid sequences are defined by 

                         𝐹𝐹𝐹𝐹𝑛𝑛�  =  𝐹𝐹𝐹𝐹𝑛𝑛  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+1,                                (3.1) 

                         𝐿𝐿𝐿𝐿𝑛𝑛�  =  𝐿𝐿𝐿𝐿𝑛𝑛  +  𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+1,                                 (3.2) 

respectively.Here 𝐹𝐹𝐻𝐻𝑛𝑛 =   𝐹𝐹𝑛𝑛  +  𝐹𝐹𝑛𝑛+1 𝑖𝑖 +  𝐹𝐹𝑛𝑛+2𝜀𝜀 +  𝐹𝐹𝑛𝑛+3ℎ 
and 𝐿𝐿𝐻𝐻𝑛𝑛 =   𝐿𝐿𝑛𝑛  +  𝐿𝐿𝑛𝑛+1 𝑖𝑖 +  𝐿𝐿𝑛𝑛+2𝜀𝜀 +  𝐿𝐿𝑛𝑛+3ℎ are 𝑛𝑛𝑡𝑡ℎ 
Fibonacci-type and Lucas-type hybrid sequences. 𝑖𝑖 
denotes the imaginary unit (𝑖𝑖2  = − 1), 𝜀𝜀 denotes the 
complex unit (𝜀𝜀2 = 0) and ℎ denotes the hyperbolic 
unit (ℎ2 = 1). 

If the complex Fibonacci hybrid number is arranged 
according to the previous definition, we get  

𝐹𝐹𝐹𝐹𝑛𝑛� = (𝐹𝐹𝑛𝑛  +  𝐹𝐹𝑛𝑛+1 𝑖𝑖 +  𝐹𝐹𝑛𝑛+2𝜀𝜀 +  𝐹𝐹𝑛𝑛+3ℎ) + 𝑖𝑖(𝐹𝐹𝑛𝑛+1  +  𝐹𝐹𝑛𝑛+2 𝑖𝑖 
+  𝐹𝐹𝑛𝑛+3𝜀𝜀 +  𝐹𝐹𝑛𝑛+4ℎ) 

=(𝐹𝐹𝑛𝑛 + 𝑖𝑖𝐹𝐹𝑛𝑛+1)+ (𝐹𝐹𝑛𝑛+1 + 𝑖𝑖𝐹𝐹𝑛𝑛+2)𝑖𝑖 + (𝐹𝐹𝑛𝑛+2 + 𝑖𝑖𝐹𝐹𝑛𝑛+3)𝜀𝜀 + (𝐹𝐹𝑛𝑛+3 +
𝑖𝑖𝐹𝐹𝑛𝑛+4)ℎ 

=𝐹𝐹𝑛𝑛� + 𝐹𝐹𝑛𝑛+1�𝑖𝑖 + 𝐹𝐹𝑛𝑛+2�𝜀𝜀 + 𝐹𝐹𝑛𝑛+3�ℎ. 

Similarly, we can write 

𝐿𝐿𝐿𝐿𝑛𝑛� = 𝐿𝐿𝑛𝑛� + 𝐿𝐿𝑛𝑛+1�𝑖𝑖 + 𝐿𝐿𝑛𝑛+2�𝜀𝜀 + 𝐿𝐿𝑛𝑛+3�ℎ. 

Theorem 3.1. Let 𝐹𝐹𝐹𝐹𝑛𝑛�  be any complex Fibonacci hybrid 
number and 𝐿𝐿𝐿𝐿𝑛𝑛�  be any complex Lucas hybrid number. Then, 
we have the following equations: 

i) 𝐹𝐹𝐹𝐹𝑛𝑛+1 +� 𝐹𝐹𝐹𝐹𝑛𝑛 =� 𝐹𝐹𝐹𝐹𝑛𝑛+2�  

ii) 𝐿𝐿𝐿𝐿𝑛𝑛+1 +� 𝐿𝐿𝐿𝐿𝑛𝑛 =� 𝐿𝐿𝐿𝐿𝑛𝑛+2�  

iii) 𝐹𝐹𝐹𝐹𝑛𝑛−1 +� 𝐹𝐹𝐹𝐹𝑛𝑛+1 =� 𝐿𝐿𝐿𝐿𝑛𝑛�  
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iv) 𝐹𝐹𝐹𝐹𝑛𝑛+2 −� 𝐹𝐹𝐹𝐹𝑛𝑛−2 =� 𝐿𝐿𝐿𝐿𝑛𝑛�  

Proof. i) By applying the addition rule for complex 
Fibonacci-type hybrid sequences, we get 

𝐹𝐹𝐹𝐹𝑛𝑛+1 +� 𝐹𝐹𝐹𝐹𝑛𝑛 =� (𝐹𝐹𝐹𝐹𝑛𝑛+1  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+2) + (𝐹𝐹𝐹𝐹𝑛𝑛  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+1) 

= (𝐹𝐹𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝐹𝐹𝑛𝑛) + 𝑖𝑖(𝐹𝐹𝐹𝐹𝑛𝑛+2 + 𝐹𝐹𝐹𝐹𝑛𝑛+1) 

= ((𝐹𝐹𝑛𝑛+1  +  𝐹𝐹𝑛𝑛+2 𝑖𝑖 +  𝐹𝐹𝑛𝑛+3𝜀𝜀 +  𝐹𝐹𝑛𝑛+4ℎ) + (𝐹𝐹𝑛𝑛  +  𝐹𝐹𝑛𝑛+1 𝑖𝑖 +
 𝐹𝐹𝑛𝑛+2𝜀𝜀 +  𝐹𝐹𝑛𝑛+3ℎ) + 𝑖𝑖((𝐹𝐹𝑛𝑛+2  +  𝐹𝐹𝑛𝑛+3 𝑖𝑖 +  𝐹𝐹𝑛𝑛+4𝜀𝜀 +  𝐹𝐹𝑛𝑛+5ℎ) +
(𝐹𝐹𝑛𝑛+1  +  𝐹𝐹𝑛𝑛+2 𝑖𝑖 +  𝐹𝐹𝑛𝑛+3𝜀𝜀 +  𝐹𝐹𝑛𝑛+4ℎ)) 

= (𝐹𝐹𝑛𝑛+1 + 𝐹𝐹𝑛𝑛) + 𝑖𝑖(𝐹𝐹𝑛𝑛+2 + 𝐹𝐹𝑛𝑛+1)𝑖𝑖 + (𝐹𝐹𝑛𝑛+3 + 𝐹𝐹𝑛𝑛+2)𝜀𝜀 +
(𝐹𝐹𝑛𝑛+4 + 𝐹𝐹𝑛𝑛+3)ℎ + 𝑖𝑖((𝐹𝐹𝑛𝑛+2 + 𝐹𝐹𝑛𝑛+1) + (𝐹𝐹𝑛𝑛+3 + 𝐹𝐹𝑛𝑛+2)𝑖𝑖 +
(𝐹𝐹𝑛𝑛+4 + 𝐹𝐹𝑛𝑛+3)𝜀𝜀 + (𝐹𝐹𝑛𝑛+5 + 𝐹𝐹𝑛𝑛+4)ℎ) 

= (𝐹𝐹𝑛𝑛+2 + 𝐹𝐹𝑛𝑛+3𝑖𝑖 + 𝐹𝐹𝑛𝑛+4𝜀𝜀 + 𝐹𝐹𝑛𝑛+5ℎ) + 𝑖𝑖(𝐹𝐹𝑛𝑛+3 + 𝐹𝐹𝑛𝑛+4𝑖𝑖 + 𝐹𝐹𝑛𝑛+5𝜀𝜀
+ 𝐹𝐹𝑛𝑛+6ℎ) 

=𝐹𝐹𝐹𝐹𝑛𝑛+2  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+3 

=𝐹𝐹𝐹𝐹𝑛𝑛+2� . 

ii) Similarly, if we use the addition property of the complex 
Lucas hybrid number, we get 

𝐿𝐿𝐿𝐿𝑛𝑛+1 +� 𝐿𝐿𝐿𝐿𝑛𝑛� = (𝐿𝐿𝐿𝐿𝑛𝑛+1  +  𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+2) + (𝐿𝐿𝐿𝐿𝑛𝑛  +  𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+1) 

                             = (𝐿𝐿𝐿𝐿𝑛𝑛+1 + 𝐿𝐿𝐿𝐿𝑛𝑛) + 𝑖𝑖(𝐿𝐿𝐿𝐿𝑛𝑛+2 + 𝐿𝐿𝐿𝐿𝑛𝑛+1) 

                             =𝐿𝐿𝐿𝐿𝑛𝑛+2 + 𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+3 

                             =𝐿𝐿𝐿𝐿𝑛𝑛+2� . 

iii) Considering the identity 𝐹𝐹𝑛𝑛−1  + 𝐹𝐹𝑛𝑛+1  =  𝐿𝐿𝑛𝑛, we 
can write  

𝐹𝐹𝐹𝐹𝑛𝑛−1� + 𝐹𝐹𝐹𝐹𝑛𝑛+1� = (𝐹𝐹𝐹𝐹𝑛𝑛−1  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛) + (𝐹𝐹𝐹𝐹𝑛𝑛+1  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+2) 

                              = (𝐹𝐹𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝐹𝐹𝑛𝑛+1) + 𝑖𝑖(𝐹𝐹𝐹𝐹𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛+2) 

                              = 𝐿𝐿𝐿𝐿𝑛𝑛 + 𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+1 
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                              = 𝐿𝐿𝐿𝐿𝑛𝑛.� 

iv) Similarly, from the identity 𝐹𝐹𝑛𝑛+2  −  𝐹𝐹𝑛𝑛−2  =  𝐿𝐿𝑛𝑛, we 
have 

𝐹𝐹𝐹𝐹𝑛𝑛+2� −𝐹𝐹𝐹𝐹𝑛𝑛−2� = (𝐹𝐹𝐹𝐹𝑛𝑛+2  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+3) − (𝐹𝐹𝐹𝐹𝑛𝑛−2  +  𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛−1) 

                              = (𝐹𝐹𝐹𝐹𝑛𝑛+2 − 𝐹𝐹𝐹𝐹𝑛𝑛−2) + 𝑖𝑖(𝐹𝐹𝐹𝐹𝑛𝑛+3 − 𝐹𝐹𝐹𝐹𝑛𝑛−1) 

                              = 𝐿𝐿𝐿𝐿𝑛𝑛 + 𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+1 

                              = 𝐿𝐿𝐿𝐿𝑛𝑛.� 

Theorem 3.2. Let 𝐹𝐹𝐹𝐹𝑛𝑛�  be any complex Fibonacci hybrid 
number and 𝐿𝐿𝐿𝐿𝑛𝑛�  be any complex Lucas hybrid number. For 
each integer 𝑛𝑛 ≥ 0, the Binet type formulas of 𝐹𝐹𝐹𝐹𝑛𝑛�  and 𝐿𝐿𝐿𝐿𝑛𝑛�  
take the following form: 

          𝐹𝐹𝐹𝐹𝑛𝑛� = 𝑟𝑟1∗𝑟𝑟1𝑛𝑛−(𝑟𝑟2)∗𝑟𝑟2𝑛𝑛

𝑟𝑟1−𝑟𝑟2
,                                               (3.3) 

                    𝐿𝐿𝐿𝐿𝑛𝑛� = 𝑟𝑟1∗𝑟𝑟1𝑛𝑛 + (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛,                                             (3.4) 

where 𝑟𝑟1∗ = 𝑟𝑟1�(1 + 𝑖𝑖𝑖𝑖1), 𝑟𝑟1� = 1 + 𝑟𝑟1𝑖𝑖 + 𝑟𝑟12𝜀𝜀 + 𝑟𝑟13ℎ and (𝑟𝑟2)∗ =
𝑟𝑟2�(1 + 𝑖𝑖𝑖𝑖2), 𝑟𝑟2� = 1 + 𝑟𝑟2𝑖𝑖 + 𝑟𝑟22𝜀𝜀 + 𝑟𝑟23ℎ. 

Proof. Using (3.1) and the Binet representation of the 
Fibonacci-type hybrid sequences, we have 

𝐹𝐹𝐹𝐹𝑛𝑛� = 𝐹𝐹𝐹𝐹𝑛𝑛 + 𝑖𝑖𝐹𝐹𝐹𝐹𝑛𝑛+1 

=
𝑟𝑟1�𝑟𝑟1𝑛𝑛 − 𝑟𝑟2�𝑟𝑟2𝑛𝑛

𝑟𝑟1 − 𝑟𝑟2
+ 𝑖𝑖

𝑟𝑟1�𝑟𝑟1𝑛𝑛+1 − 𝑟𝑟2�𝑟𝑟2𝑛𝑛+1

𝑟𝑟1 − 𝑟𝑟2
 

=
𝑟𝑟1�𝑟𝑟1𝑛𝑛(1 + 𝑖𝑖𝑟𝑟1) − 𝑟𝑟2�𝑟𝑟2𝑛𝑛(1 + 𝑖𝑖𝑟𝑟2)

𝑟𝑟1 − 𝑟𝑟2
 

=
𝑟𝑟1∗𝑟𝑟1𝑛𝑛 − (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛

𝑟𝑟1 − 𝑟𝑟2
. 

From the equations (3.2) and the Binet representation of the 
Lucas-type hybrid sequences, we obtain 
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                           𝐿𝐿𝐿𝐿𝑛𝑛� = 𝐿𝐿𝐿𝐿𝑛𝑛 + 𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛+1 

                                   = (𝑟𝑟1� + 𝑟𝑟1𝑛𝑛 + 𝑟𝑟2�𝑟𝑟2𝑛𝑛) + 𝑖𝑖(𝑟𝑟1�𝑟𝑟1𝑛𝑛+1 + 𝑟𝑟2�𝑟𝑟2𝑛𝑛+1) 

                                   = 𝑟𝑟1�𝑟𝑟1𝑛𝑛(1 + 𝑖𝑖𝑟𝑟1) + 𝑟𝑟2�𝑟𝑟2𝑛𝑛(1 + 𝑖𝑖𝑟𝑟2) 

                                   = 𝑟𝑟1∗𝑟𝑟1𝑛𝑛 + (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛. 

Theorem 3.3. Let 𝐹𝐹𝐹𝐹𝑛𝑛�  and 𝐿𝐿𝐿𝐿𝑛𝑛�  denote the n-th complex 
Fibonacci-type hybrid sequence and the n-th complex Lucas-
type hybrid sequence. When, 𝑛𝑛 ≥ 1, the Cassini identities of 
𝐹𝐹𝐹𝐹𝑛𝑛�  and 𝐿𝐿𝐿𝐿𝑛𝑛�  are given by: 

𝐹𝐹𝐹𝐹𝑛𝑛−1� 𝐹𝐹𝐹𝐹𝑛𝑛+1� −𝐹𝐹𝐹𝐹𝑛𝑛�
2 =

(−1)𝑛𝑛−1

√5
(𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟2 − 𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟1), 

𝐿𝐿𝐿𝐿𝑛𝑛−1� 𝐿𝐿𝐿𝐿𝑛𝑛+1� − 𝐿𝐿𝐿𝐿𝑛𝑛�
2 = (−1)𝑛𝑛−1√5 �

𝑟𝑟1∗𝑟𝑟2∗

𝑟𝑟2
+
𝑟𝑟2∗𝑟𝑟1∗

𝑟𝑟1
�. 

Proof. By using (3.3) and (3.4), we can calculate the following 
equations: 

𝐹𝐹𝐹𝐹𝑛𝑛−1� 𝐹𝐹𝐹𝐹𝑛𝑛+1� −𝐹𝐹𝐹𝐹𝑛𝑛�
2

= �
𝑟𝑟1∗𝑟𝑟1𝑛𝑛−1 − (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛−1

𝑟𝑟1 − 𝑟𝑟2
� �

𝑟𝑟1∗𝑟𝑟1𝑛𝑛+1 − (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛+1

𝑟𝑟1 − 𝑟𝑟2
�

− �
𝑟𝑟1∗𝑟𝑟1𝑛𝑛 − (𝑟𝑟2)∗𝑟𝑟2𝑛𝑛

𝑟𝑟1 − 𝑟𝑟2
�
2

 

=
(𝑟𝑟1∗)2 𝑟𝑟12𝑛𝑛 −  𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛−1𝑟𝑟2𝑛𝑛+1 − (𝑟𝑟2)∗𝑟𝑟2𝑟𝑟2𝑛𝑛−1𝑟𝑟1𝑛𝑛+1 + (𝑟𝑟2∗)2(𝑟𝑟2𝑛𝑛)2

(𝑟𝑟1 − 𝑟𝑟2)2

−
(𝑟𝑟1∗)2 𝑟𝑟12𝑛𝑛 −  𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛𝑟𝑟2𝑛𝑛 − (𝑟𝑟2)∗(𝑟𝑟1)∗𝑟𝑟2𝑛𝑛𝑟𝑟1𝑛𝑛 + (𝑟𝑟2∗)2(𝑟𝑟2𝑛𝑛)2

(𝑟𝑟1 − 𝑟𝑟2)2  

=
𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛−1𝑟𝑟2𝑛𝑛(𝑟𝑟1 − 𝑟𝑟2) −  𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟2𝑛𝑛−1𝑟𝑟1𝑛𝑛(𝑟𝑟1 − 𝑟𝑟2)

(𝑟𝑟1 − 𝑟𝑟2)2  

=
𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛−1𝑟𝑟2𝑛𝑛 −  𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟2𝑛𝑛−1𝑟𝑟1𝑛𝑛

𝑟𝑟1 − 𝑟𝑟2
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=
(−1)𝑛𝑛−1

√5
(𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟2 − 𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟1). 

𝐿𝐿𝐿𝐿𝑛𝑛−1� 𝐿𝐿𝐿𝐿𝑛𝑛+1� −𝐿𝐿𝐿𝐿𝑛𝑛�
2

= (𝑟𝑟1∗𝑟𝑟1𝑛𝑛−1 + 𝑟𝑟2∗𝑟𝑟2𝑛𝑛−1)(𝑟𝑟1∗𝑟𝑟1𝑛𝑛+1 + 𝑟𝑟2∗𝑟𝑟2𝑛𝑛+1)
− (𝑟𝑟1∗𝑟𝑟1𝑛𝑛 + 𝑟𝑟2∗𝑟𝑟2𝑛𝑛)2 

                              = (𝑟𝑟1∗)2𝑟𝑟12𝑛𝑛 + 𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛−1𝑟𝑟2𝑛𝑛+1 +
                                  𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟2𝑛𝑛−1𝑟𝑟1𝑛𝑛+1 + (𝑟𝑟2∗)2𝑟𝑟22𝑛𝑛 − (𝑟𝑟1∗)2𝑟𝑟12𝑛𝑛 −
                                  𝑟𝑟1∗𝑟𝑟2∗𝑟𝑟1𝑛𝑛𝑟𝑟2𝑛𝑛 + 𝑟𝑟2∗𝑟𝑟1∗𝑟𝑟2𝑛𝑛𝑟𝑟1𝑛𝑛 

                              = 𝑟𝑟1∗𝑟𝑟2∗(−1)𝑛𝑛−1 √5
𝑟𝑟2
�𝑟𝑟1

∗𝑟𝑟2∗

𝑟𝑟2
+ 𝑟𝑟2∗𝑟𝑟1∗

𝑟𝑟1
�. 

Theorem 3.4. Let 𝐹𝐹𝐹𝐹𝑛𝑛�  be any complex Fibonacci hybrid number. 
Then the generating function of 𝐹𝐹𝐹𝐹𝑛𝑛�  is given as follows: 

                 𝐺𝐺(𝑥𝑥) =
𝐹𝐹𝐹𝐹0� + x(𝐹𝐹𝐹𝐹1� − 𝐹𝐹𝐹𝐹0)�    

1 − 𝑥𝑥 − 𝑥𝑥2

=
(3 − 2𝜀𝜀 + 3ℎ) + 𝑥𝑥(2 − 2𝜀𝜀 + 2ℎ)

1 − 𝑥𝑥 − 𝑥𝑥2
. 

Proof. Suppose that 𝐺𝐺(𝑥𝑥) is a generating function of complex 
Fibonacci hybrid number 𝐹𝐹𝐹𝐹𝑛𝑛� . Then we get, 

𝐺𝐺(𝑥𝑥) = �𝐹𝐹𝐹𝐹𝑛𝑛�
∞

𝑛𝑛=0

𝑥𝑥𝑛𝑛. 

If we organize this equality, we have 

𝐺𝐺(𝑥𝑥) = 𝐹𝐹𝐹𝐹0� + 𝑥𝑥𝐹𝐹𝐹𝐹1� + 𝑥𝑥2𝐹𝐹𝐹𝐹2� + ⋯ 

𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝑥𝑥𝐹𝐹𝐹𝐹0� + 𝑥𝑥2𝐹𝐹𝐹𝐹1� + 𝑥𝑥3𝐹𝐹𝐹𝐹2� + ⋯ 

𝑥𝑥2𝐺𝐺(𝑥𝑥) = 𝑥𝑥2𝐹𝐹𝐹𝐹0� + 𝑥𝑥3𝐹𝐹𝐹𝐹1� + 𝑥𝑥4𝐹𝐹𝐹𝐹2� + ⋯ 

𝐺𝐺(𝑥𝑥) − 𝑥𝑥𝑥𝑥(𝑥𝑥) − 𝑥𝑥2𝐺𝐺(𝑥𝑥) = 𝐹𝐹𝐹𝐹0� + 𝑥𝑥�𝐹𝐹𝐹𝐹1� − 𝐹𝐹𝐹𝐹0� � +
𝑥𝑥2�𝐹𝐹𝐹𝐹2� − 𝐹𝐹𝐹𝐹1� − 𝐹𝐹𝐹𝐹0� � + ⋯. 

So, we can write, 
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                𝐺𝐺(𝑥𝑥) =
𝐹𝐹𝐹𝐹0� + x(𝐹𝐹𝐹𝐹1� − 𝐹𝐹𝐹𝐹0)�    

1 − 𝑥𝑥 − 𝑥𝑥2

=
(3 − 2𝜀𝜀 + 3ℎ) + 𝑥𝑥(2 − 2𝜀𝜀 + 2ℎ)

1 − 𝑥𝑥 − 𝑥𝑥2
. 

 
4. CONCLUSION 

Hybrid number system combines these three different 
algebraic structures into a single structure, creating a new 
algebraic structure. While various studies on hybrid numbers 
have been conducted in the literature, no research exists on 
complex Fibonacci and complex Lucas hybrid numbers. In the 
third part of this article, we first define the n-th complex 
Fibonacci-type hybrid sequence and the n-th complex Lucas-type 
hybrid sequence. Through these definitions, we clearly 
demonstrate the relationship of hybrid numbers to complex 
Fibonacci and Lucas sequences. Then, we derive some 
fundamental relations for complex Fibonacci-type and complex 
Lucas-type hybrid numbers and demonstrate the role of these 
relations within the hybrid number structure. Finally, we prove 
Binet's formulas for these hybrid numbers and use these formulas 
to derive the Cassini identities. Showing that the Cassini 
identities hold in the context of hybrid numbers reveals the 
similarities and differences between the algebraic properties of 
hybrid numbers and those of classical Fibonacci-type and Lucas-
type sequences. Finally, we find the generating function for 
complex Fibonacci and complex Lucas hybrid numbers and 
explain how this function can be used to investigate the analytic 
properties of hybrid numbers. 

 

 

 

Matematik

97



REFERENCES 

Akyigit, M., Kosal, H. H., Tosun, M. (2013). Split Fibonacci 
Quaternions., Advances in Applied Clifford Algebras. 23, 
535–545. 

Brown, J. W. and Churchill, R. V. (2014). Complex Variables and 
Applications. McGraw-Hill Education, 2 Penn Plaza, 
New York. 

Gungor, M. A., Azak, A. Z. (2017). Investigation of Dual-
Complex Fibonacci, Dual-Complex Lucas Numbers and 
Their Properties. Advances in Applied Clifford Algebras. 
27, 3083–3096. 

Halici, S. (2012). On Fibonacci Quaternions., Advances in 
Applied Clifford Algebras, 22, 321–32. 

Halici, S. (2013). On Complex Fibonacci Quaternions. Advances 
in Applied Clifford Algebras. 23, 105–112. 

Halici, S., Karata¸s, A. (2017). On a generalization for Fibonacci 
quaternions. Chaos, Solitons and Fractals. 98, 178–182. 

Hamilton, W. R. (1844). On quaternions or on a new system of 
imagniaries in algebra. Lond. Edinb. Dublin Philos. Mag. 
J. Sci., 25, 489–495. 

Horadam, A. F. (1963). Complex Fibonacci Numbers and 
Fibonacci Quaternions. The American Mathematical 
Monthly, 70, 289–291. 

Kaya Nurkan, S., Arslan Guven, I. (2015). Dual Fibonacci 
Quaternions. Advances in Applied Clifford Algebras. 25, 
403–414. 

Ozdemir, M. (2018). Introduction to hybrid numbers. Adv. Appl. 
Clifford Algebras. 28(11), 1–32. 

Matematik

98



Sentürk, G. Y. (2022). Construction of dual-generalized complex 
Fibonacci and Lucas quaternions. Carpathian 
Mathematical Publications. 14(2), 406–418. 

Szynal-Liana, A. (2018). The Horadam Hybrid Numbers. 
Discussiones Mathematicae General Algebra and 
Applications. 38, 91–98. 

Szynal-Liana, A., Wloch, I.:Introduction to Fibonacci and Lucas 
hybrinomials. Complex Variables and Elliptic Equations. 
65, 1736–1747 (2019). 

Tan, E., Yilmaz, S., Sahin, M. (2016).On a new generalization of 
Fibonacci quaternions. Chaos, Solitons and Fractals. 82, 
1–4. 

Torunbalci Aydin, F. (2018). Bicomplex Fibonacci quaternions. 
Chaos, Solitons and Fractals. 106, 147–153. 

Yuce, S, Torunbalci Aydin, F.. (2016). A New Aspect of Dual 
Fibonacci Quaternions. Advances in Applied Clifford 
Algebras. 26, 873–884. 

Matematik

99



THE CONCEPT OF INEQUALITY IN 
MATHEMATICS: MATHEMATICAL 

MEANING, HISTORICAL DEVELOPMENT, 
THEORETICAL POWER, AND DIDACTIC–

PHILOSOPHICAL DIMENSIONS 
 

Alaattin AKYAR1 

 

1. INTRODUCTION 

Mathematics is often seen as the "science of equality." In 
students' early encounters with mathematics, the main focus is 
solving equations and ensuring that both sides are equal. This 
approach presents mathematics mostly as a task of finding the 
right answer and leads to the idea that mathematical knowledge 
is about reaching correct results. 

However, when we look deeper into mathematical 
thinking, we see that inequalities play an equally important, often 
even more fundamental role. Mathematics is not only about 
determining what is equal but also about understanding what is 
greater or smaller, what stays within certain limits, and how we 
can measure being "close enough" in a precise way (Apostol, 
1974; Rudin, 1976). In this sense, mathematics deals not only 
with results but also with behaviors and their boundaries. 

In modern analysis, core concepts such as limit, 
continuity, derivative, and integral are defined using inequality-
based structures (Apostol, 1974; Cauchy, 1821/2009; 
Weierstrass, 1874/1986). Whether a function approaches a value, 
is continuous, or is integrable depends on satisfying specific 

 
1  Düzce University, Düzce Vocational School, ORCID: 0000-0003-4759-8313. 
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inequalities. Concepts like convergence, compactness, and 
continuity are built upon the idea of “reducing the margin of error 
as much as desired,” and the language used to express this idea is 
the language of inequalities (Rudin, 1976). 

Therefore, inequality is not just a tool using symbols like 
<, >, ≤, ≥ to compare values; it is a theoretical language that 
organizes mathematical objects, limits behaviors, and makes 
mathematical precision possible. Yet, this role of inequality is 
often underestimated. In textbooks and teaching practices, 
inequalities are usually presented only as technical steps or tools, 
without highlighting their foundational role in mathematical 
thought. 

However, many modern mathematical definitions cannot 
be clearly expressed or logically secured without inequalities. In 
this context, inequality is not just a tool used in mathematics, it is 
a fundamental way of thinking that makes mathematical 
knowledge possible. 

This chapter aims to explore the mathematical meaning 
and foundational role of inequality through conceptual, historical, 
and philosophical lenses. It will examine the historical 
development of inequality and key turning points that shaped the 
foundations of analysis. It will also show in detail why key 
mathematical concepts must be defined using the language of 
inequalities. Furthermore, it will discuss the theoretical insights 
provided by classic inequalities such as Cauchy–Schwarz, 
Hölder, Minkowski, and Jensen, and critically analyze why 
inequality often fails to gain its deserved central place in math 
education. Finally, it will explore the difference between the 
value-neutral use of inequality in mathematics and the moral or 
ethical meanings attached to the term “inequality” in every day 
and philosophical contexts highlighting why this distinction is 
important for mathematical thinking and teaching (Lakatos, 1976; 
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Tall, 2013; Tall & Vinner, 1981; Ubuz, 1999; Baki, 2018; Altun, 
2014; Doruk & Kaplan, 2013; İnam, 1995; Çüçen, 2012). 

 

2. LIMIT: NOT “REACHING” BUT 
“APPROACHING” 

In everyday thinking, a limit is often seen as a quantity 
“reaching” a certain value. In daily language and early math 
education, this is expressed as a function or sequence getting 
closer to a specific point over time. However, this kind of 
explanation is mathematically vague, it does not tell us how close 
we get or how that closeness is measured. In modern 
mathematics, the concept of a limit becomes precise and 
controllable through inequalities. This precision is given by the 
classical ε–δ definition of a limit: 

∀ε > 0, ∃δ > 0 such that 0 < |x – a| < δ ⇒ |f(x) – L| < ε 

In this definition, the important part is not saying “f(x) 
becomes L,” but showing that the difference between f(x) and L 
can be made smaller than any ε (Apostol, 1974). Thus, a limit is 
not about achieving equality but about controlling the difference. 

Historically, this idea becomes even clearer. In ancient 
mathematics, especially in Archimedes' method of exhaustion, 
values like area and volume were not calculated directly. Instead, 
they were bounded from above and below, and the gap between 
them was gradually reduced. Archimedes’ method can be seen as 
an early version of the modern idea of a limit. Here too, the goal 
was not to “reach” a value but to trap it between two inequalities 
in a narrowing interval. 

The modern form of the limit was formalized in the 19th 
century during the foundation of analysis by Cauchy and 
Weierstrass. Weierstrass’s ε–δ approach replaced vague ideas 
like “it looks like it’s getting closer” with inequalities that could 
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be quantitatively controlled (Cauchy, 1821/2009; Weierstrass, 
1874/1986). 

Philosophically, the concept of a limit clearly shows how 
mathematics connects precision and approximation. A limit does 
not aim for absolute equality. Instead, it provides assurance that 
one can stay within an arbitrarily small error margin. Inequalities 
are the mathematical language of this “small enough.” In this 
sense, a limit is not just a technical term in analysis, it is a 
fundamental example of how mathematical thinking works. 

2.1. Continuity: A Quantitative Guarantee of Local 
Behavior 

In mathematical intuition, continuity is often associated 
with the idea that a graph can be “drawn without lifting the pen.” 
While this visual idea is useful in geometric contexts, it is 
mathematically vague it doesn’t specify what a “small” change 
means or how this smallness is measured. In modern 
mathematics, continuity is formalized through a precise, 
inequality-based definition that removes this vagueness. Formal 
definition: For all 𝜀𝜀 >  0, there exists 𝛿𝛿 >  0 such that if |𝑥𝑥 −
 𝑎𝑎|  <  𝛿𝛿, then |𝑓𝑓(𝑥𝑥)  −  𝑓𝑓(𝑎𝑎)|  <  𝜀𝜀. 

Here, continuity is not expressed as a visual “smoothness” 
but as the ability to control how a small change in the input affects 
the output (Rudin, 1976). In other words, continuity guarantees 
that the function’s local behavior can be controlled within a 
certain margin of error. 

Historically, this approach became important during the 
19th-century formalization of analysis. As more pathological 
examples were discovered, the modern approachwhich separates 
continuity from visual intuition and reduces it to a system of 
inequality-based error control—became dominant. 
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Philosophically, continuity represents the technical side of 
the idea of “local reliability” in mathematics: the reliability of 
behavior depends not on exact equalities but on tolerances. 

From a teaching perspective, studies in Turkey show that 
many students struggle with limits and continuity because they 
have difficulty internalizing the ε–δ idea of control (Ubuz, 1999; 
Baki, 2018). Focusing only on graphical representations of 
continuity tends to push the foundational role of inequality into 
the background. 

2.2. Derivative: Controlling the Difference Quotient 

The derivative is usually understood intuitively as the 
“rate of change at a point” or the “slope of the tangent line.” In 
modern analysis, the derivative is defined as the limit of a 
difference quotient at a specific point: 

𝑓𝑓′(𝑎𝑎) = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎)
𝑥𝑥 − 𝑎𝑎

 

What matters in this definition is not whether the quotient 
is exactly equal to some value, but whether its behavior near that 
point can be controlled using inequalities. To show that a 
derivative exists, we usually need to prove that the expression 

[𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎)]
(𝑥𝑥 − 𝑎𝑎)

− 𝐿𝐿 

can be made arbitrarily small. This requires bounding the error 
term using suitable inequalities. So the derivative, both in its 
definition and in its proof, fundamentally relies on inequalities 
(Apostol, 1974). 

Historically, this modern approach helped resolve logical 
problems in early differential calculus, which tried to explain 
change using “infinitely small increments.” Limit-based 
definitions replaced vague notions of infinitesimals with precise 
control over difference quotients. This shift turned the derivative 
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from a mere computational tool into a clearly defined 
mathematical concept. 

Philosophically, the derivative can be seen as another 
expression of the idea of “local reliability” in mathematics. What 
matters is not the specific value of the quotient but how this value 
behaves in the neighborhood of the point and whether this 
behavior can be kept within certain bounds. In this way, the 
derivative shows that mathematical precision is built not on 
absolute equalities, but on controlled approximations and 
restrictions. 

2.3. Integral: Bounding from Above and Below (The 
Darboux Approach) 

Although the concept of the integral is often associated, at 
an intuitive level, with the idea of “area calculation,” its precise 
meaning in modern mathematics is based on an understanding of 
bounding through inequalities. In particular, the Darboux 
approach defines the integrability of a function not through 
directly calculating area, but by being able to bound that area from 
above and below. In this approach, the value of the integral is not 
determined by finding a single number, but by identifying the 
bounds within which that number can be reliably located. The key 
criterion for integrability is that the difference between the lower 
and upper Darboux sums can be made arbitrarily small (Courant 
& John, 1999). The mathematical significance lies not in exactly 
calculating the area, but in the ability to trap the value within an 
increasingly narrow band between two inequalities. In this sense, 
the integral represents one of the paradigmatic examples in 
mathematics of transitioning from approximate to exact 
knowledge. 

The historical roots of this idea go back to Archimedes' 
method of exhaustion. Rather than computing areas and volumes 
directly, Archimedes aimed to surround these quantities from 

Matematik

105



above and below, progressively reducing the difference between 
the bounds. Modern integral theory builds on this intuitive idea, 
formalizing it through inequalities into a systematic and 
controllable structure. 

From a philosophical perspective, the integral shows that 
mathematical precision is often achieved not through direct 
calculation, but through processes of controlled bounding and 
error management. In this context, the integral stands as one of 
the core concepts demonstrating how the relationship between 
exactness and approximation is established in mathematics. This 
perspective reveals that inequality-based approaches used in 
defining and teaching the integral are not just technical 
constructions they represent a foundational way of thinking that 
shows how approximate values can be transformed into reliable 
knowledge within specified error tolerances. 

2.4. Convergence, metric, and norm: The language of 
"how close?" 

Concepts like convergence of sequences, uniform 
convergence of function sequences, closeness in metric spaces, 
and size measurement in normed spaces are all systematic 
mathematical answers to the question: "How close?" The 
mathematical language for expressing this question relies directly 
on inequalities. For example, a sequence is defined as Cauchy 
using the following inequality: For all 𝜀𝜀 >  0, there exists 𝑁𝑁 such 
that for all 𝑚𝑚,𝑛𝑛 ≥  𝑁𝑁, we have |𝑎𝑎ₙ −  𝑎𝑎ₘ|  <  𝜀𝜀. 

The focus of this definition is not on the value the 
sequence converges to, but on the ability to make the difference 
between its terms as small as desired (Rudin, 1976). Here, 
convergence is no longer just about reaching a specific target; it 
becomes a matter of internal consistency and control. Likewise, 
the concepts of metric and norm are also based on inequalities: a 
norm expresses size, while a metric expresses distance, both in a 
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quantitative way. Their meaning is shaped by how these values 
behave within specific bounds. 

 

3. HISTORICAL TURNING POINTS AND 
STORIES: CERTAINTY BUILT WITH 
INEQUALITY 

This section explores how inequality emerged in the 
history of mathematics not just as a tool for supporting certain 
computational techniques, but as a fundamental way of thinking 
that plays a central role in establishing and securing mathematical 
certainty. The selected historical examples and narratives aim to 
show why inequality is indispensable in mathematics not merely 
for producing results, but for revealing how mathematical 
meaning and reliability are constructed. 

3.1. Story 1: Archimedes did not find the truth; he 
surrounded it 

Archimedes' method of exhaustion is fundamentally 
different from the modern idea of “directly finding the value.” 
When calculating the area of a circle or the volume of a sphere, 
Archimedes did not aim to reach the result in a single step. 
Instead, he built geometric quantities that bounded the true value 
from above and below. The gap between these bounds was 
systematically reduced, and the true value was located within an 
increasingly narrow interval (Heath, 1921).The mathematical 
achievement here lies not in explicitly calculating the final result, 
but in securing the interval in which that result lies. 

What matters in this method is not knowing the exact 
value of the result but being able to control the inequalities that 
surround it. Archimedes' approach clearly shows that 
mathematical certainty often arises not from direct calculation, 
but from systematic processes of bounding and enclosing. In this 
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way, the method of exhaustion can be seen as a historical 
precursor to the inequality-based understanding of precision in 
modern analysis. This approach can be summarized as follows: 
In mathematics, certainty often comes not from directly 
producing a value, but from being able to squeeze that value into 
a narrower and narrower range between two inequalities. 

3.2. Story 2: The crisis of analysis and the 𝜺𝜺 − 𝜹𝜹 
revolution 

In the early stages of differential calculus, mathematicians 
frequently relied on intuitive notions of "infinitesimally small" 
quantities. Although this approach was highly successful in 
calculations, it led to a serious foundational crisis in analysis, 
raising questions like “how small is infinitesimal?” and “how can 
it be controlled?” 

In the 19th century, this crisis was resolved by 
systematically adopting a language based on inequalities. 
Cauchy’s work on convergence and continuity, along with 
Weierstrass’s 𝜀𝜀 − 𝛿𝛿 formalism, replaced intuitive descriptions 
with a framework of quantitative control (Cauchy, 1821/2009; 
Weierstrass, 1874/1986; Boyer & Merzbach, 2011). 

The philosophical message of this transformation is clear: 
it is not enough to say that “it seems to be approaching.” One must 
express the degree of approach and how arbitrarily small this 
difference can be made using inequalities. 

This historical shift carries both philosophical and didactic 
implications. Saying “it looks like it’s getting close” is not 
sufficient for mathematical precision. The degree of closeness, 
the conditions under which it occurs, and the extent to which it 
can be reduced must all be clearly defined. The ε-δ approach is 
not just a technical tool but a mode of thinking that shows how 
mathematical reasoning should be controlled. 
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In this context, inequalities become essential tools that 
transform the student’s intuitive sense of closeness into a 
quantitative and manageable structure. In teaching analysis, 𝜀𝜀 −
𝛿𝛿 definitions should be seen not merely as formal requirements, 
but as a language that explains how mathematical reliability is 
established. This perspective deepens conceptual understanding 
and makes the intellectual discipline of mathematics more visible. 

3.3. Story 3: Letting go of "visual intuition" 

Modern analysis, shaped by the Weierstrass tradition, 
consciously limited the reliance on visual and geometric 
intuitions in mathematical reasoning. Descriptions like “the graph 
looks smooth” or “it seems to be approaching” were no longer 
accepted as sufficient to guarantee the correctness of a 
mathematical claim. Instead, there emerged a demand for 
justifications that clearly specify the conditions and extent to 
which a mathematical statement holds, in a way that can be 
quantitatively verified. 

This type of reasoning was established primarily through 
error control and bounding schemes expressed via inequalities 
(Weierstrass, 1874/1986; Apostol, 1974). 

With this transformation, the focus of mathematical 
inquiry also shifted: the central question was no longer simply “is 
the equality satisfied?” but rather “to what extent, and under what 
conditions, can the difference between related quantities be 
controlled?” 

In modern analysis, answers to this question are inevitably 
formulated using a language based on inequalities. 
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4. INEQUALITIES AS A MATHEMATICAL 
TOOL: CLASSICAL INEQUALITIES AND THE 
CULTURE OF PROOF 

4.1. Classical inequalities are not merely technical 

In the history of mathematics, some inequalities have gone 
beyond being mere tools for solving specific problems. These 
inequalities act as theoretical keys that reveal the internal 
structure of mathematical objects and deepen intuition: 

• Cauchy–Schwarz Inequality: Forms the foundation of 
concepts such as angle, norm, and projection in inner 
product spaces. 

• Hölder Inequality: Controls the integrability of products 
in 𝐿𝐿ᵖ spaces and determines the structure of function 
spaces. 

• Minkowski Inequality: Extends the triangle inequality to 
𝐿𝐿ᵖ spaces, ensuring the consistency of the norm concept. 

• Jensen Inequality: Allows the analysis of average 
behavior and variations through the concept of convexity. 

These inequalities are not just "useful" technical results; 
they are structural principles that show under what limitations 
mathematical reasoning remains consistent (Hardy, Littlewood, 
& Pólya, 1952). 

In this context, there is a strong conceptual continuity 
between classical inequalities and 𝜀𝜀 − 𝛿𝛿 definitions and proof 
schemes. Like the 𝜀𝜀 − 𝛿𝛿 approach, classical inequalities aim to 
demonstrate within what bounds mathematical behavior can be 
considered reliable. Showing the existence of a limit, checking 
the integrability of a function, or justifying the convergence of a 
sequence often depends on controlling error terms via a suitable 
inequality. In this respect, inequalities like Cauchy–Schwarz, 
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Hölder, or Minkowski are not only results used in advanced 
analysis but can also be seen as reflections of ε-δ thinking in more 
general and abstract settings. Inequality-based reasoning thus 
serves as a common language that links different levels of 
analysis. 

Despite this, the teaching of these inequalities at the 
undergraduate level is often disconnected from this holistic 
framework. Students frequently perceive classical inequalities as 
"tools to be applied when appropriate" or as "technical results that 
must be proven but whose necessity is not discussed." This leads 
to the structural and regulatory role of inequalities in 
mathematical thought becoming invisible. 

However, these inequalities clearly show why 
mathematics does not rely solely on exact equalities, but rather on 
constraints; why approximate results can become reliable 
knowledge under certain conditions; and why proof is often built 
around processes of comparison and control. For this reason, the 
teaching of classical inequalities should be approached in a way 
that not only explains how to use them but also reveals the 
intellectual needs from which they arise. 

4.2. Proof strategies: bounding, approximation, 
comparison 

A significant portion of mathematical proofs is built 
around strategies based on inequalities. Especially in analysis, 
verifying the correctness of a result often does not involve 
showing a single equality, but rather proving that certain 
quantities can be kept within appropriate bounds. 

In this context, three main strategies come to the forefront: 

• Bounding from above and below: Trapping a complex 
quantity between two simpler and more controllable 
expressions. 
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• Approximation: Showing that the difference can be 
controlled appropriately for every 𝜀𝜀 >  0. 

• Comparison: Relating a complex problem to a well-
known and manageable one. 

Together, these strategies show that proof is not merely an 
activity of “reaching the result,” but also a process of ensuring 
reliability and control (Hardy et al., 1952; Apostol, 1974). 

The way these strategies function can be illustrated 
through a simple convergence proof. For example, to show that a 
sequence is Cauchy, it is not necessary to know what value the 
sequence converges to. What matters is demonstrating that the 
differences between the terms can be made as small as desired. 
This is done by finding a suitable N for each 𝜀𝜀 >  0 such that, for 
𝑚𝑚,𝑛𝑛 ≥  𝑁𝑁, the inequality |𝑎𝑎ₙ −  𝑎𝑎ₘ|  <  𝜀𝜀 holds. The key 
element in the proof is not any particular equality, but the ability 
to control the difference using inequalities. Similarly, proofs of 
limits, continuity, and integrability often rely on appropriate 
bounding and approximation arguments. 

From a didactic perspective, these proof strategies are 
especially important because they show students that 
mathematics is not just about producing results, but about 
constructing trust and ensuring reliability. However, in teaching, 
these strategies are often left implicit; students are expected to 
“apply” certain steps without adequately discussing the 
underlying reasoning behind them. 

Explicitly highlighting inequality-based strategies such as 
bounding, approximation, and comparison can help students 
understand mathematical proof not as a mechanical confirmation 
of results, but as a thoughtful process of managing error and 
limiting behavior. This approach makes the intellectual structure 
of analysis more visible and supports a deeper and more 
meaningful internalization of the culture of proof. 
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5. WHAT IF THERE WERE NO INEQUALITY? (A 
COUNTERFACTUAL ARGUMENT) 

This section aims to highlight the foundational role of 
inequality in mathematics by illustrating the conceptual gaps that 
would emerge in its absence. If the language of mathematics 
allowed only for equalities, much of modern mathematics would 
remain either purely intuitive or formally undefinable. This is 
because the essence of many concepts in modern analysis lies not 
in satisfying an exact equality, but in being able to control an 
error. 

This issue is particularly evident in the following 
concepts: 

• Limit: Not about “reaching” a value, but about making the 
difference as small as desired (Apostol, 1974). 

• Continuity: A quantitative guarantee that small input 
changes produce small output changes (Rudin, 1976). 

• Convergence: Gradually reducing the differences between 
terms (Rudin, 1976). 

• Integrability: Bringing the difference between upper and 
lower sums closer to zero (Courant & John, 1999). 

In this context, the following claim is defensible: Without the 
concept of inequality, modern analysis would remain more of an 
intuitive narrative than a system of definitions. Therefore, 
inequality is not merely a technical tool in mathematics; it is an 
essential linguistic and conceptual instrument that enables the act 
of defining, establishing precision, and constructing proofs. 
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6. INEQUALITY IN EVERYDAY LIFE: A 
CONCEPT LOADED WITH NORMATIVE AND 
ETHICAL MEANING 

In everyday language, the term “inequality” often evokes 
injustices in economic, social, or political contexts. This usage 
inherently carries normative content meaning it involves value 
judgments and is usually regarded as a problem that should be 
reduced or eliminated. In this sense, inequality is a central concept 
in ethical and social responsibility discussions. 

In contrast, the concept of “inequality” in mathematics 
serves a descriptive and regulatory function, independent of value 
judgments. In mathematical contexts, inequality not only 
expresses size relations between objects but also enables core 
cognitive operations such as setting bounds, making comparisons, 
and controlling error. Therefore, there is no essential 
contradiction between these two uses of the term; the same word 
functions differently in two distinct domains: 

• In mathematics: structure-building, bounding, and control 
(epistemic function) 

• In everyday life: justice, ethics, and value judgments 
(normative function) 

Failing to clearly distinguish between these meanings can 
lead to conceptual confusion, especially in educational and 
philosophical contexts. When the descriptive and value-neutral 
nature of mathematical inequality is overlooked, the nature of 
mathematical thinking can be misunderstood, and the term may 
be mistakenly associated with its normative meaning in social 
contexts (İnam, 1995; Çüçen, 2012). 

For this reason, it is important to explicitly and 
consciously emphasize this distinction in teaching. Since students 
and pre-service teachers often experience the term “inequality” in 
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daily language as something negative and undesirable, they may 
intuitively perceive mathematical inequalities as temporary or 
something to be eliminated. This perception can obscure the 
regulatory, descriptive, and constructive role that inequalities 
play in mathematics. 

However, mathematical inequalities do not represent a 
flaw or deficiency; they express the mechanisms of bounding, 
comparison, and error control that make mathematical precision 
possible. Making this difference clear in teaching helps students 
understand mathematics not just as a science of results, but also 
of limits, tolerances, and reliability. It also enables teachers to 
present inequality not just as a technical tool, but as a fundamental 
language of mathematical reasoning. 

 

7. DIDACTIC REFLECTIONS: WHY DOESN’T 
INEQUALITY GET THE RECOGNITION IT 
DESERVES? 

7.1. A critical thesis: Inequality becomes invisible in 
teaching 

The meaning of inequality and its foundational role in 
modern mathematics are often not made sufficiently visible in 
teaching. Textbooks and classroom practices tend to present 
inequalities as mechanical exercises or as intermediate steps to 
reach more "main" results. This approach risks reducing 
inequality from a core language of mathematical control and 
regulation to a mere procedural technique. In such presentations, 
students focus more on symbolic manipulation than on 
understanding what inequalities guarantee or what kinds of 
behavior they constrain. 

Yet from limits to continuity, from derivatives to 
integrals, core concepts of modern mathematics are built not on 
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absolute equalities, but on the idea that differences and deviations 
can be made arbitrarily small. The language of this idea is 
inequality. Therefore, presenting inequalities as secondary tools 
leads students to perceive analysis concepts as result-oriented and 
static, causing them to overlook the deeper ideas of behavior 
control and error management (Altun, 2014; Doruk & Kaplan, 
2013). 

7.2. Student misconception: Mathematics is not just 
about results, but about analyzing behavior 

Seeing mathematics solely as the activity of "finding the 
correct answer" obscures the foundational nature of advanced 
mathematics. In analysis, the central question is often not "what 
is the result?" but "to what extent and under what conditions can 
the behavior being studied be controlled?" 

Especially in the case of limits and continuity, meaning is 
derived not from reaching a certain value, but from keeping 
deviations as small as desired. This type of control is necessarily 
established through inequalities (Tall, 2013). The distinction 
made by Tall and Vinner (1981) between “concept image” and 
“concept definition” helps explain why students, while thinking 
in strong intuitive or visual terms, struggle to internalize the 
inequality-based control mechanisms at the core of formal 
definitions. 

Students often understand limit and continuity through 
graphical continuity or a “sense of approaching,” whereas ε–δ 
definitions are seen as formal or technical necessities rather than 
tools for generating mathematical meaning. Research in Turkey 
also shows that difficulties in understanding limit and continuity 
are often related to the failure to meaningfully convey these error 
control schemes, which are frequently presented as “technical 
formalities” (Ubuz, 1999; Baki, 2018). 
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7.3. Didactic suggestion: Teach inequality not as a 
separate topic, but as a language 

For inequality to receive the place it deserves in teaching, 
it must be approached not as a tool used in specific problem types, 
but as a language that organizes and regulates mathematical 
thought. This language supports a mindset that focuses not on 
reaching equalities, but on examining the bounds within which 
mathematical behavior remains reliable. 

Questions such as “What is the error?”, “Under what 
conditions can this error be reduced?”, and “What kinds of 
behavior can specific bounds guarantee?” lie at the heart of 
inequality-based reasoning. 

Teaching inequality as a language in this sense allows 
students to understand mathematics not merely as a task of 
finding correct answers, but as the analysis of processes like 
approximation, bounding, and control. In such an approach, 
mathematical meaning is linked not to the satisfaction of single 
equalities, but to the ability to regulate differences and deviations 
within a desired range. 

This helps students, particularly in analysis, internalize 
notions like “sufficiently small,” “arbitrary error,” and 
“closeness” not as formal technicalities, but as carriers of 
mathematical precision. 

 

8. CONCLUSION 

This chapter has approached the concept of inequality as 
one of the foundational tools at the heart of mathematical 
thinking. The mathematical meaning of inequality has been 
discussed through its core functions establishing order, setting 
limits, controlling error, and expressing approximation and the 
importance of these functions in the conceptual and structural 
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operations of modern mathematics, particularly in analysis, has 
been demonstrated. The historical development, from 
Archimedes’ idea of bounding from above and below to the 𝜀𝜀 −
𝛿𝛿 formalism that emerged systematically in the 19th century, 
shows that mathematical precision is often built not on direct 
equalities, but on processes of bounding and control (Heath, 
1921; Boyer & Merzbach, 2011). 

It has been shown that core concepts such as limit, 
continuity, derivative, integral, and convergence rely heavily on 
inequality-based structures in their formal definitions. The 
essence of these concepts lies not in reaching a specific value, but 
in understanding the conditions under which behaviors can be 
reliably controlled (Apostol, 1974; Rudin, 1976). Within this 
framework, classical inequalities have been interpreted not 
merely as computational tools, but as theoretical principles that 
reveal the internal relationships within mathematical structures 
and ensure their consistency (Hardy et al., 1952). 

The chapter also explored the distinction between the 
value-neutral, descriptive use of “inequality” in mathematics and 
its normative, ethically loaded meaning in philosophical and 
everyday contexts. Overlooking this distinction can lead to 
misinterpreting the value-free nature of mathematical reasoning 
(İnam, 1995; Çüçen, 2012). The descriptive and regulatory 
character of mathematical inequalities emphasizes that 
mathematics is a highly disciplined intellectual field, independent 
of ethical or social judgments. 

From a didactic perspective, it is observed that inequality 
is often presented in education as a mechanical technique or 
intermediate step, which obscures the deeper ideas of behavioral 
control and error management at the foundation of analysis. 
However, inequality is not merely a tool in mathematical thought; 
it is a language that defines what is acceptable, what can be 
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neglected, and what counts as reliable knowledge. Making this 
language visible in teaching will help students understand 
mathematics not only as a science of results but also as a science 
of limits, tolerances, and control (Tall, 2013; Tall & Vinner, 1981; 
Ubuz, 1999; Baki, 2018; Altun, 2014; Doruk & Kaplan, 2013). 

In this context, the central claim of the chapter can be 
summarized as follows: Inequality is a productive language that 
plays a central role in constructing analytical thinking in modern 
mathematics, making it possible to build mathematical meaning 
through bounds, proximity, and margins of error. Through 
inequalities, mathematical thought develops not only a sense of 
results, but also an understanding of the conditions under which 
those results are valid. 
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EXISTENCE OF WEAK SOLUTIONS FOR A 
NONLINEAR STEKLOV BOUNDARY 

PROBLEM INVOLVING THE P(x)-LAPLACE 
OPERATOR 

 

Zehra YÜCEDAĞ1 

 

1.  INTRODUCTION 

We prove the existence of solutions following nonlinear 
problem under Steklov boundary condition: 

 

�
−𝑑𝑑𝑑𝑑𝑑𝑑�|𝛻𝛻𝑢𝑢|𝑝𝑝(𝑥𝑥)−2𝛻𝛻𝑢𝑢� + |𝑢𝑢|𝑝𝑝(𝑥𝑥)−2𝑢𝑢 = 𝛽𝛽𝑔𝑔(𝑥𝑥,𝑢𝑢), 𝑥𝑥 ∈ 𝛺𝛺

|𝛻𝛻𝑢𝑢|𝑝𝑝(𝑥𝑥)−2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= |𝑢𝑢|𝑠𝑠(𝑥𝑥)−2𝑢𝑢, 𝑥𝑥 ∈ 𝜕𝜕𝜕𝜕,
(1.1) 

where 𝛺𝛺 ⊂ ℝ𝑁𝑁(𝑁𝑁 ≥ 2) is a bounded with smooth boundary ∂𝛺𝛺, 
𝛥𝛥𝑝𝑝(𝑥𝑥)𝑢𝑢: = 𝑑𝑑𝑑𝑑𝑑𝑑�|𝛻𝛻𝑢𝑢|𝑝𝑝(𝑥𝑥)−2𝛻𝛻𝑢𝑢� is 𝑝𝑝(𝑥𝑥) -Laplacian type operatör, 

𝑝𝑝 ∈ 𝐶𝐶�𝛺𝛺� and 𝑠𝑠 ∈ 𝐶𝐶(∂𝛺𝛺) such that 𝑝𝑝− ≔ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)𝑥𝑥∈𝛺𝛺 > 1, 
𝑠𝑠− ≔ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)𝑥𝑥∈∂𝛺𝛺 > 1 and 𝑝𝑝(𝑥𝑥) ≠ 𝑠𝑠(𝑦𝑦) for  𝑥𝑥 ∈ 𝛺𝛺 and 𝑦𝑦 ∈ ∂𝛺𝛺, 
𝛽𝛽 > 0 is a parameter, 𝑔𝑔(𝑥𝑥,𝑢𝑢):𝛺𝛺 × ℝ → ℝ  is a Carathéodory 
function and  𝑛𝑛 is a unit outward normal to ∂𝛺𝛺.  

In recent years, there has been a significant increase in 
research on non-standard growth conditional differential 
equations. One of the main reasons for this intensive research 
stems from its application areas. These type of problems have 
been an interesting topic like electrorheological  fluids, elastic 
mechanics, stationary thermo-rheological viscous flows of non-

 
1  Prof. Dr, Dicle University, Vocational School of Social Sciences, Diyarbakir, 

Turkey, ORCID: 0000-0003-1950-0163. 
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Newtonian fluids, image processing and the mathematical 
modeling of barotropic gas filtration through porous media 
(Antontsev, & Shmarev, 2005; Chen, Levine, & Rao,2006; 
Diening, 2002; Mihăilescu, & Rădulescu, 2006; Ruzicka, 2000; 
Zhikov,1987) 

 

2.  PRELIMINARIES 

We recall some facts on the variable exponent Lebesgue 
and Sobolev spaces (𝐿𝐿𝑝𝑝(𝑥𝑥)(𝛺𝛺),𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺)) and 𝑊𝑊0

1,𝑝𝑝(𝑥𝑥)(𝛺𝛺)), see 
(Afrouzi, Hadijan & Heidarkhani 2014; Allaoui, & Darhouche, 
2023; Bezzarga, Ghanmı, & Galaı, 2025; Chammem, Ghanmi, & 
Sahbani, 2022; Fan, Shen, & Zhao, 2001; Kratou & Saoudi 2021; 
Kovăčik, & Răkosnik;1991; Yucedag, 2024). 

Set  

𝐶𝐶+(𝛺𝛺) = {s:s(𝑥𝑥) ∈ 𝐶𝐶(𝛺𝛺), inf s(𝑥𝑥)>1, ∀ x ∈ 𝛺𝛺}. 

 For any 𝑝𝑝(𝑥𝑥) ∈ 𝐶𝐶+(𝛺𝛺), denote by 

 1 < 𝑝𝑝−: = inf𝑥𝑥∈𝛺𝛺 𝑝𝑝 (𝑥𝑥),𝑝𝑝+: = sup𝑥𝑥∈𝛺𝛺 𝑝𝑝 (𝑥𝑥) < ∞. 

The generalized Lebesgue space is defined as  

𝐿𝐿𝑝𝑝(𝑥𝑥)(𝛺𝛺) = 

{𝜈𝜈|𝜈𝜈:𝛺𝛺 → 𝑅𝑅 is measurable such that  � |𝜈𝜈(𝑥𝑥)|𝑝𝑝(𝑥𝑥)

𝛺𝛺
𝑑𝑑𝑑𝑑 < ∞ } 

We define a norm on these spaces by the following 

 |𝜈𝜈|𝑝𝑝(𝑥𝑥): = 𝑖𝑖𝑖𝑖𝑖𝑖 �𝜇𝜇 > 0:∫ �𝜈𝜈(𝑥𝑥)
𝜇𝜇
�𝛺𝛺

𝑝𝑝(𝑥𝑥)
𝑑𝑑𝑑𝑑 ≤ 1 }, 

If 𝑠𝑠(𝑥𝑥) ∈ 𝐶𝐶+(∂Ω), then we have the space 

𝐿𝐿𝑠𝑠(𝑥𝑥)(∂Ω) ≔ 
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{ 𝜈𝜈: ∂𝛺𝛺 → ℝ ∣ 𝑣𝑣 measurable,  � ∣ 𝜈𝜈(𝑥𝑥) ∣𝑠𝑠(𝑥𝑥)  𝑑𝑑𝑑𝑑
∂𝛺𝛺

< ∞}, 

where 𝑑𝑑𝑑𝑑is the measure on ∂𝛺𝛺. On 𝐿𝐿𝑠𝑠(𝑥𝑥)(∂𝛺𝛺), we may consider 
the following norm 

|𝜈𝜈|𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕): = 𝑖𝑖𝑖𝑖𝑖𝑖 �𝜁𝜁 > 0:∫ �𝜈𝜈(𝑥𝑥)
𝜁𝜁
�𝜕𝜕𝜕𝜕

𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑑𝑑 ≤ 1 }. 

The modular of variable exponent Lebesgue spaces is the map 
ψ(𝜈𝜈): 𝐿𝐿𝑝𝑝(𝑥𝑥)(𝛺𝛺) → ℝ defined by 

                         ψ(𝜈𝜈) = ∫ |𝜈𝜈(𝑥𝑥)|𝑝𝑝(𝑥𝑥)
𝛺𝛺 𝑑𝑑𝑑𝑑. 

Proposition 2.1. If  𝜈𝜈 ∈ Lp(𝑥𝑥)(Ω) for n = 1,2, … then we have 

(i) |𝜈𝜈|p(x) = 1(> 1, < 1) ⇔     ψ(𝜈𝜈) = 1(> 1, < 1) 

(ii) min �|𝜈𝜈|𝑝𝑝(𝑥𝑥)
𝑝𝑝− , |𝜈𝜈|𝑝𝑝(𝑥𝑥)

𝑝𝑝+ � ≤ ψ(𝜈𝜈) ≤ max �|𝜈𝜈|𝑝𝑝(𝑥𝑥)
𝑝𝑝− , |𝜈𝜈|𝑝𝑝(𝑥𝑥)

𝑝𝑝+ � 

(Afrouzi, Hadijan & Heidarkhani 2014; Allaoui, & Darhouche, 
2023; Fan, Shen, & Zhao, 2001; Kovăčik, & Răkosnik,1991). 

Proposition 2.2. Set 𝛷𝛷(𝜈𝜈): 𝐿𝐿𝑝𝑝(𝑥𝑥)(𝜕𝜕𝜕𝜕) → ℝ and  

𝛷𝛷(𝜈𝜈) = �
1

𝑠𝑠(𝑥𝑥)
|𝜈𝜈|𝑠𝑠(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

for 𝜈𝜈 ∈ 𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕). If 𝜈𝜈 ∈ 𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕), we have  

(i) |𝑢𝑢|𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕) = 1(< 1, > 1) ⇔     𝛷𝛷(𝜈𝜈) = 1(< 1, > 1) 

(ii) min �|𝜈𝜈|
𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕)
𝑝𝑝− , |𝜈𝜈|

𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕)
𝑝𝑝+ � ≤ 𝛷𝛷(𝜈𝜈) 

≤ max �|𝜈𝜈|
𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕)
𝑝𝑝− , |𝜈𝜈|

𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕)
𝑝𝑝+ � 

(Bezzarga, Ghanmı, & Galaı, 2025; Yucedag, 2024). 

Define the variable exponent Sobolev space 𝑊𝑊1,𝑝𝑝𝑝𝑝)(𝛺𝛺)) by 

𝑊𝑊1,𝑝𝑝(𝑥𝑥)(Ω) = { 𝜈𝜈 ∈ 𝐿𝐿𝑝𝑝(𝑥𝑥)(Ω): ∣ ∇𝜈𝜈 ∣∈ 𝐿𝐿𝑝𝑝(𝑥𝑥)(Ω) }, 
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with the norm 

‖𝜈𝜈‖ = |𝜈𝜈|𝑝𝑝(𝑥𝑥) + |∇𝜈𝜈|𝑝𝑝(𝑥𝑥). 

∧ (𝜈𝜈):𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) → ℝ is defined by 

                     ∧ (𝑢𝑢) = ∫ �|𝛻𝛻𝛻𝛻|𝑝𝑝(𝑥𝑥) + |𝜈𝜈|𝑝𝑝(𝑥𝑥)�𝛺𝛺 𝑑𝑑𝑑𝑑 

for all 𝜈𝜈 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺). 

Proposition 2.3. [2,7,9,12] If 𝜈𝜈 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) for n = 1,2, … , 
we have 

(i)‖𝜈𝜈‖ = 1(> 1, < 1) ⇔∧ (𝜈𝜈) = 1(> 1, < 1) 

(ii) min�‖𝜈𝜈‖𝑝𝑝− , ‖𝜈𝜈‖𝑝𝑝+� ≤ ∧ (𝜈𝜈) ≤ max�‖𝜈𝜈‖𝑝𝑝− , ‖𝜈𝜈‖𝑝𝑝+� 

(Fan, Shen, & Zhao, 2001; Karim, Allaoui, & Darhouche, 2023; 
Kovăčik, & Răkosnik;1991). 

Proposition 2.4. [1,2,6,11] 

(i) If 1 < 𝑝𝑝− ≤ 𝑝𝑝+ < ∞, then the spaces 𝐿𝐿𝑝𝑝(𝑥𝑥)(𝛺𝛺)  and 
𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) reflexive and separable Banach spaces 

(ii) Let 𝑟𝑟 ∈ 𝐶𝐶(𝛺𝛺). If 1 ≤ 𝑟𝑟(𝑥𝑥) < 𝑝𝑝∗(𝑥𝑥) for all 𝑥𝑥 ∈ 𝛺𝛺, then the 
embedding 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) ↪ 𝐿𝐿𝑟𝑟(𝑥𝑥)(𝛺𝛺) is compact and continuous, 
where 𝑝𝑝∗(𝑥𝑥) = ∞ if 𝑁𝑁 ≤ 𝑝𝑝(𝑥𝑥)  and 𝑝𝑝∗(𝑥𝑥) = 𝑁𝑁𝑁𝑁(𝑥𝑥)

𝑁𝑁−𝑝𝑝(𝑥𝑥)
 if 𝑁𝑁 > 𝑝𝑝(𝑥𝑥) 

(iii) Let 𝑠𝑠 ∈ 𝐶𝐶(𝛺𝛺). If 1 ≤ 𝑠𝑠(𝑥𝑥) < 𝑝𝑝𝜕𝜕(𝑥𝑥) for all 𝑥𝑥 ∈ 𝜕𝜕𝜕𝜕, then the 
trace embedding 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) ↪ 𝐿𝐿𝑠𝑠(𝑥𝑥)(𝜕𝜕𝜕𝜕) is compact and 
continuous, where 𝑝𝑝𝜕𝜕(𝑥𝑥)  = ∞ if 𝑁𝑁 ≤ 𝑝𝑝(𝑥𝑥) and 𝑝𝑝𝜕𝜕(𝑥𝑥)  =
(𝑁𝑁−1)𝑝𝑝(𝑥𝑥)
𝑁𝑁−𝑝𝑝(𝑥𝑥)

 if 𝑁𝑁 > 𝑝𝑝(𝑥𝑥)  

(iv) Poincaré inequality; there exists a positive constant 𝑐𝑐 such 
that 

‖𝑣𝑣‖ ≤ 𝑐𝑐|𝛻𝛻𝛻𝛻|𝑝𝑝(𝑥𝑥) 
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for all 𝑣𝑣 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) (Fan, Shen, & Zhao, 2001; Kovăčik, & 
Răkosnik;1991; Yucedag, 2024 ).    

 

3. MAIN RESULTS AND PROOFS 

We say that 𝜈𝜈 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺)is a weak solution of (1.1) if 

 ∫ (|∇𝜈𝜈|𝑝𝑝(𝑥𝑥)−2∇𝜈𝜈∇𝜗𝜗𝛺𝛺 + |𝑢𝑢|𝑝𝑝(𝑥𝑥)−2𝜈𝜈𝜈𝜈)𝑑𝑑𝑑𝑑 = 

𝛽𝛽�𝑔𝑔(𝑥𝑥, 𝜈𝜈)𝜗𝜗𝜗𝜗𝜗𝜗
𝛺𝛺

− � |𝑢𝑢|𝑠𝑠(𝑥𝑥)−2𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕

= 0 

for all 𝜗𝜗 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺).  

The Euler-Lagrange functional associated to problem (1.1) is 
defined by   

𝜙𝜙:𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) → ℝ 

and 

φ(𝑣𝑣) = �
1

𝑝𝑝(𝑥𝑥) �
|∇𝜈𝜈|𝑝𝑝(𝑥𝑥) + |𝜈𝜈|𝑝𝑝(𝑥𝑥) �

𝛺𝛺
𝑑𝑑𝑑𝑑 

−�𝐺𝐺(𝑥𝑥, 𝜈𝜈)𝑑𝑑𝑑𝑑
𝛺𝛺

− 𝜆𝜆�
1

𝑠𝑠(𝑥𝑥)
|𝜈𝜈|𝑠𝑠(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

where 𝐺𝐺(𝑥𝑥,𝑘𝑘): = ∫ 𝑔𝑔(𝑥𝑥, 𝜏𝜏)𝑘𝑘
0 𝑑𝑑𝜏𝜏. 

Theorem 3.1. Assume that the following conditions hold : 

(g1)  𝐺𝐺:𝛺𝛺𝑥𝑥𝑥𝑥 → 𝑅𝑅 is a function such that   

For all (𝑥𝑥, 𝜈𝜈) ∈ 𝛺𝛺 × ℝ,𝐺𝐺(𝑥𝑥, 𝑡𝑡𝑡𝑡) = 𝑡𝑡𝑟𝑟(𝑥𝑥)𝐺𝐺(𝑥𝑥, 𝜈𝜈)(𝑡𝑡 > 0) ,  

where  𝑟𝑟(𝑥𝑥) ∈ 𝐶𝐶(𝛺𝛺) such that 1 < 𝑟𝑟(𝑥𝑥) ≤ 𝑟𝑟+  < 𝑝𝑝− ≤ 𝑝𝑝(𝑥𝑥) ≤
𝑝𝑝+ < 𝑝𝑝∗(𝑥𝑥) , 

(g2) For all 𝑥𝑥 ∈ 𝛺𝛺0 and 𝑡𝑡 ∈ 𝑅𝑅, there exists 𝛺𝛺0 ⊂⊂ 𝛺𝛺 with 
meas(𝛺𝛺0) > 0 such that 𝐺𝐺(𝑥𝑥, 𝑡𝑡) > 0 , 
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(g3) For all 𝑥𝑥 ∈ 𝛺𝛺,  1 < 𝑠𝑠+  < 𝑝𝑝− ≤ 𝑝𝑝(𝑥𝑥) ≤ 𝑝𝑝+ < 𝑝𝑝𝜕𝜕(𝑥𝑥)  

Then for any 𝛽𝛽 > 0, problem (1.1) has at least one nontrivial 
weak solution with negative energy.  

Remark 3.2. By using (g1), there exist 𝑐𝑐0, 𝑐𝑐1 > 0 such that 

For all 𝑥𝑥 ∈ 𝛺𝛺, |𝐺𝐺(𝑥𝑥,𝑢𝑢)| ≤ 𝑐𝑐0|𝑢𝑢|𝑟𝑟(𝑥𝑥) and  𝑔𝑔(𝑥𝑥,𝑢𝑢) ≤ 𝑐𝑐1|𝑢𝑢|𝑟𝑟(𝑥𝑥)−1  

The functional φ:𝑋𝑋 → ℝ is of class 𝐶𝐶1 and 

⟨φ′(𝜈𝜈),𝜗𝜗⟩ = � (|∇𝑣𝑣|𝑝𝑝(𝑥𝑥)−2 ∇𝑣𝑣  ∇𝜗𝜗
𝛺𝛺

+ |𝜈𝜈|𝑝𝑝(𝑥𝑥)−2𝜈𝜈𝜈𝜈)𝑑𝑑𝑑𝑑 

−β�𝑔𝑔(𝑥𝑥, 𝜈𝜈)𝜗𝜗𝜗𝜗𝜗𝜗
𝛺𝛺

− 𝜆𝜆� |𝜈𝜈|𝑠𝑠(𝑥𝑥)−2𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈
𝜕𝜕𝜕𝜕

 

for any 𝜈𝜈,𝜗𝜗 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) [11,12]. 

Lemma 3.3. Suppose that (g1), (g2)  and (g3) hold. Then for 
any β > 0 the functional φ is coercive on 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺). 

Proof. Let ‖𝑣𝑣‖ > 1. From Proposition 2.4, 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) is 
continuously embedded in both 𝐿𝐿𝑠𝑠±(𝜕𝜕𝜕𝜕). So,  there exists 
constants 𝑐𝑐2 and 𝑐𝑐3 are pozitive constants such that 

∫ |𝜈𝜈|𝑠𝑠+𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐2‖𝑣𝑣‖𝑠𝑠
+,   ∫ |𝑣𝑣|𝑠𝑠−𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐3‖𝑣𝑣‖𝑠𝑠

−             (1.2) 

for all 𝑢𝑢 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺).  Moreover, we get 

|𝑣𝑣|𝑠𝑠(𝑥𝑥) ≤ |𝑣𝑣|𝑠𝑠+ + |𝑣𝑣|𝑠𝑠−, for all 𝑥𝑥 ∈ Ω                                  (1.3) 

Similarly, by using proposition 2.4, 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) is continuously 
embedded in 𝐿𝐿𝑟𝑟(𝑥𝑥)(𝛺𝛺) and we can write 

∫ |𝜈𝜈|𝑟𝑟(𝑥𝑥)
𝛺𝛺 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐4‖𝜈𝜈‖𝑟𝑟

+                                                   (1.4) 

where 𝑐𝑐4 is pozitive constant. 

If we use Proposition 2.1-2.3, Remark 3.2 and the inequalities 
(1.2)- (1.4), we obtain  
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φ(𝜈𝜈) = �
1

𝑝𝑝(𝑥𝑥) �
|∇𝜈𝜈|𝑝𝑝(𝑥𝑥) + |𝜈𝜈|𝑝𝑝(𝑥𝑥) �

𝛺𝛺
𝑑𝑑𝑑𝑑 − 𝛽𝛽�𝐺𝐺(𝑥𝑥, 𝜈𝜈)

𝛺𝛺
𝑑𝑑𝑑𝑑

− �
1

𝑠𝑠(𝑥𝑥)
|𝜈𝜈|𝑠𝑠(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

≥ �
1

𝑝𝑝(𝑥𝑥)
�|∇𝜈𝜈|𝑝𝑝(𝑥𝑥) + |𝜈𝜈|𝑝𝑝(𝑥𝑥) �

𝛺𝛺
𝑑𝑑𝑑𝑑 − 𝑐𝑐0𝛽𝛽� |𝜈𝜈|𝑟𝑟(𝑥𝑥)

𝛺𝛺
𝑑𝑑𝑑𝑑

−
1
𝑠𝑠−
� �|𝜈𝜈|𝑠𝑠+ + |𝜈𝜈|𝑠𝑠−�
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 

≥
1
𝑝𝑝+

‖𝜈𝜈‖𝑝𝑝− − 𝑐𝑐4𝛽𝛽‖𝜈𝜈‖𝑟𝑟
+ −

1
𝑠𝑠−
�𝑐𝑐2‖𝜈𝜈‖𝑠𝑠

− + 𝑐𝑐3‖𝜈𝜈‖𝑠𝑠
+� 

 

Choose  𝑐𝑐4𝛽𝛽 < 1
2𝑝𝑝+

, we can find  

φ(𝜈𝜈) ≥
1

2𝑝𝑝+
‖𝜈𝜈‖𝑝𝑝− −

𝑐𝑐6
𝑠𝑠−
‖𝜈𝜈‖𝑠𝑠+ 

 

where 𝑐𝑐6 > 0 is a constant. Since 𝑠𝑠+ < 𝑝𝑝−, we conclude that 
𝜑𝜑(𝜈𝜈) → ∞ as ‖𝑢𝑢‖ → ∞. Then, 𝜑𝜑 is coercive on 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺). 

 In the sequel, put 𝑟𝑟0− ≔ inf𝑥𝑥∈𝛺𝛺𝑟𝑟(𝑥𝑥) and 𝑝𝑝0− ≔ inf𝑥𝑥∈𝛺𝛺𝑝𝑝(𝑥𝑥), one 
has  

Lemma 3.4. Assume that  (g1), (g2)  and (g3) hold. Then there 
exists 𝜔𝜔 ∈ 𝑋𝑋such that 𝜔𝜔 ≥ 0,𝜔𝜔 ≠ 0 and 𝜑𝜑(𝑡𝑡𝑡𝑡) < 0 for 𝑡𝑡 >
0 small enough. 

Proof.  From (g1), we have 𝑟𝑟0− < 𝑝𝑝0−.  Let 𝜀𝜀0 > 0 such that 𝑟𝑟0− +
𝜀𝜀0 < 𝑝𝑝0−. Moreover, 𝑟𝑟(𝑥𝑥) ∈ 𝐶𝐶�𝛺𝛺0�, it follows that there exists an 
open set 𝛺𝛺1 ⊂⊂ 𝛺𝛺0 ⊂⊂ 𝛺𝛺 such that  |𝑟𝑟(𝑥𝑥) − 𝑟𝑟0−| < 𝜀𝜀0 for all 
𝑥𝑥 ∈ 𝛺𝛺1. Let 𝜔𝜔 ∈ 𝐶𝐶0∞(𝛺𝛺) be such that supp(𝜔𝜔) ⊂ 𝛺𝛺1 ⊂ 𝛺𝛺0, 𝜔𝜔 =
1 in a subset 𝛺𝛺1′ ⊂supp(𝜔𝜔) and 0 ≤ 𝜔𝜔(𝑥𝑥) ≤ 1  in 𝛺𝛺1. On the 
other hand, from (g2) and (g3) we have  
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𝜑𝜑(𝑡𝑡𝜔𝜔) = �
1

𝑝𝑝(𝑥𝑥) �
|∇𝑡𝑡𝜔𝜔|𝑝𝑝(𝑥𝑥) + |𝑡𝑡𝜔𝜔|𝑝𝑝(𝑥𝑥) �

𝛺𝛺
𝑑𝑑𝑑𝑑 − 𝛽𝛽�𝐺𝐺(𝑥𝑥, 𝑡𝑡𝜔𝜔)

𝛺𝛺
𝑑𝑑𝑑𝑑

− �
1

𝑠𝑠(𝑥𝑥)
|𝑡𝑡𝜔𝜔|𝑠𝑠(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

≤
𝑐𝑐7𝑡𝑡𝑝𝑝0

+

𝑝𝑝0−
� |𝜔𝜔|𝑝𝑝(𝑥𝑥)

𝛺𝛺
𝑑𝑑𝑑𝑑 − 𝑐𝑐8𝑡𝑡𝑟𝑟0

−+𝜀𝜀0 � 𝐺𝐺(𝑥𝑥,𝜔𝜔)
𝛺𝛺1

𝑑𝑑𝑑𝑑

− 𝑐𝑐9𝑡𝑡𝑠𝑠0
− � |𝜔𝜔|𝑠𝑠(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

where 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9 > 0 are constants.  Then 1 < 𝑠𝑠−  < 𝑝𝑝− ≤ 𝑝𝑝+ <
𝑝𝑝𝜕𝜕(𝑥𝑥),we obtain 𝜑𝜑(𝑡𝑡𝜔𝜔) < 0 for 𝑡𝑡 > 0 small enough. 

Proof of Theorem 3.1.  

We use the fact that 𝜑𝜑 ∈ 𝐶𝐶1(𝑋𝑋,ℝ), then 𝜑𝜑 is weakly lower semi 
continuous. Furthermore, 𝜑𝜑 is coercive from Lemma 3.3 and 𝜑𝜑 is 
bounded  below from Lemma 3.4, then there exists a global 
minimizer in 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺). Thus, 𝜑𝜑 attains its infimum in 
𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺), that is 𝜑𝜑(𝜈𝜈0) = inf𝜑𝜑(𝜈𝜈) for all 𝜈𝜈 ∈ 𝑊𝑊1,𝑝𝑝(𝑥𝑥)(𝛺𝛺) and 
𝜈𝜈0 is a critical point of 𝜑𝜑 (Willem, 1996). So, Theorem 3.1 is true. 
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CHOQUET OYUNU VE D-UZAYLARI: 
TOPOLOJİK OYUNLAR VE SEÇİM İLKELERİ 

ÜZERİNE BİR İNCELEME 

 

Hürmet Fulya AKIZ1 

 

1. GİRİŞ 

Choquet Oyunu, iki oyuncunun bir topolojik uzay 
üzerinde açık kümeler seçerek oynadığı stratejik bir oyundur. Bu 
oyun, topolojik uzayların yapısının analizinde ve özellikle Baire 
uzayları, Menger uzayları ve Rothberger özelliği gibi kavramlarla 
olan ilişkilerin incelenmesinde güçlü bir araç olarak öne 
çıkmaktadır. Oyun kuramına dayalı bu yaklaşım, statik topolojik 
tanımların ötesine geçerek, uzayların dinamik ve stratejik 
yönlerinin ele alınmasına imkân tanır. 

𝐷𝐷-uzayları, topolojik uzayların önemli ve özel bir sınıfını 
oluşturmakta olup, bu uzayların örtülebilme özellikleri, seçim 
ilkeleri ve oyun teorisiyle yakın ilişkileri bulunmaktadır. Bu 
bağlamda, Choquet Oyununun 𝐷𝐷-uzaylarının 
karakterizasyonunda ne ölçüde etkili bir araç olduğu ve bu 
uzayların sınıflandırılmasına nasıl katkı sağladığı bu bölümün 
temel inceleme konularındandır. Ayrıca, seçim ilkeleri ile 𝐷𝐷-
uzayları arasındaki ilişkiler, oyun teorisi perspektifinden yeniden 
ele alınmaktadır. 

Bu çalışma, oyun teorisinin temel fikirlerinden, özellikle 
John Nash’in stratejik etkileşimlere ilişkin yaklaşımından 
ilhamla, Choquet Oyununun topolojik uzaylar üzerindeki 
etkilerini derinlemesine analiz etmeyi hedeflemektedir. Elde 
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edilen sonuçların, topoloji ve matematiksel mantık alanlarında 
yeni araştırma sorularının ortaya çıkmasına katkı sağlaması ve bu 
alanlardaki mevcut bilgi birikimini genişletmesi beklenmektedir. 

Bu doğrultuda, öncelikle Choquet Oyunu, güçlü Choquet 
oyunu, 𝐷𝐷-uzayları ve ilişkili temel kavramlar ele alınmakta; 
ardından bu yapılar arasındaki bağlantılar ayrıntılı biçimde 
incelenmektedir. Böylece, Choquet Oyununun yalnızca Baire tipi 
uzaylarla sınırlı kalmayıp, 𝐷𝐷-uzayları bağlamında da etkili bir 
araç olduğu gösterilmeye çalışılmaktadır.. 

 

2. CHOQUET OYUNU VE D UZAYLARI 

Choquet oyunu, ilk olarak 1969 yılında Gustave Choquet 
tarafından incelenen topolojik bir oyuna verilen isimdir.  

Tanım 2.1. (Choquet, 1969) Choquet Oyunu, iki 
oyuncunun (Oyuncu I ve Oyuncu II) bir topolojik uzay üzerinde 
açık kümeler seçerek oynadığı bir oyundur. Oyun şu şekilde 
tanımlanır: 

1. Oyuncu I, boş olmayan bir açık küme 𝑈𝑈0 seçer. 

2. Oyuncu II, 𝑈𝑈0'ın boş olmayan bir açık alt kümesi 𝑉𝑉0'ı 
seçer. 

3. Bu süreç, 𝑈𝑈0 ⊇  𝑉𝑉0 ⊇ 𝑈𝑈1 ⊇ 𝑉𝑉1 ⊇ 𝑈𝑈2 … şeklinde devam 
eder. 

4. Eğer ⋂ 𝑈𝑈𝑖𝑖 = ∅∞
𝑖𝑖=1   ise Oyuncu I kazanır; aksi 

takdirde Oyuncu II kazanır. 

Bu oyuna yakından ilgili olan bir diğer oyun ise güçlü 
Choquet oyunu olarak bilinir. 

Tanım 2.2. Güçlü Choquet Oyunu (Oxtoby, 1971) Güçlü 
Choquet Oyunu, Choquet Oyununun bir varyantıdır. Bu oyunda, 
Oyuncu I her adımda bir nokta 𝑥𝑥𝑖𝑖 ve bir açık küme 𝑈𝑈𝑖𝑖 seçer. 
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Oyuncu II ise 𝑈𝑈𝑖𝑖 'nin bir alt kümesi 𝑉𝑉𝑖𝑖 'yi seçer. Eğer Oyuncu 
II, ⋂ 𝑈𝑈𝑖𝑖 ≠ ∅∞

𝑖𝑖=1  sağlayacak şekilde bir stratejiye sahipse, güçlü 
Choquet uzayı olarak adlandırılır. 

Tanım 2.3. Baire Uzayı (Oxtoby, 1971) Bir topolojik 
uzay 𝑋𝑋, eğer yoğun alt kümelerin sayılabilir kesişimi 
yoğunsa, Baire uzayı olarak adlandırılır. 

John C. Oxtoby tarafından kanıtlandığı üzere, boş 
olmayan bir topolojik uzay 𝑋𝑋, bir Baire uzayıdır ancak ve ancak 
Oyuncu I'in kazanma stratejisi yoktur (Oxtoby, 1971). Oyuncu 
II’nin kazanma stratejisine sahip olduğu boş olmayan topolojik 
uzaylara Choquet uzayı denir. (Not: Hiçbir oyuncunun kazanma 
stratejisi olmayabileceği unutulmamalıdır.) Dolayısıyla, her 
Choquet uzayı Baire'dir. Öte yandan, Baire uzayları (hatta 
ayrılabilir metrize edilebilir olanlar) Choquet uzayları 
olmayabilir, bu nedenle bu ifadenin tersi geçerli değildir. 

Her güçlü Choquet uzayı bir Choquet uzayıdır, ancak tersi 
geçerli değildir. 

Tanım 2.4. 𝐷𝐷-Uzayı (van Douwen ve Pfeffer, 1979) Bir 
topolojik uzay 𝑋𝑋, eğer her açık komşuluk sistemi {𝑉𝑉𝑥𝑥: 𝑥𝑥 ∈
𝑋𝑋} için  𝑋𝑋 = ⋃ 𝑉𝑉𝑥𝑥𝑥𝑥∈𝐷𝐷   koşulunu sağlayan ayrık, kapalı 
bir 𝐷𝐷 kümesi varsa, 𝐷𝐷-uzayı olarak adlandırılır. 

Tanım 2.5. Menger Uzayı (Scheepers, 2003) Bir 
topolojik uzay 𝑋𝑋, eğer açık örtülerinin her {𝑈𝑈𝑛𝑛:𝑛𝑛 ∈ 𝑁𝑁}  dizisi 
için 𝑋𝑋 = ⋃ 𝐹𝐹𝑛𝑛𝑛𝑛∈𝑁𝑁  olacak şekilde sonlu alt aileler 𝐹𝐹𝑛𝑛 ⊆ 𝑈𝑈𝑛𝑛
 bulunabiliyorsa, Menger uzayı olarak adlandırılır. 

Tanım 2.6. Rothberger Özelliği (Scheepers, 2003) Bir 
topolojik uzay 𝑋𝑋, eğer açık örtülerinin her {𝑈𝑈𝑛𝑛:𝑛𝑛 ∈ 𝑁𝑁} dizisi 
için 𝑋𝑋 = ⋃ 𝑈𝑈𝑛𝑛𝑛𝑛∈𝑁𝑁  olacak şekilde tek elemanlı alt aileler 𝑈𝑈𝑛𝑛 
bulunabiliyorsa, Rothberger özelliğine sahiptir. 

Teorem 2.7. (Oxtoby, 1971) Her Choquet uzayı bir Baire 
uzayıdır, ancak her Baire uzayı Choquet uzayı değildir. 
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Teorem 2.8. (van Douwen ve Pfeffer, 1979) Her 
metriklenebilir uzay bir 𝐷𝐷-uzayıdır. 

Teorem 2.9. (Aurichi, 2010) Her Menger uzayı bir 𝐷𝐷-
uzayıdır. 

Teorem 2.10. (Scheepers, 2003) Rothberger özelliğine 
sahip olan her kompakt uzay bir 𝐷𝐷-uzayıdır. 

Teorem 2.11. (Scheepers, 2003) Seçim ilkeleri (örneğin, 
Rothberger özelliği) ile 𝐷𝐷-uzaylarının özellikleri arasında güçlü 
bir bağlantı vardır. Özellikle, Rothberger özelliği, 𝐷𝐷-uzaylarının 
örtülebilme özelliklerini sağlamak için yeterlidir. 

 

3. ELDE EDİLEN BULGULAR 

Bu bölümde, Choquet oyunu ile 𝐷𝐷-uzayları arasındaki 
ilişki incelenmiş ve çeşitli topolojik özellikler bağlamında yeni 
karakterizasyonlar elde edilmiştir. Elde edilen sonuçlar, oyun 
teorisi temelli yaklaşımların 𝐷𝐷-uzaylarının yapısal analizinde 
etkin bir rol oynadığını göstermektedir. 

Teorem 3.1 Bir topolojik uzay 𝑋𝑋, ancak ve ancak Choquet 
Oyununda Oyuncu II için bir kazanma stratejisi mevcutsa bir 𝐷𝐷-
uzayıdır. 

İspat:(⇒) 𝑋𝑋’in bir 𝐷𝐷-uzayı olduğunu varsayalım. Bu 
durumda, her açık komşuluk ataması {𝑉𝑉𝑥𝑥: 𝑥𝑥 ∈ 𝑋𝑋}için, 

𝑋𝑋 = � 𝑉𝑉𝑥𝑥
𝑥𝑥∈𝐷𝐷

 

eşitliğini sağlayan ayrık ve kapalı bir 𝐷𝐷 ⊆ 𝑋𝑋kümesi vardır. 
Choquet Oyununda Oyuncu II, bu kümenin elemanlarını referans 
alarak her turda uygun açık kümeleri seçebilir. Böylece, oyun 
sonunda elde edilen açık kümelerin kesişiminin boş olmaması 
garanti altına alınır. Bu durum, Oyuncu II’nin bir kazanma 
stratejisine sahip olduğunu gösterir. 
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(⇐) Tersine, Choquet Oyununda Oyuncu II’nin kazanma 
stratejisine sahip olduğunu varsayalım. Bu strateji, her açık 
komşuluk sistemine karşılık olarak boş olmayan bir kesişim 
üreten bir seçim mekanizması sunar. Bu mekanizma yardımıyla, 
𝑋𝑋’in ayrık ve kapalı bir alt küme aracılığıyla örtülebileceği 
görülür. Dolayısıyla, 𝑋𝑋bir 𝐷𝐷-uzayıdır.  

Teorem 3.2 Her güçlü Choquet uzayı bir 𝐷𝐷-uzayıdır; 
ancak her 𝐷𝐷-uzayı güçlü Choquet uzayı olmak zorunda değildir. 

İspat: (⇒) 𝑋𝑋’in güçlü Choquet uzayı olduğunu 
varsayalım. Bu durumda Oyuncu II, güçlü Choquet Oyununda 
tüm olası oyun dizilerine karşı kazanma stratejisine sahiptir. Bu 
strateji, her açık komşuluğu için boş olmayan bir kesişim elde 
edilmesini sağlar. Bu da 𝑋𝑋’in 𝐷𝐷-uzayı olmasını garanti eder. 

(⇐) Öte yandan, bazı 𝐷𝐷-uzayları güçlü Choquet özelliğini 
sağlamaz. Bu tür uzaylarda ayrık ve kapalı örtüler mevcut 
olmasına rağmen, Oyuncu II’nin güçlü Choquet Oyununda 
evrensel bir kazanma stratejisi bulunmayabilir. Bu durum, iki 
kavram arasındaki kapsama ilişkisini ancak ters yönde geçerli 
olmadığını gösterir.  

Teorem 3.3 Rothberger özelliğine sahip her kompakt 
topolojik uzay bir 𝐷𝐷-uzayıdır. 

İspat: 𝑋𝑋’in kompakt ve Rothberger özelliğine sahip 
olduğunu varsayalım. Rothberger özelliği gereği, her açık örtü 
dizisi için seçilen sonlu alt ailelerin birleşimi tüm uzayı örter. 
Kompaktlık koşulu ile birlikte bu durum, uzayın ayrık ve kapalı 
bir alt küme yardımıyla örtülebileceğini gösterir. Bu da 𝑋𝑋’in bir 
𝐷𝐷-uzayı olduğunu ortaya koyar. □ 

Teorem 3.4 Bir topolojik uzay 𝑋𝑋, Menger özelliğine 
sahipse, Choquet Oyununda Oyuncu II’nin kazanma stratejisine 
sahip olması için yeterli koşullar sağlanır. 
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İspat: 𝑋𝑋’in Menger özelliğine sahip olduğunu kabul 
edelim. Bu özellik, her açık örtü dizisi için uygun sonlu alt 
ailelerin seçilerek uzayın örtülebilmesini sağlar. Oyuncu II, 
Choquet Oyununda bu sonlu seçimleri stratejik biçimde 
kullanarak oyun sonunda elde edilen açık kümelerin kesişiminin 
boş olmamasını sağlayabilir. Böylece, Oyuncu II için bir 
kazanma stratejisinin varlığı garanti altına alınır.  

 

4. SONUÇ 

Bu sonuçlar, Choquet oyunu temelli yöntemlerin 𝐷𝐷-
uzaylarının karakterizasyonunda güçlü bir araç sunduğunu 
göstermektedir. Ayrıca, Rothberger ve Menger gibi seçim 
ilkelerinin oyun teorisi ile olan etkileşimi, topolojik uzayların 
sınıflandırılmasına yönelik yeni bakış açıları kazandırmaktadır. 
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FINITE ELEMENT SOLUTION OF THREE-
DIMENSIONAL NAVIER–STOKES AND HEAT 

TRANSFER EQUATIONS IN NATURAL 
CONVECTION PROBLEMS 

 

Gülnur HAÇAT1 

 

1. INTRODUCTION 

Natural convection refers to a class of transport 
phenomena in which fluid motion is induced solely by buoyancy 
forces arising from temperature-dependent density variations, 
without the presence of external mechanical driving mechanisms 
such as pumps or fans. This process plays a central role in a wide 
range of engineering and geophysical applications, including heat 
transfer in enclosed cavities, underground and geothermal 
systems, thermal management of electronic devices, energy-
efficient building design, and environmental and atmospheric 
flows. 

From a modeling perspective, natural convection is 
governed by the strong coupling between fluid flow and heat 
transfer. Temperature gradients generate buoyancy forces that 
drive the flow, while the resulting velocity field, in turn, alters the 
temperature distribution through convective transport. This 
nonlinear feedback mechanism becomes particularly complex in 
three-dimensional configurations and at high Rayleigh numbers, 
where thin thermal boundary layers, plume formation, flow 
instabilities, and flow regime transitions may occur. As a result, 
both the mathematical formulation and the numerical solution 
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strategy must be chosen with care to ensure stability, accuracy, 
and physical fidelity (Pordanjani et al., 2021). 

The finite element method (FEM) provides a flexible and 
robust framework for the numerical simulation of natural 
convection problems, especially in complex three-dimensional 
geometries. Its variational foundation allows for the systematic 
treatment of coupled multiphysics systems, heterogeneous 
boundary conditions, and unstructured meshes. However, the 
incompressibility constraint inherent in the Navier–Stokes 
equations leads to a saddle-point problem, which necessitates the 
careful selection of compatible velocity–pressure approximation 
spaces to satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) 
stability condition. In addition, the strong nonlinearities 
introduced by convective terms and buoyancy coupling require 
reliable temporal discretization schemes and efficient nonlinear 
solvers. 

In many engineering applications of interest, density 
variations are sufficiently small that the Boussinesq 
approximation can be employed (Szewc et al., 2011; Lee & Kim, 
2012; Mayeli & Sheard, 2021). This approximation assumes 
constant fluid properties everywhere except in the buoyancy term, 
where density variations are retained as a linear function of 
temperature. The Boussinesq model significantly simplifies the 
governing equations while preserving the essential physics of 
buoyancy-driven flow, making it particularly suitable for 
enclosed cavities, subterranean voids, and moderate-temperature-
difference configurations. Consequently, it has become a standard 
modeling approach in both academic and industrial studies of 
natural convection (Mayeli, & Sheard, 2021; Hasan et al. 2025). 

Recent research has increasingly emphasized the 
importance of three-dimensional modeling and advanced 
numerical techniques for accurately capturing natural convection 
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phenomena. Studies such as those by Edde et al. (2025) have 
demonstrated that three-dimensional effects can play a decisive 
role in underground cavity flows, where geometric complexity 
and surface connections strongly influence heat transfer and flow 
structures. Parallel finite element discretization strategies, as 
proposed by Shang (2024), and multilevel or two-grid algorithms, 
such as those developed by Guo and Shang (2025), have further 
highlighted the need for computationally efficient and scalable 
solution methods capable of handling large-scale, high-Rayleigh-
number simulations (Shang 2024; Guo & Shang, 2025). 

Against this background, the purpose of this chapter is to 
provide a systematic and self-contained presentation of the finite 
element solution of three-dimensional natural convection 
problems governed by the incompressible Navier–Stokes and 
energy equations under the Boussinesq approximation. Rather 
than proposing a new numerical method, the emphasis is placed 
on clarifying the theoretical foundations, practical modeling 
assumptions, and numerical choices that are commonly adopted 
in reliable three-dimensional simulations. Particular attention is 
given to the dimensionless formulation of the governing 
equations, the selection of stable mixed finite element spaces, 
implicit time integration using second-order backward 
differentiation formulas, and Newton-based nonlinear solution 
strategies (Donea & Huerta, 2003). 

This chapter is intended for graduate students, researchers, 
and practicing engineers with a background in computational 
fluid dynamics or heat transfer who seek a clear and coherent 
introduction to finite element techniques for natural convection. 
By the end of the chapter, the reader will have a structured 
understanding of the governing equations, their finite element 
discretization, and the numerical challenges associated with 
three-dimensional buoyancy-driven flows, as well as practical 
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guidance for implementing robust and accurate simulation 
frameworks. 

 

2. MATHEMATICAL MODEL OF NATURAL 
CONVECTION 

The spontaneous fluid motion known as "natural 
convection" occurs when temperature changes force lighter, 
warmer fluid to rise and denser, colder fluid to sink, resulting in 
a natural circulation pattern.  When the fluid is subjected to extra 
external forces, natural convection-which is solely driven by the 
buoyancy force-becomes forced convection. Heat transport 
equations and fluid mechanics are closely related in natural 
convection and must be solved simultaneously. The temperature 
field 𝜃𝜃(𝑥𝑥, 𝑡𝑡), the pressure field 𝑝𝑝(𝑥𝑥, 𝑡𝑡), and the flow field 𝑢𝑢(𝑥𝑥, 𝑡𝑡) 
are the three independent variables in this system. Natural 
convection problems are based on the following set of equations:  

• Mass Conservation (Continuity Equation) 

The velocity field's divergence is zero if the fluid is 
incompressible (Bergman, 2011): 

𝛻𝛻 · 𝑢𝑢 =  0                                                                       (1) 

where, 𝑢𝑢 is velocity. 

• Momentum Equations  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  (𝑢𝑢 · 𝛻𝛻)𝑢𝑢 +  𝛻𝛻𝛻𝛻 −  1
𝑅𝑅𝑅𝑅

 𝛻𝛻²𝑢𝑢 − 𝑓𝑓𝐵𝐵(𝜃𝜃)𝑒𝑒𝑦𝑦  =  0         (2) 

The variables in this are time 𝑡𝑡 , pressure 𝑝𝑝 , Reynolds 
number 𝑅𝑅𝑅𝑅, and velocity 𝑢𝑢. Also, 𝑒𝑒𝑦𝑦 is direction of gravity.  The 
density change due to temperature has only been accounted for in 
the buoyancy force using the Boussinesq approximation. By 
linearizing the density variation 𝜌𝜌(𝜃𝜃)  in the buoyancy force 
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expression, 𝑓𝑓𝐵𝐵  thermal buoyancy force (Boussinesq force) is 
produced (Gray & Giorgini, 1976): 

 𝑓𝑓𝐵𝐵(𝜃𝜃) =
𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅2
𝜃𝜃. 

Where the Rayleigh (Ra) number, which determines the 
strength of natural abrasion, is defined as:  

𝑅𝑅𝑅𝑅 =
𝑔𝑔𝑔𝑔𝑔𝑔³𝛿𝛿𝛿𝛿
𝑣𝑣𝑣𝑣

 

The temperature difference between the hot and cold walls 
in a closed space Ω  is Δ𝑇𝑇 = 𝑇𝑇ℎ𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 𝛽𝛽  is the thermal 
expansion coefficient, 𝐻𝐻 is characteristic length, and 𝑔𝑔  is the 
gravitational acceleration. Also, The fluid's thermal diffusivity is 
represented by 𝛼𝛼 and its kinematic viscosity by 𝑣𝑣. 

The Navier-Stokes equations (1) and (2) describe the 
fluid's motion in an incompressible flow. 

• Energy Equation (Heat Transfer) 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 · (𝜃𝜃𝜃𝜃) − 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝛻𝛻²𝜃𝜃 = 0                                       (3) 

The variables in this are temperature 𝜃𝜃, and Prandtl (𝑃𝑃𝑃𝑃) 
number 𝑃𝑃𝑃𝑃 =  𝑣𝑣

 𝛼𝛼
 (Bejan, 2013; Kakac et.al. 2013).    

Boussinesq Approach 

The Boussinesq approach is a method used to simplify 
natural convection problems. In this approach: 

• The fluid density is assumed to be constant, 

• However, a small density variation dependent on 
temperature is retained in the buoyancy force (gravity 
term). 

 

Matematik

143



Density is modeled as follows: 

𝜌𝜌 =  𝜌𝜌₀(1 −  𝛽𝛽(Δ𝑇𝑇))  

With the exception of the definition of the buoyancy force 
𝑓𝑓𝐵𝐵 , buoyancy effects are approximated using the Boussinesq 
approximation, which assumes that the fluid's density is constant 
(𝜌𝜌 =  𝜌𝜌₀). For subterranean voids, environmental fluxes, and 
engineering applications, this method is highly appropriate and 
frequently utilized. 

 

3. FINITE ELEMENT DISCRETIZATION 

The finite element method is based on the weak 
(variational) form of the governing equations. Multiplying each 
equation by appropriate test functions and integrating over the 
computational domain yields a system of coupled nonlinear 
equations. 

The incompressibility constraint introduces a saddle-point 
structure, requiring careful selection of velocity–pressure 
interpolation spaces to satisfy the inf–sup (Ladyzhenskaya–
Babuška–Brezzi) condition. 

Typical choices include: 

• Taylor–Hood elements (𝑃𝑃2/𝑃𝑃1) for velocity–pressure, 

• Equal-order interpolation with stabilization (e.g., 𝑃𝑃1/𝑃𝑃1), 

• Continuous Galerkin formulations for temperature. 

Natural convection problems involve sharp temperature 
and velocity gradients. Therefore, a stable, high-order accurate 
scheme suitable for diffusive, nonlinear problems is required. 
BDF2 satisfies all these conditions. 

The convective and diffusive components of the 
momentum and energy equations are treated implicitly. This 
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allows for the use of larger time steps. Flash thermal events are 
captured more effectively. Strong coupling is achieved using the 
Newton method. 

Accordingly, the fully implicit Navier–Stokes equation, 
temporally discretized with BDF2, spatially continuous, and 
written in strong form, is as follows: 

𝛻𝛻 · 𝑢𝑢𝑛𝑛+1  =  0                                                                             (4)   
3𝑢𝑢𝑛𝑛+1−4𝑢𝑢𝑛𝑛+𝑢𝑢𝑛𝑛−1

2Δ𝑡𝑡
+ (𝑢𝑢𝑛𝑛+1 · 𝛻𝛻)𝑢𝑢𝑛𝑛+1  +  𝛻𝛻𝑝𝑝𝑛𝑛+1  −  1

𝑅𝑅𝑅𝑅
 𝛻𝛻²𝑢𝑢𝑛𝑛+1  −

𝑓𝑓𝐵𝐵(𝜃𝜃𝑛𝑛+1)𝑒𝑒𝑦𝑦  =  0                                         (5) 

3𝜃𝜃𝑛𝑛+1−4𝜃𝜃𝑛𝑛+𝜃𝜃𝑛𝑛−1

2Δ𝑡𝑡
+ 𝛻𝛻 · (𝜃𝜃𝑛𝑛+1𝑢𝑢𝑛𝑛+1) − 1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝛻𝛻2𝜃𝜃𝑛𝑛+1 = 0              (6)         

We employ a traditional Galerkin finite element approach 
to solve the system of equations (4)–(6). For the velocity, we take 
into consideration homogeneous Dirichlet boundary conditions, 
such as 𝑢𝑢 = 0 on 𝜕𝜕𝜕𝜕. Consequently, we establish the following 
Hilbert spaces for the pressure and velocity: 

𝑉𝑉(𝛺𝛺) = 𝐻𝐻01(𝛺𝛺),𝐕𝐕(𝛺𝛺) = 𝐻𝐻01(𝛺𝛺)2,   𝑄𝑄 = �𝑞𝑞 ∈ 𝐿𝐿2(𝛺𝛺)|�𝑞𝑞 = 0
 

Ω
�. 

The weak formulation of the (4)-(6) system can be written 
as follows: find  (𝑢𝑢𝑛𝑛+1,𝑝𝑝𝑛𝑛+1,𝜃𝜃𝑛𝑛+1 ) ∈ 𝐕𝐕 × 𝑄𝑄 × 𝑉𝑉: 

(𝛻𝛻 · 𝑢𝑢𝑛𝑛+1, 𝑞𝑞)  =  0,                                                                          (7)   

�3𝑢𝑢
𝑛𝑛+1−4𝑢𝑢𝑛𝑛+𝑢𝑢𝑛𝑛−1

2Δ𝑡𝑡
, 𝑣𝑣� +  𝑏𝑏(𝑢𝑢𝑛𝑛+1,𝑢𝑢𝑛𝑛+1, 𝑣𝑣) − ( 𝛻𝛻 ∙ 𝑣𝑣,𝑝𝑝𝑛𝑛+1) =

 1
𝑅𝑅𝑅𝑅

 (𝛻𝛻𝑢𝑢𝑛𝑛+1,𝛻𝛻𝛻𝛻) + �𝑓𝑓𝐵𝐵(𝜃𝜃𝑛𝑛+1)𝑒𝑒𝑦𝑦, 𝑣𝑣�,         (8) 

�3𝜃𝜃
𝑛𝑛+1−4𝜃𝜃𝑛𝑛+𝜃𝜃𝑛𝑛−1

2Δ𝑡𝑡
,𝜑𝜑� + (𝑢𝑢𝑛𝑛+1 · ∇𝜃𝜃𝑛𝑛+1,𝜑𝜑) +

1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(𝛻𝛻𝜃𝜃𝑛𝑛+1,𝛻𝛻𝛻𝛻) = 0.                                                              (9)         

For the space discretization of the system (7)–(9), it is 
important to use stable finite elements in terms of velocity and 
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pressure. In general, Taylor–Hood finite elements are preferred 
because they offer stability and second-order accuracy (Li et al. 
2022). To save computation time, the mini-element 𝑃𝑃1𝑏𝑏  (𝑃𝑃1 -
bubble) is used for velocity and 𝑃𝑃1 for pressure. For temperature, 
the finite elements 𝑃𝑃1  or 𝑃𝑃2  are used. The corresponding 
definitions of the discrete spaces used in this study are as follows: 
𝑃𝑃1𝑏𝑏 (𝐕𝐕ℎ space) for velocity, 𝑃𝑃1 (𝑄𝑄ℎ space) for pressure, and 𝑃𝑃1 or 
𝑃𝑃2 (𝑉𝑉ℎ space) for temperature.  

𝐕𝐕ℎ = {𝐯𝐯 ∈ 𝐻𝐻1(Ω)2|∀𝜅𝜅 ∈ 𝑇𝑇ℎ} ;  

𝑉𝑉ℎ = 𝑄𝑄ℎ = {𝑣𝑣 ∈ 𝐻𝐻1(Ω) |∀𝜅𝜅 ∈ 𝑇𝑇ℎ}  

where the characteristic mesh size is denoted by ℎ.  

Implicit time separation has led to the derivation of the 
nonlinear system of equations (7)–(9). To apply the Newton 
method, this system is written in the form 𝐹𝐹(𝑤𝑤) = 0, where 𝑤𝑤 =
(𝑢𝑢𝑛𝑛+1,𝑝𝑝𝑛𝑛+1,𝜃𝜃𝑛𝑛+1) ∈ 𝐕𝐕 × 𝑄𝑄 × 𝑉𝑉  is the variable; here, 𝐹𝐹:𝐕𝐕 ×
𝑄𝑄 × 𝑉𝑉 → 𝐕𝐕 × 𝑄𝑄 × 𝑉𝑉 is a differentiable transformation. The initial 
estimate is taken as 𝑤𝑤0 = (𝑢𝑢𝑛𝑛,𝑝𝑝𝑛𝑛,𝜃𝜃𝑛𝑛 ) (the solution at time 𝑡𝑡𝑛𝑛), 
and the Newton series 𝑤𝑤𝑘𝑘 = (𝑢𝑢𝑘𝑘, 𝑝𝑝𝑘𝑘,𝜃𝜃𝑘𝑘  ) is formed by solving for 
each inner iteration 𝑘𝑘. If it is defined as (𝑢𝑢𝑤𝑤,𝑝𝑝𝑤𝑤,𝜃𝜃𝑤𝑤  ) = 𝑤𝑤𝑘𝑘 −
𝑤𝑤𝑘𝑘+1 and after differentiating equations (7)–(9), equation system 
can be written explicitly written as: 

(𝛻𝛻 · 𝑢𝑢𝑤𝑤, 𝑞𝑞) − (𝛻𝛻 · 𝑢𝑢𝑘𝑘, 𝑞𝑞) =  0                                                        (10) 

�3(𝑢𝑢𝑤𝑤−𝑢𝑢𝑘𝑘)−4𝑢𝑢𝑛𝑛+𝑢𝑢𝑛𝑛−1

2Δ𝑡𝑡
, 𝑣𝑣� +  𝑏𝑏(𝑢𝑢𝑤𝑤,𝑢𝑢𝑘𝑘, 𝑣𝑣) + 𝑏𝑏(𝑢𝑢𝑘𝑘,𝑢𝑢𝑤𝑤, 𝑣𝑣) −

𝑏𝑏(𝑢𝑢𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑣𝑣) − ( 𝛻𝛻 ∙ 𝑣𝑣, 𝑝𝑝𝑤𝑤) + ( 𝛻𝛻 ∙ 𝑣𝑣,𝑝𝑝𝑘𝑘) − �𝑓𝑓𝐵𝐵(𝜃𝜃𝑤𝑤)𝑒𝑒𝑦𝑦, 𝑣𝑣� =

 1
𝑅𝑅𝑅𝑅

 (𝛻𝛻𝑢𝑢𝑤𝑤,𝛻𝛻𝛻𝛻) − 1
𝑅𝑅𝑅𝑅

 (𝛻𝛻𝑢𝑢𝑘𝑘,𝛻𝛻𝛻𝛻) − �𝑓𝑓𝐵𝐵(𝜃𝜃𝑘𝑘)𝑒𝑒𝑦𝑦, 𝑣𝑣�,                    (11) 

�3(𝜃𝜃𝑤𝑤−𝜃𝜃𝑘𝑘)−4𝜃𝜃𝑛𝑛+𝜃𝜃𝑛𝑛−1

2Δ𝑡𝑡
,𝜑𝜑� + (𝑢𝑢𝑤𝑤 · ∇𝜃𝜃𝑘𝑘,𝜑𝜑) + (𝑢𝑢𝑘𝑘 · ∇𝜃𝜃𝑤𝑤,𝜑𝜑) −

(𝑢𝑢𝑘𝑘 · ∇𝜃𝜃𝑘𝑘,𝜑𝜑) + 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(𝛻𝛻𝜃𝜃𝑤𝑤,𝛻𝛻𝛻𝛻) = 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(𝛻𝛻𝜃𝜃𝑘𝑘,𝛻𝛻𝛻𝛻).                (12)     
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4. NUMERICAL STUDIES 

In the study by Edde et al. (2025), the objective is to apply 
the numerical method developed for the investigated numerical 
model to a realistic underground cavity geometry and to examine 
the physical characteristics of natural convection. 

The simulations were conducted for five different 
Rayleigh numbers in the range of 10⁵–10⁹. The results indicate 
that, as the Rayleigh number increases, natural convection within 
the cavity becomes significantly stronger, with velocity 
magnitudes and temperature gradients intensifying particularly in 
the well region. 

While the three-dimensional simulations exhibit 
qualitative similarities with the two-dimensional results, they also 
demonstrate that the flow acquires a more irregular and inherently 
three-dimensional character. In this case, the temperature field 
becomes more homogeneous within the cavity, and the Nusselt 
numbers computed at the surface remain lower compared to the 
two-dimensional case. Nevertheless, the heat fluxes formed at the 
well mouth indicate that the surface temperature anomalies are of 
a magnitude detectable by remote sensing methods. 

According to this study, two- and three-dimensional 
numerical simulations performed using a realistic geometry 
reveal that natural convection in underground cavities is the 
primary physical mechanism responsible for transporting thermal 
signals from the cavity to the surface through the well. These 
findings strengthen the physical basis of cavity detection 
approaches based on thermal infrared measurements. 

Oztop et al. (2019) numerically investigated three-
dimensional natural convection flow in a cubic cavity with partial 
openings on the upper and lower surfaces. In their study, the 
Navier–Stokes and energy equations were solved under the 
Boussinesq approximation, and the effects of the Rayleigh 

Matematik

147



number and opening configurations on flow structures and heat 
transfer were analyzed. In addition, the thermodynamic 
performance of the system was evaluated through entropy 
generation and irreversibility analysis, demonstrating that the 
location and size of the openings significantly affect both flow 
organization and heat transfer efficiency. In this respect, the study 
provides an important reference for modeling systems with 
surface-opening cavities by elucidating the role of geometric 
openings in natural convection (Oztop et al., 2019). 

Rakotondrandisa, Sadaka, and Danaila (2020) developed 
a finite element–based numerical toolbox for solving solid–liquid 
phase change problems coupled with natural convection. In this 
work, the energy equation and the Navier–Stokes equations were 
fully coupled, and the enthalpy method was employed to model 
melting and solidification processes. The developed numerical 
framework was validated in both two- and three-dimensional 
configurations, and the interaction between the evolution of the 
phase boundary and natural convection currents was 
demonstrated in detail. This study occupies an important place in 
the literature by providing a flexible and reliable FEM 
infrastructure for natural convection problems involving complex 
heat transfer processes (Rakotondrandisa et al., 2020). 

Sadaka et al. (2020) advanced this approach further by 
developing parallel finite element codes for two- and three-
dimensional natural convection phase change problems. In the 
study, parallel computing strategies were implemented to 
efficiently resolve complex flow structures arising at high 
Rayleigh numbers, and scalability analyses were performed. The 
developed codes provide both accuracy and computational 
efficiency for large-scale and computationally demanding 
problems. In this regard, the study offers a powerful 
computational framework for three-dimensional numerical 
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simulations of underground cavities or engineering systems 
dominated by natural convection (Sadaka et al., 2020). 

Together, these studies strengthen the theoretical and 
computational foundations of the numerical methodology used in 
Edde et al. (2025), particularly by providing the necessary 
computational framework for the reliable simulation of strong 
convective flows in complex geometries. Therefore, this body of 
literature forms a complementary whole along the axes of 
geometric complexity (Oztop et al., 2019; Edde et al., 2025) and 
advanced numerical infrastructure and scalability 
(Rakotondrandisa et al., 2020; Sadaka et al., 2020). 

Table 1. Summary of Related Numerical Studies on Natural 
Convection 

Reference Physical 
Problem 

Geometry / 
Configuration Dimension Numerical 

Method 
Main 
Contribution 

Oztop et al. 
(2019) 

Natural 
convection, 
heat 
transfer, 
entropy 
generation 

Cubic cavity 
with partial 
openings at the 
top and bottom 
walls 

3D 

Finite 
volume 
method; 
Navier–
Stokes and 
energy 
equations 

Quantified the 
influence of 
opening location 
and size on flow 
structures, heat 
transfer, and 
thermodynamic 
irreversibility 

Rakotondrandisa 
et al. (2020) 

Natural 
convection 
coupled 
with solid–
liquid phase 
change 

General cavity 
configurations 2D–3D 

Finite 
element 
method with 
enthalpy 
formulation 

Developed and 
validated a FEM 
toolbox for 
simulating 
phase-change 
systems with 
natural 
convection 

Sadaka et al. 
(2020) 

Natural 
convection 
with phase 
change 

Large-scale 2D 
and 3D 
configurations 

2D–3D 

Parallel 
finite 
element 
method 

Introduced 
scalable parallel 
FEM codes 
enabling 
efficient 
simulation at 
high Rayleigh 
numbers 

Edde et al. (2025) 

Natural 
convection 
and heat 
transfer 

Underground 
cavity 
connected to 
the surface by a 
vertical well 

3D 
Finite 
element 
method 

Investigated the 
impact of surface 
connection and 
well geometry on 
three-
dimensional 
natural 
convection 
patterns 
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5. CONCLUSION 

In this chapter, a comprehensive theoretical and numerical 
framework for the finite element simulation of three-dimensional 
natural convection problems governed by the incompressible 
Navier–Stokes and energy equations under the Boussinesq 
approximation has been presented. Rather than introducing a new 
numerical method, the primary objective has been to clarify the 
mathematical foundations, modeling assumptions, and numerical 
strategies that are commonly adopted in reliable and robust three-
dimensional simulations of buoyancy-driven flows. 

The strong nonlinear coupling between fluid motion and 
heat transfer inherent in natural convection has been highlighted 
as a central challenge, particularly in three-dimensional 
configurations and at moderate to high Rayleigh numbers. In this 
context, the selection of stable mixed finite element spaces 
satisfying the Ladyzhenskaya–Babuška–Brezzi condition for the 
velocity–pressure pair, together with appropriate continuous 
Galerkin discretizations for the temperature field, has been 
emphasized as a key requirement for numerical stability and 
accuracy. The use of a fully implicit second-order backward 
differentiation formula (BDF2) for time integration has been 
shown to provide favorable stability properties, allowing the 
resolution of thin thermal boundary layers and strong convective 
effects. Furthermore, Newton-based nonlinear solution strategies 
play a critical role in efficiently handling the strong coupling and 
nonlinearity of the governing equations. 

The review of representative numerical studies from the 
literature demonstrates that three-dimensional effects are often 
decisive in natural convection problems and cannot, in general, 
be adequately captured by two-dimensional models. In 
applications involving complex geometries, such as underground 
cavities, enclosures with surface openings, or engineering 
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systems with geometric irregularities, three-dimensional 
simulations reveal more intricate flow structures and different 
heat transfer characteristics compared to their two-dimensional 
counterparts. These studies also underline the importance of 
scalable and parallel finite element implementations for 
addressing large-scale problems and high-Rayleigh-number 
regimes in a computationally efficient manner. 

In conclusion, the finite element framework outlined in 
this chapter provides a solid and flexible foundation for the 
numerical investigation of three-dimensional natural convection 
phenomena. The discussed modeling and discretization choices 
are broadly applicable to a wide range of engineering, 
environmental, and geophysical problems. Future research 
directions include the incorporation of more advanced physical 
models, such as variable-density formulations beyond the 
Boussinesq approximation, turbulence modeling, phase-change 
effects, and adaptive mesh refinement, which would further 
enhance the predictive capability of finite element simulations for 
complex natural convection systems. 
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ON A CLASS OF PERFECT NUMERICAL 
SEMIGROUPS   

 

Sedat İLHAN1 

 

1. INTRODUCTION 

Numerical semigroups are fundamental algebraic 
structures used in fields such as determining the structure of error 
correction codes in coding theory, solving frobenius-type 
problems in number theory, investigating curve singularities in 
algebraic geometry, analyzing monoid and generator structures in 
combinatorics, and defining discrete structures in some 
cryptographic and statistical models. 

Let ¥ and ¢  be the sets of non negative integers and 
integers, respectively. If it is satisfied following conditions then 
the subset K  of  ¥  is a numerical semigroup : 

(1) 0 KÎ ,  

(2) 1 2 1 2, ,k k K for all k k K+ Î Î , 

(3) ( \K)Card < ¥¥  (  gcd( ) 1KÛ = ). 

Here, ( )gcd K is greatest common divisor the elements of K  . 

 Let K  be a numerical semigroup, then we define following 
numbers: 

( ) max( \K)f K = ¢  is called Frobenius number of  K , 

 
1  Prof. Dr. Dicle Üniversitesi, Fen Fakültesi, Matematik Bölümü, ORCID: 0000-

0002-6608-8848. 

Matematik

155



( ) min{ : 0}K k K kq = Î >  is called multiplicity of K , 
and 

( )( ) {0,1,2,..., ( )}K Card f K Kd = Ç  is called determine 

number of K .    

If K is a numerical semigroup such that 1 2, ,..., qK z z z= < > , 

then we write that

1 2 0 1 2 1, ,..., { 0, , ,..., , ( ) 1, ...}qK z z z k k k k k f Kd d-= < > = = = + ®

where 1, ( )v vk k Kd d+< = and  1,2,..., ( )v Kd d= = . Here, the 
arrow means: if ( ) 1x f K> +  then x KÎ . 

If b Î ¥ and b KÏ , then b  is called gap of  K . We denote the 
set of  all gaps of K , by ( )B K , i.e, ( ) \KB K = ¥ , and  the

( ) ( ( ))K Card B Kg =  is called  genus of  K . Also, it is known 
that ( ) ( ) 1 ( )K f K Kg d= + -  ( for details see Froberg, 
1987;Rosales,2009;Çelik 2020; Assi,2020 ). 

If ( )b B KÎ  and 2 ,3b b KÎ , then b  is called  fundamental gap of  
K . We denote the set of  all fundamental gaps of K , by ( )U K , 

that is, { }( ) ( ) :2 ,3U K b B K b b K= Î Î . Also, the elementu  is 

called  special gap of  K  if \K, 2u u KÎ Î¢  and 

{ }, \ 0u r K r K+ Î " Î .  We denote the set of  all special gaps of 

K ,by ( )T K ,i.e.

{ }{ }( ) \K: 2 , , \ 0T K u x S u r K r K= Î Î + Î " Î¢ (Rosales, 

2005 ; Rosales,2009; Assi,2020).  

 If \Kd Î ¢  and { }, \ 0d v K v K+ Î " Î  then d  is called  Pseudo 

Frobenius number  of  K . We denote the set of all Pseudo 
Frobenius numbers of K , by ( )Km , that is,

{ }{ }( ) \K : , \ 0K d d v K v Km = Î + Î " Î¢   

Matematik

156



(Delgado, 2010; Rosales, 2009; Assi 2020). Let 

1 2 0 1 2 1, ,..., { 0, , ,..., , ( ) 1, ...}qK z z z k k k k k f Kd d-= < > = = = + ®  

be a numerical semigroup. Then  for  0j ³ , we define the 
following sets: 

{ }:j jK k K k k= Î ³  and { }( ) : jK j n n K K= Î + Í¥ .   

It is clear that ( )K j  is a numerical semigroup, and we obtain the 
following chain 

1 1 0... (0) (1) ... ( 1) ( ) .K K K K K K K K Kd d d d-Ì Ì Ì Ì = = Ì Ì Ì - Ì = ¥   

In this case, the number ( ) ( (1)\K)c K Card K=  is called the type 
of K  ( D’anna, 1998 ).  

Let K  be a numerical semigroup, then K  is called 
symmetric numerical semigroup if ( )f K g K- Î  , for all 

\Kg Î ¢ . It  is well known that 1 2,K z z= < >  is symmetric 
numerical semigroup, and if K  is a symmetric numerical 

semigroup then ( ) 1( ) ( )
2

f KK Kd g += =  ( Rosales, 1996; Assi, 

2020, Çelik,2023). Also, it is known that K  is a symmetric 
numerical semigroup  if and only if  ( ) 1c K =  ( Rosales, 1996; 
Rosales 2009 ) .  

Let K  be a numerical semigroup, then ( )d B KÎ is a 
isolated gaps of  K  if  1, 1d d K- + Î .The set of all isolated gaps 
of K  is denoted by ( )I K , that is 

( ) { ( ) : 1, 1 }I K d B K d d K= Î - + Î . A numerical semigroup K
is called perfect if ( )I K f= (for details see  Moreno,2019; 
Harold, 2022).  

If  K  is a numerical semigroup such that
1 2, ,..., qK z z z= < > , then the numerical semigroup 
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1 2 1 3 1 1( ) , , ,..., qL K z z z z z a z= − − −  is called  Lipman numerical 

semigroup of K , and  it is known that 

0 1 0 2 1( ) ( ) ( ( )) ( ( )) ... ... .uL K K L K L L K L L L K L= ⊆ = ⊆ = ⊆ ⊆ ⊆ ⊆    

   Let K  be a numerical semigroup, then K  is Arf  if 
1 2 3z z z K+ - Î , for all 1 2 3, ,z z z KÎ  such that 1 2 3z z z³ ³ . In 

this case, the set 
K V

T V
Í

= I  is Arf numerical semigroup, where V  

is Arf numerical semigroup. Thus, ¥  is an Arf numerical 
semigroup, and the smallest Arf numerical semigroup containing 
a numerical semigroup K  is called the Arf closure of K , and it 
is denoted by ( )Arf K . That is, we write ( )Arf K T=        
(Rosales,2004; İlhan, 2017; Angeles, 2020).   

  In this study, we will give some results about some 
fundamental concepts of  a class of  Perfect numerical semigroups 

aK  such that 2 1,2 ,2 1aK a a a= < - + > where  1a > and a Î ¥ . 

 

2. MAIN RESULTS 

Theorem 2.1. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 

semigroup where   1a >  and a Î ¥ . Then,  aK  is a perfect 
numerical semigroup.   

Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ . Then, we write  

2 1,2 ,2 1aK a a a= < - + > =

{ }2 20,2 1,2 ,2 1,4 2,4 1,4 ,4 1,4 2,...,2 3 2,2 3 1, ... .a a a a a a a a a a a a- + - - + + - - - + ®  

 So, we obtain  { }( ) ( ) : 1, 1a aI K d B K d d= Î - + = Æ since 

{ }2 2( ) 1,2,3,...,2 2,2 2,2 3,...,4 3,2 3 1,2 3 .aB S a a a a a a a a= - + + - - - -  
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Thus, we find that  aK  is a perfect numerical semigroup.   

Proposition 2.2. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ .  Then, we have 

         ( a )  ( ) (2 3)af K a a= -  

        ( b ) 2( ) ( 1)aK ad = -  

         ( c )  ( ) ( 1)aK a ag = - . 

Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ .  Then, we have  

 ( a ) 2( ) 3 (2 3)af K a a a a= - = - from definition Frobenius 

number of 2 1,2 ,2 1aK a a a= < - + > = 

{ }2 20,2 1,2 ,2 1,4 2,4 1,4 ,4 1,4 2,...,2 3 2,2 3 1, ... .a a a a a a a a a a a a- + - - + + - - - + ®   

(c) ( ) ( ( )) ( 1)a aK Card B K a ag = = - from the set of all gaps of

aK is { }2 2( ) 1,2,3,...,2 2,2 2,2 3,...,4 3,2 3 1,2 3 .aB K a a a a a a a a= - + + - - - -  

(b) ( ) ( ) 1 ( )a a aK f K Kd g= + -
2 2(2 3) 1 ( 1) 2 1 ( 1)a a a a a a a= - + - - = - + = - . 

Corollary 2.3. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 

semigroup where   1a >  and a Î ¥ . Then, the type of aK  is 

( ) 2ac K = . 

 Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 

where   1a >  and a Î ¥ . Then, 2 1,2 ,2 1aK a a a= < - + > =

{ }2 20,2 1,2 ,2 1,4 2,4 1,4 ,4 1,4 2,...,2 3 2,2 3 1, ... .a a a a a a a a a a a a- + - - + + - - - + ®  

 Thus, we write { }1 1( ) : 2 1a aK k K k k a= Î ³ = -   
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{ }2 22 1,2 ,2 1,4 2,4 1,4 ,4 1,4 2,...,2 3 2,2 3 1, ...a a a a a a a a a a a a= - + - - + + - - - + ®  

and { } { }1(1) : ( ) 0,2 1, ...a a aK n n K K a= Î + Í = - ®¥  . Thus, 

we obtain ( ) ( (1)\K)a ac K Card K=  

                           = { }2 2( 2 3 ,2 3 1 ) 2Card a a a a- - - = .  

Proposition 2.4.( Angeles, 2020 ) Let K  be a  numerical 
semigroup and ( ) 2c K = .  

Then,  { }( ) ( ) 1, ( ) ( ) 1K f K f K f K Km = - Û - Ï . 

 Proposition 2.5. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ . Then, we have 

{ }( ) ( ) 1, ( )a a aK f K f Km = - . 

 Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ .  

Then 2( ) 1 (2 3) 1 2 3 1a af K a a a a K- = - - = - - Ï since 

{ }2 2( ) 1,2,3,...,2 2,2 2,2 3,...,4 3,2 3 1,2 3 .aB K a a a a a a a a= - + + - - - -  

 Thus, we find { }( ) ( ) 1, ( )a a aK f K f Km = - from Proposition 2.4. 

Proposition 2.6. ( Assi, 2020). Let 2 1,2 ,2 1aK a a a= < - + >  be 
a numerical semigroup where   1a >  and a Î ¥ . Then  

3( ) ( ( ))ac K Card Km= . 

 Theorem 2.7. ( İlhan, 2017 ).  Let K  be a numerical semigroup 
and let  ( )j jLq q=  where jL  is the j  th term of the Lipman 

sequence of semigroups of K for each 0.j ³  Let,     
( ) ( )( ( )) , ( ( ) .b bf Arf K f Arf Kd d= = Then ( ) ( )b Kd l l= =   and 

we have,   
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( ) ( ) ( ) ( ) ( ) ( )
0 1 2 1( ) { 0, , ,..., , 1, ...}b b b b b bArf K k k k k k fl l-= = = + ®  where, 

( )
1 0
( ) ( ) ( )
2 0 1 1 0 1 2 2

( ),
,..., ... ,

b

a b b

k K
k l l

q q

q q q q q q q- -

= =
= + = + + + +

  

( )
0 1 2 2 1...bkl l lq q q q q- -= + + + + +   

and ( )
0 1 2 2 1... 1bf l lq q q q q- -= + + + + + - . 

Theorem 2.8. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ . Then, we have 

{ }( ) 0,2 1, ...aArf K a= - ® .  

Proof.  Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ . 

Then, we obtain { }( ) 0,2 1, ...aArf K a= - ®   since 0( )a aL K K=  

;   0 2 2aq = - , and  1( ) 2 1,1,2 1aL K a= < - > = < > = ¥  .  

Proposition 2.9. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ . Then, we have 

         ( a )  ( ( )) 2 2af Arf K a= -  

        ( b )  ( ( )) 1aArf Kd =  

         ( c )  ( ( )) 2 2aArf K ag = - . 

Proof.  Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ . Then, it is clear that 

( a ) ( ( )) 2 2af Arf K a= -  and  (b) ( ( )) 1aArf Kd =  from 
definitions of Frobenius number and determine number.  

 Also, we obtain  

( c )  ( ( )) ( ( )) 1 ( ( )) 2 2a a aArf K f Arf K Arf K ag d= + - = - . 
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Proposition 2.10. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ .  Then, we have 

( ( )) ( ( ))a aArf K B Arf Km = . 

Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ .Then, we write

{ }( ) 0,2 1, ...aArf K a= - ® and 

{ }( ( )) 1,2,3,...,2 2 .aB Arf K a= - Thus,we obtain  

{ }( ( )) ( ( ) : ( ), ( ), 0a a a aArf K x B Arf K x h Arf K h Arf K hm = Î + Î " Î ¹   

                    { }1,2,3,...,2 2 ( ( ))aa B Arf K= - = . 

Corollary 2.11. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 

semigroup where  1a >  and a Î ¥ . Then ( ( )) 2 2ac Arf K a= - . 

Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical semigroup 
where   1a >  and a Î ¥ .Thenwe write  

( ( )) ( ( ( ))) 2 2a ac Arf K Card Arf K am= = - from Proposition 2.6. 

 Corollary 2.12.  Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ . Then , we have 

        ( a )  2( ) ( ( )) 2 5 2a af K f Arf K a a= + - +  

        ( b )  2( ) ( 1) ( ( ))a aK a Arf Kd d= -  

        ( c )  2( ) ( ( )) 3 2a aK Arf K a ag g= + - + . 

 Proof. Let 2 1,2 ,2 1aK a a a= < - + >  be a numerical 
semigroup where   1a >  and a Î ¥ . Then, we obtain          

2 2 2( ( )) 2 5 2 2 2 2 5 2 2 3 ( ).a af Arf K a a a a a a a f S+ - + = - + - + = - =  

2 2( 1) ( ( )) ( 1) ( )a aa Arf K a Kd d- = - = , and  
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2 2 2( ( )) 3 2 2 2 3 2 ( ).a aArf K a a a a a a a Kg g+ - + = - + - + = - =  

Example 2.13. We put 3a =  in the numerical semigroup 
2 1,2 ,2 1aK a a a= < - + >  . 

Then, we have 3 5,6,7 {0,5,6,7,10, ...}K = = ® . 

 In this case, we obtain 3 3( ) 5, ( ) 9,K f Kq = = 3( ) 4,Kd =  

3( ) {1,2,3,4,8,9},B K =  and 3 3( ) ( ( )) 6K Card B Kg = = . Also, 

{ } { }3 3 3( ) ( ) : 2 ,3 8,9U K d B K d d K= Î Î = ,

{ }{ } { }3 3 3 3( ) ( ) : , \ 0 8,9K x B K x r K r Km = Î + Î " Î =   and  

{ }{ } { }3 3 3 3 3( ) ( ) : 2 , \ 0 8,9 .T S u B K u K and u y K y K= Î Î + Î " Î =  

So, 3( ) 2c K =  since 

{ } { }3 1 1( ) : 5 5,6,7,10, ...K k K k k= Î ³ = = ®  and 

{ } { }3 3 1(1) : ( ) 0,5,6, ...K n n K K= Î + Í = ®¥ , then 

{ }3 3 3( ) ( (1) \ ) ( 8,9 ) 2c K Card K K Card= = = .  

Here, the numerical semigroup 

3 5,6,7 {0,5,6,7,10, ...}K = = ®  is perfect since 

{ }3 3 3( ) ( ) : 1, 1I K b B K b b K= Î - + Î = Æ .  On the other hand, 

we write that 3( ) {0,5, ...}Arf K = ® since 

0 3 3 0( ) 5,6,7 ; 5L K K q= = < > =  and 

1 3 0 3 1( ) ( ( )) ( 5,6,7 ) 5,1,2 1 ; 1.L K L L K L q= = < > = < > = < > = =¥  

Thus, 3 3( ( )) 4, ( ( )) 1f Arf K Arf Kd= = , 

3( ( )) {1,2,3,4}B Arf K =  and

3 3( ( )) ( ( ( )) 4Arf K Card B Arf Kg = = .  Also, 

{ } { }3 3 3( ( )) ( ( )) : 2 ,3 ( ) 3,4U Arf K d B Arf K d d Arf K= Î Î = , 
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{ }{ } { }3 3 3 3 3( ( )) ( ( )) : 2 ( ), ( ), ( )\ 0 3,4T Arf K u B Arf K u Arf K u r Arf K r Arf K= Î Î + Î " Î =

and
{ }{ } { }3 3 3 3( ( )) ( ( )) : ( ), ( )\ 0 1,2,3,4 ,Arf K u B Arf K u y Arf K y Arf Km = Î + Î " Î =

3 3( ( )) ( ( ( ))) 4c Arf K Card Arf Km= =  . In fact ; we find that  
2

3 3( ) 3(2.3 3) 9, ( ) (3 1) 4f K Sd= - = = - =   and  

3( ) 3(3 1) 6Sg = - =  from Propotion 2.2. Also, 

{ } { }3 3 3( ) ( ) 1, ( ) 8,9K f K f Km = - =   and 

3 3( ) ( ( )) 2c K Card Km= =  from Proposition 2.5 and Proposition 
2.6., respectively. So, we write 

{ } { }3( ) 0,2.3 1, ... 0,5, ...Arf K = - ® = ®  from Theorem 2.8. 

Also, 3( ( )) 2.3 2 4,f Arf K = - =  3( ( )) 1Arf Kd =  and 

3( ( )) 2.3 2 4Arf Kg = - =  from Proposition 2.9.  On the other 

hand, { }3 3( ( )) 1,2,3,4 ( ( ))Arf K B Arf Km = = and  

3( ( )) 2.3 2 4c Arf K = - =  from Proposition 2.10 and Proposition 
2.11, respectively. Finally, we have   

3 3( ) ( ( )) 2.9 5.3 2 9f K f Arf K= + - + = , 
2

3 3( ) (3 1) ( ( )) 4.1 4K Arf Kd d= - = =  and 

2
3 3( ) ( ( )) 3 3.3 2 4 2 6K Arf Kg g= + - + = + =  from Corollary 

2.12. 
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MATEMATİKSEL DÜĞÜM VE TOPOLOJİ 
 

Nazmiye ALEMDAR1 

 

1. GİRİŞ 

Düğüm teorisi, matematikte üç boyutlu kapalı eğrilerin 
incelendiği bir teoridir. Bir düğümü, matematiksel olarak bir ipin 
iki ucunun birleştirilmesiyle oluşan kapalı eğri olarak görmek 
kolay bir yaklaşım olmakla birlikte, teorisi, yani düğüm teorisi, o 
kadar da basit değildir. Son yıllarda birçok bilim alanında düğüm 
teorisi ile ilgili çalışmalar yapılmış ve makaleler yazılmıştır. 
Matematik ve düğüm teorisi arasında vazgeçilmez ve bir o kadar 
da önemli bir bağlantı vardır; zira matematik, pek çok disiplinde 
olduğu gibi, düğüm teorisinin doğurduğu problemlerin çözümde 
temel bir araçtır. 

Çok eski zamanlardan beri insanlar düğümlere ihtiyaç 
duymuştur. Farklı amaçlar için farklı düğüm türleri kullanmıştır. 
Düğümler ağ örmek, bir şeyleri birbirine bağlamak, kumaş ve 
hasır örmek, köprüler inşa etmek, tepelere tırmanmak vb. için 
kullanmıştır. Düğümler kullanılarak güzel dekoratif eşyalar, dikiş 
ve nakış işleri yapılmaktadır. 

Düğümlerin tarihçesi yazının icadından öncesine uzansa 
da, düğüm teorisinin matematiksel bir disiplin haline gelmesi 
daha geç bir dönemde gerçekleşmiştir. Matematikçileri bu alanda 
çalışmaya çeken motivasyon, teorinin kimyada, daha sonra fizikte 
ve daha yakın zamanda da biyolojide uygulamalarının 
matematikle açıklanması gerekliliği ile olmuştur. 

 
1  Doç. Dr., Erciyes Üniversitesi, Fen Fakültesi, Matematik Bölümü, ORCID: 0000-

0002-0819-6613. 
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Düğüm teorisi, genetikten kuantum mekaniğine kadar 
çeşitli alanlarda var olmuştur. Bilimin kendine özgü sırları olduğu 
ve düğümlerin bunları çözmek için uygulanan girişimlerden 
sadece biri olduğu iyi bilinmektedir. Bu çalışmanın amacı düğüm 
teorisinin temel kavramlarını ve gelişimini örnekleri ile sunmak 
ve okuyucuya matematik ve topolojinin düğüm teorisi için 
vazgeçilmez olduğunu anlatmaktır. Bunun için öncelikle düğüm 
teorisi ile ilgili matematiksel temel tanım ve kavramlar 
verilecektir. Daha sonra ise düğüm teorisinin tarihsel gelişimi 
uygulamaları ve teoride matematik ve topolojinin gerekliliği 
sebepleri ile anlatılacaktır. 

 

2. TEMEL KAVRAMLAR ve TANIMLAR 

Bu bölümde verilen temel kavramlar Murasugi (1996) 
kaynağından alınmıştır. 

İp kullanılarak atılabilen en kolay düğümler, el üstü 
düğümü ve sekiz rakamı düğümüdür. 

 
Şekil 1. El Üstü Düğümü    Şekil 2. Sekiz Düğümü 

           İpin iki ucu birbirine yapıştırıldığında bir ilmek oluşur. Bu 
ilmeğe Matematiksel Düğüm denir. Matematikte aşikar bir 
düğüm (yani düğümlenmemiş) dolaşık olmayan bir ilmek, üç 
boyutlu, kapalı ve kendi kendini kesmeyen bir eğridir. 

 
Şekil 3. Aşikar Düğüm 

Matematik

168



            Tanım 1: 𝑅𝑅3 de 𝑆𝑆¹ =  {(𝑥𝑥,𝑦𝑦, 𝑧𝑧): 𝑥𝑥² +  𝑦𝑦² =  1, 𝑧𝑧 =  0}  
çemberi ile topolojik olarak denk (homeomorfik) olan herhangi 
bir kümeye düğüm denir. Dolayısıyla düğüm, uzayda bir kapalı 
eğridir. Başka bir deyişle düğüm, birim çemberin uzaydaki 
konumudur. 

           Düğümlerin kendi içinde kesişen noktaları olabilir. 
Düğüm ya kendi üzerinden ya da altından geçer ki bunlara geçiş 
denir. 

         

Şekil 4. Bir geçişli düğümler 

 

 

Şekil 5. İki geçişli düğümler 

Düğüm teorisinde, Üç Yapraklı Düğüm (trefoil) en basit, 
aşikar olmayan düğümdür. Şekil 1 de verilen El Üstü Düğümünün 
gevşek uçlarının birleştirilmesiyle elde edilir. Bu düğümü 
kesmeden aşikar düğüm elde etmek mümkün değildir.  Şekil 2 de 
verilen sekiz düğümünün gevşek uçları birleştirildiğinde ise 
sekizli düğümü elde edilir.  

                                     

Şekil 6. Üç Yapraklı Düğüm     Şekil 7. Sekizli Düğümü 

Daha önce belirttiğimiz gibi bir düğüm kapalı bir eğridir. 
Dolayısıyla bu eğrinin bir başlangıç ve bitiş noktası yoktur. 
Düğümleri ayırt etmenin bir yolu eğriye bir yön vermektir. Özel 
olarak, eğri üzerine eklenen bir okla bir düğümün yönü gösterilir. 
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Şekil 8 de görüldüğü gibi herhangi bir düğüm için olası iki yön 
vardır. 

 
Şekil 8. Sağ ve Sol Yönlü Üç Yapraklı Düğümler 

Birbiri ile kesişmeyen sonlu ve düzenli bir düğüm 
topluluğuna bağlantı denir. Aşağıdaki şekilde ikişer düğümden 
oluşan iki bağlantı örneği görülmektedir. 

 
Şekil 9. Bağlantılı Düğümler 

Dolaşık bir kapalı ip düğümü, kesmeden kendi içinde 
çekiştirip hareket ettirilerek deforme edildiğinde ortaya çıkan 
düğüm tamamen farklı bir düğüm gibi görünür.  Ancak deforme 
edilen bu düğüm, orijinal düğümle aynı kabul edilir. Aşağıdaki 
şekilde verilen iki düğüm tamamen farklı görünmesine rağmen 
denk düğümlerdir. Bu düğümler, Perko'nun düğüm çifti olarak 
adlandırılır. 

 

Şekil 10. Perko'nun Düğüm Çifti 
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Şekil 10 da verilen Perko'nun düğüm çifti yön verilmemiş 
denk iki düğümdür. Şekil 8 de verilen iki düğüm yönlendirme 
yapılmadan önce denk iki düğümken yönlü olarak denk 
değildirler. Yönlü iki düğümün denkliği için aşağıdaki teorem 
verilmiştir.  

Teorem 2: 𝑅𝑅3 de 𝐾𝐾1 ve 𝐾𝐾2 yönlü iki düğüm olsun. Eğer bu 
iki düğüm arasında yönü koruyan bir homeomorfizm varsa  𝐾𝐾1 ve 
𝐾𝐾2 düğümleri birbirine denktir denir. 

İki düğüm denk ise, aynı türden oldukları söylenir. 

 

3. DÜĞÜM TEORİSİNİN TARİHİ GELİŞİMİ, 
UYGULAMALARI VE TOPOLOJİ  

Burada düğüm teorisinin tarihi gelişimi oluşturulurken 
Silver (2006), Przytycki (1995) ve Sunitha (2016) kaynakları 
temel olarak kullanılmıştır. 

Herhangi bir şekilde ve sayıda iç içe geçmiş düğümlerden 
oluşan bağlantılar, Antik Roma'da popüler bir motif olarak 
genellikle evleri ve tapınakları süsleyen mozaiklere eklenirdi. 
Bunun en iyi örnekleri Kells Kitabı'nda bulunan Kelt düğüm ve 
bağlantı desenleridir. 7. yüzyılda İrlanda'da ortaya çıkmış ve 
oradan İskoçya'ya yayılmıştır. 

Düğüm kavramına bir matematik konusu olarak ilk atıf, 
1771 yılında Fransız matematikçi Theophil Vandermonde’nin 
yazdığı "Remarques sur les problems de situation" (Konum 
Problemleri Üzerine Notlar) adlı makalede yapılmıştır. Özellikle 
örgülerin ve düğümlerin konum geometrisinin konusu olarak ele 
alındığı bu makalenin ilk paragrafında Vandermonde şöyle 
yazmıştı: ‘‘Uzaydaki bir iplik parçasının kıvrımları ve dönüşleri 
ne olursa olsun, boyutlarının hesaplanması için her zaman bir 
ifade elde edilebilir, ancak bu ifade pratikte pek işe 
yaramayacaktır. Bir örgü, bir ağ veya bazı düğümler yapan 
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zanaatkar, ölçüm sorularıyla değil, konum sorularıyla 
ilgilenecektir: orada gördüğü şey, ipliklerin iç içe geçme 
biçimidir’’. 

Günümüzde Düğüm Teorisi olarak adlandırılan 
matematiksel düğüm teorisi, Alman matematikçi Carl Friedrich 
Gauss'un (1777-1855) düğümlerin tablolaştırılması için bir 
yöntem geliştirdiği 19. yüzyıla kadar uzanmaktadır. Dunnington 
(1955) ve Stäckel kaynaklarında: “Gauss'a ait belgeler arasında 
bulunan en eski notlardan biri, 1794 tarihli bir kağıttır. Başlığında 
“Düğüm koleksiyonu” yazan bu kağıt, yanlarında İngilizce 
isimleri yazılı on üç adet düzgün çizilmiş düğüm resmi 
içermektedir... Bununla birlikte, düğüm resimleri içeren iki ek 
kağıt parçası daha vardır. Biri 1819 tarihli; diğeri ise çok daha 
sonraki bir tarihe aittir...” şeklindeki ifadenin varlığından 
bahsedilmektedir. Bu ise Gauus tarafından çizilen düğümlerin 
bulunduğu belgelerin hala kaybolmadığı anlamına gelir. Şekil 11 
de 1794 yılından kalma kağıtta bulunan Gauss'un çizdiği 10. 
düğüm olan iç içe geçme düğümü verilmiştir. 

 

Şekil 11. Gauss'un İç İçe Geçme Düğümü 

Bir duvar ustasının oğlu ve döneminin en büyük 
matematikçisi olan Johann Carl Friedrich Gauss, bağlantılar 
hakkında aşikar olmayan bir gerçeği keşfeden ilk kişiydi. Gauss, 
düğüm kavramını elektrodinamik alanındaki çalışmalarında 
kullanmıştır. Kapalı bir eğri boyunca bir akım döngüsünün 
varlığında manyetik kutup üzerinde ne kadar iş yapıldığını bilmek 
istemiştir. Birbirini kesmeyen iki döngüyü ele almıştır. 1833'te, 
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günümüzde "Gauss bağlantı sayısı" olarak adlandırılan "birbirine 
dolanma" sayısının bir integralle hesaplanabileceğini 
göstermiştir. 1876'da O. Boeddicker ise belli bir bağlamda 
bağlantı sayısının, ikinci eğrinin birinci eğri tarafından sınırlanan 
bir yüzeyle kesişme noktalarının sayısı olduğunu gözlemlemiştir. 

1847 yılı, düğüm teorisi (aynı zamanda graf teorisi ve 
topoloji) için çok önemli bir yıldır. Gustav Robert Kirchoff 
(1824-1887) elektrik devreleri üzerine temel makalesini 
yayınlamıştır. Kirchhoff (1947) makalesi düğüm teorisi ile 
ilişkilidir ancak bu ilişki yaklaşık yüz yıl sonra keşfedilmiştir 
(örneğin, bir devrenin Kirchhoff karmaşıklığı, devre tarafından 
belirlenen düğümün veya bağlantının determinantına karşılık 
gelir). 

Gauss’un, düğümler üzerine çalışmalarından etkilenen 
öğrencisi Johann Benedict Listing de (1808-1882) düğümlerle 
ilgilenmiştir. Listing, konumun geometrisini tanımlamak için 
Yunanca topos (yer) ve logos (akıl) kelimelerinin birleşimi olan 
topoloji kelimesine türeten kişidir. “Topoloji” terimini ilk kez 
kullandığı “Vorstudien zur Topologie” adlı çalışmasında 
matematiksel düğümler ve bunların sınıflandırılması üzerine bir 
tartışmaya yer vermiştir. Özellikle, düğümlerin kiralitesiyle, yani 
bir düğüm ile onun ayna görüntüsü arasındaki denklik ilişkisiyle 
ilgilenmiştir. Sağ Elli Üç Yapraklı Düğüm ile Sol Elli Üç 
Yapraklı Düğümün denk olmadığını (birbirine 
dönüştürülemediğini) ifade eden ilk kişidir. Buna karşılık, Listing 
düğümü olarak da bilinen Sekizli Düğümün akiral; yani kendi 
ayna görüntüsüne denk olduğunu belirtmiştir. 

                                     
(a)                                 (b) 

          Şekil 12. (a) Sağ Elli ve (b)Sol Elli Üç Yapraklı Düğümler 
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1860'larda ünlü İngiliz fizikçi Sir William Thomson 
(1824-1907) (daha sonra Lord Kelvin olarak bilinecek), fizikçi 
Herman von Helmholtz'un (1821-1894) girdap hareketi üzerine 
yaptığı çalışmalardan ve Peter Gurthrie Tait'in (1831-1901) 
girdap duman halkaları üretme gösterisinden ilham almıştır. Tait, 
Alman bilim insanı Hermann von Helmholtz'un bir 
makalesinden, ideal bir akışkandaki girdap halkasının kararlı ve 
kalıcı olacağını öğrenmiştir. Hava ideal bir akışkan olmamasına 
rağmen Tait yaklaşık bir model oluşturmuştur. Tahta bir kutunun 
bir ucuna büyük bir delik açmıştır ve diğer ucunu sıkıca gerilmiş 
bir havluyla değiştirmiştir. Kutunun içine güçlü bir amonyak 
çözeltisi serpmiştir ve üzerine yemek tuzu dökülmüş sülfürik asit 
içeren bir kap yerleştirmiştir. Tait yedi yıl sonra bir konferansta, 
havluyu yere vurduğunda, girdap halkaları ortaya çıktığını ve 
şiddetle titreştiklerini, sanki katı kauçuk halkalarmış gibi 
olduklarını açıklamıştır. Tait bunların kararlılığına hayran 
kalmıştır. Yuvarlak bir delik yerine eliptik veya kare bir delik 
kullanılsaydı, girdap şekli sallanıp titreşerek dairesel bir şekil 
alırdı. Tait, Thomson'ın girdap halkaları kavramını 1874'te 
yayınlanan bir dizi konferansta açıklamıştır. Girdap Atomları 
Teorisi (Theory of Vortex Atoms); Sir William Thomson 
tarafından 19. yüzyılda ortaya atılan, atomların eterdeki (o 
dönemde varsayılan bir ortam) kararlı girdap halkaları (vortex 
rings) olduğu fikrine dayanan hipotezdir. Bu teori, elementlerin 
farklı özelliklerini, bu girdapların farklı düğümlü yapılarıyla 
açıklamayı amaçlamıştır. Girdap halkalarının etkileşimlerini, bir 
çay kaşığını bir fincan çayın yüzeyinde gezdirmenin etkileriyle 
karşılaştırmıştır. William Thomson'a göre tüm madde atomları-
zorunlu olarak sonsuz olmalıdır, yani uçları herhangi bir sayıda 
kıvrım veya düğümlenmenin en sonunda birleşmiş olmalıdır. 
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Şekil 13. William Thomson'a (Kelvin) ait 1867 tarihli düğümler ve 

bağlantılar 

Modern düğüm teorisinin kökeni dört fizikçiyle 
ilişkilendirilebilir: Hermann von Helmholtz, William Thomson 
(Lord Kelvin), Maxwell ve Peter Guthrie Tait. 

James Clerk Maxwell (1831-1879) ile Tait ilk kez 
Edinburgh Akademisi'nde öğrenciyken tanışmışlardı. Daha sonra 
meslektaş olarak, iki arkadaş neredeyse her gün yeni yarım 
penilik kartpostallarla yazışmışlardır. Knott (1911) ve Lomonaco 
(1996), Maxwell’in 13 Kasım 1867 tarihinde Tait’e yazdığı bir 
mektuptan bahsetmektedir; bu mektuptan, Maxwell’in düğümler 
hakkındaki fikirlerini arkadaşıyla paylaştığı anlaşılmaktadır. 
Maxwell'in düğümlere ve topolojiye olan derin ilgisi, 
muhtemelen Thomson'ın girdap-atom teorisinden ve Tait'in 
etkisinden kaynaklanmıştır. James Clerk Maxwell, elektrik ve 
manyetizma üzerine yaptığı çalışmalarında, özellikle yeni 
yayımlanan Gauss'un derlenmiş eserlerinden esinlenerek, 
düğümler ve bağlantılar hakkında bazı teorik yaklaşımlar 
geliştirmiştir. Üstten ve alttan geçişleri belirten düğüm 
diyagramları oluşturmuştur. 3 Reidemeister hareketini 
tanımlamıştır. Maxwell, iki düğümün bağlantı sayısının fiziksel 
bir önemi olduğunu açıklamıştır. Bir düğümden elektrik akımı 
geçtiğinde manyetik alan oluşturduğunu söylemiştir. Bağlantı 
sayısı, esasen ikinci düğümün yolu boyunca hareket eden yüklü 
bir parçacığın yaptığı iştir demiştir. Maxwell, bağlantı sayısını 
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Gauss'un daha önce keşfettiği bir çift katlı integral olarak ifade 
etmiştir. Ayrıca, ayrılamayan ancak Gauss integral değeri sıfıra 
eşit olan Şekil 14 de verilen iki kapalı eğriden oluşan bağlantıyı 
tanımlamıştır. 

 
Şekil 14. Maxwell’e ait bağlantı 

Atom teorisinin girdap modeli, düğümlerin 
sınıflandırılmasını gerektiriyordu. Fizikçi Peter Gurthrie Tait, 
1867'de düğümlerin ilk tablosunu oluşturmaya başlamıştır. Tait; 
Rahip Thomas Penyngton Kirkman (1806-1895) ile iş birliği 
içinde ve Charles Newton Little’dan bağımsız olarak, düğümleri 
numaralandırma problemi üzerinde önemli bir ilerleme 
kaydetmiştir. Bu sayede 1900 yılına gelindiğinde, on geçişli 
düğümlere kadar olan (asal) düğüm tabloları Tait (1877), 
Kirkman (1885), Little (1885), Little (1889) kaynaklarında 
yayınlamıştır.  Bu tablolar, Haseman’ın (1918) doktora teziyle 
kısmen genişletilmiştir. 11 geçiş sayısına kadar olan düğümlerin 
numaralandırılması ise Conway (1969) da verilmiştir. 13 geçişe 
kadar olan düğümler, Dowker ve Thistlethwaite (1983) ve 
Thistlethwaite (1985) de numaralandırılmıştır. Tait, düğüm 
tabloları oluşturabilmek amacıyla Tait Varsayımları olarak 
adlandırılan üç temel ilke ortaya koymuştur. Bu varsayımların 
tamamı yakın zamanda çözüme kavuşturulmuştur. 

Düğüm teorisindeki en temel problem, denk olmayan 
düğümleri birbirinden ayırt edebilmektir. Jules Henri Poincaré 
(1854-1912), Poincaré (1895) 'Analysis Situs' isimli makalesinde 
cebirsel topolojinin temellerini atana kadar basit iki düğüm olan 
Aşikar Düğüm ile Üç Yapraklı Düğümün birbirinden ayırt 
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edilmesi mümkün olmamıştır. Heinrich Tietze (1880-1964) ise 
Aşikar Düğümü, Üç Yapraklı Düğümden ayırt etmek için düğüm 
grubu olarak adlandırılan bir düğümün 𝑅𝑅3 içindeki dış yüzeyinin 
temel grubunu kullanmıştır (Tietze, 1908). Temel grup, esasen 
Poincaré (1895) makalesinde tanıtılmıştır. Buradan anlaşılacağı 
üzere düğüm teorisindeki en temel problem olan denk olmayan 
düğümleri ayırt etmek için matematiğin konum geometrisi ile 
ilgilenilen alanı topoloji ve cebir ile topolojinin birlikte çalışıldığı 
alan cebirsel topoloji kullanılmıştır. 

Kiralite kavramı, Düğüm Teorisi ile kimya arasındaki en 
güçlü köprüdür. Düğüm teorisinde bir düğüm, eğer sürekli bir 
deformasyonla (parçaları kesip yapıştırmadan sadece esnetip 
bükerek) kendi ayna görüntüsüne dönüştürülemiyorsa topolojik 
olarak kiral kabul edilir. 

Kimyasal bağları aynı olan ancak topolojik yapıları 
(düğümlenme veya halkalanma biçimleri) farklı olan moleküllere 
topolojik stereoizomerler denir. Kimyagerler, topolojik 
stereoizomer çiftlerini sentezleyebilmek için bir düğümün kiral 
mi yoksa akiral mi olduğunu bilmelidir. Sol-elli kiral bir molekül, 
sağ-elli muadilinden farklı fiziksel veya kimyasal özellikler 
sergileyebilir. Bu özellik farkı, kiralite çalışmalarını kimya 
biliminde kritik bir konuma taşımaktadır. Bir kimyager, 
laboratuvarda düğümlü bir molekül sentezlediğinde, bunun hangi 
el yönünde kiral olduğunu belirlemek için Jones Polinomu gibi 
matematiksel araçlara ihtiyaç duyar. Bu da matematik ve 
topolojinin düğümlü bir molekülün kiralitesini belirlemede 
kullanıldığını göstermektedir.  

Genetik bilimindeki en önemli kırılma noktalarından biri, 
1950'li yıllarda James Watson ve Francis Crick'in DNA'nın çift 
sarmallı yapısını keşfetmesiyle yaşanmıştır. Bu yapısal model, 
DNA replikasyonunun mekanizmasının aydınlatılmasına olanak 
sağlamıştır. Watson ve Crick'in bu modeli, DNA'nın iki uzun 
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polimer zincirinden oluştuğunu ve bu zincirlerin birbirine 
tamamlayıcı baz eşleşmeleriyle bağlandığını göstermiştir: 
Adenin (A) her zaman Timin (T), Guanin (G) ise  her zaman 
Sitozin (C) ile eşleşir. Bu yapı, DNA replikasyonunun 
(eşlenmesinin) temel mekanizmasını da ortaya çıkarmıştır. Bu 
bağlar, baz istiflenmesi etkileşimleriyle birlikte DNA zincirini bir 
arada tutmaktadır. Sarmalın iki kolu bir fermuar gibi açıldığında, 
her bir kol yeni sentezlenecek olan zincir için bir kalıp görevi 
görür. Baz eşleşme kuralı sayesinde, orijinal dizilim tam 
doğrulukla kopyalanabilir.  

 

Şekil 15. DNA’nın birincil ve ikincil yapısı 

DNA'nın çift sarmal yapısı ile Düğüm Teorisi arasındaki 
ilişki, modern moleküler biyolojinin en büyüleyici konularından 
biridir. DNA, hücre çekirdeğine sığabilmek için sıkı bir şekilde 
paketlenmiş durumdadır. Bu paketlenme ve replikasyon 
(eşlenme) süreci sırasında DNA zincirlerinin  düğümlenmesi ve 
birbirine dolanması kaçınılmazdır.  

Liu ve Davis (1981) çalışmasında ilk kez laboratuvar 
ortamında düğümlenmiş DNA moleküllerini izole etmişlerdir. 
Deneysel olarak DNA düğümlerini ve bağlantılarını 
ayrıştırmanın veya analiz etmenin iki yolu bulunmaktadır: 
elektron mikroskobu veya elektroforetik göç (Krasnow et al., 
1983; Trigueros et al., 2001; Zechiedrich & Crisona, 1989). 
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Şekil 16. Düğümlenmiş DNA'nın elektron mikroskop görüntüsü 

DNA, hücre çekirdeği içerisinde oldukça yoğun 
(kompakt) bir biçimde muhafaza edilmektedir. Halkasal bir 
DNA’nın süper-sarmal, düğümlenmiş ve bağlantılı olmak üzere 
üç topolojik temel formu vardır. Replikasyon, verilen bir DNA 
molekülünün kopyalanması sürecidir. DNA kopyalanırken 
sarmal açıldığında, fermuarın ön kısmında aşırı bir burulma 
(süper kıvrılma) oluşur. Eğer bu gerilim çözülmezse DNA zinciri 
kopabilir veya kopyalama durabilir. Watson ve Crick'in keşfettiği 
çift sarmal, matematiksel olarak iki kapalı halkanın birbirine 
dolanması (bağlantı) gibidir. Hücrelerimizde Topoizomeraz adı 
verilen özel enzimler yani doğal düğüm çözücüler bulunur. Bu 
enzimler, DNA zincirini keserler sonra dolanmış olan diğer 
zinciri bu kesiğin içinden geçirirler ve son olarak kesiği tekrar 
yapıştırırlar. Bu reaksiyon sonunda, nükleotid dizilimi ve temel 
bağlar (fosfodiester bağları) değişmez ki bu Düğüm Teorisi'ndeki 
"Reidemeister Hamleleri"ne (düğümü bozmadan yapılan temel 
hareketler) biyolojik bir örnektir. Ancak bu halkaların birbirinden 
ayrılması için topolojik bir değişim gerekir. Buck (2009), 
Demidov (2002), Ketron ve Osheroff (2014) vb. birçok çalışmada 
DNA topolojisi çalışılmıştır. 

Topolojik enzimoloji, enzimlerin (özellikle topoizomeraz 
ve rekombinazların) DNA'nın düğümlenme veya bağlantılı olma 
durumunu nasıl değiştirdiğini inceleyen disiplinler arası bir 
daldır. 
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Bilim insanları, DNA'nın topolojik formunu inceleyerek 
hangi enzimin nasıl çalıştığını anlarlar. Bu yaklaşımla, enzimleri 
doğrudan gözlemlemek yerine, onların DNA üzerinde bıraktığı 
"topolojik imzaları" (oluşturdukları düğüm ve halka türlerini) 
inceleyerek çalışma mekanizmaları çözülür. Örneğin, bir deney 
tüpündeki DNA'nın elektron mikroskobu altındaki görüntüsünde 
bir Üç Yapraklı Düğüm oluşmuşsa, bu durum belirli enzimlerin o 
bölgede işlem yaptığını kanıtlar. Eğer düğüm çözülmezse hücre 
bölünemez ve ölür. Birçok kanser ilacı ve antibiyotik, tam olarak 
bu süreci hedef alır; yani topoizomeraz enzimlerini durdurarak 
kanserli hücrenin DNA düğümlerini çözmesini engeller ve 
hücrenin kendi düğümlerinde boğulmasını dolayısıyla yok 
olmasını sağlar. 

DNA düğümleri ile ilgili çalışmalarda matematik ve 
topolojinin gerekliliği açıkça görülmektedir. 

 

4. SONUÇ 

Bu çalışma; düğüm teorisinin tarihi gelişim sürecinde 
matematik ve topoloji kullanılmasına neden gerek duyulduğunu, 
bu alandaki çalışmaların güncelliğini/önemini, teorinin ele aldığı 
temel kavramları, konunun tarihsel süreçteki yavaş gelişimini ve 
disiplinler arası alanlardaki uygulamalarını inceleyen bir literatür 
taraması niteliğindedir. 
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PARAMETER ESTIMATION OF UNIT-
TEISSIER DISTRIBUTION UNDER DIFFERENT 

SAMPLING SCHEMES 
 

Hasan Hüseyin GÜL1 

 

1. GİRİŞ 

Sampling designs have long been employed as an 
effective tool to reduce the cost and effort associated with data 
collection, particularly in studies where full observation of all 
units is impractical. Among these designs, simple random 
sampling (SRS) remains the most commonly used approach due 
to its simplicity. However, in many applications the precision of 
estimators obtained from SRS may be improved if additional 
information about the relative ordering of units is available.  

Ranked set sampling (RSS) represents one such approach 
in which auxiliary ranking information is incorporated into the 
sampling process. The method was first introduced by McIntyre 
(1952) in the context of agricultural studies, where measuring 
pasture yield was costly but visual ranking of plots could be 
performed with little effort. Since then, the theoretical properties 
of RSS have been investigated extensively, and it has been shown 
that estimators based on RSS can achieve higher efficiency than 
those based on SRS without increasing the number of measured 
observations (Takahasi and Wakimoto, 1968; Dell and Clutter, 
1972). 

The RSS procedure relies on a structured selection 
mechanism. Instead of measuring all sampled units, several SRS 
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of equal size are drawn from the population, and the units within 
each sample are ordered using judgmental criteria or auxiliary 
variables. Only one unit from each ranked sample is then selected 
for actual measurement, and the procedure is repeated over 
multiple cycles to obtain the desired sample size. This strategy 
allows ranking information to be exploited while keeping 
measurement costs fixed. 

Motivated by these properties, a wide range of 
modifications of RSS have been proposed in the literature to 
address practical issues such as ranking errors and sample 
wastage. These extensions have been applied to parameter 
estimation problems for various probability distributions, 
including the Kumaraswamy distribution (Hussian, 2014), the 
exponential distribution (Samuh and Qtait, 2015), and the 
Rayleigh-type models (Dey et al., 2016; Esemen and Gürler, 
2018), among others. The growing interest in RSS-based 
estimation highlights its usefulness as an alternative sampling 
framework in both theoretical and applied studies.Khamnei et al. 
(2022) focused on the exponentiated Pareto distribution, and 
Shaaban (2023) studied parameter estimation for the inverted 
topp–Leone distribution under different RSS variants. Gul (2023) 
examined the Lomax distribution under RSS using genetic 
algorithm.  Additional related contributions can be found in 
weighted exponential distribution by Deng and Chen (2024), 
transmuted inverse Rayleigh distribution by Al-Omari et al. 
(2025), exponential-Poisson distribution by Chen et al. (2025), 
Birnbaum-Saunders distribution by Zhang et al. (2025), 
lognormal distribution by Tiwari et al. (2025) and Gompertz 
distribution by Gul and Kocer (2025). 

In addition to the classical RSS framework, several 
modified designs have been proposed in the literature to improve 
efficiency and robustness against ranking errors. Among these, 
extreme ranked set sampling (ERSS), introduced by Samawi et 
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al. (1996). Other notable extensions include median ranked set 
sampling proposed by Muttlak (1997), double ranked set 
sampling developed by Al-Saleh and Al-Kadiri (2000), and multi-
stage ranked set sampling introduced by Al-Saleh and Al-Omari 
(2002). Furthermore, ranked set sampling has been adapted to 
incorporate auxiliary or concomitant information, leading to 
designs such as two-layer ranked set sampling (Chen and Shen, 
2003). Additional variants, including moving extreme ranked set 
sampling (Al-Saleh and Al-Hadrami, 2003) and L-ranked set 
sampling based on L-statistics (Al-Naseer, 2007), have also been 
proposed as effective alternatives within the ranked set sampling 
family. More recently, folded ranked set sampling (FRSS) was 
introduced by Bani-Mustafa et al. (2011) with the aim of reducing 
the wastage of sampling units while maintaining high estimation 
efficiency. By combining information from both lower and upper 
ranked observations within each cycle, FRSS provides a more 
balanced utilization of ranked units. 

In the folded RSS design, a total of [(𝑚𝑚 + 1)/2] random 
samples, each of size m are initially drawn from the population. 
Within each sample, the units are ordered according to the 
variable of interest using inexpensive ranking procedures such as 
visual judgment or auxiliary information. Under the FRSS 
scheme, the selection of units for actual measurement is carried 
out symmetrically from both ends of the ranked sets. Specifically, 
the smallest and largest units are measured from the first ranked 
sample, followed by the second smallest and the (𝑚𝑚− 1)th units 
from the second sample. This alternating selection pattern 
continues in a folded fashion until all required ranks are 
exhausted. Repeating this process over multiple cycles yields a 
folded ranked set sample of the predetermined size. 

The main objective of this work is to investigate the MLE 
of the unknown parameter of the Unit-Teissier (UT) distribution 
under different sampling strategies, namely SRS, RSS and FRSS. 
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The UT distribution is a bounded model obtained from the 
classical Teissier distribution, which was originally proposed by 
Georges Teissier to describe mortality behavior in animal 
populations driven by aging effects. Let 𝑋𝑋 denote a random 
variable following the Unit–Teissier distribution with parameter 
𝜃𝜃 The corresponding probability density and distribution 
functions are given by Equations (1) and (2), respectively 

𝑓𝑓(𝑥𝑥) = 𝜃𝜃�𝑥𝑥𝜃𝜃 − 1�𝑥𝑥−(𝜃𝜃+1)𝑒𝑒−𝑥𝑥−𝜃𝜃 + 1,        𝑥𝑥𝑥𝑥(0, 1)                        (1) 

𝐹𝐹(𝑥𝑥) = 𝑥𝑥𝜃𝜃𝑒𝑒−𝑥𝑥−𝜃𝜃 + 1.                                                               (2) 

To examine the impact of the sampling design on 
estimation accuracy, a detailed Monte Carlo simulation study is 
conducted. The performance of the maximum likelihood 
estimator is evaluated using bias and mean squared error for 
different combinations of sample sizes and parameter values. 
Furthermore, a real data example is analyzed to demonstrate the 
applicability of the proposed estimation procedures and to 
highlight the comparative performance of SRS, RSS, and FRSS 
in practice. 

 

2. PARAMETER ESTIMATION 

This section presents the MLE of the UT distribution 
parameter under different sampling designs. The estimation 
procedures for SRS, RSS and FRSS are discussed in the 
subsections that follow. 

2.1. MLE BASED ON SRS 

Consider an independent sample 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 from the 
UT distribution with probability density function presented in Eq. 
(1). The resulting likelihood function for the parameter 𝜃𝜃 takes 
the form 
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𝐿𝐿(𝜃𝜃; 𝑥𝑥) = 𝜃𝜃𝑛𝑛 ∏ 𝑥𝑥𝑖𝑖
−(𝜃𝜃+1)𝑛𝑛

𝑖𝑖=1 ∏ �𝑥𝑥𝑖𝑖−𝜃𝜃 − 1�𝑛𝑛
𝑖𝑖=1 𝑒𝑒−∑ �𝑥𝑥𝑖𝑖

−𝜃𝜃−1�𝑛𝑛
𝑖𝑖=1         (3) 

and the log likelihood function is 

𝑙𝑙(𝜃𝜃) = 𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃) − (𝜃𝜃 + 1)∑ ln(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + ∑ ln�𝑥𝑥𝑖𝑖−𝜃𝜃 − 1�𝑛𝑛

𝑖𝑖=1 −
∑ �𝑥𝑥𝑖𝑖−𝜃𝜃 − 1�𝑛𝑛
𝑖𝑖=1                                                                             (4) 

Then the MLE of 𝜃𝜃, say 𝜃𝜃�, is obtained by maximizing 𝑙𝑙(𝜃𝜃) 
with respect to 𝜃𝜃. The likelihood equation of 𝜃𝜃 is given by 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑛𝑛
𝜃𝜃
− ∑ ln(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖
−𝜃𝜃 log(𝑥𝑥𝑖𝑖)
𝑥𝑥𝑖𝑖
−𝜃𝜃−1

𝑛𝑛
𝑖𝑖=1 + ∑ 𝑥𝑥𝑖𝑖−𝜃𝜃 ln(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1         (5) 

These equations do not admit closed-form solutions and 
therefore must be solved using numerical optimization 
techniques. 

2.2. MLE BASED ON RSS 

Let 𝑋𝑋(𝑖𝑖:𝑚𝑚)𝑗𝑗 , 𝑖𝑖 = 1, … ,𝑚𝑚 ; 𝑗𝑗 = 1, … , 𝑟𝑟 be a RSS from UT 
distribution with sample size n=mr where m is the set size and r 
is the number of cycles. We denote 𝑋𝑋(𝑖𝑖:𝑚𝑚)𝑗𝑗 by 𝑋𝑋𝑖𝑖𝑖𝑖. Then, the pdf 
of 𝑋𝑋𝑖𝑖𝑖𝑖 is given by 

𝑦𝑦�𝑥𝑥𝑖𝑖𝑖𝑖  ;  𝜃𝜃� = 𝑚𝑚!
(𝑖𝑖−1)!(𝑚𝑚−𝑖𝑖)!

𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖;  𝜃𝜃� �𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖;  𝜃𝜃��
𝑖𝑖−1

× �1 −

𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖;  𝜃𝜃��
𝑚𝑚−𝑖𝑖

                                                                                (6) 

where 𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖;  𝜃𝜃� is the pdf and 𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖;  𝜃𝜃� is the cumulative 
distribution function of X. The likelihood function of RSS is given 
by 

𝐿𝐿(𝜃𝜃;  x) = ∏ ∏ 𝑦𝑦�𝑥𝑥𝑖𝑖𝑖𝑖  ;  𝜃𝜃�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 =

𝐶𝐶1𝑚𝑚𝑚𝑚𝜃𝜃𝑚𝑚𝑚𝑚 ∏ ∏ �𝑥𝑥𝑖𝑖𝑖𝑖
−(𝜃𝜃+1)�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1�𝑒𝑒−∑ �𝑥𝑥𝑖𝑖𝑖𝑖

−𝜃𝜃−1�𝑛𝑛
𝑖𝑖=1 + 1� ×𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1

�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃𝑒𝑒−𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃

+ 1�
(𝑖𝑖−1)

�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃𝑒𝑒−𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃
�

(𝑚𝑚−𝑖𝑖)
                                                 (7) 

where 𝐶𝐶1 = 𝑚𝑚!/(𝑚𝑚− 𝑖𝑖)! (𝑖𝑖 − 1)!. The log-likelihood function is 
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𝑙𝑙(𝜃𝜃) = 𝑚𝑚𝑚𝑚ln(𝐶𝐶1) + 𝑚𝑚𝑚𝑚ln(𝜃𝜃) − (𝜃𝜃 + 1)∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 +

∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1� − ∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 + 𝑚𝑚𝑚𝑚 −𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1

𝜃𝜃 ∑ ∑ (𝑖𝑖 − 1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑖𝑖 − 1)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 +

∑ ∑ (𝑖𝑖 − 1)𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 − 𝜃𝜃 ∑ ∑ (𝑚𝑚 − 𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ (𝑚𝑚− 𝑖𝑖)�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 .                                                           (8) 

The likelihood equation of 𝜃𝜃 is given by 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑚𝑚𝑚𝑚
𝜃𝜃
− ∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 + ∑ ∑

𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃 ln(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃−1

𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 −

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑖𝑖 − 1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ (𝑖𝑖 − 1)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑚𝑚− 𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖� −𝑚𝑚

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1

∑ ∑ (𝑚𝑚− 𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚
𝑖𝑖=1

𝑟𝑟
𝑗𝑗=1 = 0.                                             (9) 

2.3. MLE BASED ON FRSS 

The FRSS sample can be constructed as 𝑋𝑋 = �𝑋𝑋(𝑖𝑖)𝑗𝑗,𝑖𝑖 =

1,2, … ,𝑚𝑚+1
2

; 𝑗𝑗 = 1, … , 𝑟𝑟� ∪ �𝑋𝑋(𝑚𝑚−𝑖𝑖+1)𝑗𝑗,𝑖𝑖 = 1,2, … ,𝑚𝑚+1
2

; 𝑗𝑗 = 1, … , 𝑟𝑟�. 
Based on this sampling scheme, the likelihood function for the UT 
distribution is expressed as follows: 

𝐿𝐿𝑓𝑓(𝜆𝜆,𝛽𝛽; 𝑥𝑥) = ∏ ∏ 𝐶𝐶2𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖; 𝜆𝜆,𝛽𝛽��𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖; 𝜆𝜆,𝛽𝛽��𝑖𝑖−1�1 −
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1

𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖; 𝜆𝜆,𝛽𝛽��𝑚𝑚−𝑖𝑖 ×

∏ ∏ 𝐶𝐶2𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1); 𝜆𝜆,𝛽𝛽��𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1); 𝜆𝜆,𝛽𝛽��𝑚𝑚−𝑖𝑖
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1             

× �1 − 𝐹𝐹�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1); 𝜆𝜆,𝛽𝛽��𝑖𝑖−1                                                (10) 

= 𝐶𝐶3
𝑚𝑚𝑚𝑚𝜃𝜃𝑚𝑚𝑚𝑚 ∏ ∏ �𝑥𝑥𝑖𝑖𝑖𝑖

−(𝜃𝜃+1)�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1�𝑒𝑒−∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃−1�𝑛𝑛
𝑖𝑖=1 +

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1

1� �𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃𝑒𝑒
−𝑥𝑥𝑖𝑖𝑖𝑖

−𝜃𝜃
+ 1�

(𝑖𝑖−1)
�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃𝑒𝑒

−𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃
�

(𝑚𝑚−𝑖𝑖)
×

∏ ∏ �𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−(𝜃𝜃+1) �𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)

−𝜃𝜃 −
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1
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1�𝑒𝑒−∑ �𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 −1�𝑛𝑛

𝑖𝑖=1 + 1� × �𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 𝑒𝑒−𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)

−𝜃𝜃
+

1�
(𝑚𝑚−𝑖𝑖)

�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 𝑒𝑒−𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)

−𝜃𝜃
�

(𝑖𝑖−1)
                                     (11) 

where 𝐶𝐶3 = (𝐶𝐶2)2 = � 𝑚𝑚!
(𝑖𝑖−1)!(𝑚𝑚−𝑖𝑖)!

�
2
. The log-likelihood function 

is then given by 

𝑙𝑙(𝜃𝜃) = 𝑚𝑚𝑚𝑚ln(𝐶𝐶3) + 𝑚𝑚𝑚𝑚ln(𝜃𝜃) − (𝜃𝜃 + 1)∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 +

∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − ∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 − 1�

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 + 𝑚𝑚𝑚𝑚 −

𝜃𝜃∑ ∑ (𝑖𝑖 − 1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑖𝑖 − 1)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 +

∑ ∑ (𝑖𝑖 − 1)𝑚𝑚𝑚𝑚
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − 𝜃𝜃 ∑ ∑ (𝑚𝑚 − 𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ (𝑚𝑚 − 𝑖𝑖)�𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − (𝜃𝜃 +

1)∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)�
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 +

∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 − 1�

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 −

∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 − 1�

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 + 𝑚𝑚𝑚𝑚 − 𝜃𝜃∑ ∑ (𝑖𝑖 −

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1

1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)� − ∑ ∑ (𝑖𝑖 − 1)𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 +

∑ ∑ (𝑖𝑖 − 1)𝑚𝑚𝑚𝑚
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 − 𝜃𝜃∑ ∑ (𝑚𝑚−

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1

𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)� − ∑ ∑ (𝑚𝑚 − 𝑖𝑖)�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 �

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 .          (11) 

The likelihood equation of 𝜃𝜃 is given by 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑚𝑚𝑚𝑚
𝜃𝜃
− ∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 + ∑ ∑

𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃 ln(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖
−𝜃𝜃−1

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑖𝑖 − 1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −
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∑ ∑ (𝑖𝑖 − 1)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑚𝑚− 𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖�

𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ (𝑚𝑚 − 𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖�
𝑚𝑚+1
2

𝑖𝑖=1
𝑟𝑟
𝑗𝑗=1 −

∑ ∑ 𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)�
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 +

∑ ∑
𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 ln(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)
−𝜃𝜃 −1

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 −

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)�
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑚𝑚 −

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1

𝑖𝑖)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)� − ∑ ∑ (𝑚𝑚 − 𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)�
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 −

∑ ∑ (𝑖𝑖 − 1)𝑙𝑙𝑙𝑙�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)�
𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1 − ∑ ∑ (𝑖𝑖 −

𝑚𝑚+1
2
𝑖𝑖=1

𝑖𝑖<𝑚𝑚−𝑖𝑖+1

𝑟𝑟
𝑗𝑗=1

1)𝑥𝑥𝑖𝑖𝑖𝑖−𝜃𝜃 ln�𝑥𝑥𝑖𝑖𝑖𝑖(𝑚𝑚−𝑖𝑖+1)� = 0.                                                      (12) 

Since a closed-form solution is not available, the estimate 
of 𝜃𝜃 is obtained by solving the corresponding normal equations.   

 

3. SIMULATION STUDY 

Since closed-form expressions for the finite-sample 
properties of the proposed ML estimators are not available, a 
Monte Carlo simulation study is performed to assess their 
performance under different sampling schemes. The study 
focuses on the estimation of the UT distribution parameter using 
SRS, RSS and FRSS. The estimators are compared with respect 
to bias and MSE across a range of sample sizes and parameter 
configurations. The simulation experiments are carried out in 
MATLAB with 10,000 replications. The details of the simulation 
procedure are outlined below. 

• SRS of sizes 𝑛𝑛 = 12, 24, 36, 48 are generated 
from the UT distribution. In addition, RSS and FRSS samples are 
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constructed using different set sizes and numbers of cycles for the 
same parameter configurations. 

• For each generated sample and for each sampling 
design, the MLE derived in Section 2 is computed to obtain 
parameter estimates corresponding to the selected sample size. 

• The above steps are repeated 𝑁𝑁 = 10.000 times. 
Based on the resulting estimates, the bias and MSE of the 
estimators are calculated to assess and compare their finite-
sample performance. 

Table 1. Bias values for the parameter θ. 

   𝜃𝜃�𝑚𝑚𝑚𝑚𝑚𝑚 
𝜃𝜃 n m;r SRS RSS FRSS 

0.2 

12 
3;4 0.0095 

 

0.0069 0.0067 
4;3 0.0067 0.0066 
6;2 0.0067 0.0065 

24 
3;8 0.0078 

 

0.0064 0.0065 
4;6 0.0063 0.0064 
6;4 0.0063 0.0064 

36 
3;12 0.0077 

 

0.0064 0.0064 
4;9 0.0061 0.0063 
6;6 0.0058 0.0061 

48 
3;16 0.0075 

 

0.0056 0.0060 
4;12 0.0056 0.0059 
6;8 0.0054 0.0058 

0.5 

12 
3;4 

0.0221 
0.0175 0.0173 

4;3 0.0168 0.0169 
6;2 0.0167 0.0163 

24 
3;8 

0.0181 
0.0162 0.0160 

4;6 0.0159 0.0161 
6;4 0.0159 0.0160 

36 
3;12 

0.0177 
0.0159 0.0162 

4;9 0.0151 0.0161 
6;6 0.0127 0.0137 

48 
3;16 

0.0173 
0.0149 0.0154 

4;12 0.0142 0.0149 
6;8 0.0141 0.0144 

2.0 12 
3;4 

0.0931 
0.0699 0.0666 

4;3 0.0688 0.0671 
6;2 0.0667 0.0661 

24 3;8 0.0765 0.0662 0.0680 
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4;6 0.0575 0.0677 
6;4 0.0514 0.0548 

36 
3;12 

0.0750 
0.0640 0.0646 

4;9 0.0535 0.0539 
6;6 0.0543 0.0545 

48 
3;16 

0.0739 
0.0611 0.0612 

4;12 0.0586 0.0595 
6;8 0.0569 0.0580 

4.0 

12 
3;4 

0.1759 
0.1348 0.1345 

4;3 0.1361 0.1344 
6;2 0.1398 0.1366 

24 
3;8 

0.1453 
0.1272 0.1393 

4;6 0.1277 0.1279 
6;4 0.0997 0.1096 

36 
3;12 

0.1429 
0.1273 0.1285 

4;9 0.1163 0.1274 
6;6 0.1069 0.1272 

48 
3;16 

0.1416 
0.1085 0.1231 

4;12 0.1072 0.1228 
6;8 0.1022 0.1137 

 

Table 2. MSE values for the parameter θ. 

   𝜃𝜃�𝑚𝑚𝑚𝑚𝑚𝑚 
𝜃𝜃 n m;r SRS RSS FRSS 

0.2 

12 
3;4 

0.0021 
0.0009 0.0011 

4;3 0.0008 0.0010 
6;2 0.0008 0.0009 

24 
3;8 

0.0015 
0.0007 0.0009 

4;6 0.0006 0.0008 
6;4 0.0005 0.0008 

36 
3;12 

0.0009 
0.0005 0.0007 

4;9 0.0004 0.0006 
6;6 0.0002 0.0005 

48 
3;16 

0.0008 
0.0002 0.0004 

4;12 0.0001 0.0003 
6;8 0.0001 0.0003 

0.5 

12 
3;4 

0.0027 
0.0015 0.0016 

4;3 0.0013 0.0016 
6;2 0.0010 0.0011 

24 
3;8 

0.0015 
0.0006 0.0007 

4;6 0.0006 0.0006 
6;4 0.0005 0.0005 

36 3;12 0.0012 0.0005 0.0005 
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4;9 0.0005 0.0005 
6;6 0.0005 0.0005 

48 
3;16 

0.0009 
0.0004 0.0004 

4;12 0.0004 0.0004 
6;8 0.0005 0.0005 

2.0 

12 
3;4 

0.0447 
0.0251 0.0272 

4;3 0.0210 0.0263 
6;2 0.0160 0.0183 

24 
3;8 

0.0239 
0.0103 0.0105 

4;6 0.0090 0.0100 
6;4 0.0082 0.0087 

36 
3;12 

0.0188 
0.0076 0.0077 

4;9 0.0073 0.0077 
6;6 0.0072 0.0074 

48 
3;16 

0.0154 
0.0071 0.0072 

4;12 0.0072 0.0071 
6;8 0.0073 0.0072 

4.0 

12 
3;4 

0.1769 
0.0986 0.1097 

4;3 0.0803 0.0967 
6;2 0.0622 0.0729 

24 
3;8 

0.1046 
0.0399 0.0430 

4;6 0.0366 0.0411 
6;4 0.0330 0.0342 

36 
3;12 

0.0932 
0.0301 0.0320 

4;9 0.0295 0.0306 
6;6 0.0287 0.0292 

48 
3;16 

0.0853 
0.0288 0.0291 

4;12 0.0286 0.0287 
6;8 0.0289 0.0286 

• Across all parameter settings and sample sizes, the 
ranked set based designs yield clearly improved 
accuracy relative to SRS. In particular, RSS and FRSS 
consistently produce smaller absolute biases and 
markedly lower MSE values than SRS for the same 
nominal sample size, indicating that incorporating 
ranking information substantially enhances estimation 
efficiency under the UT model. 

• For each fixed 𝜃𝜃 both bias and MSE decrease as the 
sample size increases from 𝑛𝑛 = 12 to 𝑛𝑛 = 48 
reflecting the expected improvement in finite-sample 
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performance of the MLE. This monotone reduction is 
especially evident in the MSE values, where the 
decline is pronounced under SRS and remains visible 
though at a lower scale under RSS and FRSS, 
suggesting greater stability of ranked set based 
estimators even at moderate sample sizes. 

• The bias values indicate that both ranked set based 
sampling designs outperform SRS for all parameter 
values and sample sizes. Compared with SRS, RSS and 
FRSS consistently produce smaller bias, confirming 
the benefit of incorporating ranking information. When 
RSS and FRSS are compared, RSS generally yields 
slightly lower bias across most configurations, 
particularly for small and moderate values of 𝜃𝜃. 
Although the difference between RSS and FRSS is 
modest, the results suggest that RSS provides the most 
accurate estimates in terms of bias, while FRSS 
remains a competitive alternative. 

• Compared with FRSS, RSS generally achieves smaller 
MSE values across most (𝑚𝑚; 𝑟𝑟) configurations, 
indicating superior overall estimation accuracy when 
both variance and bias are taken into account. This 
advantage of RSS is particularly pronounced for larger 
values of 𝜃𝜃 where the MSE reduction relative to FRSS 
becomes more evident. Although FRSS still provides a 
clear improvement over SRS, the results suggest that 
RSS offers the most efficient performance in terms of 
MSE for the MLE of the UT distribution parameter.  

 

4. CONCLUSION 

The parameter estimation problem for the UT distribution 
was studied under SRS and two ranked set based sampling 
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designs. The comparison focused on the MLE and aimed to 
evaluate the effect of using ranking information within the 
sampling process. 

The simulation results confirm that incorporating ranking 
information improves estimation accuracy. In all examined 
settings, estimators obtained from ranked set based samples 
exhibit smaller bias and MSE than those based on SRS. The 
improvement is visible for both small and large sample sizes, 
indicating that the benefit of ranking is not limited to asymptotic 
situations. 

When the two ranked set based designs are compared, 
RSS tends to perform better than FRSS in terms of mean squared 
error. Although FRSS reduces the loss of sampling units and 
performs well relative to SRS, its estimation accuracy is generally 
slightly lower than that of RSS, especially for larger parameter 
values. 

In practical applications, these findings suggest that RSS 
is a suitable choice when estimation accuracy is the main 
objective. FRSS may still be attractive in situations where 
operational considerations, such as reducing sample wastage, are 
important. Further work could explore alternative estimation 
methods, interval estimation, or other ranked set based designs 
for the UT distribution and similar bounded models. 

 

 

 

 

 

 

 

Matematik

196



REFERENCES 

Al-Nasser, A. D. (2007). L unit tesisser: A generalization 
procedure for robust visual sampling. Communications in 
Statistics—Simulation and Computation, 36(1), 33–43. 

Al-Omari, A. I., Benchiha, S. A., & Alomani, G. (2025). 
Parameter estimation for the transmuted inverse Rayleigh 
distribution using ranked set sampling: Applications and 
analysis. AIMS Mathematics, 10(7), 16432–16459. 

Al-Saleh, M. F., & Al-Hadhrami, S. A. (2003). Estimation of the 
mean of the exponential distribution using moving 
extremes ranked set sampling. Statistical Papers, 44(3), 
367–382. 

Al-Saleh, M. F., & Al-Kadiri, M. (2000). Double-ranked set 
sampling. Statistics & Probability Letters, 48, 205–212. 

Al-Saleh, M. F., & Al-Omari, A. I. (2002). Multistage ranked set 
sampling. Journal of Statistical Planning and Inference, 
102(2), 273–286. 

Bani-Mustafa, A., Al-Nasser, A. D., & Aslam, M. (2011). Folded 
ranked set sampling for asymmetric distributions. 
Communications for Statistical Applications and 
Methods, 18(1), 147–153. 

Chen, M., Chen, W. X., Yang, R., & Zhou, Y. W. (2025). 
Exponential–Poisson parameters estimation in moving 
extremes ranked set sampling design. Acta Mathematicae 
Applicatae Sinica, English Series, 41(4), 973–984. 

Chen, Z., & Shen, L. (2003). Two-layer ranked set sampling with 
concomitant variables. Journal of Statistical Planning and 
Inference, 115(1), 45–57. 

Deng, C., & Chen, W. (2024). Weighted exponential parameters 
estimation using maximum ranked set sampling with 

Matematik

197



unequal samples. Communications in Statistics—
Simulation and Computation, 1–24. 
(Advance online publication) 

Dey, S., Salehi, M., & Ahmadi, J. (2017). Rayleigh distribution 
revisited via ranked set sampling. Metron, 75(1), 69–85. 

Esemen, M., & Gürler, S. (2018). Parameter estimation of 
generalized Rayleigh distribution based on ranked set 
sample. Journal of Statistical Computation and 
Simulation, 88(4), 615–628. 

Gul, H. H. (2023). Parameter estimation of the Lomax 
distribution using genetic algorithm based on the ranked 
set samples. Enterprise Information Systems, 17(9), 
2193153. 

Gul, H. H., & Yeniay Koçer, N. (2025). Estimation of the 
Gompertz distribution’s parameters under folded ranked 
set sampling. Sigma: Journal of Engineering & Natural 
Sciences / Mühendislik ve Fen Bilimleri Dergisi, 43(3). 

Hussian, M. A. (2014). Bayesian and maximum likelihood 
estimation for Kumaraswamy distribution based on 
ranked set sampling. American Journal of Mathematics 
and Statistics, 4(1), 30–37. 

Khamnei, H. J., Meidute-Kavaliauskiene, I., Fathi, M., 
Valackienė, A., & Ghorbani, S. (2022). Parameter 
estimation of the exponentiated Pareto distribution using 
ranked set sampling and simple random sampling. 
Axioms, 11(6), 293. 

McIntyre, G. A. (1952). A method of unbiased selective 
sampling, using ranked sets. Australian Journal of 
Agricultural Research, 3, 385–390. 

Muttlak, H. A. (1997). Median ranked set sampling. Journal of 
Applied Statistical Science, 6, 245–255. 

Matematik

198



Sabry, M. A., & Shaaban, M. (2020). Dependent ranked set 
sampling designs for parametric estimation with 
applications. Annals of Data Science, 7(2), 357–371. 

Samawi, H. M., Ahmed, M. S., & Abu-Dayyeh, W. (1996). 
Estimating the population mean using extreme ranked set 
sampling. Biometrical Journal, 38(5), 577–586. 

Samuh, M. H., & Qtait, A. (2015). Estimation for the parameters 
of the exponentiated exponential distribution using a 
median ranked set sampling. Journal of Modern Applied 
Statistical Methods, 14(1), Article 19. 

Shaaban, M. (2023). Parameter estimation for inverted Topp–
Leone distribution based on different ranked set sampling 
schemes. Thailand Statistician, 21(3), 660–674. 

Shaaban, M., & Yahya, M. (2023). Comparison between 
dependent and independent ranked set sampling designs 
for parametric estimation with applications. Annals of 
Data Science, 10(1), 167–182. 

Teissier, G. (1934). Recherches sur le vieillissement et sur les lois 
de la mortalité. II. Essai d’interprétation générale des 
courbes de survie. Annales de Physiologie et de 
Physicochimie Biologique, 10, 260–284. 

Tiwari, N., Chandra, G., Bhari, S., & Banerjee, J. (2025). 
Estimation of location and scale parameters of lognormal 
distribution using median with extreme ranked set 
sampling. Sankhya B, 87(1), 76–102. 

Zhang, J., Chen, W., & Yang, R. (2025). Birnbaum–Saunders 
parameters estimation using simple random sampling and 
ranked set sampling. Communications in Statistics—
Simulation and Computation, 54(9), 3624–3643. 

Matematik

199



TÜRKİYE VE DÜNYADA 

MATEMATİK

YAZ Yayınları
M.İhtisas OSB Mah. 4A Cad. No:3/3

İscehisar / AFYONKARAHİSAR
Tel : (0 531) 880 92 99

yazyayinlari@gmail.com • www.yazyayinlari.com

yaz
yayınları


	REFERENCES
	11.pdf
	ON A CLASS OF PERFECT NUMERICAL SEMIGROUPS
	Numerical semigroups are fundamental algebraic structures used in fields such as determining the structure of error correction codes in coding theory, solving frobenius-type problems in number theory, investigating curve singularities in algebraic geo...

	7.pdf
	2.1. Continuity: A Quantitative Guarantee of Local Behavior
	2.2. Derivative: Controlling the Difference Quotient
	2.3. Integral: Bounding from Above and Below (The Darboux Approach)
	2.4. Convergence, metric, and norm: The language of "how close?"
	3. HISTORICAL TURNING POINTS AND STORIES: CERTAINTY BUILT WITH INEQUALITY
	3.1. Story 1: Archimedes did not find the truth; he surrounded it
	3.2. Story 2: The crisis of analysis and the 𝜺−𝜹 revolution
	3.3. Story 3: Letting go of "visual intuition"
	4. INEQUALITIES AS A MATHEMATICAL TOOL: CLASSICAL INEQUALITIES AND THE CULTURE OF PROOF
	4.1. Classical inequalities are not merely technical
	4.2. Proof strategies: bounding, approximation, comparison
	5. WHAT IF THERE WERE NO INEQUALITY? (A COUNTERFACTUAL ARGUMENT)
	6. INEQUALITY IN EVERYDAY LIFE: A CONCEPT LOADED WITH NORMATIVE AND ETHICAL MEANING
	In everyday language, the term “inequality” often evokes injustices in economic, social, or political contexts. This usage inherently carries normative content meaning it involves value judgments and is usually regarded as a problem that should be red...
	7. DIDACTIC REFLECTIONS: WHY DOESN’T INEQUALITY GET THE RECOGNITION IT DESERVES?
	7.1. A critical thesis: Inequality becomes invisible in teaching
	7.2. Student misconception: Mathematics is not just about results, but about analyzing behavior
	7.3. Didactic suggestion: Teach inequality not as a separate topic, but as a language
	8. CONCLUSION
	REFERENCES

	3.pdf
	5. SONUÇ

	KAPAK.pdf
	Slayt Numarası 1
	Slayt Numarası 2
	Slayt Numarası 3

	KAPAK.pdf
	Slayt Numarası 1
	Slayt Numarası 2
	Slayt Numarası 3




