

BUILDING BITCOIN IN RUST

Lukas Hozda

Building bitcoin in Rust

Copyright © 2024 Braiins Systems, s.r.o. All rights reserved

No part of this publication may be reproduced, distributed, or transmitted in any form
or by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of
brief quotations in critical reviews.

Written by: Lukáš Hozda
Editor: Debbie Liebenberg
Technical reviewers: Daniela Brozzoni, Luukas Pörtfors, Pavel Šimerda
Cover design: Jiří Chlebus
Design consulting: Robert Blecha
Consultations: Jáchym Černý
Typesetting: Sabina Heyová
Marketing strategy: Kristian Csepcsar

Printed in the Czech Republic
978-80-909253-4-2

Braiins, established in 2011 and based in Prague, Czech Republic,
is a global leader in the field of bitcoin mining.

The company specializes in the development of software and
hardware tools for bitcoin miners, including the world’s longest-running bitcoin
mining pool and the first custom operating system for bitcoin mining computers.

Braiins’ tools are used on hundreds of thousands of devices around the world.

You can learn more about the company and our offerings at
braiins.com

V

CONTENT

ACKNOWLEDGMENTS VIII

PRELUDE XI

Who is this book for? XII
Who is this book not for? XIII
Online resources XIV
Requirements XIV
Goals and structure XVI

FOREWORD XVII

INTRODUCTION 19

Why Rust and bitcoin are handsome together 20

ANALYZING THE WHITEPAPER 25

Brief history and overview of bitcoin 25
The whitepaper pulled apart 26

Introduction 26
Transactions 27
Timestamp Server 29
Proof-of-Work 29
Network 31
Incentive 33
Reclaiming Disk Space 34
Simplified Payment Verification 35
Combining and Splitting Value 36
Privacy 37
Calculations 37
Conclusion 42

Final evaluation and next steps 42

SETTING UP 46

Installing Rust 47
Rustup vs native packages 49

Installing VS Code and/or Rust Analyzer 53
Installing Rust Analyzer 53
Installing and setting up VS Code 55

VI

Creating a workspace and starting with Rust 59
Crates 59
Dependency management 60
A tiny Cargo command reference 62
Workspace setup 65

Rust: The first contact 67
Hello world 68
Extended example 77
Referring to Rust documentation 89

TAMING RUST’S LEARNING CURVE 93

Memory model 93
Strings in Rust 101
Lifetimes of owned vs unowned values 104
Pattern matching 111
Global “variables” in Rust 112

Object-Oriented Programming in Rust 113
Visibility and privacy 113
User-defined types (structs and enums) 116
Static dispatch 118
Generic param bounds 120
Dynamic dispatch 121

Functional Programming in Rust 122
Immutability 123
The type system 127
Functions and closures 142
Iterators 145

KEEPING RUST CULTURED 150

Rustfmt 150
Clippy 154

IMPLEMENTING A BITCOIN LIBRARY 157

Data types 163
Error handling in Rust 192

Option<T> - Values might be absent 192
Result<T, E> - Recoverable errors 197
Panics - Errors we cannot recover from 200

Error handling in btclib 202
Difficulty 216
Mining 224

VII

Blockchain methods 225
Splitting up the big file 251
Serialization into and deserialization out of files 256
Utility binaries 261

CREATING A CPU MINER 274

Networking 277
Miner that can talk to a node - Asynchronous Rust 282
Futures and promises 283

Tokio in miner 287

BUILDING A BITCOIN NODE 309

Organization 311
Node discovery 313
Fetching the blockchain from other nodes 316
Handling requests 322
Wrapping up 334

MAKING A CLI/TUI WALLET 338

Making a CLI wallet 339
The core of the wallet 354
The main() function 361

TUI wallet version 365
Logging and the util module 365
Core updates 369
Setting up tasks 381
Cursive user interface 386
The main file 406

CONCLUSION AND NEXT STEPS 413

Evaluating our project 413
Recommended reading from Braiins 414
Other resources for Rust and BTC 414

Rust 415
Bitcoin 416
Final words and opinions of Lukáš Hozda, Gentleman
(not written by Laurence Stern) 417

···············
···············
···············
···············
···············
 ····
···············
···············
···············
···············
···············

ACKNOWLEDGMENTS

IX

“ACK! ACK! ACK!”
– Exclamation unique to pirate skeletons and the TCP protocol

Imagine this: At the end of the movie ‘The Menu’ (2022), Margot, a.k.a Erin, ac-
cuses chef Slowik of preparing food without love. He denies this but then agrees
to make a delicious, greasy cheeseburger for the protagonist. It is a very different
meal from the sterile intellectual exercises served earlier. Not as sophisticated or
perfect, but far more human and welcoming.

Similar to that tasty cheeseburger, this book is made with lots of love and care,
Eurobeat blasting on full volume, and numerous cans of Monster Ultra Zero™. It
is intended to be genuine and authentic. Like almost every labor of love (and the
Roman Empire1) it wasn‘t built in a day, and not by a single pair of hands either.

First and foremost, I would like to thank my grandma, Ing. Daniela Rambousková,
for guiding me through my childhood and helping me become the person I am today.

I want to thank Braiins for giving me the opportunity and support to create this
book. In particular, my gratitude goes to Sabina Heyová, Debbie Liebenberg, Milenko
Rebić, Jáchym Černý, Jiří Chlebus, Martin Connor, and Kristian Csepcsar for not
just expending tremendous effort in making this work of art a reality but also for
putting up with my bullshit. Naturally, I must also thank our CEO, Eli Nagar, who
approved the idea for this book in about two minutes over a random afternoon snack.

I am also very grateful to my other Braiins colleagues and former Rust-course
students for providing valuable feedback on different parts of the book or helping
me improve my teaching skills, especially my team members Mark Firman, Daniel
Havlíček, and Vojtěch Mikulenka.

1 I think about Ancient Rome every day.

X

There is also a long list of friends who were not directly involved with the book‘s
text but either inspired some part of the content or discussed something topical
with me. To name a few: Connor Crawford, Vít Matějíček, Dawid Kubiś, Adam Sed-
láček, and Katka Zusková.

Gratitude also goes to Daniela Brozzoni, who spent a tremendous amount of time
reading the book, providing precious feedback, and writing the foreword; Luukas
“Luukasa” Pörtfors, who meticulously examined every page and provided both
technical and grammatical suggestions; and Piia Huhta for creating her illustrated
animal in the latter part of the book.

Finally, I would like to thank Pavel Šimerda for helping me get involved with the
Czech Rust community around Charles University and reviewing this book.

Remember: Programming can be a fun and creative discipline. Experiment, build
with purpose, learn with passion, and keep on keeping on, always. :)

Let’s take a look at the book now.

Lukáš Hozda
Renaissance man 🦀

···············
···············
···············
···············
···············
 ·········
···············
···············
···············
···············
···············

PRELUDE

XII

Howdy, my name is Lukáš, and I am the author of this book. If all goes well, you
hold a copy of our first published book in programming. It also happens to be my
first book. Thank you for picking it up, and I wish you a pleasant journey if you
continue reading it beyond this point.

Together, we will embark on a journey that should enhance your knowledge in two
areas. In Rust, the programming language, and in bitcoin. To me, these are both
exciting areas. I first learned about bitcoin in 2013 and started using Rust full-time
in 2015. At the beginning of 2021, I joined Braiins, which let me work with Rust in
a bitcoin-adjacent environment. Now, after almost a decade working with these,
I want to share my passions with you.

Before we can do that, we need to answer the most significant question: Is this
book for you?

WHO IS THIS BOOK FOR?
The primary target audience is people in the field of IT, both students and pro-
fessionals. The optimal intersection is for those who like both bitcoin and pro-
gramming. If you keep up with IT news, you have undoubtedly heard about Rust:
the up-and-coming star programming language.2 Bitcoin, conversely, remains the
time-tested, golden standard of cryptocurrency.

You do not need to have an interest in both. This book may be the final bargaining
chip to convince you that Rust is a great tool or that bitcoin does, in fact, represent
sound money based on its technical merits alone.

If you are a Computer Science student looking to learn something new, welcome,
you are in the right place. If you are a bitcoin enthusiast with some programming

2 Also the leading language in hot takes on Twitter and Reddit.

XIII

knowledge - perfect, you will have a great time. Programmers looking to learn Rust
or to add another project to their portfolio? Come aboard!

WHO IS THIS BOOK NOT FOR?
No book is for everybody, and this one is no exception. In this text, we will practice
learning through development. We will get our hands dirty and spend a considerable
amount of time developing a project. Sometimes, you may get stuck thinking over
an issue - Rust is a language with a steep learning curve and it pulls no punches.3
Very often, you have to do things properly the first time and cannot take shortcuts.

I do my best to make things easier for you, but you need the time and the means
to follow along in order to succeed. Keep in mind that programming languages are
ultimately tools - and different tools perform differently for different tasks. Rust is
a great programming language for systems programming, backend development,
embedded systems, and networking. It is not the best tool for frontend developers
(although it is improving rapidly in this domain!), for fast prototyping, for scientific
programming, for mobile applications or for machine learning and data science.
That being said, you can use almost any programming language for almost anything.
There are people who have written toy operating systems in JavaScript.4

If you are a complete newbie to programming, this book may scare you with its
seeming complexity. It is not that complex, but IT is a large field, and penetrating
it requires much effort and learning. I like soft landings for my newcomer colle-
agues and soft launches for my students. If you fall into this category, start with
something simpler.

Python is a great programming language as your first and has many great books
and websites. There are also toy projects that are easier for beginners than a block-
chain would be. Make a simple text game, an editor, a calculator, or a website to
manage a database of recipes. In my case, the breakthrough projects were mods
for Minecraft and Terraria. To misquote Shakespeare‘s Merry Wives of Windsor:
“The world is your oyster.”

So seize the day, one step at a time. You can return to this book later. I won‘t be
mad, I promise.

3 Fighting the borrow-checker is an established phrase for Rust newbies.
4 The mere thought keeps me up at night. But people also made operating systems in Java, and made Linux run in JavaScript…

XIV

ONLINE RESOURCES
We are all humans, and it is natural that it may be hard to keep track of all the code
that we will be writing in this book. I have bundled up all the source code and some
additional information into a repository here:
https://github.com/braiins/build-bitcoin-in-rust

If you run into any issues, refer back into the repository. If you struggle with
anything, don’t be afraid to reach out to me on Twitter/X (@LukasHozda), or open
an issue in the repository. :)

REQUIREMENTS
To make the most out of this book, you should meet a couple of requirements. This
book is beginner-friendly, but it is only for some beginners. You need to know at
least one other programming language. Statically-typed languages prepare you
the best (Java, Kotlin, C#, C/C++...), but dynamically-typed are alright too (Python,
JS...). Mastering a functional programming language (Haskell, OCaml, F#...) makes
you a superstar, and learning Rust will be a breeze.

Furthermore, we will touch upon a few concepts from the realm of low(er)-level
programming:

 ● Pointers
 ● Allocations
 ● Stack and the heap (in the context of memory management)
 ● Threads

While we will remind ourselves of technical terms when appropriate, you may have
an easier time if you are already familiar.

Here is a brief description of all of these:

Pointers: Variables that store memory addresses of other data. They “point” to
locations in memory, allowing direct access and manipulation of data at that ad-
dress. Useful for dynamic memory management and efficient data structures. In
Rust, you will mostly hear pointers being referred to as borrows, and apart from
an address, they are also tagged with information about the lifetime of the data
they are pointing to. Pointers (and borrows), can be read-only (also referred to as

https://github.com/braiins/build-bitcoin-in-rust
https://x.com/LukasHozda

XV

immutable, or shared, in Rust), or they can allow write access as well (making them
mutable, or exclusive, in Rust).

Allocations: Process of reserving memory for program use. Can be static (resolved
during compilation) or dynamic (at runtime). Dynamic allocation lets programs
request memory as needed, but requires manual management to avoid leaks.5
To put it slightly differently, memory is a managed resource. You have to ask the
operating system to assign you memory you can use, and you have to return the
memory once you no longer do. Forgetting to return the memory is a memory
leak, while using memory that is not assigned to you is an access violation that
may lead to a segmentation fault.

Stack: Fast, automatically managed memory for local variables. LIFO (Last-In-First-
-Out) structure, limited size (on your desktop, each program/thread has a default
stack limit of units of megabytes). Your local variables live on the stack. Allocations
on the stack are usually automatic, and so is their cleanup. However, you cannot
resize allocations on the stack.

Heap: Larger, manually managed memory for dynamic allocation. Flexible but
slower, requires explicit deallocation to prevent leaks. This is where vectors (dy-
namic lists), variable-sized strings, and bigger objects live.

Threads: Lightweight units of execution6 within a process. Allow concurrent
operations, sharing the same memory space. Useful for parallel processing and
responsive applications, but require careful synchronization to avoid conflicts.

Back to the topic at hand.

Many online materials and videos on YouTube are available to explain each concept,
so I have no doubt that you will be able to find ones that speak to you. Same goes for
the Rust concepts - there are many ways to explain some of the most difficult concepts,
and one explanation may suit you better than others. So do not consider this book in
a vacuum, if you don’t understand something on the first go, do not feel bad about
it, try again, or try a different explanation, then come back to the text of the book.

5 Static allocation is the stack, and it is where local variables are usually located. Stack is small (single MBs), but very fast.
Dynamic allocation is on the heap, which is slower, but much larger (essentially your entire RAM), and allows reallocation.
6 Such as sub-processes or tasks.

XVI

Finally, you will also need a computer, an internet connection, and some peace and
quiet. The final one is not a deal-breaker; we all know how hectic modern life can be.

GOALS AND STRUCTURE
This book is not a complete overview of bitcoin nor a complete reference for Rust.
Our journey aims to introduce new concepts one by one and immediately put
them to good use.

We will begin by looking at the cornerstone of bitcoin - its whitepaper. The whi-
tepaper is a remarkably short and well-written document, and we will read and
examine it together.

As we do so, we will learn about bitcoin in theory. We can map out how to apply
the theory based on our new knowledge.

We will do this by conceiving a plan and then executing it bit by bit, learning Rust
along the way. Together, we will build the three necessary components of our toy
bitcoin:

 ● the miner
 ● the CLI wallet
 ● the bitcoin node

When all the components are ready, we will deploy and kickstart our blockchain.
You will then be able to enjoy the fruits of your labor, send fake sats to your friends,
and include this project in your portfolio.

One thing to note is that we will neither be writing the perfect Rust, nor will we be
making the perfect bitcoin. Compromises have to be made, otherwise this book
would have been three times as long, and to be fair, maybe not as exciting.7

Sounds good? Let‘s get on with it. Have fun and enjoy the adventure.

NOTE: Having a place where to keep notes and things you want to go back to may
be very valuable for you when tackling the contents of this book. I like pen and
paper, but both it and digital forms are perfectly fine.

7 Read: our typesetting lady, who also happens to manage this project, would kill me.

···············
···············
···············
···············
···············
 ········
···············
···············
···············
···············
···············

FOREWORD

XVIII

Bitcoin is the best form of money in the world, though I didn‘t understand that when
I first started exploring it. What caught my attention was the incredibly complex
engineering problem that bitcoin solves: achieving consensus on ownership of coins
through a trustless, private, peer-to-peer network. This problem fascinated me, and
I found myself going deeper and deeper down the rabbit hole. Over time, I discovered
the many other aspects of bitcoin - how it can help us build a better world based
on sound money, protect people‘s privacy and freedom, and allow self-sovereignty
and security. Ultimately, it was my curiosity about the engineering that led me to
become a bitcoin developer, but it‘s my love for the cause that still fuels me.

Similar to bitcoin, Rust also caught my attention by solving a challenging enginee-
ring problem: ensuring that dumb developers write safe and performant code. For
me, learning Rust was a tough journey - as you‘ll soon notice, the compiler is pretty
grumpy, and will complain relentlessly until you write code safe from issues like
double-free memory bugs, dangling pointers and null references. Don‘t be intimi-
dated, though: before switching to Rust, I was a Java developer with little experience
using C/C++; yet, through a lot of trial and error, I learned the language and gained
a deeper understanding of how computers work. Rust became more manageable
with experience, though it never stopped being challenging - but ask yourself, as
bitcoin developers, should we aim for easy code or for safe code?

Looking back, this book is exactly what I needed when I started. It provides a concise
overview of bitcoin and Rust before diving straight into hands-on action. By the
end, you won‘t be an expert in either, but you will have a practical understanding
of both, along with your own pet project to improve and practice on.

You might think there are already many bitcoin developers, and it‘s true, but there‘s
never enough. There is still much to improve, whether in privacy, UX, scalability,
design, or many other areas. I don‘t know you, fellow reader, but I know you are
different from all the other developers out there, and as such, you have something
unique to contribute.

Let this book be the start of an amazing journey, and together, we can make bit-
coin even better.

Daniela Brozzoni
Bitcoin developer 🦄

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

1INTRODUCTION

20

Before me there were no created things,
Only eterne, and I eternal last.
All hope abandon, ye who enter in!”

– Dante Alighieri, Inferno, Canto III

Ha, I hope I didn’t scare you with this quote. We are about to enter a new realm, but
do not worry, ever since COBOL proved that programming languages should be de-
signed by enthusiasts and academics (and not business committees) learning a new
language is not abject misery, and, in fact, is not comparable to a descent into hell.

Rust, much like the vast and intricate circles of Dante‘s Inferno, is layered with
concepts that are deep and sometimes seem daunting. Fortunately, and unlike the
despairing souls in Dante‘s work, we as Rustaceans, are equipped with powerful
resources, an enthusiastic and supportive community, and a language designed
to empower us to write better programs (and indeed, many, myself included, have
experienced that learning Rust made us write better programs in other languages).
Our journey through Rust is one of enlightenment, where each concept we master
and every line of code we write brings us closer to the divine comedy of creating
software that is not only efficient and reliable but also a joy to craft.

Without further ado, let me be the Virgil to your Dante, and let me guide you safely
through the world of Rust programming.8

WHY RUST AND BITCOIN ARE HANDSOME TOGETHER
If you know me, which is unlikely, you will see that I have certain “Finnic” relati-
ons. I am “in the know” with the finnic lifeforms, if you will. To put it bluntly, I am
a Czech man uniquely surrounded by Finns. There are many of them; they are

8 This line was revealed to me in a dream.

21

all stellar guys and gals, and one could say that I am one with' the sauna people.
I have a good friend, a gentleman known as “Luukasa”, which is a cleverly hidden
compound word meaning “a pile of bones” (owing to his pre-army physique). He
has this linguistic quirk where he calls technologies, programming languages,
algorithms, or straight-up math concepts “handsome.”

It is difficult to describe this handsomeness precisely, but I would tackle it this way.
If something has quality, is somehow aesthetically pleasing, and makes sense, then
it is handsome. Unfortunately, we cannot go further down into our analysis. If you
want to know what quality is, you can read Pirsig‘s “Zen and the Art of Motorcycle
Maintenance” and Kant for aesthetics. I am unaware of a book that would make
sense out of making sense. Aristotle tried.

But I digress.

As it turns out, Rust is quite handsome. It underwent tremendous trial and error,
research, experimentation, and discussion. It also maintains a level of cleanliness,
clarity, and ergonomics. The language assumes a pragmatic philosophy - let‘s change
what needs to change, let‘s keep what is tried and true. Like bitcoin, it was born
from the creator growing tired of something. For Rust, it was a lack of robustness
and rampart memory management errors. For bitcoin, it was the financial system,
which, if you have ever had issues with your bank, makes it handsome too.

A principal motto for bitcoin is “Don‘t trust, verify“. Rust, as a language, follows
the same philosophy. By mandating safe and effective programming, it reduces
the amount of trust you need to invest in other programmers. Using a 3rd party
library in C requires a lot of trust; there may be dozens and dozens of instances
of undefined behavior, memory leaks, and other errors. These are not possible in
safe Rust.9 If something is potentially unsafe, it is visible and limited to the smallest
scope necessary, making it easy to audit these critical sections of code.

In other words, Rust offloads trust onto the compiler (and, more broadly, the langu-
age‘s design), while bitcoin offloads trust onto cryptography and its Proof-of-Work
approach in general.

However, no security and cryptographical soundness is enough if a memory issue
makes you print your deepest secrets. Such was the case with the famous Heart-

9 Memory leaks are possible in safe Rust, although much harder to achieve. A memory leak is, however, not unsafe in
and of itself. However, memory leaks may create unsafe conditions, so the safety of memory leaks is a topic for debate
in some circles.

22

bleed security bug in the OpenSSL cryptography library, which allowed clients to
ask for more data to be echoed back than they sent.

You could say:

“Here is the string 'Hello, Braiins!' please send me back the first 512 bytes of this
15-byte string.”

And OpenSSL would reply with “Hello, Braiins!” followed by whatever lies after it
in the program‘s memory, which could be passwords, certificates, private keys, or
whatever else your heart desires.

Thus, if we want bulletproof technologies, we are incentivized to use the most se-
cure tools available. Rust is handsome. Bitcoin is handsome. Together, they make
for the most “handsomest” combination.

I am far from the only one who has noticed that Rust works well with crypto. The
Stratum V2 (a protocol miners use to talk to pools) has a reference Rust imple-
mentation. Almost everything Braiins makes is in Rust. SatoshiLabs is exploring
Rust, too. Finally, a biblical flood of non-bitcoin crypto projects (mostly scams) use
Rust. If you ever put Rust into your LinkedIn profile, these companies will spam
you with job offers.

It is not only crypto, though. Rust, on its own, enjoys great popularity. Year after year,
it wins StackOverflow‘s “most beloved language” category in its annual developer
survey. It attracts attention from every type of programmer - hobbyists, students,
professionals, and researchers. And I hope that it will entice you, too. But let‘s not
get ahead of ourselves. We should start at the beginning. Let‘s take a look at the
beginning of Rust and of bitcoin.

Here‘s Rust:

// main.rs
fn main() {
 println!("Hello, world!");
}

23

This code snippet is, as you know, the quintessential Hello World program, which
is generally the first thing you learn in any language. When we are done analyzing
the whitepaper, this is the first piece of code that we will run.

And here‘s bitcoin:

00000000
00000010
00000020;£íýz{.²zÇ,>
00000030 gv.a.È.ÃˆŠQ2:Ÿ¸ª
00000040 K.^J)«_Iÿÿ...¬+|
00000050
00000060
00000070ÿÿÿÿM.ÿÿ..
00000080 ..EThe Times 03/
00000090 Jan/2009 Chancel
000000A0 lor on brink of
000000B0 second bailout f
000000C0 or banksÿÿÿÿ..ò.
000000D0 *....CA.gŠý°þUH'
000000E0 .gñ¦q0·.\Ö¨(à9.¦
000000F0 ybàê.aÞ¶Iö¼?Lï8Ä
00000100 óU.å.Á.Þ\8M÷º..W
00000110 ŠLp+kñ._¬....

Here, you see the genesis block of bitcoin: the very first one mined and therefore
the beginning of the blockchain (commonly also referred to as timechain by BTC
developers). Notice how the creator of bitcoin, Satoshi Nakamoto, was lovingly
tongue-in-cheek with his inclusion of that day‘s newspaper headline about bank
bailouts. Subtlety is a most gentle art.

Let’s read the whitepaper together now.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

2ANALYZINGTHE WHITEPAPER

25

BRIEF HISTORY AND OVERVIEW OF BITCOIN

Bitcoin started in 2009, created by someone using the name Satoshi Nakamoto.10
It is a digital currency, different from traditional money because there‘s no autho-
rity. Instead, bitcoin runs on a computer network that tracks all transactions on
a public ledger (the blockchain).

To ensure every transaction is secure, bitcoin uses a process called mining. Miners
run a math algorithm (SHA-256, to be exact) to confirm transactions. A successful
verification rewards the miner with bitcoin. This process also creates new coins,
mimicking how we mine gold from the earth, but digitally. Over time, bitcoin grew
from a novelty to a significant player in the financial world. Now, it challenges how
we think about money.

These two paragraphs should give you the briefest introduction to what bitcoin is (if
Rust brought you to this book and not bitcoin). Unfortunately, discussing bitcoin‘s
history and economics is beyond the scope of this book. If this is something that
interests you, check out our other books:

 ● Bitcoin: Separation of Money and State (by Josef Tětek)
 ● Bitcoin Mining Economics (by Daniel Frumkin)
 ● Bitcoin Mining Handbook (by Daniel Frumkin)

All of the aforementioned books are freely available on the Braiins website.

10 Speculation about who Nakamoto is is one of the only sources of bitcoin controversy. Personally, I hope it was either
aliens or a disgruntled blue-collar worker.

26

THE WHITEPAPER PULLED APART
What follows is the text of Satoshi‘s whitepaper. I have taken some slight liberties with it by
omitting the abstract and the sources. Since the whitepaper is a public document, you can
find these without issue.

Before we start, there are a couple terms you may be unfamiliar with:

 ● Hash - A number produced by a hashing function. A hashing function takes input
data of any length, and produces one number11. Ideally, the smallest change in the
input should generate a completely different hash, and it should be impossible to
calculate the original data from the hash. Some examples of hashing functions are
the SHA family, MD5 or Adler32.

 ● Node - A node is a member of a network. In the context of bitcoin, a node is a pro-
gram (we can call the computer running the program a node also), which stores
either a complete or a partial copy of the timechain, and takes care of validation,
propagation, and formerly, in some cases, mining.

 ● Private and public keys - Cryptography can be either symmetric (there is only one
key that does both decryption and encryption), or asymmetric (there is a private key
with more capabilities than the public key). In the context of encryption, the public
key can only encrypt data, but not decrypt. In the context of digital signatures, the
public key can only verify signatures, but cannot sign. The private key can do both and
the public key is typically calculated from it. Asymmetric cryptography is typically
slower than symmetric, and so it is commonly used to securely exchange a symmetric
key when you want to establish encrypted communication with another party.

Introduction
Commerce on the Internet has come to rely almost exclusively on financial insti-
tutions serving as trusted third parties to process electronic payments. While the
system works well enough for most transactions, it still suffers from the inherent
weaknesses of the trust-based model. Completely non-reversible transactions are
not really possible, since financial institutions cannot avoid mediating disputes.
The cost of mediation increases transaction costs, limiting the minimum practical
transaction size and cutting off the possibility for small casual transactions, and
there is a broader cost in the loss of ability to make non-reversible payments for
non-reversible services. With the possibility of reversal, the need for trust spreads.
Merchants must be wary of their customers, hassling them for more information

11 In more general terms, a hash function produces data of fixed length.

27

than they would otherwise need. A certain percentage of fraud is accepted as
unavoidable. These costs and payment uncertainties can be avoided in person by
using physical currency, but no mechanism exists to make payments over a com-
munications channel without a trusted party.

This paragraph focuses on the commercial need for bitcoin, but we can start considering
the technical needs first. For starters, transactions must be irreversible, so our implemen-
tation should not allow cancellation. The user should have no power over the transaction
after creating and sending it to the network. It may, however, time out.

What is needed is an electronic payment system based on cryptographic proof
instead of trust, allowing any two willing parties to transact directly with each
other without the need for a trusted third party. Transactions that are computati-
onally impractical to reverse would protect sellers from fraud, and routine escrow
mechanisms could easily be implemented to protect buyers. In this paper, we pro-
pose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of
transactions. The system is secure as long as honest nodes collectively control
more CPU power than any cooperating group of attacker nodes.

Transactions
We12 define an electronic coin as a chain of digital signatures. Each owner transfers
the coin to the next by digitally signing a hash of the previous transaction and the
public key of the next owner and adding these to the end of the coin. A payee can
verify the signatures to verify the chain of ownership.

As mentioned above, a hashing function takes any data, and by calculating the hash
again, we can verify the integrity of data (if the data is unchanged, it will generate the
same hash). Private and public keys can be used as a secure proof of ownership of your
coins. Some hashing functions are very secure, others less. We need to use ones that are
secure enough.

12 Who's the "we" in Satoshi's paper? Is it CIA? I am hoping for the Spanish Inquistion.

28

The problem of course is the payee can‘t verify that one of the owners did not double-
-spend the coin. A common solution is to introduce a trusted central authority, or
mint, that checks every transaction for double-spending. After each transaction,
the coin must be returned to the mint to issue a new coin, and only coins issued
directly from the mint are trusted not to be double-spent. The problem with this
solution is that the fate of the entire money system depends on the company run-
ning the mint, with every transaction having to go through them, just like a bank.

We need a way for the payee to know that the previous owners did not sign any ear-
lier transactions. For our purposes, the earliest transaction is the one that counts,
so we don‘t care about later attempts to double-spend. The only way to confirm
the absence of a transaction is to be aware of all transactions. In the mint-based
model, the mint was aware of all transactions and decided which arrived first. To
accomplish this without a trusted party, transactions must be publicly announced,
and we need a system for participants to agree on a single history of the order in
which they were received. The payee needs proof that at the time of each transac-
tion, the majority of nodes agreed it was the first received.

Transactions, blocks and block headers are the main data structures that we will need
to model in our application. We can take some inspiration from real bitcoin, but we will
simplify our implementation a bit.

Furthermore, we will be able to be flexible with the underlying byte format, as we do not
need to match the format used by the bitcoin network (naturally, it is possible to do that,
but it would complicate our implementation with little educational benefit).

29

This will simplify things greatly, as we will be able to use an established binary format,
and automatically convert to and from it with the serde library.

Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works
by taking a hash of a block of items to be time stamped and widely publishing the
hash, such as in a newspaper or Usenet post13. The timestamp proves that the
data must have existed at the time, obviously, in order to get into the hash. Each
timestamp includes the previous timestamp in its hash, forming a chain, with each
additional timestamp reinforcing the ones before it.

The timestamp server is the node of our network. It is a network application which
maintains our timechain and talks to other nodes in the network. We will create our
own simple fake bitcoin node, and later teach it to talk to other nodes.

Nodes that talk to each other have to be able to reach a consensus. We will simplify things
here a little bit.

Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need
to use a proof-of-work system similar to Adam Back‘s Hashcash [6], rather than
newspaper or Usenet posts. The proof-of-work involves scanning for a value that
when hashed, such as with SHA-256, the hash begins with a number of zero bits.
The average work required is exponential in the number of zero bits required and
can be verified by executing a single hash.

13 A distributed discussion system predating the World Wide Web, ask your IT grandpa :-)

30

Adam Back’s Hashcash is a proof-of-work system for combating spam from 1997. Many
moons ago, spam email seemed like a real problem. It still is, but the sheer power of our
internet infrastructure can handle it pretty well. Spam traffic does not critically maim
contemporary mailing services. We implemented spam filters capable of stopping (or at
least moving out of sight) the majority of it.14

Back in the day, the situation was different. Malicious actors could spam relatively free-
ly, and DoS attacks were a real threat. Measures to prevent users from sending emails
quickly, as spammers do, were considered. One straightforward and more insidious way
of combating this was introducing fees per email sent.

This proposal was not popular with many people, and one of those people was Adam
Back. He suggested an alternative, where the payment for an email would not be money
but the computational performance of the sender by hashing. This “hashing fee” is why
Back called his idea Hashcash.

The Hashcash PoW system requires the user to compute a moderately challenging but
not intractable function. While this system saw some implementations for emails, it was
never ubiquitous, never saw widespread usage, and the situation was complicated by
implementations often being incompatible with each other. For example, the Microsoft
implementation, naturally, lacked compatibility with anything else.

For our timestamp network, we implement the proof-of-work by incrementing
a nonce in the block until a value is found that gives the block‘s hash the required
zero bits. Once the CPU effort has been expended to make it satisfy the proof-of-work,
the block cannot be changed without redoing the work. As later blocks are chained
after it, the work to change the block would include redoing all the blocks after it.

A nonce (apart from its British meaning where it, I believe, describes the average poli-
tician) stands for “number only used once”. Essentially, we add a counter to our block
header, and keep incrementing it. In real bitcoin, the difficulty is high enough that we
need an additional source of randomness - an extra nonce. This nonce is embedded in
the coinbase transaction.

You will see that throughout this text, Satoshi Nakamoto mentions the word CPU. This is
because in the early days, bitcoin would be mined on the CPU. A few years into bitcoin’s
history, we figured out we can calculate SHA-256 on our graphics cards, and GPU-mi-
ning became a thing. Later on, we started making ASIC machines (Application Specific

14 These spam filters are fairly centralized, though, and it is a question if that is a good thing.

31

Integrated Circuit), which used chips that could only compute SHA-256, but nothing
else, however, very effectively.

We are still using ASICs today.

The proof-of-work also solves the problem of determining representation in ma-
jority decision-making. If the majority were based on one-IP-address-one-vote, it
could be subverted by anyone able to allocate many IPs. Proof-of-work is essentia-
lly one-CPU-one-vote. The majority decision is represented by the longest chain,
which has the greatest proof-of-work effort invested in it. If a majority of CPU power
is controlled by honest nodes, the honest chain will grow the fastest and outpace
any competing chains. To modify a past block, an attacker would have to redo the
proof-of-work of the block and all blocks after it and then catch up with and surpass
the work of the honest nodes. We will show later that the probability of a slower
attacker catching up diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running
nodes over time, the proof-of-work difficulty is determined by a moving average
targeting an average number of blocks per hour. If they‘re generated too fast, the
difficulty increases.

In real bitcoin, the block time should average out to one block every ten minutes. Of
course, we are working with statistics and random chance, and sometimes there is only
a couple seconds between blocks. Sometimes, there have been hours between blocks.

Difficulty is adjusted every 2016 blocks, which corresponds to exactly two weeks if every
block takes 10 minutes on average. If it takes less, difficulty is increased, if it takes more
than that, difficulty is decreased.

We will write our blockchain in such a way that we can configure both the block time
and the adjustment period, so that development is faster. It would be a real slog, if we
had to wait two weeks to see if our code works, haha!

Network
The steps to run the network are as follows:

1. New transactions are broadcast to all nodes.

32

Transactions will be created by our wallets, which connect to one or more nodes. The
nodes will then broadcast the transactions to other nodes they know. Naturally, we will
need a mechanism to verify that we do not have the same transaction multiple times.
Luckily, we can simply hash them.

New transactions are stored in something called the “mempool”. We can consider this to
be a list of unprocessed transactions. Whether it is actually a list is an implementation
detail. There are other data structures that can make it easier for us to detect duplicate
transactions.

2. Each node collects new transactions into a block.

In the bitcoin blockchain, transactions include fees that provide incentives to miners to
include them in a new block. We can experiment with this mechanism and let our miner
choose its transactions. Bitcoin uses a unit called sats/vByte, with the “v” standing for
“virtual”. This was introduced in the SegWit (Segregated Witness) update, where some
bytes of the transaction would only count as ¼ of a byte.

Explaining SegWit and the scalability of bitcoin is beyond the scope of this text, but great
documentation exists online15.

3. Each node works on finding a difficult proof-of-work for its block.

This is the mining process. Just like real bitcoin, we will be calculating SHA-256. Our
miner will be as simple as possible - it will only use one CPU core. After you finish the
book (or even during!), you can improve the miner to be multithreaded, or to use the GPU.

4. When a node finds a proof-of-work, it broadcasts the block to all nodes.

In practice, miners pool together, and do not communicate with the nodes directly. This
is valuable for miners in today’s environment where it could take centuries for a single
miner to find a block. However, implementing a pool is not necessary for our project.

5. Nodes accept the block only if all transactions in it are valid and not already
spent.

6. Nodes express their acceptance of the block by working on creating the next
block in the chain, using the hash of the accepted block as the previous hash.

15 https://en.bitcoin.it/wiki/Main_Page

33

Nodes always consider the longest chain to be the correct one and will keep wor-
king on extending it. If two nodes broadcast different versions of the next block
simultaneously, some nodes may receive one or the other first. In that case, they
work on the first one they received, but save the other branch in case it becomes
longer. The tie will be broken when the next proof-of-work is found and one branch
becomes longer; the nodes that were working on the other branch will then switch
to the longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long
as they reach many nodes, they will get into a block before long. Block broadcasts
are also tolerant of dropped messages. If a node does not receive a block, it will
request it when it receives the next block and realizes it missed one.

We will need to keep these rules in mind when implementing our node.

Incentive
By convention, the first transaction in a block is a special transaction that starts
a new coin owned by the creator of the block. This adds an incentive for nodes to
support the network, and provides a way to initially distribute coins into circulation,
since there is no central authority to issue them. The steady addition of a constant
amount of new coins is analogous to gold miners expending resources to add gold
to circulation. In our case, it is CPU time and electricity that is expended.

Traditionally, the first transaction in a block is called the coinbase transaction. The
amount of new bitcoin created is governed by the following equation:

The moment when the new bitcoin reward is decreased it is called, quite appropriately,
the halving. It occurs every couple of years and the latest one in 2024 has reduced the

34

block reward to 3.125BTC per block. If you add up the infinite series, you will see that
the total supply of bitcoin will never exceed 21 million. This is one of the major selling
points of bitcoin, as it prevents infinite inflation.

21 million is a nice number, and has a great significance in the bitcoin community.
Therefore, we can use the exact same equation.

The incentive can also be funded with transaction fees. If the output value of
a transaction is less than its input value, the difference is a transaction fee that is
added to the incentive value of the block containing the transaction. Once a pre-
determined number of coins have entered circulation, the incentive can transition
entirely to transaction fees and be completely inflation free.

The total reward a miner gets = block reward + fees.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able
to assemble more CPU power than all the honest nodes, he would have to choose
between using it to defraud people by stealing back his payments, or using it to
generate new coins. He ought to find it more profitable to play by the rules, such
rules that favour him with more new coins than everyone else combined, than to
undermine the system and the validity of his own wealth.

Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks, the spent
transactions before it can be discarded to save disk space. To facilitate this without
breaking the block‘s hash, transactions are hashed in a Merkle Tree, with only the
root included in the block‘s hash. Old blocks can then be compacted by stubbing
off branches of the tree. The interior hashes do not need to be stored.

A Merkle tree structures data, allowing efficient and secure verification. It‘s a binary tree
where each leaf node contains a hash of each of the pieces of data, and non-leaf nodes
contain the combined hash of their children. This design enables quick confirmation of
data contents through a small set of hashes, streamlining integrity checks and minimi-
zing data transfer.

In the context of bitcoin, the leaves of this tree are the individual transactions. Those then
get combined over and over again into a single hash, which is the root of the Merkle tree.

35

A block header with no transactions16 would be about 80 bytes. If we suppose blocks
are generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With
computer systems typically selling with 2GB of RAM as of 2008, and Moore‘s Law
predicting current growth of 1.2GB per year, storage should not be a problem even
if the block headers must be kept in memory.

Today’s computers have a lot more RAM and drive space and our project is not going to be
too big, so we do not need to worry about reducing memory usage. We will not expose the
underlying storage of the Blockchain we make though, so you should be able to improve
it without having to change any other part of the project.

Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only
needs to keep a copy of the block headers of the longest proof-of-work chain, which
he can get by querying network nodes until he‘s convinced he has the longest chain,
and obtain the Merkle branch linking the transaction to the block it‘s timestamped
in. He can‘t check the transaction for himself17, but by linking it to a place in the
chain, he can see that a network node has accepted it, and blocks added after it
further confirm the network has accepted it.

16 A block is a header + a list of transactions. An empty block would be just the header. In reality, these are rare.
17 You cannot verify transactions in a vacuum.

36

As such, the verification is reliable as long as honest nodes control the network,
but is more vulnerable if the network is overpowered by an attacker. While network
nodes can verify transactions for themselves, the simplified method can be fooled
by an attacker‘s fabricated transactions for as long as the attacker can continue to
overpower the network. One strategy to protect against this would be to accept
alerts from network nodes when they detect an invalid block, prompting the user‘s
software to download the full block and alerted transactions to confirm the incon-
sistency. Businesses that receive frequent payments will probably still want to run
their own nodes for more independent security and quicker verification.

Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to
make a separate transaction for every cent in a transfer. To allow value to be split
and combined, transactions contain multiple inputs and outputs. Normally there
will be either a single input from a larger previous transaction or multiple inputs
combining smaller amounts, and at most two outputs: one for the payment, and
one returning the change, if any, back to the sender.

It should be noted that fan-out, where a transaction depends on several transac-
tions, and those transactions depend on many more, is not a problem here. There
is never the need to extract a complete standalone copy of a transaction‘s history.

37

This is important information, as we now know that we need to structure our transactions
in such a way that the number of transaction outputs and inputs can differ. As we will see
later, the total amounts of sats do not have to match either - this is important for miner fees.

Privacy
The traditional banking model achieves a level of privacy by limiting access to infor-
mation to the parties involved and the trusted third party. The necessity to announce
all transactions publicly precludes this method, but privacy can still be maintained
by breaking the flow of information in another place: by keeping public keys ano-
nymous. The public can see that someone is sending an amount to someone else,
but without information linking the transaction to anyone. This is similar to the level
of information released by stock exchanges, where the time and size of individual
trades, the “tape” , is made public, but without telling who the parties were.

As an additional firewall, a new key pair should be used for each transaction to keep
them from being linked to a common owner18. Some linking is still unavoidable with
multi-input transactions, which necessarily reveal that their inputs were owned
by the same owner. The risk is that if the owner of a key is revealed, linking could
reveal other transactions that belonged to the same owner.

Not re-using keys and passwords is a good practice not just with bitcoin, but with anything.
If your private key is compromised, it should not leave you completely vulnerable.

Calculations
We consider the scenario of an attacker trying to generate an alternate chain
faster than the honest chain. Even if this is accomplished, it does not throw the
system open to arbitrary changes, such as creating value out of thin air or taking
money that never belonged to the attacker. Nodes are not going to accept an invalid
transaction as payment, and honest nodes will never accept a block containing
them. An attacker can only try to change one of his own transactions to take back
money he recently spent.

The race between the honest chain and an attacker chain can be characterized as
a Binomial Random Walk. The success event is the honest chain being extended

18 Same key -> same owner.

38

by one block, increasing its lead by +1, and the failure event is the attacker‘s chain
being extended by one block, reducing the gap by -1.

Although we do not need to know this to implement a bitcoin blockchain, a Binomial
Random Walk is a simple stochastic process where you take discrete random steps on
a line. It is used in fields such as finance, physics or biology to describe scenarios where
events have two possible outcomes. The two outcomes here are the honest chain being
extended by one block, and the attacker’s chain catching up by one block.

The probability of an attacker catching up from a given deficit is analogous to
a Gambler‘s Ruin19 problem. Suppose a gambler with unlimited credit starts at
a deficit and plays potentially an infinite number of trials to try to reach breakeven.
We can calculate the probability he ever reaches breakeven, or that an attacker
ever catches up with the honest chain, as follows [8]:

p = probability an honest node finds the next block

q = probability the attacker finds the next block

qz = probability the attacker will ever catch up from z blocks behind

Given our assumption that p > q, the probability drops exponentially as the number
of blocks the attacker has to catch up with increases. With the odds against him, if
he doesn‘t make a lucky lunge forward early on, his chances become vanishingly
small as he falls further behind.

We now consider how long the recipient of a new transaction needs to wait before
being sufficiently certain the sender can‘t change the transaction. We assume
the sender is an attacker who wants to make the recipient believe he paid him for
a while, then switch it to pay back to himself20 after some time has passed. The
receiver will be alerted when that happens, but the sender hopes it will be too late.

19 A gambler playing a game with a negative expected value will eventually go bankrupt, regardless of his betting system.
20 Meaning recreate the entire blockchain with the transaction modified.

39

The receiver generates a new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a chain of blocks ahead
of time by working on it continuously until he is lucky enough to get far enough
ahead, then executing the transaction at that moment. Once the transaction is
sent, the dishonest sender starts working in secret on a parallel chain containing
an alternate version of his transaction.

The recipient waits until the transaction has been added to a block and z blocks have
been linked after it. He doesn‘t know the exact amount of progress the attacker has
made, but assuming the honest blocks took the average expected time per block,
the attacker‘s potential progress will be a Poisson distribution with expected value:

To get the probability the attacker could still catch up now, we multiply the Poisson
density for each amount of progress he could have made by the probability he
could catch up from that point:

Rearranging to avoid summing the infinite tail of the distribution…

40

Converting to C code…

#include <math.h>
double AttackerSuccessProbability(double q, int z) {
 double p = 1.0 - q;
 double lambda = z * (q / p);
 double sum = 1.0;
 int i, k;
 for (k = 0; k <= z; k++) {
 double poisson = exp(-lambda);
 for (i = 1; i <= k; i++)
 poisson *= lambda / i;
 sum -= poisson * (1 - pow(q / p, z - k));
 }
 return sum;
}

Just to satisfy your curiosity, the above snippet would be written in Rust like this:

use std::f64::consts::E; // For the exponential constant
fn attacker_success_probability(q: f64, z: i32) -> f64 {
 let p = 1.0 - q;
 let lambda = z as f64 * (q / p);
 let mut sum = 1.0;
 for k in 0..=z {
 let mut poisson = E.powf(-lambda);
 for i in 1..=k {
 poisson *= lambda / i as f64;
 }
 sum -= poisson * (1.0 - (q / p).powi(z - k));
 }
 sum
}

41

You can see that despite there being some syntactic differences, it is still very similar to
the original C code. With only minor changes, simple imperative code can be re-created
in Rust with little difficulty. The major learning hurdles of Rust come from the more
advanced concepts, and from its memory management approach.

Running some results, we can see the probability drop off exponentially with z.

q=0.1
z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012
q=0.3
z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

42

Solving for P less than 0.1%...

P < 0.001
q=0.10 z=5
q=0.15 z=8
q=0.20 z=11
q=0.25 z=15
q=0.30 z=24
q=0.35 z=41
q=0.40 z=89
Exq=0.45 z=340

Conclusion
We have proposed a system for electronic transactions without relying on trust.
We started with the usual framework of coins made from digital signatures, which
provides strong control of ownership, but is incomplete without a way to prevent
double-spending. To solve this, we proposed a peer-to-peer network using proof-
-of-work to record a public history of transactions that quickly becomes computa-
tionally impractical for an attacker to change if honest nodes control a majority of
CPU power. The network is robust in its unstructured simplicity. Nodes work all
at once with little coordination. They do not need to be identified, since messages
are not routed to any particular place and only need to be delivered on a best effort
basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work
chain as proof of what happened while they were gone. They vote with their CPU
power, expressing their acceptance of valid blocks by working on extending them
and rejecting invalid blocks by refusing to work on them. Any needed rules and
incentives can be enforced with this consensus mechanism.

FINAL EVALUATION AND NEXT STEPS
Now that we have read the whitepaper together, we are starting to have a clear unde-
rstanding of what we need to do. At minimum, to make our fake bitcoin a complete
project, we will need to implement three programs. These are:

43

 ● Node
 ● CPU miner
 ● CLI wallet

Bitcoin has many different wallet implementations nowadays, and no longer uses
CPU (or even GPU) mining since miners have an incentive to maximize the amount
of hashes per unit of energy (in practice, we use the inverse unit - J/Th - Joules per
Terahash, also sometimes written as W/Ths - Watts per Terahash per second), and
CPUs were not as effective as GPUs and GPUs were not as effective as ASICs (Appli-
cation Specific Integrated Circuits - essentially silicon built specifically to calculate
SHA-256 very effectively, but losing the ability to do anything other than that).

For our purposes, however, we can retrace bitcoin’s humble beginnings and make
do with simpler, clearer implementations that do not obscure the underlying logic
by additional complexity which became necessary in later years.

Since there is an opportunity to share code among different parts of our project, we
will start by creating a library, which will provide the definitions and utilities that
we can consider the “common tongue” of our project. First, we can define some
types, and then grow the library as we encounter more requirements.

From the get-go, it is clear that we will need the following types:

 ● Transaction
 ● Block header
 ● Block

And naturally, the blockchain (or timechain) itself.

We will also need to create a mechanism to serialize and deserialize our types,
calculate SHA-256 hashes of any data (any data that is serializable, that is), and
we should also write a couple of tests that verify this functionality. Finally, we will
create a utility binary, which will generate test data for us that we can then use in
development before we have all three main parts of the blockchain.

Once we are done writing the initial version of the library, we will move onto cre-
ating a simple CPU “miner”. This miner will not know how to talk to the network,
but it will be able to mine a payload it receives as input on the command-line. We
will implement networking when we have something to test it against.

44

That is going to be the next part - the bitcoin node. Once again, we must compro-
mise a bit. We will not have a wallet to create transactions nicely at this point, so
we will have to use testing data provided by our library.

Then we will implement a nice command-line wallet. This will make our blockchain
complete in a way - it will now have all the required parts.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

3SETTING UP

46

Before we get into programming, we should have a proper Rust setup that we can
work with. In the case of Rust, it is easy to get started. Before installation, you will
need the following:

 ● A laptop, computer, or a Samsung Smart Fridge21

 ● Rust can compile and run on pretty much any laptop, including toas-
ters. Still, its compilation is a performance-demanding process, so if
you are less patient, consider choosing a device with a good CPU and
a reasonable amount of RAM.

 ● I am an impatient creature and so I develop remotely on a powerful
server, but in a pinch, my 8-year-old Lenovo Thinkpad still manages to
keep up and compile Rust just fine.

 ● A recent operating system
 ● Windows, MacOS, and Linux are all fine (OpenBSD/FreeBSD enjoyers

are also welcome)
 ● I mainly develop software on Linux, and solutions for our use cases on

MacOS and Linux should be identical.
 ● There might be slight differences on Windows - I will try to accommo-

date them as much as possible.

 ● At least 10GB of free space
 ● We must fit a Rust toolchain, an editor, and some build artifacts, which

can get large in the debug profile.

These are all the hard requirements for installing Rust. For some parts of this book,
you will need to have an active internet connection. Rust deliberately has a small
standard library, following the maxim of “the standard library is where code goes

21 Seriously, if you manage to get the Rust compiler running on a fridge, you are probably too smart for this book.

47

to die”22 In fact, neither random number generation nor datetime manipulation is
included in the standard library, and so we will need to rely on the ecosystem a lot.

This may re-open old wounds in those traumatized by NPM-dependency hell
(boy, I love it when my “hello world” project has 900 dependencies and 30k files
in node_modules/!), but the situation with Rust is nowhere near as bad. The big-
gest projects I have ever worked on only reached low hundreds of dependencies,
I suspect ours will have just dozens at most.

INSTALLING RUST
When I want to do small experiments I often play around with the Rust Playground
(found at https://play.rust-lang.org/) or Godbolt (https://rust.godbolt.org/) if I need to
see the generated instructions. For example, consider the following short example (it
does not matter that the syntax is still very new or unknown to you at this point, we will
explain everything later - the comments, starting with // tell you what you need to know):

/// factorial implemented with an iterator
fn factorial_iter(num: usize) -> usize {
 (1..num)
 .fold(1, |acc, x| acc * x)
}
/// factorial implemented with a loop and a mutable variable
fn factorial_loop(num: usize) -> usize {
 let mut sum = 1;
 for x in 2..num {
 sum *= x;
 }
 sum
}
/// fibbonaci implementation with a loop
fn fibbonaci(n: usize) -> usize {
 let mut a = 1;
 let mut b = 1;

22 The exact origin of this quote is a bit hard to pin down, but in 2019 this quote, uttered by Amber Brown at the Python
Language Summit, made Guido van Rossum (the language’s creator) storm out of the room in anger - Python notoriously
took a “kitchen-sink” approach to the standard library.

https://play.rust-lang.org/
https://rust.godbolt.org/

48

 for _ in 1..n {
 let old_a = a;
 a = b;
 b += old_a;
 }
 b
}
fn main() {
 let x = factorial_iter(12);
 let y = factorial_loop(20);
 let fib = fibbonaci(35);
 println!("factorial 1: {}, factorial 2: {}, fibbonaci: {}", x,
y, fib);
}

I use this snippet of code to demonstrate Rust’s strong static analysis and aggre-
ssive optimization practices. If you build this small program in release mode, and
run it, it will print the following:

factorial 1: 39916800, factorial 2: 121645100408832000, fibbonaci:
1493035

These are the correct values, but things get more interesting if we look in Godbolt
at the assembly. We will see this:

 ...
 mov qword ptr [rsp], 39916800
 movabs rax, 121645100408832000
 mov qword ptr [rsp + 8], rax
 mov qword ptr [rsp + 16], 14930352
 ...

49

These numbers look awfully familiar, don’t they? That’s right, in this case, Rust is
able to evaluate the algorithms at compile time and embed the results directly into
the binary. It’s the same as if we would have written the following pseudo code:

function main():
 print("factorial 1: 39916800")
 print("factorial 2: 121645100408832000")
 print("fibbonaci: 14930352")
 print("\n")

These tools are nice and very useful for demonstrations such as this one, but if
we are to develop a serious project, we need to grow beyond these online tools.
So it is time to install Rust.

Rustup vs native packages
On all mainstream desktop operating systems besides Windows, you are presented
with a choice: Install Rust via a package manager (e.g. apt or homebrew), or via rustup?

Many Linux users prefer to install software via a package manager, as it generally
makes for a less messy system. In the case of Rust, however, this is not the ideal
solution. In Rust, it is common to switch versions of the compiler, add and remove
components of the toolchain, and enable new targets for cross-compilation.

If you install a rust package from your distribution’s repository, you are robbing
yourself of this functionality, which may complicate things for you.

The main reason for Rust being tracked in package repositories is that other pac-
kages are written in Rust, and for a particular version of an operating system, you
want to be consistent and have a Rust version available in your package ecosystem
to build the other packages with.

Therefore, if you can, install Rust via rustup by running the following command
on your Linux or Mac machine (or BSD, if you are so inclined23):

23 Rust supports FreeBSD, OpenBSD, NetBSD, and to a lesser degree (barely functional), DragonflyBSD, my favorite:(

50

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

On Windows, you will need to download an installer from the following link:

https://rustup.rs/

Please, refer to the website above if the Linux/Mac/BSD command did not work.
While the installation process has been the same since about 2016, it may change.

The rustup installation will show you the following text, assuming all went correctly:

info: downloading installer
Welcome to Rust!
This will download and install the official compiler for the Rust
programming language, and its package manager, Cargo.
Rustup metadata and toolchains will be installed into the Rustup
home directory, located at:
 /root/.rustup
This can be modified with the RUSTUP_HOME environment variable.
The Cargo home directory is located at:
 /root/.cargo
This can be modified with the CARGO_HOME environment variable.
The cargo, rustc, rustup and other commands will be added to
Cargo's bin directory, located at:
 /root/.cargo/bin
This path will then be added to your PATH environment variable by
modifying the profile files located at:
 /root/.profile
 /root/.config/fish/conf.d/rustup.fish
You can uninstall at any time with rustup self uninstall and
these changes will be reverted.
Current installation options:

https://sh.rustup.rs
https://rustup.rs/

51

 default host triple: x86_64-unknown-linux-gnu
 default toolchain: stable (default)
 profile: default
 modify PATH variable: yes
1) Proceed with standard installation (default - just press enter)
2) Customize installation
3) Cancel installation
>

Note that the host triple and which profile files will be modified will change depen-
ding on your OS and what shells you have installed. For Windows users, I believe
this will be just PowerShell.

You can press Enter here - no need to customize anything. For me, the installation
looked like this:

info: profile set to 'default'
info: default host triple is x86_64-unknown-linux-gnu
info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu'
info: latest update on 2024-03-28, rust version 1.77.1 (7cf61ebde
2024-03-27)
info: downloading component 'cargo'
info: downloading component 'clippy'
info: downloading component 'rust-docs'
 14.9 MiB / 14.9 MiB (100 %) 9.7 MiB/s in 1s ETA: 0s
info: downloading component 'rust-std'
 26.6 MiB / 26.6 MiB (100 %) 10.3 MiB/s in 2s ETA: 0s
info: downloading component 'rustc'
 60.5 MiB / 60.5 MiB (100 %) 10.1 MiB/s in 6s ETA: 0s
info: downloading component 'rustfmt'
info: installing component 'cargo'
info: installing component 'clippy'
info: installing component 'rust-docs'
 14.9 MiB / 14.9 MiB (100 %) 9.3 MiB/s in 1s ETA: 0s

52

info: installing component 'rust-std'
 26.6 MiB / 26.6 MiB (100 %) 13.3 MiB/s in 2s ETA: 0s
info: installing component 'rustc'
 60.5 MiB / 60.5 MiB (100 %) 13.2 MiB/s in 4s ETA: 0s
info: installing component 'rustfmt'
info: default toolchain set to 'stable-x86_64-unknown-linux-gnu'
 stable-x86_64-unknown-linux-gnu installed - rustc 1.77.1
(7cf61ebde 2024-03-27)
Rust is installed now. Great!
To get started you may need to restart your current shell.
This would reload your PATH environment variable to include
Cargo's bin directory ($HOME/.cargo/bin).
To configure your current shell, you need to source
the corresponding env file under $HOME/.cargo.
This is usually done by running one of the following (note the
leading DOT):
. "$HOME/.cargo/env” # For sh/bash/zsh/ash/dash/pdksh
source "$HOME/.cargo/env.fish” # For fish

If yours is anything like this, you are done. You can now verify that Rust is insta-
lled correctly by running the following two commands (If the text above suggests
a different highlighted command to this one, use that one instead):

$ source $HOME/.cargo/env
$ cargo --version

The second command should print the following (Rust version will likely be diffe-
rent - a new version releases every 6 weeks):

cargo 1.77.1 (e52e36006 2024-03-26)

If that’s it, hooray! You have Rust installed!

53

INSTALLING VS CODE AND/OR RUST ANALYZER
Now that we have installed Rust, we need to set up a development environment.
Unfortunately, Rust is not a language that is easy to just eyeball without any guide,
so a good editor with a language server is a great help.

If you already have an editor that you prefer and are familiar with, you can visit
the following website to see how well it is supported and what steps you need to
take to have proper Rust integration installed:
https://areweideyet.com/

Note that by virtue of the Rust community being very passionate about the craft,
many editors are supported, including ones that are not listed at Are We IDE Yet?
I use the kakoune editor, which is not on this list, and it works perfectly fine.

For this book though, it is best to follow the conventions and use mainstream tools,
since they have the best support, and you can always find someone who will help
you troubleshoot. In the case of Rust, the mainstream editor is Visual Studio Code
with the rust-analyzer extension.

Installing Rust Analyzer
Rust Analyzer is the main LSP implementation for Rust. LSP stands for Language
Server Protocol - a protocol to provide hints, diagnostics and other nice tools and
pieces of information to editors, letting you transform editors into bona fide IDEs
just by setting up the extension that provides LSP support.

The rust-analyzer extension in VS Code is able to install Rust Analyzer by itself, but
especially if you are using a different editor, it is useful to know how to do it by hand.

It is very simple, just run this command:

rustup component add rust-analyzer

https://areweideyet.com/

54

This is the output if the command succeeds:

info: downloading component 'rust-analyzer'
info: installing component 'rust-analyzer'

And we can verify that it works:

$ rust-analyzer --version
rust-analyzer 1.77.1 (7cf61eb 2024-03-27)

If you try running rust-analyzer by hand, it will not show you any output. The LSP
server is meant to be started by editors and does not provide human-readable
output by default.

Note that if you see this:

error: Unknown binary 'rust-analyzer' in official toolchain 'stab-
le-x86_64-unknown-linux-gnu'.

Then the installation was not successful. Most likely, the rustup component add
command failed. Try running it again, it should not harm anything.

There are a number of toolchain components that you can install via rustup. You
can see the complete list by running:

$ rustup component list

55

You will see tons of standard library distributions for different architectures. Rust
supports cross-compilation quite well, in part thanks to its implementation with
the LLVM project as its compiler backend. However, there is a different mechanism
for adding targets for cross-compilation.

There is one more component you may want to consider installing now:

$ rustup component add rust-src

Several tools in the Rust ecosystem provide better diagnostics if they have the
source code of the standard library available, and this is the command that makes
that happen.

Installing and setting up VS Code
To install Visual Studio Code, first head to its official website and select the down-
load option that matches your operating system: Windows, macOS, or Linux. Visit
the following link:
https://code.visualstudio.com/

And follow the instructions.

For Windows users, the process involves downloading an `.exe` file and running
it. During installation, it‘s recommended to choose the option to “Add to PATH,”
which simplifies launching the editor from the command line.

Mac users will download a `.zip` file, then need to extract it and move the Visual
Studio Code application to the Applications folder. macOS users might also find
Visual Studio Code available through Homebrew, a package manager that can
install the software more seamlessly.

Linux users have a variety of installation methods available, depending on their
distribution. Many Linux distributions offer Visual Studio Code directly in their
repositories, allowing installation via the distribution‘s package manager with
a simple command. For distributions that don‘t include it, or for users preferring

https://code.visualstudio.com/

56

a manual installation, downloading a `.tar.gz` file from the Visual Studio Code
website and extracting it to run the `code` binary is the alternative method.

Here is how to install VS Code on some mainstream Linux distributions:

1. Ubuntu/Debian and derivatives (Mint, Linux MX, Deepin, Pop_OS, Elementary
OS) using apt:

 ● Command: sudo apt update && sudo apt install code
 ● Note: You may need to add the Microsoft repository first (only do this if the

above commands do not work - note that these are three commands, each
a single line - it might not be clear from the way the lines are broken):

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg
--dearmor > packages.microsoft.gpg
sudo install -o root -g root -m 644 packages.microsoft.gpg /usr/
share/keyrings/
sudo sh -c 'echo "deb [arch=amd64 signed-by=/usr/share/keyrings/
packages.microsoft.gpg] https://packages.microsoft.com/repos/
vscode stable main" > /etc/apt/sources.list.d/vscode.list'

2. Fedora/Red Hat and derivatives (using dnf)

 ● Command: sudo dnf check-update && sudo dnf install code
 ● Note: Visual Studio Code may be available in the repositories directly or

through third-party repositories like RPM Fusion.

3. Arch Linux (using pacman)

 ● Command: sudo pacman -S code
 ● Note: Visual Studio Code can be installed from the Arch User Repository

(AUR) as code for the official version or visual-studio-code-bin for the
binary distribution.

4. openSUSE (using zypper)

 ● Command: sudo zypper refresh && sudo zypper install code

57

 ● Note: You might need to add the Visual Studio Code repository first depen-
ding on your setup.

5. CentOS (using yum)

 ● Command: sudo yum check-update && sudo yum install code
 ● Note: As CentOS is closely related to Fedora/Red Hat, the process may requi-

re enabling EPEL or other third-party repositories first.

6. Gentoo (using emerge)

 ● Command: sudo emerge --update --newuse code
 ● Note: Visual Studio Code may need to be unmasked by adding it to /etc/

portage/package.accept_keywords depending on your stability require-
ments and Gentoo‘s categorization of the package.

7. Snap Package (Universal for Linux distributions)

 ● Command: sudo snap install code --classic
 ● Note: Snap packages are distribution-agnostic and require snapd to be in-

stalled. This method works across many different Linux distributions.

8. Flatpak (Universal for Linux distributions)

 ● Command: flatpak install flathub com.visualstudio.code
 ● Note: Similar to snap, Flatpak is a universal package system that works

across various Linux distributions. You‘ll need to have Flatpak installed and
the Flathub repository added.

On MacOS, if you have homebrew installed, you can also install VS Code like this:

brew install --cask visual-studio-code

This is the preferred method for MacOS systems that have brew available.

Once installed, Visual Studio Code can be launched from your applications or start
menu, ready for use. If you want to run VS Code from the command line, you can:

58

$ code

This will run VS Code and fork into the background, meaning you can close the
terminal window.

Next, install the rust-analyzer extension. First, click on the extension icon:

Then search for rust-analyzer:

59

Install the highlighted extension and that should be it. The extension may then
ask you for some initial setup configuration - you can leave all options to be the
default, no additional changes should be necessary.

CREATING A WORKSPACE AND STARTING WITH RUST
At last, we have everything we need to start developing Rust but before we begin,
there are some quirks about Rust development we need to get out of the way first.

First and foremost, it is very rare to invoke the compiler directly. The compiler,
called rustc, behaves similarly to the various C/C++ compilers, and we can invoke
it directly, if we want:

rustc main.rs -o my_program

However, this would make working with dependencies difficult (actually, just as
difficult as it is in C/C++). The toolchain comes bundled with the Cargo tool. Cargo
is a package manager as well as a build system. It is responsible for both fetching
and configuring your dependencies, and for building your project.

As a matter of fact, Cargo can also be used to install packages to your system via
the cargo install <name> command.

Crates
In Rust, a crate is the smallest unit of compilation and packaging. It‘s essentially
a package of Rust code that the compiler treats as a single unit. Crates can be com-
piled into binary executables or into libraries that other crates can link against.
There are two types of crates:

1. Binary Crates: These are applications that you can compile into a standalone
executable. A binary crate has a main.rs file as its entry point, containing the
main() function where execution begins.

60

2. Library Crates: These are collections of code intended to be used as dependen-
cies by other crates. A library crate doesn‘t have a main() function and instead
provides functions, types, and constants that can be used by other crates. The
entry point for a library crate is typically lib.rs.

A crate can have both a binary and library part. As we will see later, there can be
multiple executable binaries produced by a crate, but only one library.

Crates can be published on crates.io, which is Rust‘s official package registry,
allowing developers to share their code with the community. We will take a closer
look at crates.io when we start adding dependencies to our project. When you create
a project using cargo, Rust‘s package manager and build system, automatically
manages your project as a crate. This includes compiling your project, downloading
and compiling dependencies, and more.

A key feature of crates is their support for modularity and reusability. By organi-
zing code into crates, developers can easily share and reuse code across projects.
Crates also allow for versioning and dependency management, making it simpler
to manage complex projects with many dependencies.

Dependency management
In Rust, dependency management is fairly streamlined and efficient, thanks to
Cargo, Rust‘s build tool and package manager. Dependencies for a Rust project are
declared in a file named Cargo.toml. This file contains all the necessary information
about a project, including which external crates the project depends on. Here‘s
how dependencies might look in a Cargo.toml file:

[package]
name = "my_project"
version = "0.1.0"
edition = "2021"
[dependencies]
serde = "1.0" # a library for de/serialization
log = "0.4" # a logging facade, in binary crates, you need to add
an implementation crate, too

http://crates.io

61

In this example, the project depends on two crates: serde and log, with specified
versions. This explicitness in declaring dependencies makes it clear what the
project needs to build and run, avoiding ambiguity and ensuring consistency.

NOTE: serde is a library for serialization and deserialization into a variety of commonly
used formats (such as JSON, YAML, TOML and binary formats like CBOR). The serde
library itself contains no formats, it is purely generic over them, you usually also need to
include a backend with one, such as serde_json. The log library is a facade for a variety
of logging backends.

When it comes to managing these dependencies, Cargo commands play a crucial
role. Here are a few key commands:

Adding a New Dependency: Instead of manually editing the Cargo.toml file, you
can add a new dependency with Cargo by running:

cargo add serde_json

This command automatically finds the latest version of serde_json and adds it to
your Cargo.toml.

Updating Dependencies: To update your project‘s dependencies to their latest
permissible versions according to the specifications in Cargo.toml, use:

cargo update

This will update the Cargo.lock file, which tracks the exact versions of each de-
pendency being used. If you come from the Javascript world, you will be familiar
with similar lockfiles (package.lock, yarn.lock).

Building a Project: To compile your project along with its dependencies, run:

cargo build

62

This command compiles the project, downloading and compiling the dependencies
if they‘re not already compiled.

Running a Project: To run your project directly, use:

cargo run

This compiles the project and its dependencies (if necessary) and then runs the
resulting executable.

Cargo‘s design around the Cargo.toml and Cargo.lock files ensures that all team
members working on a project use the same versions of dependencies, leading
to consistent builds and reducing “it works on my machine” problems, which are
always fun to debug. This straightforward approach to dependency management
keeps Rust projects organized and their builds reproducible. Furthermore, Rust
has a mechanism for “deleting without deleting”. Crates can be yanked, which will
prevent new projects from depending on them (or on particular versions of a crate),
without breaking software that already depends on it. Keep in mind that crates. io
does not support deletion, so do not publish things you do not want to publish.

A tiny Cargo command reference
This table includes some of the most commonly used Cargo commands that you
might find helpful for your Rust projects.

Command Description

cargo new <project_
name>

Creates a new Rust project in a new directory.

cargo init Initializes a new Rust project in the current directory.

63

cargo build
Compiles the current project and all of its depen-
dencies.

cargo run Compiles and runs the current project.

cargo test Runs the tests for the current project.

cargo check
Quickly checks your code to ensure it compiles but
does not produce an executable.

cargo clean
Removes the target directory with the compiled
artifacts.

cargo update
Updates dependencies as recorded in the local lock
file.

cargo doc
Generates documentation for the current project‘s
dependencies.

cargo publish Packages and uploads the current project to crates.io.

cargo bench
Runs the benchmarks of the current project. (Note:
Requires a nightly build of Rust.)

You can see the help information for all of the commands by either writing cargo
<command> --help (short reference) cargo help <command> (opens manual page).
However, there is a number of flags that are supported across multiple commands
and are commonly used:

Flag
Applicable
Commands

Description

-v, --verbose Most commands
Increases the verbosity of the
command output. Can be used mul-
tiple times for increased effect.

:)

-q, --quiet Most commands
Reduces the amount of output from
Cargo, opposite of --verbose.

--release
build, run,
test, etc.

Compiles the project in release mode,
with optimizations.

--debug (Custom builds)
Compiles the project in debug mode,
without optimizations. This is the de-
fault for some commands.

-p <package>,
- - p a c k a g e
<package>

build, run,
test, check,
etc.

Specifies a specific package to operate
on in a workspace.

--all
(Deprecated in fa-
vor of --workspace)

Operates on all packages in the
workspace. Deprecated in favor of
--workspace.

--workspace
build, run,
test, check,
etc.

Operates on all packages in the
workspace.

--bin <name>
build, run,
test, etc.

Compiles or runs the specified binary.

- - e x a m p l e
<name>

build, run,
test, etc.

Compiles or runs the specified exam-
ple.

--lib
build, run,
test, etc.

Compiles or tests the library target.

--tests
test, build,
etc.

Compiles or runs the test targets.

65

--all-targets
build, check,
test, etc.

Builds all targets (lib, bins, examples,
tests, and benches).

--features
<features>

build, run,
test, etc.

Enables specified space-separated
list of features.

--no-default-
-features

build, run,
test, etc.

Disables the default features.

- - t a r g e t
<TARGET>

build, run,
test, etc.

Compiles for the specified target triple.

--jobs <N>,
-j <N>

build, run,
test, etc.

Limits the number of parallel jobs,
equivalent to Makefile‘s -j.

You can find more detailed documentation for Cargo online:
https://doc.rust-lang.org/cargo/index.html

Workspace setup
A Cargo workspace is a feature for managing multiple related crates in a single
overarching environment. Its primary merit lies in its ability to compile multiple
crates together, optimizing compile time and sharing dependencies across them.
This is especially useful in large projects with several crates that may depend on each
other, as it allows for a unified handling of all dependencies from a single location.
Workspaces ensure that all member crates use the same version of each dependen-
cy, preventing conflicts and ensuring consistent behavior across the entire project.

Workspaces also simplify project management by having a shared Cargo.lock
file for binary crates, ensuring that all crates within the workspace are built with
the same set of dependencies. This uniformity is crucial for the coherence of the
project, ensuring that changes in one part of the workspace do not inadvertently

https://doc.rust-lang.org/cargo/index.html

66

break another. Moreover, workspaces allow for shared output directories, making
it easier to run and test the binaries and libraries in the development process.

Let’s set up a Cargo workspace, which we will name “rsbtc” with the specified
crates. First, create a folder called rsbtc:

1. Create a Workspace Configuration File: Start by creating a new file na-
med Cargo.toml in the root of the “rsbtc/” folder. This file will declare
the workspace configuration and its members.

2. Specify Workspace Members: In the Cargo.toml file, define the
workspace and its member crates like so:

[workspace]
resolver = "2"
members = [
 "lib",
 "miner",
 "node",
 "wallet",
]

3. Initialize Each Crate: For each of the specified folders (lib, miner, node,
wallet), navigate into the folder and initialize a new crate. For the library
crate (btclib24), use the --lib flag; for binary crates, the default --bin
flag applies. Here are the commands for each:

cd rsbtc
cargo new --lib lib
cargo new --bin miner
cargo new --bin node
cargo new --bin wallet

24 After you create the "lib", open its Cargo.toml and rename it to "btclib" for clarity.

67

Note: --bin is the default and this decision is in no way permanent. You can have
both, this just makes Cargo generate either a lib.rs or a main.rs file to start with.

Cargo will complain along the way, but after all of the crates are created, running
cargo check, should work just fine:

 Locking 4 packages to latest compatible versions
 Checking miner v0.1.0 (/root/rsbtc/miner)
 Checking node v0.1.0 (/root/rsbtc/node)
 Checking lib v0.1.0 (/root/rsbtc/lib)
 Checking wallet v0.1.0 (/root/rsbtc/wallet)
 Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.17s

After running these commands, each folder will contain its own Cargo.toml file
and a source directory (src) with a default source file (lib.rs for the library crate
and main.rs for binary crates). You can then edit each crate‘s Cargo.toml to set
the correct package name to match the crate names provided (btc_lib, miner,
node, wallet).

4. Building and Running the Workspace: With the workspace configured,
you can build all crates in the workspace by running cargo build from
the root “rsbtc” folder. To run a specific crate, navigate to the crate‘s
directory and use cargo run.

Now is the time to write some Rust.

RUST: THE FIRST CONTACT
Before we start designing the shared library, we will experiment with the language
a bit to get the hang of it.

First, create a new binary crate called hello_world, either inside of the rsbtc/
folder as a member of the workspace, or outside of it as a freestanding crate. You
can simply run:

68

cargo new --bin hello_world

Then, open the hello_world folder in either VS Code, or your editor of choice.

Hello world
If you navigate to the src/main.rs file, you will see the following:

fn main() {
 println!("Hello, world!");
}

This is the quintessential hello world program we all know and love. You can run
the programming by running either of the following two commands:

 ● cargo run
 ● cargo build; target/debug/hello_world

Rust builds output final binaries and intermediate artifacts in the target/ folder by
default. In this folder, there are subfolders for each build profile. Most of the time,
we are only interacting with two build profiles, the default debug profile (which
produces unoptimized binaries with debugging information embedded in them),
and the release profile, which produces optimized binaries.

Let’s look at the source code bit by bit:

 ● The fn keyword declares a function
 ● The function is named main, and takes no arguments, hence the empty

parentheses “()”
 ● Function argument lists are followed by code block, delimited by { }, that ser-

ves as the body of the function

:)

Inside the function, we have a single statement, println!(“Hello, world!”). This
statement is used for printing to the standard output and is not a function call,
but rather a macro.

In Rust, we encounter macros quite often. The reason why println! and similar
macros are macros and not functions is twofold - Rust has no variadic functions,
and using a macro lets us do useful checks at compile time. If you’ve never heard
of the term variadic function, it is a function that can take any number of para-
meters, and process them one by one. This is needed if you want to print multiple
values ergonomically.

We can take a look at the useful checks provided by the println! Macro.

Let’s adjust our code to the following (feel free to substitute with your own name):

fn main() {
 let my_name = "Lukáš";
 println!("Hello, {}!");
}

Now try running it.

You should get the following error:

error: 1 positional argument in format string, but no arguments
were given
 --> hello_world/src/main.rs:4:22
 |
4 | println!("Hello, {}!");
 | ^^
error: could not compile `hello_world` (bin "hello_world") due to
1 previous error

70

Here, the compiler tells you that it expected something to be substituted inside
the format string, but nothing was provided.

If you forget to provide an argument to the similar printf() function from the C
standard library, your program may still compile and you may only discover the
error at runtime. It is much safer if your program just plainly does not compile at
all until issues like these are fixed.

Note that macro will detect the inverse error as well:

fn main() {
 let my_name = "Lukáš";
 println!("Hello, world!", my_name);
}

Gets you:

error: argument never used
 --> hello_world/src/main.rs:4:31
 |
4 | println!("Hello, world!", my_name);
 | --------------- ^^^^^^^ argument never used
 | |
 | formatting specifier missing
error: could not compile `hello_world` (bin "hello_world") due to
1 previous error

The correct version is:

fn main() {
 let my_name = "Lukáš";
 println!("Hello, {}!", my_name);
}

71

And running should display something like:

Hello, Lukáš!

This demonstrates another nice feature of Rust - UTF-8 strings by default. It does
not matter where you are from, if the font in your command line window can handle
the characters in your name, it will print correctly. This is not a given in other lan-
guages, and you may need to reach for special, separate functions for UTF-8 strings.

In recent Rust, you can also write the previous example as:

fn main() {
 let my_name = "Lukáš";
 println!("Hello, {my_name}!");
}

Which may be more readable to some. It still provides the same checks and pro-
tection. Let’s take a look at the first statement in this updated version:

 let my_name = "Lukáš";

This is how you declare variables (mostly referred to as bindings in Rust). You
start with the let keyword, followed by a pattern (more on that later), which can
be a plain identifier, an equals sign, and the value you want to store in the variable
followed by a semicolon.

After the pattern, you can optionally specify the type of the variable. In the previous
case, it would be:

 let my_name: &str = "Lukáš";

72

The &str type is pronounced as string slice, and we will discuss it more in detail
later. One of the more difficult things about Rust for newcomers is that it has many
string types.

Here are a couple more examples:

 let age: i32 = 30; // i32 is a 32-bit signed integer
 let temperature: f64 = 20.5; // f64 is a 64-bit floating point
 let is_active: bool = true; // Boolean type
 let initial: char = 'A'; // char represents a Unicode scalar
value
 let count: u32 = 100; // u32 is a 32-bit unsigned integer
 let distance = 15.0; // Rust automatically infers distance to
be f64

You can see two things in this snippet:

 ● Names of primitive types are written in all lowercase letters and tend to be
very short (e.g. u32 stands for unsigned 32-bit integer)

 ● Single-line comment start with // characters, similar to how it is done in
JavaScript, C/C++, C# or Java

In Rust, there are three more comment types, making it four in total:

// this is a single-line comment
/*
 This is a multi-line comment
 Multiline comments can be nested /*
 /*
 /*
 /*
 Doktor, turn off my nesting inhibitors!
 */
 */
 */

73

 */
*/
/// This is a documentation comment that supports full markdown
/// It documents the following item (function, struct, module, etc.)
//! This is a documentation comment, similar to previous one, but
//! documents the items that contains it (typically used with mo-
dules and crates)

We will discuss doc-comments more in-depth later. Let’s now intentionally run
into a hurdle, by trying to re-assign the name variable to name of Rust’s mascot,
the lovely crab named Ferris:

fn main() {
 let my_name: &str = "Lukáš";
 // As all know, carcinization is the final stage of evolution,
 // and I am already growing pincers B)
 my_name = "Ferris";
 println!("Hello, {my_name}!");
}

This will, once again, not compile, with the following complaints:

warning: value assigned to `my_name` is never read
 --> hello_world/src/main.rs:2:9
 |
2 | let my_name: &str = "Lukáš";
 | ^^^^^^^
 |
 = help: maybe it is overwritten before being read?
 = note: `#[warn(unused_assignments)]` on by default
error[E0384]: cannot assign twice to immutable variable `my_name`
 --> hello_world/src/main.rs:5:5

74

 |
2 | let my_name: &str = "Lukáš";
 | -------
 | |
 | first assignment to `my_name`
 | help: consider making this binding mutable: `mut my_
name`
...
5 | my_name = "Ferris";
 | ̂^^^^^^^^^^^^^^^^^ cannot assign twice to immutable variable
For more information about this error, try `rustc --explain
E0384`.
warning: `hello_world` (bin "hello_world") generated 1 warning
error: could not compile `hello_world` (bin "hello_world") due to
1 previous error; 1 warning emitted

First, we get a warning that the original value of the variable is never read. This is
not an error in and of itself, but it is a waste, and it is nice that the compiler warns
us about this behavior, since it can indicate that either we are doing something
wasteful, or we forgot to use the original value even though we intended to use it.

Then we get an error saying we cannot assign twice to an immutable variable.
This is because in Rust, variables and arguments are immutable by default. This
is very useful for optimization reasons, more on that later. It also helps to prevent
some mistakes on the programmer’s part.

There are two ways to fix this. First, we want to keep my_name immutable, we can do:

fn main() {
 let my_name;
 // As all know, carcinization is the final stage of evolution,
 // and I am already growing pincers
 my_name = "Ferris";
 println!("Hello, {my_name}!");
}

75

This is the same as the very first example with this variable, but we have delayed
the value assignment by a couple of lines. Note that you cannot use the my_name
variable until it has been assigned, which prevents a plethora of possible errors
caused by the usage of uninitialized variables.

Something similar will not compile:

fn main() {
 let my_name;
 println!("My name is now {my_name}");
 my_name = "Ferris";
 println!("Hello, {my_name}!");
}

Producing the following error:

error[E0381]: used binding `my_name` is possibly-uninitialized
 --> hello_world/src/main.rs:3:30
 |
2 | let my_name;
 | ------- binding declared here but left uninitialized
3 | println!("My name is now {my_name}");
 | ^^^^^^^^^ `my_name` used here but
it is possibly-uninitialized
 |
 = note: this error originates in the macro `$crate::format_args_
nl` which comes from the expansion of the macro `println` (in Ni-
ghtly builds, run with -Z macro-backtrace for more info)
For more information about this error, try `rustc --explain
E0381`.
error: could not compile `hello_world` (bin "hello_world") due to
1 previous error

76

The second way that we can approach this problem is by declaring my_name as
mutable:

fn main() {
 let mut my_name = "Walter Hartwell White";
 println!("My name is {my_name}. I live at \
 308 Negra Arroyo Lane, \
 Albuquerque, \
 New Mexico, \
 87104."
);
 my_name = "Ferris";
 println!("Hello, {my_name}!");
}

The mut keyword is universally used to make things mutable. It is involved in
every single language feature governing mutability (with the possible exception
of interior mutability, which is a bit special, and will be discussed later).

Note that there are two ways to break multi-line strings in Rust. The previously
shown way with the backslash character “\” skips new line characters and all
leading whitespace on the next line. You can also omit the backslash, which will
preserve all whitespace.

With backslashes, the output is:

My name is Walter Hartwell White. I live at 308 Negra Arroyo Lane,
Albuquerque, New Mexico, 87104
Hello, Ferris!

77

Without:

My name is Walter Hartwell White. I live at
 308 Negra Arroyo Lane,
 Albuquerque,
 New Mexico,
 87104.
Hello, Ferris!

Sometimes, one is more useful than the other. Let’s now spice up our program by
making the universal text transmogrifier™.

Extended example
The universal text transmogrifier is just a wacky name for a simple command
line program which takes two parameters - the name of the operation and input
text, then applies the operation to the text and prints it out.

Let’s specify a couple of operations:

 ● Reverse - reverses a text
 ● Invert - makes lowercase letters uppercase and vice versa
 ● Uppercase - makes all letters uppercase
 ● No-spaces - removes all spaces from the text
 ● Leet - leetifies text
 ● Acronym - creates an acronym

Our program will be invoked in the following way:

$ hello_world op text

78

Or, via Cargo, this would be:

$ cargo run -- op text

First, we need a way to read command-line arguments. In many languages you
may be familiar with, command-line arguments are passed as arguments to the
main() function of the program.

In Rust, arguments are available via the std::env::args() function, which is globa-
lly available. This is quite practical, since any part of the program, and even any
library you import, can access the arguments without you having to do anything
special to make that happen.

Let’s start with this:

use std::env;
fn main() {
 let args = env::args();
 for a in args {
 println!("{a}");
 }
}

In Rust, we import items from the standard library (and any other library, and other
parts of our program) with the use keyword. This example imports the std::env
module a whole. The use keyword is quite flexible to help you organize your imports
in a way that is clear to you and most ergonomic to a particular use case:

// Basic import
use library::utils::print_greeting;
// Importing a struct (type) and a function
use library::geometry::{Rectangle, area};
// Import variants of an enum (more on enums later)

79

use library::TrafficLight::{Green, Red};
// Nested wildcard import
use library::geometry::*;
// Import both the geometry module as a whole and the Point type
in it specifically
use library::geometry::{self, Point};

The env module contains items related to the environment in which the program
is running. That constitutes arguments, environment variables, the location of the
executable and the current directory, among other things. You can look at the full
documentation here:
https://doc.rust-lang.org/std/env/index.html

We use the args() function from the env module to get access to the arguments,
and store them in a variable:

 let args = env::args();

Then, we can iterate through them with a for loop:

 for a in args {
 println!("{a}");
 }

The for loop in Rust is a bit smarter than the one in C. It can iterate through
anything that is an iterator (anything that can be iterated through). That is a bit of
a convoluted definition, but we will discuss iterators in detail later.

Finally, we are printing each argument.

https://doc.rust-lang.org/std/env/index.html

80

If we invoke the program with the following command:

cargo run -- one two three four

This will be the output:

/some/path/hello_world/target/debug/hello_world
one
two
three
four

The first argument is in many languages the name the program was invoked with.
Some programs change their behavior if you invoke them with different names,
for example busybox is an implementation of many common Unix commands in
a single binary, and distributions using busybox make many links to the same
binary with the name for each command contained in it.

Now, we must do something about our args. We know the following:

 ● There should be precisely three arguments in total
 ● We want to skip the first argument
 ● The second argument is the name of the operation
 ● The third argument is the data to do the operation on

First, we have to collect the arguments into a list, so that we can take a look at
how many there are (which is not possible with iterators by default without also
consuming the iterator). Change your source code to this:

81

use std::env;
fn main() {
 let args: Vec<String> = env::args().collect();
 for a in args {
 println!("{a}");
 }
}

Now we have collected the arguments into a vector of strings25. If you have never
encountered the term before, a vector is a dynamically-sized list that you can add
to and remove elements from.

We need to specify the type of the args variable here because there are many choices
for what you can collect an iterator into and are valid for the surrounding statements,
so the compiler does not know what to choose and we need to provide a hint.

You will notice that running the program at this stage made no changes to how it
works yet.

Let’s adjust the program to verify the correct argument count:

use std::env;
use std::process::exit;
fn main() {
 let args: Vec<String> = env::args().collect();
 if args.len() != 3 {
 eprintln!("Usage: {} <op> <text>", args[0]);
 exit(1);
 }
 for a in args {
 println!("{a}");
 }
}

25 Vec<T>, where T is any type you want, is the type of vector in Rust.

82

In Rust, if-statements do not have mandatory parentheses around the condition,
but they have mandatory brackets around the body of the if-statement. There-
fore, in general, if-statements look like this:

if condition {
 // code
} else if another_condition {
 // other code, else-if blocks can be repeated
} else {
 // code if nothing else matches
}

The if statement in our program will be triggered if the length of the args vector is
not exactly 3. If it isn’t, the following statements will execute:

 eprintln!("Usage: {} <op> <text>", args[0]);
 exit(1);

The eprintln!() macro works the exact same way as the println!() macro, except it prints
to the standard error output. Then, we use the exit(1) statement to exit the program
with exit code set to 1, which is universally recognized as “something went wrong”.

You can try running the program now.

Now that we have established that we have the correct number of parameters, we
can store the text and the operation into separate variables.

use std::env;
use std::process::exit;
fn main() {
 let args: Vec<String> = env::args().collect();
 if args.len() != 3 {

83

 eprintln!("Usage: {} <op> <text>", args[0]);
 exit(1);
 }
 let op = &args[1];
 let text = &args[2];
 println!("op: {op} text: {text}");
}

If you have a rust-analyzer with inlay-hints set up, you will see the type of the op
and text variables is &String. String is a string type that manages its own memory
allocation. It is the most versatile type for strings if you want to store them somewhe-
re. The ampersand character (&) denotes a borrow, meaning a reference to a value.
Here, we are not pulling the values out of the vector, merely referring to them.

For now, it is enough if you remember that borrows may not live longer than the
values they are borrowing, this is one of the main safety guarantees Rust provi-
des. Similar to bindings, they come in two flavors, immutable (created with the
& operator), also called shared borrows, and mutable (created with the &mut
operator), also called exclusive borrows.

You can create a mutable borrow like this:

 let mut val = String::new();
 let ref_mut = &mut val;

Notice that the reference does not need to be mutable so long as you do not intend
to re-assign it. Sometimes, you may also want to lose the mutability of variables.
You can do this via shadowing:

 let mut val = String::new();
 let val = val;

84

The second, immutable val, shadows over the first one. Shadowing is a fairly com-
monly used technique in Rust, so don’t be afraid to do it if you need to.

If you run the program above, it will print the following:

$ cargo run -- one two
op: one text: two

Now, let’s check that we have the correct operations:

 let res = match op.as_str() {
 "reverse" => …,
 "invert" => …,
 "uppercase" => …,
 "no-spaces" => …,
 "leet" => …,
 "acronym" => …,
 _ => {
 eprintln!("Invalid operation: {}", op);
 exit(1);
 }
 };

The match statement is the counterpart to the switch statement found in many
languages. In Rust, it also happens to be an expression (just like the if-else state-
ment is, if it has an else block), and we can assign it to a variable directly.

A quirk of the match statement is that it always has to be exhaustive, meaning all
possible values for the expression we are matching on have to be covered by one
arm in the statement. In our case, the last arm _ = > { .. } is a catch-all that shut-
downs the program if we encounter an unknown operation.

Also note that we are not matching on op directly, but we call op.as_str(). This is because
we need to convert the String into an &str, which is the type of the string literals in Rust.

85

So far, this will not compile, we need to fill out all of the branches of the match
statement.

The simplest operation is uppercase, since we have a handy function ready:

 "uppercase" => text.to_uppercase(),

Reversing the string is fairly straightforward also:

 "reverse" => text.chars().rev().collect::<String>(),

Here, we are taking an iterator over the characters of the string, reversing it and
collecting it into another string (remember how we mentioned that there are many
things we can .collect() into)

Inverting is a bit longer to write, but still simple:

 "invert" => text
 .chars()
 .map(|c| {
 if c.is_uppercase() {
 c.to_lowercase().to_string()
 } else {
 c.to_uppercase().to_string()
 }
 })
 .collect::<String>(),

Once again, we are taking an iterator over every character of the string, and then
inverting it in via an if statement. Note that the .to_lowercase() and .to_upperca-
se() methods return new characters. The .map() method takes a so-called closure

86

(an anonymous function), taking a single character as input parameter, denoted
in |c|, and returns the result of whatever expression follows it.

Similar to C/C++/C#/JS and many other languages, Rust has a return keyword.
However, it is only used when you need an early return:

/// returns doubled 32-bit integer
/// -> denotes the return type of a function
fn double(x: i32) -> i32 {
 x * 2
}

Is the same as:

fn double(x: i32) -> i32 {
 return x * 2;
}

The closure above could be written also as:

fn invert(c: char) -> String {
 if c.is_uppercase() {
 c.to_lowercase().to_string()
 } else {
 c.to_uppercase().to_string()
 }
}

And using .map(invert) in the match arm above. To be honest, closures can do
a bit more than functions because they “close over their environment”, but let’s
leave that for later.

87

Now that we know the magic of the .map() and the match statement, we can im-
plement leet:

 "leet" => text
 .chars()
 .map(|c| match c {
 'a' | 'A' => '4',
 'e' | 'E' => '3',
 'i' | 'I' => '1',
 'o' | 'O' => '0',
 's' | 'S' => '5',
 't' | 'T' => '7',
 _ => c,
 })
 .collect::<String>(),

Just a simple match for substitutions. The no-spaces operation is similarly simple:

 "no-spaces" => text
 .chars()
 .filter(|c| !c.is_whitespace())
 .collect::<String>(),

The .filter() also takes a closure, but this closure has to return a boolean value spe-
cifically (either true or false). We can use the .is_whitespace() method on char to
check if we should filter out the given character. The ! operator negates a boolean
value, meaning the closure will return true if the character is not whitespace.

88

Finally, we have the acronym:

 "acronym" => text
 .split_whitespace()
 .map(|word| word.chars().next().unwrap())
 .collect::<String>()
 .to_uppercase(),

Here, the .split_whitespace() separates the text into words by splitting on whitespa-
ce, then we can try to get the first character of every word. The .unwrap() method
is needed here because the .next() method returns Option<char>. Option is a type
that indicates a value may not be present, since an iterator might be empty. We
need to acknowledge this possibility explicitly, and .unwrap() is a simple way to do
that by conceding and telling Rust to safely shutdown our program if that happens.

We can finish our program by printing the res variable at the end of our main
function:

use std::env;
use std::process::exit;
fn main() {
 let args: Vec<String> = env::args().collect();
 if args.len() != 3 {
 eprintln!("Usage: {} <op> <text>", args[0]);
 exit(1);
 }
 let op = &args[1];
 let text = &args[2];
 let res = match …;
 println!("{}", res);
}

89

The program should work now as expected:

$ cargo run -- invert ahoj
AHOJ
$ cargo run -- reverse ahoj
joha
$ cargo run -- leet leet
1337
$ cargo run -- acronym "Big F. Gun - 9 0 0 0”
BFG-9000

Congratulations, you have made your first program that interacts with the world!
Before we get into the nitty gritty of Rust, it may be helpful to learn how to navigate
the Rust documentation.

Referring to Rust documentation
Rust comes bundled with many nice resources for orienting yourself in the langu-
age, compilation errors and the standard library.

First, let’s tackle the compilation errors. Let’s remind ourselves of an error we
encountered in the first half of this chapter:

error[E0381]: used binding `my_name` is possibly-uninitialized
 --> hello_world/src/main.rs:3:30
 |
2 | let my_name;
 | ------- binding declared here but left uninitialized
3 | println!("My name is now {my_name}");
 | ^^^^^^^^^ `my_name` used here but it
is possibly-uninitialized
 |
 = note: this error originates in the macro `$crate::format_args_
nl` which comes from the expansion of the macro `println` (in Ni-
ghtly builds, run with -Z macro-backtrace for more info)

90

For more information about this error, try `rustc --explain
E0381`.
error: could not compile `hello_world` (bin "hello_world") due to
1 previous error

Errors in Rust have a code, and we can ask the compiler to explain the error to use.
We can run the suggested command:

$ rustc --explain E0381

That will show you this:

It is not allowed to use or capture an uninitialized variable.
Erroneous code example:
fn main() {
 let x: i32;
 let y = x; // error, use of possibly-uninitialized variable
}
To fix this, ensure that any declared variables are initialized
before being used. Example:
fn main() {
 let x: i32 = 0;
 let y = x; // ok!
}

Short and sweet, and gets straight to the point. If you do not understand why you
are getting a particular error, try looking at the error codes. If you prefer to view
the errors in your browser, you can go to the following website:
https://doc.rust-lang.org/error_codes/error-index.html

https://doc.rust-lang.org/error_codes/error-index.html

91

And find the error in the list.

It is also quite handy to have the standard library reference open. It is available
either online, found at:
https://doc.rust-lang.org/std/

Or you view the very same document locally by running:

$ rustup doc

And navigating to the Rust API reference. Alternatively, you can run rustup doc
--std directly.

Finally, it can be also helpful to have the language reference at hand:
https://doc.rust-lang.org/stable/reference/

Alternatively opened locally by running rustup doc --reference. Note that the
reference may be a little difficult to digest at first.

But things which are difficult to digest is the topic of the next chapter, so we will
be able to get you up to speed in no time.

https://doc.rust-lang.org/std/
https://doc.rust-lang.org/stable/reference/

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

4TAMING RUST’SLEARNING CURVE

93

Rust is a bit deceptive to newcomer programmers because it looks very similar
in many ways to languages they already know, but then they run into a wall when
they encounter new concepts that are entirely foreign to them. In this chapter, we
will take a look at the concepts that newbie programmers struggle with the most.

MEMORY MODEL
You might have already heard that Rust does not have a garbage collector, and
manages its memory manually, but you might be surprised to learn that its model
is a different one to the one used in C.

NOTE: If you do not know what a garbage collector is, it is a mechanism for rec-
laiming memory from values that are no longer used. There are many ways of
implementing garbage collection in programming languages, but in general, we
can think of a garbage collector as an entity, which periodically probes for unused
values that have gone out of scope and frees (returns to the system) their memory.
If you have played Minecraft in the early 2010s like I did, you may be familiar with
the Lag Spike of Death, where the game would run great for a bit, then sharply
lag, then run well for a bit, and so on. The reason was that you had too little avai-
lable RAM memory and Java’s garbage collector would freeze the process. This is
because Java is an enterprise language (“enterprise” I believe to be ancient Greek
for terrible design decisions ;-)).

Rust‘s memory management is lexical (with an increasing amount of exceptions for
the sake of ergonomics), which means that memory is allocated when a variable (or
just a value) is created, and freed when it goes out of scope in terms of the syntax
(the closing brace of the block it is created in) unless it is moved. When something
is determined to be out of scope by the Rust compiler, the compiler also ensures
that there are no dangling pointers left. The part of the compiler responsible for
this is called the borrow checker.

94

You will hear many newbie Rust developers talking about “fighting the borrow
checker”, or “arguing with the borrow checker”. Usually, the crux of the issue is that
the developer does not realize their code is in one way or another incorrect; howe-
ver, there is a small category of correct programs rejected by the borrow checker.

Rust enforces RAII (Resource Acquisition Is Initialization), so to put it simply,
initializing a variable gives you memory or other resources (such as opening a file),
and when an object goes out of scope, its destructor is called and its resources are
returned to the system (sockets and files are closed, memory is freed).

In order to implement this effectively, Rust introduces a couple of new concepts.
Here is a short list with some succinct definitions from Pascal Hertleif (in quotes):26

(I strongly suggest you run the examples in Rust Playground, Rust‘s compiler errors
are usually very descriptive and can help provide you insight into what is going on)

Ownership: You own a resource, and when you are done with it, that resource is no
longer in scope and gets deallocated.

In Rust, to denote that you own something, you simply use its type plainly without
any fluff around it:

fn main() {
 // I own this string in this function, by creating this variab-
le,
 // I have allocated memory
 let the_11th_commandment = String::from("Braiins OS rocks!");

 // the memory used by the string will be freed here, since
 // we have not passed its ownership elsewhere and main() ends
here
}

References to a resource depend on the lifetime of that resource (i.e., they are only valid
until the resource is deallocated).

26 https://deterministic.space/rust-ownership-and-borrowing-in-150-words.html

95

Often, you only want to give a reference to something. This is the Rust equivalent
of a const <type>* pointer. It only allows read access. You can create as many of
these as you want:

// in serious Rust, you'd use &str for flexibility,
// as &String can convert to it automatically
fn print_my_string(string: &String) {
 // compare to `const char * const string`,
 // which would be the C equivalent
 println!("{}", string);
 // the reference to string is destroyed here
}
// the print_my_string() function does not take the ownership
// of the string, so you can pass it multiple times; for referen-
ces
// rust creates copies if necessary
fn main() {
 let the_11th_commandment =
 String::from("Opps want an initiative - blow up their enti-
re quadrant!");
 print_my_string(&the_11th_commandment);
 print_my_string(&the_11th_commandment);
 // you can also create a reference and store it in a variable
 let string_ref = &the_11th_commandment;
 print_my_string(string_ref);
 // <- string_ref is destroyed here
 // <- the_11th_commandment is destroyed here
}

However, as stated in the excerpt from Pascal, references are only valid for as long
as the resource exists. This is a common pitfall for new Rust programmers:

// this function won't compile
//
// we have to specify a lifetime explicitly here through the 'name
syntax

96

// in the < > brackets,
// otherwise Rust assumes you maybe want to return
// constants, which have a 'static lifetime, and
// as such live forever
fn give_me_a_ref<'a>() -> &'a String {
 let temp =
 String::from("Opps want an initiative - blow up their enti-
re quadrant!");
 &temp // same as return &temp;
 // <- temp would be freed here,
 // the returned reference cannot outlive it
}

Move semantics means: Giving an owned resource to a function means giving it away.
You can no longer access it.

This is a major difference to languages with C-like semantics, which use copy
semantics by default, i.e. to give a parameter to a function means to create a copy
which is then available in the said function.

In Rust, however, you take the value you have and give it to a function, and then
you can no longer access it:

fn completely_safe_storage(value: String) {
 // <- value is immediately freed
}
fn main() {
 let x = String::from("1337 US Dollars");
 completely_safe_storage(x);
 // ↑ ownership of x was moved to completely_safe_storage()
 println!("{}", x);
 // ↑ this does not compile, as we no longer have the ownership
of x
}

97

We then say that main() owns x until completely_safe_storage() is called, at
which point ownership is handed to it (= x is moved into the function), and comple-
tely_safe_storage() owns x until it is dropped.

To not move a resource, you instead use borrowing: You create a reference to it and
move that. When you create a reference, you own that reference. Then you move it (and
ownership of it) to the function you call. (Nothing new, just both concepts at the same time.)

We have already kinda demonstrated this two examples ago, but we can make
a more annotated example:

fn takes_reference(my_ref: &String) {
 // <- reference is moved into this function
 println!("{}", my_ref);
 // ↑ this macro actually takes all arguments by reference
 // so a &&String is created here, which is moved into the
 // internals of the macro

 // <- my_ref is destroyed here
}

fn main() {
 let x = String::from("Hello, world!");
 // ↑ allocate and initialize new string x to
 // "Hello, world!"
 // main() now owns x

 let reference = &x;
 // ↑ create a reference to x
 // main() owns this reference
 // we call this "borrowing x (immutably)"

 takes_reference(reference);
 // ↑ reference is moved into takes_reference();
 // x is freed here
}

98

To manipulate a resource without giving up ownership, you can create one mutable referen-
ce. During the lifetime of this reference, no other references to the same resource can exist.

To prevent issues with pointer aliasing and memmove()’d 27 resources, and a whole
plethora of possibilities for memory corruption, Rust prevents you from having
more than one reference to a resource, if said reference is mutable. For example,
you can‘t do this:

fn main() {
 let mut bitcoin = String::from("bitcoin");

 // Rust is actually pretty smart,
 // so if it sees you are not using mut_ref
 // after you have created ro_ref, it will
 // destroy it early, this is a relatively
 // recent change for ergonomics in Rust
 // called Non-Lexical Lifetimes
 let mut_ref = &mut bitcoin;
 // ↑ borrow bitcoin mutably
 // mut_ref is of type `&mut String`,
 // given that the variable itself is immutable,
 // this corresponds to `char* const ptr` in C
 let ro_ref = &bitcoin;
 // ↑ borrow bitcoin immutably
 // this is what makes this example not compile
 // as bitcoin is already borrowed mutably
 println!("{}", ro_ref);
 // ↑ use the immutable borrow
 mut_ref.push_str(", the cryptocurrency");
 // ↑ use the mutable borrow
}

We briefly also touched on the concept of a lifetime. A lifetime denotes how long
a resource exists or is accessible from start to finish. Mostly, we speak about these
in terms of references.

27 Memmove() is a C function for “Moving” - actually copying - memory to a different destination.

99

Rust uses the 'ident syntax to denote lifetimes, as we have seen in the invalid
reference-returning example before. Just like in the previous parameter, they
usually appear as generic parameters. What you call them is up to you, although
usually, single letters starting with 'a are used. The only thing you can do with
these explicit lifetimes is verify if they are equal, or rather, if one satisfies the other
(e.g. lifetime 'a lives as long or longer than 'b)

The exception is the 'static lifetime, which denotes references that are valid for
the entirety of the program‘s run from anywhere, You mainly get these via con-
stants and statics.

static NUMBER_REF: &'static i32 = &42;

To fully illustrate the concept of lifetimes, we can annotate the previous example
with appropriate lifetime scopes for values. This is more of a pseudo-code, so this
example is kind of for looking only:

fn main() {
 'bitcoin_lifetime: {
 let mut bitcoin = String::from("bitcoin");
 'mut_ref_lifetime: {
 let mut_ref = &mut bitcoin;
 // ↑ borrow bitcoin mutably
 'ro_ref_lifetime: {
 let ro_ref = &bitcoin;
 // ↑ borrow bitcoin immutably
 println!("{}", ro_ref); // <- use the immutable borrow
 mut_ref.push_str(", the cryptocurrency");
 // ↑ use the mutable borrow
 } // <- ro_ref goes out of scope here ┐
 // ├ these refs
can't coexist,
 } // <- mut_ref goes out of scope here ┘ hence the issue
 } // <- bitcoin goes out of scope here
}

100

To illustrate how you can ensure two references live for the same duration:

// This denotes:
// for two references left and right, which live the same,
// return a reference that lives as long as these two
//
//
// It is important to keep in mind, that Rust can accept
// parameters of varying lifetimes by shortening one of them
// in the perspective of the function
fn max_ref<'a>(left: &'a i32, right: &'a i32) -> &'a i32 {
 if *left < *right {
 right
 } else {
 left
 }
}

You can also specify other types of requirements:

// for two lifetimes 'a and 'b, such that 'a lives
// as long as 'b or longer
fn foobar<'a, 'b>(_x: &'a i32, _y: &'b i32)
where
 'a: 'b
{
 // code...
}

That’s it. And it’s all checked at compile-time.

This is only a very brief introduction, for a more complete overview, please check
out the following links:

101

 ● https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
 ● https://depth-first.com/articles/2020/01/27/rust-ownership-by-example/
 ● https://blog.logrocket.com/understanding-ownership-in-rust/

Note: Formally, the model used in Rust is called “stacked borrows”. You can read more
about it in Ralf Jung’s et al. paper “Stacked Borrows: An Aliasing Model for Rust28

Strings in Rust
A peculiarity of Rust is that it does not have a single string type in the standard
library, but rather seven (there may be more when you read this text):

 ● &str / &mut str - primitive string slice type behind a standard reference
 ● Cow<str> - Clone-on-Write wrapped string slice, works for both owned and

borrowed values, not seen very often (which is unfortunate, since they can
be really handy!)

 ● String - owned string
 ● OsStr - borrowed platform-native string, corresponds to str
 ● OsString - owned platform-native string, corresponds to String
 ● CStr - borrowed C string, corresponds to str
 ● CString - owned C string, corresponds to String

From these, you are most likely to encounter str and String, and str is the primitive
type that is always available regardless of if you have std and core lib present.29
Strings are very important in any programming language, and they are a great tool
to illustrate the nuances of Rust’s memory model, so we will introduce them here.

str is a slice type, which comes with some features:

 ● slices are views into collections regardless of where they are present, string
slices can exist on the stack, heap, or compiled into the binary (whereas
Strings are on the heap)

28 Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2020. Stacked Borrows: An Aliasing Model for Rust. Proc.
ACM Program. Lang. 4, POPL, Article 41 (January 2020), 32 pages. https://doi.org/10.1145/3371109
29 The core library is the platform-independent, bare-metal-available part of the standard library.

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://depth-first.com/articles/2020/01/27/rust-ownership-by-example/
https://blog.logrocket.com/understanding-ownership-in-rust/
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doi.org/10.1145/3371109

102

 ● slices‘ size is not static or always known at compile-time, so just like trait
objects, they can only exist behind a reference, so you‘ll generally encounter
string slices as &str or &mut str

In Rust, string literals are string slices too:

fn my_ref() -> &'static str {
 "Hello world!"
}

In the previous example, I have annotated the lifetime of the reference we got.
Since string literals are compiled into the library, they are by default valid for the
entire run of the program.

Normal conditions for working with references and ownership still apply. You can‘t
return a string slice of a string you‘ve created in the function you are returning it from:

fn my_ref() -> &str {
 let my_string = String::new();
 &my_string
 // ↑ doesn't compile, return value references temporary value
}
 fn my_ref2(input: &String) -> &str {
 &input
 // ↑ compiles, since input is known to live longer than the span
 // of this function
}

The error here says “missing lifetime specifier” because it correctly deduces that
there is nowhere outside (meaning parameters) to deduce the lifetime and borrow the
value, so it assumes you must want to return a reference to either a static or a string
slice literal (which also has a static lifetime, given it is compiled into the binary).

103

An important feature is that you can create string slices from other string slices
without copying data by re-borrowing:

fn main() {
 let my_str = "Hello, world!";
 let hell = &my_str[..4];
 println!("{} {}!", my_str, hell);
}

We can do this, since we are working with immutable references, and the mutable
reference cannot exist so long as immutable ones exist.

fn main() {
 let my_str: &mut str = "Hello, world!";
}

This does not compile because string literals are always immutable (see that the
error says “types differ in mutability“). And no, you cannot circumvent this by
doing &mut *“Hello, world” ;-) that would be very unsafe.

TIP: By the “types differ in mutability” error, you might deduce that a borrow and its
mutability make for separate types, that is T is not the same type as &T is not
the &mut T. Keep that in mind when you have to enter a generic parameter somewhere
or create a trait implementation.

Let‘s also look into owned Strings, as they are extremely common. Owned strings
do not have a lifetime because they manage their own heap allocation.

fn my_string() -> String {
 String::from("Hello, world");
 // or "Hello, world".to_string()
}

104

You usually use owned strings wherever &str is impractical or you need muta-
bility. &String coerces into &str, so it is always the proper choice when needing
read-only string function parameters:

// don't
fn my_fun1(_input: &String) {}
// do
fn my_fun2(_input: &str) {}
fn main() {
 let my_string = String::new();
 my_fun1(&my_string); // both work
 my_fun2(&my_string);
 // however, this wouldn't work:
 //
 // my_fun1("Hello!") <- type mismatch, expected &String, got
&str
}

As you can see, using &str provides greater flexibility.

Lifetimes of owned vs unowned values

Sometimes when looking into Rust, you might hear that owned values have static
lifetimes. The static lifetime here means that the value is not a borrow of anything
else, and so no other value imposes a lifetime on it. This makes owned values ty-
pe-check where 'static is required.

fn main() {
 let owned_string = String::from("I'm not static, but I'm ow-
ned");
 print_static(owned_string);
}
// This function expects an instance of any type with a 'static
lifetime.
// We can pass in string despite it not having any lifetime expli

105

citly
// attacked to it
fn print_static<T: 'static>(value: T) {
 println!("Value: {:?}", value);
}

If a type is holding a borrow to something, then it needs to have the lifetime of
the contained reference(s) as a generic parameter, and its lifetime will be bound
by the shortest-lived contained reference (this is to, once again, prevent memory
unsafety). Another way to put it is that the type holding the borrows needs to be
valid, and it can only be valid for as long as all of the borrows are valid. Therefore,
its lifetime is that of its shortest living field.

// In more technical terms, lifetimes are generic parameters,
// and Holder needs to be generic over the lifetime of the
// reference.
struct Holder<'a> {
 reference: &'a str,
}
fn main() {
 let text = String::from("Hello");
 let holder = Holder { reference: &text };
 println!("{}", holder.reference);
}

The lifetime of an owned value is bound by the scope of the function (or rather
code block) it was declared in, provided it isn‘t moved. Without creating a reference,
owned values can only be moved and possibly copied if it is allowed for said type.

fn main() {
 let x = String::from("hello");
 {
 let y = x; // x is moved to y

106

 println!("{}", y);
 } // y goes out of scope here, meaning it is dropped, and
deallocated
 // println!("{}", x); // Error: x was moved
 let a = 5; // i32 implements Copy, and so it can be copied
 {
 let b = a; // a is copied to b
 println!("{}", b);
 }
 println!("{}", a); // still valid
}

Types in Rust fall into two categories - types with copy semantics and types with
move semantics. In the previous example, i32 is a copy type - it is copied whenever
it is passed somewhere else, and the old copy is still valid. However, String has move
semantics, if we pass it somewhere else, it is moved, rather than copied, and the
previous variable that stored the String is no longer valid. In C and other languages
that do pass-by-value as opposed to passing around references implicitly, copy
semantics are used by default. In Rust, move semantics are the default, and copy
semantics are opt-in via the Copy trait.

Finally, the lifetime of a reference is bound by both the scope of the function it
was declared in, and by the lifetime of the owned value it is borrowing. References
themselves are values and types also (remember from a couple of lines above: Rust
considers &T to be a distinct type and you can implement traits on it), so rules of
ownership apply to them as well.

fn main() {
 let outer;
 {
 let owned = String::from("hello");
 let reference = &owned;
 outer = reference; // Error: `owned` does not live long
enough
 println!("{}", reference);
 } // `owned` is dropped here

107

 // println!("{}", outer); // Would not compile
 let mut ref1 = &5;
 {
 let x = 10;
 ref1 = &x; // ref1 now points to x
 println!("{}", ref1);
 } // x is dropped, ref1 now dangling
 // println!("{}", ref1); // Would not compile
}
fn print_ref<T: std::fmt::Display>(r: &T) {
 println!("Reference value: {}", r);
}

In this example we can see that we cannot use references to leak owned values to
the outside. We cannot create dangling references to values that would be dropped
sooner than the reference is last used. Let’s also quickly illustrate that references
are their own distinct types:

trait SayHi {
 fn say_hi(self);
}
impl SayHi for Hello {
 fn say_hi(self) {
 println!("This hi! will cost me my life - I am owned va-
lue");
 }
}
impl SayHi for &Hello {
 fn say_hi(self) {
 println!("Hi, I am a reference to Hello!");
 }
}
impl SayHi for &&Hello {
 fn say_hi(self) {
 println!("Hi, I am a double reference to Hello!");

108

 }
}
fn main() {
 let hello = Hello;
 (&hello).say_hi();
 (&&hello).say_hi();
 hello.say_hi();
}

As you can see, we have three distinct implementations of the same trait - one on
Hello, another on the reference &Hello, and finally one on &&Hello. You wouldn’t
be doing these multiple implementations in regular Rust without a good reason,
but here they serve to let us know that references are distinct types. If you run this
program, you get the following output:

Hi, I am a reference to Hello!
Hi, I am a double reference to Hello!
This hi! will cost me my life - I am owned value

There is a bit of trivia to be known about the properties of references:
 ● &T is Copy, meaning the compiler will create and pass around copies as applicable
 ● &mut T is not Copy, meaning it follows move semantics and when used as

a parameter, it gets moved rather than copied

This comes from the definition of borrowing rules written above, and may lead to
unexpected surprises when you don‘t pay attention to it.
Here‘s an example:

// in the business, we call this foreshadowing ;-)
struct MyStruct<'a> {
 remainder: Option<&'a str>,
}
// ↑ here, we have created a struct which holds

109

// a reference to an Option of a string slice.
//
// string slices without the 'static lifetime are views
// into strings, and cannot outlive them, hence the
// lifetime parameter
// impl blocks are used to create methods for types,
// we need to respect the generic lifetime parameter
impl<'a> MyStruct<'a> {
 // this will keep returning the first character
 fn pop_first_char_as_string(&mut self) -> Option<&str> {
 // surprise! remainder here gets copied,
 // so we are not modifying which pointer is
 // stored in self, but only a copy on the stack
 let remainder = &mut self.remainder?;
 let c = &remainder[0..1];
 if remainder.len() != 1 {
 *remainder = &remainder[1..];
 Some(c)
 } else {
 self.remainder.take()
 }
 }
}

fn main() {
 let mut broken = MyStruct {
 remainder: Some("Hello"),
 };

 for _ in 0..5 {
 println!("{:?}", broken.pop_first_char_as_string());
 }
}

110

If we run this, we will get the following output:

Some("H")
Some("H")
Some("H")
Some("H")
Some("H")

The reason why this code does not work as you might expect is that the underlying
immutable reference got copied and then we took an immutable reference to said
reference.
We still need a &mut &‘a str to properly solve this, however, we need to prevent the
copy. The solution is to borrow mutably while still inside the option either through
pattern matching or by using a handy dandy .as_mut() method on Option, the
result of which is another option containing a mutable reference to the contents
of the original Option, if it was Some.

Note that the above example is still not ideal - it will panic if an Option::Some(““),
that is, Some with an empty string slice, is passed. In a more serious setting, we would be
performing checks to prevent this panic, or using methods which cannot panic.30

Here is how to pattern-match borrow:

if let Some(ref mut contents) = Some("Hey") {
 // ...
}

The if-let will bind the value to the right of the equation sign to the pattern on the
left side, if the pattern matches the value.

ref and ref mut are special pattern modifiers that borrow whatever matches them.

30 Typically, the standard library and 3rd party crates document if something can panic and when - check the documentation
if you are unsure about something.

111

Sometimes, new developers confuse it with (or question why it isn‘t) Some(&mut
contents) = Some(“Hey“).

The latter is a valid syntax also, but it does the opposite, it pattern matches mutable
references and binds the data it points to to contents, which is what we don‘t want
in this case.

If you want to know more about slices and string slices, please check out the fo-
llowing links:

 ● https://doc.rust-lang.org/book/ch04-03-slices.html
 ● https://doc.rust-lang.org/std/primitive.str.html

Pattern matching
Pattern matching has been briefly mentioned in the paragraph above. You have
likely already encountered it and will encounter it many more times doing com-
mon tasks in Rust.

If you want to learn more about pattern-matching, check out the section on the
sidebar.

In general, there is two types of patterns, constant patterns and bindings.

Constant patterns limit which values are acceptable by set pattern, for example,
in the following pattern:

if let Some(val) = some_option {}

The Some(...) part is constant -> nothing other than an Option::Some will match
this, whereas val is binding, it will bind whatever is in that spot in said value to the
name val, which is then available in this if.

Some patterns are also invariant (also called irrefutable), whereas others are not
(called refutable):

https://doc.rust-lang.org/book/ch04-03-slices.html
https://doc.rust-lang.org/std/primitive.str.html
https://braiins-uni.mag.wiki/reference/patterns.html
https://braiins-uni.mag.wiki/reference/patterns.html
https://braiins-uni.mag.wiki/reference/patterns.html

112

let (first, second) = a_tuple_of_two;

Here, this pattern is always true (so it is invariant, irrefutable), we know if we get
a tuple, we can always destructure it into its constituent elements. The fact that it
is a tuple of two here is the constant factor, ie. (.., ..).

Patterns can be nested as much as you want or need:

if let (Some(4), Err(MyErrorEnum::Other(err))) = a_pair {

}

Here, this pattern will only match on a pair of Option and Result, if the Option is
of the variant Some and Result of the variant Err. Furthermore, the Option must
contain the integer 4, and the Err must contain a MyErrorEnum::Other variant of
the supplied error type. We then bind the inner error in this type into the name
err, which then becomes available inside the if-let.

Global “variables” in Rust
While you are unlikely to run into these soon, this seems to be the correct place
to mention a major difference in approach between Rust and other mainstream
programming languages.

To put it bluntly, Rust really, really, doesn‘t like global variables. This is with regards
to two of its stated goals, name explicitness and safety.

Global variables are generally pretty bad when it comes to safety especially across
threads, and using them properly requires synchronization mechanisms. Adding
these implicitly is beyond the “explicitness” goal of Rust, so the Rust way of doing
things is to restrict them severely.

113

In Rust, global variables are called statics, which speaks to their nature as often
being static and requiring static initialization only.
Statics are declared with the static keyword, have to have their type typed out
(no, or very little, type inference):

static N: i32 = 5;
static mut M: i32 = 15;

Mutable statics are quite problematic, and they can only be used in unsafe code,
since you are prone to running into issues with multithreaded code, data races,
race conditions etc.
If you need mutable shared states, you have to use one of the types with interior
mutability, such as a Mutex. (More on that later)

However, only literals and constant function calls are allowed in static context (and
all references to types have to have the static lifetime), so you need to use a crate
that provides lazy static functionality.

OBJECT-ORIENTED PROGRAMMING IN RUST

OOP in Rust is one of the biggest culture shocks newcomers experience:

 ● Rust does not have classes
 ● Rust does not have type inheritance

Visibility and privacy
Just like you might be used to from your other languages, Rust has methods and
visibility modifiers to facilitate encapsulation and information hiding.

For instance:

114

#![allow(unused_code)]
pub fn public_function() {
 println!("Available from everywhere");
}
fn private_function() {
 println!("Only accessible by this module and its descendants");
}
pub(crate) my_public_in_crate_function() {
 println!("Accessible from the same crate");
}

/// This is roughly equivalent to the following file structure
///
/// my_module.rs
/// my_module/
/// - child_module.rs
/// - child_module/
/// - grand_child_module.rs
/// - other_child.rs
mod my_module {
 pub mod child_module {
 pub mod grand_child_module {
 pub(super) fn public_in_grand_child() {
 println!("only accessible from this module \
 (and its descendants) and its parent (su-
per)");
 }
 pub(self) fn public_in_self() {
 println!("Only accessible by this module and its
descendants, \
 effectively same as private");
 }
 pub(in crate::my_module) fn public_in_my_module() {
 println!("Public from my_module onwards");
 }
 }
 }
 pub mod other_child {

115

 pub(super) fn public_in_my_module() {
 println!("Accessible from my_module onwards");
 }
 }
}

As you can see, Rust allows a fair amount of control over visibility and privacy.
You can read up on it more here:
https://doc.rust-lang.org/reference/visibility-and-privacy.html

Methods
Methods are split from data via an implementation block:

pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
 }
 impl AveragedCollection {
 pub fn add(&mut self, value: i32) {
 self.list.push(value);
 self.update_average();
 }

 pub fn remove(&mut self) -> Option<i32> {
 let result = self.list.pop();
 match result {
 Some(value) => {
 self.update_average();
 Some(value)
 }
 None => None,
 }
 }

https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html

116

 pub fn average(&self) -> f64 {
 self.average
 }

 fn update_average(&mut self) {
 let total: i32 = self.list.iter().sum();
 self.average = total as f64 / self.list.len() as f64;
 }
 }
 (taken from rust book [17.2])

User-defined types (structs and enums)
In place of classes, Rust‘s user-defined types fall into these two categories:

 ● structures - can be C-like structs or tuples. Rust also allows empty, zero-sized
structs (also called unit structs) as a useful abstraction for working with traits

 ● enums - essentially algebraic data types you might be used to from Haskell /
ML / OCaml / Scala and so on. In Rust, they are implemented as tagged unions31

BTW: Rust also supports plain C-like unions, however, these are very rarely used, and
their handling requires unsafe code, since the compiler can‘t always guarantee you select
the correct union member. (Compare with enums where the valid union member is stored
in the tag, so it is always known to the compiler)

There are certain conventions observed when working with structs and enums,
which you can read about here:

 ● https://doc.rust-lang.org/book/ch05-01-defining-structs.html

Traits
The heavy lifters of Rust‘s OOP story are not structs or enums, but rather traits. A trait
describes common behavior, in less abstract terms, it is essentially a set of methods

31 https://en.wikipedia.org/wiki/Tagged_union

https://doc.rust-lang.org/book/ch17-01-what-is-oo.html
https://doc.rust-lang.org/book/ch17-01-what-is-oo.html
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Tagged_union
https://doc.rust-lang.org/book/ch05-01-defining-structs.html

117

a type is expected to provide, if it implements (satisfies) the trait. There is no such
thing as duck typing in Rust, so you have to pledge allegiance to a trait manually:

trait Quack {
 fn quack(&self);
}
struct Duck;
// Duck implements Quack
// it has the trait method quack()
impl Quack for Duck {
 fn quack(&self) {
 println!("quack");
 }
}
struct Human;
// Human does not implement Quack
// it has a **type** method quack()
// but that is no substitute for the real
// art
impl Human {
 fn quack(&self) {
 println!("I quack, therefore I am");
 }
}

TIP: A trait may also have zero methods. We refer to these as marker traits. Several
of these are found in the compiler and they are usually ascribed special meaning, for
example, the std::marker::Copy trait enables copy semantics for a type, as mentioned
in the chapter about ownership.

The standard library has many traits in it, some of which are special, and describe
specific behavior, such as Send and Sync, which denote the safety (or lack thereof)
of moving and accessing type between threads, or Copy, which switches the se-
mantics for a type from move to copy semantics (e.g. all primitive types are Copy).
You can see some of the commonly used traits in the following links:

https://en.wikipedia.org/wiki/Duck_typing
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/std/marker/trait.Copy.html

118

 ● https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
 ● https://blog.rust-lang.org/2015/05/11/traits.html

Traits are the cornerstone of Rust generics, for which Rust provides two models,
static and dynamic dispatch. These two are used to determine the manner in
which we resolve the generics to concrete implementations (how we figure out
which function to dispatch).

Static dispatch
Here is how we can use our quackers with static dispatch by expanding on our
previous example with a new duck and a generic function called ducks_say():

struct FormalDuck {
 name: String
}
 impl FormalDuck {
 // create a new duck
 fn new(name: String) -> Self {
 Self {
 name
 }
 }
}
impl Quack for FormalDuck {
 fn quack(&self) {
 println!(
 "Good evening, ladies and gentlemen, my name is {}. \
 Without further ado: quack",
 self.name
);
 }
}
// You could also write
// fn ducks_say<T>(quacker: T)
// where
// T: Quack

https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
https://blog.rust-lang.org/2015/05/11/traits.html

119

//
// Longer trait bounds are generally more suitable in
// the where clause for readability reasons
fn ducks_say<T: Quack>(quacker: T) {
 quacker.quack()
}
// the T: Trait (+ Othertrait...)* syntax is called a trait bound
// it is a way to specify that a generic type T must implement a
certain trait
fn main() {
 let duck = Duck;
 let human = Human;
 let formal = FormalDuck::new("Ernesto".to_string());

 ducks_say(duck);
 //ducks_say(human);
 // ↑ this won't compile because Human does not implement Quack
 ducks_say(formal);
}

Functions that don‘t specify any trait bounds are seldom useful and you‘ll rarely
see them in Rust.

However, you might be surprised to learn that this will not compile:

fn no_param<T>(_: T) {}

fn main() {
 let my_str = "Hello, Braiins!";
 no_param(*my_str); // calling no_params<str>
}

120

If you look at the error compiling this example prints, you will see ?Sized mentioned.

The trick here is that even generic parameters without any written trait bounds have
a hidden trait bound, which is T: Sized, where Sized means “This type‘s size is
known at compile time“. Rust has support for dynamically-sized types, but if you
want to work with them directly, you need to opt out of this implicit trait bound
with the T: ?Sized syntax. This syntax and behavior is at the time of this writing
unique for the Sized trait.

The benefit of static dispatch is that it is a form of generics which utilizes mono-
morphization. This means that a method is generated for each type configuration
required, and no such thing as these generics exists at runtime. This is a pathway
to other optimizations, as after monomorphization, you only have ordinary static
code. Static dispatch tends to be fast, but increases binary sizes.

Generic param bounds
Keep in mind that trait bounds can be added to generic params on types, generic
params of traits and traits themselves. For traits, we call the traits specified in
the bound supertraits. For example:

use std::path::Path;
use std::fs::File;
use std::io::Write; // <- to be able to use methods from a trait
 // implementations, you have to import it
 // many traits in standard lib are imported
 // automatically
use std::fmt::Display;

// Display is the supertrait of Saveable
// Saveable can only be implemented on types which implement Dis-
play
// Trait ToString is implemented for every type T such that T:
Display
trait Saveable: Display {
 // try to save the type implementing this to a type specified by
Path

https://en.wikipedia.org/wiki/Monomorphization
https://en.wikipedia.org/wiki/Monomorphization
https://en.wikipedia.org/wiki/Monomorphization

121

 fn save<P>(&self, path: P) -> std::io::Result<()>
 where
 P: AsRef<Path> // accept any type that we can infallibly
convert to &Path
 {
 let mut file = File::create(path.as_ref())?;
 writeln!(file, "{}", self.to_string())?;

 Ok(())
 }
}

Dynamic dispatch
The other option is dynamic dispatch. Dynamic dispatch represents a model of
generics you might be more familiar with from languages like C#, Java and so on.
There is no monomorphization being done and data is instead passed as a pair
composed of a virtual method table (also known as dispatch table) and pointer to
the data in question.

While this is in other languages often completely behind the scenes, Rust requi-
res you to explicitly represent this by actually passing your data behind a pointer
of your choosing In most cases, a simple borrow reference is enough. Here is an
alternative implementation of ducks_say():

// dynamically dispatching ducks_say()
fn ducks_say(quacker: &dyn Quack) {
 quacker.quack()
}
fn main() {
 let duck = Duck;
 let formal = FormalDuck::new("Ernesto".to_string());
 ducks_say(&duck);
 ducks_say(&formal);
}

https://en.wikipedia.org/wiki/Virtual_method_table
https://en.wikipedia.org/wiki/Virtual_method_table

122

When data is passed through dynamic dispatch, we call objects of the type dyn Trait
trait objects. Trait objects have no known size, so they have to be behind a pointer.

The benefit of dynamic dispatch is that it makes for smaller binaries, and is, well,
more dynamic. Since the actual information of the type is lost, you can re-assign
a trait object variable to a trait object made from a different type, or you can use
trait objects to model heterogeneous collections.

TIP: If you ever need to store a trait object somewhere, consider using a smart po-
inter such as Box (plain heap-stored pointer) or Rc (reference-counted heap-stored
single-threaded pointer). More on smart pointers later.

We have already seen an example of polymorphism in Rust. On a more theoretical
level, Rust uses, instead of subclasses and inheritance, generics over types with
certain trait bounds; this model is called bounded parametric polymorphism.

To learn more about OOP and traits in Rust, check out the following links:

 ● https://doc.rust-lang.org/book/ch17-01-what-is-oo.html
 ● https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/

rust/html/book/second-edition/ch19-03-advanced-traits.html
 ● https://blog.logrocket.com/rust-traits-a-deep-dive/

Traits are Rust’s rendition of the concept of type classes. Type classes were originally
designed by Phillip Wadler and Stephen Blott for the Standard ML programming
language, but were first implemented in Haskell. If you are curious, check out the
1988 paper Wadler, Blott: How to make ad-hoc polymorphism less ad hoc.

FUNCTIONAL PROGRAMMING IN RUST
Rust is the child of two different programming language worlds. The first one are
lower-level programming languages suited for systems programming and em-
bedded programming, namely C and C++, and the other languages targeting this
domain (e.g. D or Cyclone and other attempts at “safer C”).

The second category is functional programming languages. Rust was originally
written in OCaml, and takes some inspiration from not just its parent language, but
also Haskell, SML, ML Kit, and Scheme. Rust is not a purely functional programming

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/book/ch17-01-what-is-oo.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/second-edition/ch19-03-advanced-traits.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/second-edition/ch19-03-advanced-traits.html
https://blog.logrocket.com/rust-traits-a-deep-dive/

123

language - you can still mutate variables, you can still have side effects anywhere
and all imperative patterns should be representable in Rust.

Immutability
Much like in functional languages, immutability is the default in Rust. For example,
consider the following code snippet:

fn main() {
 let x = 10;
 x = 5;

 println!("the value of x is {x}");
}

If you try to compile this on your machine, or run it via the Rust Playground, you
will get the following error:

warning: value assigned to `x` is never read
 --> src/main.rs:2:9
 |
2 | let x = 10;
 | ^
 |
 = help: maybe it is overwritten before being read?
 = note: `#[warn(unused_assignments)]` on by default
error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:3:5
 |
2 | let x = 10;
 | -
 | |
 | first assignment to `x`
 | help: consider making this binding mutable: `mut x`

124

3 | x = 5;
 | ̂^^^^ cannot assign twice to immutable variable
For more information about this error, try `rustc --explain
E0384`.

This tells us exactly what is wrong and also serves as a great showcase of how
helpful the compiler diagnostics are with rustc. If you can, you can view the help
text for this error by running the suggested command:

rustc --explain E0384

The help text is available for view online also, check out the Error Code Index at
the following link:
https://doc.rust-lang.org/error_codes/error-index.html

The core of the problem is that in Rust, immutability is the default - once you assign
a variable once, you cannot assign to it again… unless you mark it as mutable with
the mut keyword:

fn main() {
 let mut x = 10;
 x = 5;

 println!("the value of x is {x}");
}

Note that this still produces a warning about the first value being never read. This
is just one of the nice things about the Rust compiler - it detects a plethora of these
little things.

https://doc.rust-lang.org/error_codes/error-index.html

125

The mut keyword appears in other places also, such as function parameters:

fn my_function(mut x: i32) {
 x *= 2;

 println!("{x}");
}
fn main() {
 my_function(10);
}

The parameter x can only be assigned if we declare it as mut. It is important to
understand that this has nothing to do with the world outside the function, and is
practically the same as the following:

fn my_function(x: i32) {
 let mut other_x = x;
 other_x *= 2;

 println!("{other_x}");
}
fn main() {
 my_function(10);
}

In other words, there are no “out parameters” in Rust. Note that mutability is the
property of a particular variable binding, You can make a read-only binding, then
shadow it with another, mutable one.

fn main() {
 let x = 5;
 println!("value of x here is {x}");

126

 let mut x = x;

 x += 1;

 println!("value of x here is {x}");
}

Another caveat is that mutability of references has nothing to do with the mutability
of variable bindings. Both of these are valid Rust:

fn main() {
 let mut x = String::from("Ahoj");
 let y = String::from("Moikka");

 let mut string_ref = &x;
 println!("string in string_ref is {string_ref}");
 string_ref = &y;
 println!("string in string_ref is {string_ref}");
 let string_mut = &mut x;
 string_mut.push_str(" and Hello");
 println!("'{y}' '{x}'");
}

There are two main good reasons for making read-only the default. One from
the programmer‘s perspective, one from the perspective of the computer. The
programmer perspective is that keeping things read-only for as long as possible
prevents mistakes caused by accidental mutation. Sometimes, code can be con-
voluted and libraries a mystery - you may not even realize that some function or
method can potentially change a value, and lead your program into an invalid state.

From the computer’s perspective, making values read-only opens up the way for
certain optimizations, making your program execute faster. If read-write is the
default, the programmer has to remember to go all around the program making
things read-only, and it can be difficult to maintain this discipline.

127

The type system
Rust is strongly statically typed, all values need to have a well-defined type, and
you cannot make unsafe conversions between types in safe Rust. This may be
a bit cumbersome, if you want to do quick prototyping, but it ends up making the
language quite powerful, and helps make the code produced maintainable. It also
happens to be the case in most functional programming languages.

In fact, Rust also does not like to make implicit conversions, which further help
you track what is what in which part of the program.

There are a couple of points we should mention when discussing the type system
of Rust.

Generics
The generics in Rust mostly hinge on traits, we have already mentioned that before.
Traits are inspired by type classes from Haskell and allow us to select types based
on distinct units of behavior. We can use generic type parameters to not only save
ourselves from boilerplate and unclear code, but to also encode behaviors.

For example, imagine the following situation:

 ● I have a structure that I want to serialize into a particular format
 ● I want to track and encode the destination format in the type

What we can do in this situation is create the following trait:

use serde::Serialize;
trait Encode {
 fn encode<T: Serialize>(val: T) -> String;
}

NOTE: The Serialize trait comes from the serde library, which we will encounter
more in-depth later.

128

And then create a couple of zero-sized types for each format:

struct Json;
struct Toml;
struct Cbor;
struct Yaml;

Then we implement the Encode trait for each of these using the appropriate library:

impl Encode for Json {
 fn encode<T: Serialize>(val: T) -> String {
 serde_json::to_string(&val).unwrap()
 }
}
impl Encode for Toml {
 fn encode<T: Serialize>(val: T) -> String {
 toml::to_string(&val).unwrap()
 }
}
impl Encode for Cbor {
 fn encode<T: Serialize>(val: T) -> String {
 serde_cbor::to_vec(&val).unwrap()
 }
}
impl Encode for Yaml {
 fn encode<T: Serialize>(val: T) -> String {
 serde_yaml::to_string(&val).unwrap()
 }
}

NOTE: If you want to run this, run the following two commands to add the nece-
ssary dependencies to your project:

129

$ cargo add serde --features derive
$ cargo add serde_json serde_cbor serde_yaml toml

We can then attach this zero-sized type as a generic type to our struct (let’s call it
User and add the fields name and age), but this naive attempt will not work:

struct User<T: Encode> {
 name: String,
 age: u32,
}

The compiler will complain with the following message:

error[E0392]: parameter `T` is never used
 --> hello_world/src/main.rs:40:13
 |
40 | struct User<T: Encode> {
 | ^ unused parameter
 |
 = help: consider removing `T`, referring to it in a field, or
using a marker such as `PhantomData`

Rust really dislikes dangling type parameters. Luckily, the help text tells us exactly
what we need to do. The standard library contains a special type called Phantom-
Data, which is zero-sized, contains nothing, and completely disappears during
compilation, but it can also take any generic parameters. This is the correct defi-
nition of the User type:

use std::marker::PhantomData;
struct User<T: Encode> {
 name: String,

130

 age: u32,
 _marker: PhantomData<T>,
}

Typically, you will want to hide the PhantomData parameter from the users by
instantiating it yourself in a new() function:

impl User<T>
where
 T: Encode
{
 fn new(name: String, age: u32) -> Self {
 User {
 name,
 age,
 _marker: PhantomData
 }
 }
}

Now the programmer does not need to worry about the marker, and only has to
specify the generic type parameter on User<T>. We can then create a User that
should be serialized into the JSON format:

// create a user and serialize it to JSON, then print the JSON
let user = User::<Json>::new("Alice".to_string(), 30);
let encoded = T::encode(&user);
println!("{:?}", encoded);

The true power of this is that you can globally change the format anywhere. You
can have the type parameter aliased away:

131

type DefaultUser = User<Json>;

And only refer to this alias. If you need to change the format later, you can simply
rewrite it there.

Traits are the cornerstone of generics in Rust. They are very flexible, and we can
define some relationships between types using traits.

First, traits can have generic parameters:

trait ConvertTo<T> {
 fn convert(&self) -> T;
}

Which themselves can have trait bounds:

trait ConvertTo<T: Debug> {
 fn print_a_t(t: T) {
 println!("{:?}", t);
 }
 fn convert(&self) -> T;
}

And they can also have supertraits:

// `Printable` that requires the implementer to
// also implement `std::fmt::Display`
trait Printable: std::fmt::Display {
 fn print(&self);
}

132

Supertraits are particularly useful in default implementations of trait methods:

trait Printable: std::fmt::Display {
 fn print(&self) {
 println!("{}", self);
 }
}

Because default trait method implementations can refer to other methods from
the same traits and from supertraits, you can provide a lot of behavior with only
a little work required from the implementer of the trait. The Iterator trait is one
such example.

At the time of this writing, there are 76 methods in the Iterator trait, but you only
need to implement the next() method (we will see how to do it in a couple of pages,
in the section about iterators).

Finally, traits can have associated types and constants, that you can refer to via
the Self::NAME/Name syntax:

trait Vehicle {
 type Energy;
 const WHEELS: u8;
 // Method that uses the associated type
 fn energy_source(&self) -> Self::Energy;
 // Method that uses the associated constant
 fn print_wheels() {
 println!("This vehicle has {} wheels.", Self::WHEELS);
 }
}

133

Finally, apart from the generic type parameters, Rust also supports const generics,
with generic constant parameters:

// A simple struct that wraps a fixed-size array
struct FixedArray<T, const N: usize> {
 data: [T; N],
}

Which can naturally be placed onto traits as well:

trait ArrayOps<T, const N: usize> {
 fn first(&self) -> Option<&T>;
 fn last(&self) -> Option<&T>;
 fn size(&self) -> usize {
 N
 }
}

Keep in mind one important thing. Generics are very powerful, and you can crea-
te very smart and very complex trait bounds that can do very interesting things.
However, should you? Sometimes, the introduction of complex generic structures
can make your code less legible and can make it more difficult to develop new
features, especially for your friends, coworkers, or collaborators who would first
need to orient themselves in several layers of traits. So exercise common sense
and choose both what you think fits more, and feels more comfortable to you.
Personally, I like to show insane trait bounds to my friends whenever they start to
think that I am, in fact, not a threat to society.

Existential types
A quirk you may not be familiar with from other languages are existential types.
Existential types denote a type that exists and satisfies a certain requirement (in
Rust, we are talking about trait bounds), but we do not specify the name of the type
directly. This can be for a few reasons:

134

 ● You do not know the name of the type, because it is an anonymous type (clo-
sures, futures created by async blocks)

 ● The name of the type is awkward to write out due to its length
 ● You want to prohibit all other behavior other than the one specified by your

trait bound32

It is important to understand that existential types, even though they use trait
bounds, are not generics. They do not stand for any type satisfying the constraint,
each one stands for one type precisely, type which is deduced from the body of the
function that returns said existential type.

This is how you can use an existential type:

fn get_iterator() -> impl Iterator<Item = i32> {
 let mut i = 0;
 std::iter::from_fn(move || {
 i += 1;
 if i < 10 {
 Some(i)
 } else {
 None
 }
 })
}

Here, we have a function that returns an iterator. Since iterators are big types that
compose the types of everything they contain and of all of the operations, we cannot
write out this type (because it contains a closure and that has an anonymous type).

But we can say “hey, this function returns something that implements Iterator
over Items of the type i32”. That is an existential type. This is also called RPIT
(Return Position Impl Trait). Note that the impl Trait syntax is also available in
the argument position:

32 Reducing the surface of your library to what is necessary is always a good idea, as it lets you be more flexible with the
implementation without causing breaking changes for your users.

135

fn use_iterator(iterator: impl Iterator<Item = i32>) {
 for i in iterator {
 println!("{}", i);
 }
}

This is not an existential type, but rather another syntax to write generics. We can
write an identical function with the syntax we have seen before already:

fn use_iterator<I: Iterator<Item = i32>>(iterator: I) {
 for i in iterator {
 println!("{}", i);
 }
}

Or:

fn use_iterator<I>(iterator: I)
where
 I: Iterator<Item = i32>,
{
 for i in iterator {
 println!("{}", i);
 }
}

I believe the APIT (Argument Position Impl Trait) was added for parity with the
return position one. It functions the same as writing out generics with generic
parameters, but there is one small caveat. Since the generic type parameter is
anonymous here, we cannot write it out - the generic type can only be inferred.

136

This will work:

fn print_type<T: std::fmt::Debug>(u: T) {
 println!("{:?}", u);
}
fn main() {
 let x = (0..25)
 .map(|x| x * 2)
 .filter(|x| x % 3 == 0)
 .collect();
 print_type::<Vec<i32>>(x);
}

But this will not:

fn print_type(u: impl std::fmt::Debug) {
 println!("{:?}", u);
}
fn main() {
 let x = (0..25)
 .map(|x| x * 2)
 .filter(|x| x % 3 == 0)
 .collect();
 print_type::<Vec<i32>>(x);
}

Printing out the following error:

error[E0107]: function takes 0 generic arguments but 1 generic ar-
gument was supplied
 --> hello_world/src/main.rs:11:5
 |
11 | print_type::<Vec<i32>>(x);

137

 | ^^^^^^^^^^------------ help: remove these generics
 | |
 | expected 0 generic arguments
 |
note: function defined here, with 0 generic parameters
 --> hello_world/src/main.rs:1:4
 |
1 | fn print_type(u: impl std::fmt::Debug) {
 | ̂^^^^^^^^^
 = note: `impl Trait` cannot be explicitly specified as a gene-
ric argument
For more information about this error, try `rustc --explain
E0107`.

We can still use the previous solution if we can specify the type for the compiler
elsewhere:

fn print_type(u: impl std::fmt::Debug) {
 println!("{:?}", u);
}
fn main() {
 let x = (0..25)
 .map(|x| x * 2)
 .filter(|x| x % 3 == 0)
 .collect::<Vec<i32>>();
 print_type(x);
}

This means that it is not a large detriment and so pick what is more readable. Since
the APIT syntax is far newer than the original generics, you will see much less of
it out in the wild, but it is still a legitimate solution. Sometimes APIT is more rea-
dable; sometimes, the trait bound could be very long, and a where clause is better.

138

ADTs - Algebraic Data Types

Rust has ADTs, meaning Algebraic Data Types. An ADT is a composite type that
is composed of primitive data types (built into the language itself) and other com-
posite types (whether coming from the standard library or elsewhere). There are
two common kinds of ADTs - product types and sum types. In Rust, we have both.

Product types generally contain one or more values, referred to as fields. Every
value of a product type has the same combination of field types. The term product
is used because the set of all possible values of such a type is the Cartesian product
of sets of all possible values of its field types.

In Rust, we have structs and tuples as product types. If you want to do independent
research into ADTs, structs are often also referred to as record types. We have
already seen a couple of examples of structures and will see many more. But just
for completeness, this is how you make a struct:

struct Person {
 name: String,
 age: u32,
}

A struct may also have no fields at all, in which case we call it a unit struct:

struct Marker;
fn main() {
 let _my_marker = Marker;
}

There is only one possible value of a unit struct, which is the name of the type
itself. Unit structs have the size of zero, and they completely disappear during
compilation (no mention of them in the final binary). This makes them useful as
carriers for concepts or states that have no associated data, such as the previously
mentioned example with serialization.

139

Tuples come in two flavors - anonymous tuples and tuple-like struct. Tuples have
fields, just like structures, but the fields have no names, and we can only refer to
them by zero-indexing via the dot operator:

fn main() {
 // Define a tuple of the type (&str, i32, f32)
 let info = ("Alice", 30, 5.5);
 // Accessing elements of a tuple by index
 println!("Name: {}", info.0);
 println!("Age: {}", info.1);
 println!("Height: {}", info.2);
}

Struct-like tuples look like this:

struct Color(u8, u8, u8);

You can implement traits for tuple-structs easier, and they are useful if you want
to give a tuple a name for clarity, but do not need a name for each field.

Sum types are types, the values of which are the sums of the sets of their consti-
tuent types. In Rust, we have two: enums (also called variant types) and unions.
In day-to-day Rust, you only use enums since unions are inherently unsafe and
only truly necessary when interacting with C/C++ libraries that use them.

For the sake of completeness, this is how you make and use a union in Rust:

union MyUnion {
 f1: u32,
 f2: f32,
}
fn main() {
 let mut my_union = MyUnion { f1: 1 };

140

 // Writing to the union is safe
 my_union.f1 = 123456789;
 // Reading from the union is unsafe
 unsafe {
 println!("f1: {}", my_union.f1);
 // ↑ f1: 123456789
 println!("f2: {}", my_union.f2);
 // ↑ f2: nonsense with a lot of zeroes (i32 interpreted as
f32)
 }
}

In unions, only one field can be occupied at a time, and the size of the union is
equal to the size of the largest field. In this case, the size of f32 and i32 is both 32
bits, that is 4 bytes, so the size of the MyUnion type is 4 bytes.

What we did on the highlighted line is called type-punning, wherein you write data
as one type and read it back as another. This is very unsafe, very bad, and most
often happens accidentally, with the programmer forgetting to track which field
is active at a particular time. This can create bugs that are very difficult to debug,
as some values might accidentally happen to be legible for multiple union fields.

Enums internally work similarly to unions, but they also contain a hidden field
called a tag, which tracks which field is active. This makes them safe since we al-
ways know which variant is active at a time. As such, we specify enums in terms
of variants:

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

141

As we see in the previous example, variants can take three shapes:

 ● Plain name (the Quit variant)
 ● Struct-like (Move variant)
 ● Tuple-like (Write and ChangeColor variants)

Before we access the data inside an enum, we need to perform some pattern mat-
ching. This is to establish which variant is active:

match some_message {
 Message::Quit => println!("Quit"),
 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),
 Message::Write(text) => println!("Text message: {}", text),
 Message::ChangeColor(r, g, b) =>
 println!("Change color to: R{}, G{}, B{}", r, g, b),
}

We can also use if-let to match onto a particular variant:

if let Message::Write(some_text) = some_message {
 println!("{some_text} was written");
}

Or a let-else to make a let binding to a refutable pattern:

let Message::Write(some_text) = some_message else {
 return;
};
println!("{some_text}");

142

Note that at the time of writing this text, the let-else syntax is a bit limited in that
the else block can only diverge (return from the function, exit the program, panic,
and so on.) but cannot provide a default value.

If you want to make such a let binding, you can use an if-let as an expression:

let some_text = if let Message::Write(text) = some_message {
 text
} else {
 String::from("No text")
};

This is a bit less elegant than the let-else, but still significantly better than nesting
many if-lets inside one another.

Functions and closures
Although Rust really likes functions, they are not as flexible as in functional pro-
gramming languages. Rust, by default, cannot do things such as partial application
or currying33, and you need to take that into consideration if the functional way is
the one which feels more at home for you.

You can store a function in a variable and call it:

fn hi() {
 //
}
let u = hi;
u();

33 Currying is when you turn a function that takes two parameters and returns something, into a function that takes the
first parameter and returns a function that takes the second parameter that returns something. More nesting occurs for
more parameters. Only supplying some parameters is called partial application

143

But that has limited usability. Closures are a bit more flexible in that they can see
outside of themselves:34

let x = 42;
let u = || println!("{x}");
u()

We are printing the x variable, even though it is not defined inside of the closure.
Note that closures in this way inherit the lifetimes of the value they close over, and
this closure is only valid for as long as x is valid as a result.

Closures do not have to specify the types of their parameters, it is generally inferred
from the context and Rust will tell you in cases it cannot be inferred. However, if
you want, you can specify them directly:

 let z = |x: i32| x * 2;

You can also do irrefutable pattern-matching in closure parameters:

 let z = |(x, y): (i32, i32)| x * y;

Return types can be specified as well, if necessary, however, in those cases, it is
mandatory to surround the closures body with braces:

 let z = |(x, y): (i32, i32)| -> i32 {
 x * y
 };

34 They close over their environment, as mentioned earlier

144

If you take a look at the inferred type for a closure in your Rust-analyzer-equipped
editor, you should see an in-lay hint that looks something like this:

let z: impl Fn(i32) -> i32 = |x: i32| x * 2;

Rust-analyzer here shows you an existential type for the closure. The actual
underlying anonymous type implements the Fn trait. There is a special syntactic
sugar that lets you specify the argument and return types as if you were writing
a function (with parentheses around the argument types and an arrow before the
return type). Fn traits come in three flavors, based on how much they interact with
the environment outside of themselves:

 ● Fn - this means that the closure at most takes values from its environment
by a read-only (shared) reference, meaning &T

 ● FnMut - this indicates that a closure takes values from its environment by
a mutable (exclusive) reference

 ● FnOnce - this closure takes values by ownership, since the values taken by
ownership will be dropped after the closure is called, it can only be called
once

By default, closures take references to the environment. You can force the FnOnce
behavior by using the move keyword. Most commonly, you will run into this when
spawning new system threads, if you need to pass some values to those threads:

fn main() {
 let numbers = vec![1, 2, 3, 4, 5];
 // Start a new thread using a move closure
 let handle = thread::spawn(move || {
 let sum: i32 = numbers.iter().sum();
 println!("The sum is: {}", sum);
 });
 // Wait for the thread to complete
 handle.join().unwrap();
}

145

Here, we want the new thread to own the numbers vector, and so we use the move
keyword.

Note that the Fn traits are subsets of each other:

 ● Every Fn closure also implements FnMut and FnOnce
 ● Every FnMut closure also implements FnOnce

As a matter of fact, if you find the Fn traits in Rust’s STD documentation (exercise
left to the reader), you will see that they are directly specified as super-traits of
one another.

The reason for that is that it is perfectly reasonable to pass a closure that is more
flexible than the requirement. Consequently, if your code allows, you want to spe-
cify the most restrictive Fn trait. For example, if you know you will only need to
call the closure once, use FnOnce.

Iterators
In Rust, iterators are a tool we use constantly. For many smaller operations, ne-
sting or chaining for loops can be quite cumbersome, and iterators are typically
much cleaner to write and see (note that you can put an iterator chain after the in
keyword in for loops and get the best of both worlds).

Making something an iterator is easy, you just need to implement the Iterator trait,
which only requires you to implement the .next() method yourself (other methods
and related traits may be handy if your data structure has certain properties, such
as known size).

Here is an example:

struct ConstantNumber {
 number: usize,
}
// Implement the Iterator trait for ConstantNumber
impl Iterator for ConstantNumber {
 type Item = usize;
 // The next method will always return Some with the number

146

 fn next(&mut self) -> Option<Self::Item> {
 Some(self.number)
 }
}
fn main() {
 // Create an instance of ConstantNumber
 let mut constant = ConstantNumber { number: 5 };
 // Use the iterator, for example, to take the first 10 elements
 let numbers: Vec<_> = constant.take(10).collect();
 println!("{:?}", numbers); // This will print [5, 5, 5, 5, 5,
5, 5, 5, 5, 5]
}

There are many methods automatically provided for Iterators, which make them
quite ergonomic to work with. Below is a table of some common and handy iterator
methods along with a brief description of what each does:

Method Description

map Transforms the items in the iterator using a closure.

filter Filters items in the iterator based on a predicate provided
by a closure.

fold Reduces the iterator to a single value using a closure and
an initial accumulator value.

for_each Applies a closure to each item in the iterator, typically used
for side effects.

collect Transforms the iterator into a collection, such as a Vec or
a HashMap.

147

find Searches for an item in the iterator that satisfies a predicate
and returns it as Some(item) if found.

any Checks if any element of the iterator satisfies a predicate.

all Checks if all elements of the iterator satisfy a predicate.

count Counts the number of items in the iterator.

sum Sums up the items in the iterator. Must be numeric types.

product Computes the product of the items in the iterator. Must be
numeric types.

min Finds the minimum item in the iterator. Items must im-
plement Ord.

max Finds the maximum item in the iterator. Items must im-
plement Ord.

take Takes the first n elements from the iterator and then stops.

skip Skips the first n items of the iterator and then yields the rest.

nth Returns the nth item of the iterator, skipping the first n items.

zip Zips up two iterators into a single iterator of pairs.

chain Concatenates two iterators into a single sequence.

enumerate Transforms the iterator into an iterator that gives the cu-
rrent count along with the item.

flat_map Maps each element to an iterator, then flattens the result
into a single iterator.

148

The previous section contained a lot of information that may be complex for you in
the first reading. That is perfectly fine, and you can keep returning to it whenever
you encounter relevant terms in the upcoming parts of the book. This was quite
a long section, too. As a brief respite, please enjoy this drawing of a dachshund by
my friend Piia:

Much like this section, this dog is also long. Look at him. Could you ever say “No”
to those eyes?

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

5KEEPING RUSTCULTURED

150

While the compiler and the programmer’s own discipline can go a long way in main-
taining the quality of code, it is not quite everything. This is especially true when
cooperating with others - it becomes increasingly difficult to maintain a codebase
the older it is and the more people work on it. Every project aspires to entropy (if
you are familiar with the Warhammer 40k universe, the Adeptus Mechanicus got
the right idea), and we need to take precautions to slow down this process as much
as possible. To help us with that, there are tools we can include in our workflow
that either modify or judge the source code.

In the Rust ecosystem, there are a number of these tools. There are a few 3rd party
tools, for example:

 ● cargo-machete / cargo-udeps - tools for detecting unused dependencies
 ● cargo-tarpaulin / cargo-llvm-cov - utilities for code coverage
 ● cargo-audit - inspects your projects’ dependency trees for security vulnerabilities
 ● cargo-semver-checks - checks for SemVer violations

Some tools are already built into the Rust toolchain and come with your installation
(assuming you installed Rust via rustup in the default or full profile). These are
rustfmt and clippy. While both of these tools are available as separate binaries,
we will be using them via Cargo. You only need to access them directly if you are
using a different build system, which is fairly rare in Rust development.

RUSTFMT
Rustfmt is Rust’s official formatter. It formats your code according to the commu-
nity standard. All code you see in this book has been formatted by this tool. If you
set up automatic formatting on save in your favorite code editor, chances are you
will be using rustfmt to do the formatting.

151

If you want to format your code via the command-line, you can simply run

cargo fmt

This will format every source file in your crate. If you are writing a CI pipeline, and
only want to verify if code would have been reformatted, you can use the following
command:

cargo fmt --check

This will make the command exit with an error code and print parts of the code-
base which would have been reformatted. This makes it a great tool to include in
automatic checks in a CI pipeline (as mentioned above), or, for example, in a git
push hook, to prevent yourself from pushing misformatted code.

Sometimes, the default formatting doesn’t cut it. You may be doing something
that ends up looking less readable when formatted according to the standard way
of formatting things. Luckily, rustfmt is highly configurable, both in an outside
configuration file and inside your codebase via special prefixed attributes you can
apply to different sections of Rust files.

Consider the following example:

// This attribute applies to the entire module, telling rustfmt to
// skip formatting this module.
#![rustfmt::skip]
mod example {
 // Re-enabling rustfmt for a specific function within
 // a module that's otherwise skipped.
 #[rustfmt::skip::macros(format_macro)]

152

 #[rustfmt::skip]
 fn formatted_function() {
 let x = 1;
 // ↑ Normally, rustfmt would adjust spacing around the
assignment.
 let y = vec![1,2,3];
 // ↑ And it would format this vector with spaces after
commas.
 println!("{}", x);
 }
 // Example of using rustfmt attributes to control specific for-
matting rules.
 #[rustfmt::skip]
 fn another_function() {
 // rustfmt won't format this block due to
 // the #[rustfmt::skip] attribute above.
 let a = 10;
 let b = vec![1,2,3];
 }
 // Using attributes to enforce a specific width for this block.
 // Note: This example is illustrative; actual attribute syntax
may vary and
 // rustfmt's ability to enforce line width can depend
 // on the specific code structure.
 #[rustfmt::config(override)]
 #[rustfmt::width(80)]
 fn width_controlled_function() {
 // This function's code will be formatted to fit within 80
characters
 // per line, if possible.
 }
}

As for the configuration file, rustfmt is recursively searching up from the cu-
rrent directory for a rustfmt.toml file, which is a simple TOML file that may look
something like this:

153

indent_style = "Block"
reorder_imports = false

All in all, it is a good practice to format your code every once in a while. If you use
an editor which supports it, you can enable automatic formatting. VS Code is one
of the editors that do support it:

You enter this menu by pressing Ctrl+Shift+P, typing Preferences, selecting Open
User Settings, and searching for Formatting in the Text Editor section.

Next time you press Ctrl+S, you should see your code format right before your eyes.

Most of the Rust developers I know have enabled automatic formatting, which is
a handy tool.

154

CLIPPY
Sometimes, we create things in our programs that are not exactly incorrect but
could be done better, more idiomatically, or less wastefully. To catch these “not
quite compiler errors,” we use tools called linters.

Rust comes with one such linter pre-bundled, Clippy, named after the magical
talking paperclip from the yesteryears of Microsoft-based computing. Clippy has
several categories of lints that you can turn on and off as you wish via the following
attributes in crate root:

#![allow(clippy::something)]
#![warn(clippy::something)]
#![deny(clippy::something)]

You can run clippy with the cargo clippy command.

Note that all of these can take a comma-separated list of lints, so you do not need
to repeat the attribute.

For example, one of the categories of lints is suspicious lints. For example, consider
the almost_complete_range.

This lint is triggered when Clippy encounters code similar to the following:

fn main() {
 for u in 'a'..'z' {
 // ...
 }
}

Usually, when you do something like this, you want to iterate over every letter. This
range, however, excludes the last letter. Clippy will suggest changing the range to this:

155

fn main() {
 for u in 'a'..='z' {
 }
}

This will cover all of the letters.

Sometimes, there are lints that can be fixed automatically because they are style
issues, and fixing them does not alter the behavior of the program in any way. You
can run

$ cargo fix --clippy

To take care of those. The cargo fix command can also fix some compiler warnings
that are equivalent changes, but there are fewer of them.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

6IMPLEMENTINGA BITCOIN
LIBRARY

157

This is the first component and the main contact point between the different pro-
grams comprising our blockchain project. It is beneficial for us to have a shared
library like this so that we can avoid duplication of code, and have a single interface
that all the other components can understand each other through.

As we have already seen in the introductory chapter, any crate can have a library
part with the lib.rs file serving as its entry point.

If you take a look at the structure of the workspace we created in the chapter
“Setting Up”, you should see this:

.
├── Cargo.toml
├── lib
│ ├── Cargo.toml
│ └── src
│ └── main.rs
├── miner
│ ├── Cargo.toml
│ └── src
│ └── main.rs
├── node
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── wallet
 ├── Cargo.toml
 └── src
 └── main.rs

158

And these are the contents of the root Cargo.toml file:

[workspace]
resolver = "2"
members = [
 "lib",
 "miner",
 "node",
 "wallet",
]

Additionally, you may also have a hello_world project here, if you placed it into
the workspace earlier. We will not be touching the hello_world project again, so it
will be omitted from future folder displays in the following chapters.

Start by opening the lib/ folder in VS Code, or your favorite editor. Next, select the
src/lib.rs file. These are the contents Cargo generates for us:

// lib.rs
pub fn add(left: usize, right: usize) -> usize {
 left + right
}
#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn it_works() {
 let result = add(2, 2);
 assert_eq!(result, 4);
 }
}

159

A simple public function called add() and a tests module which contains a single
it_works test that verifies that the add() function works as expected. This is a nice
and concise example of how built-in test support works in Rust. The assert_eq!()
macro would cause a panic, if the values would not equal one another, and a panic
indicates a test has failed, unless marked with a #[should_panic] attribute, which
you can use to test error scenarios.

We will now take this nice example and delete it completely. Life is cruel sometimes,
kid. Create the following files:

 ● src/sha256.rs
 ● src/types.rs
 ● src/util.rs
 ● src/crypto.rs

And declare these as modules in lib.rs:

// lib.rs
pub mod sha256;
pub mod types;
pub mod util;
pub mod crypto;

Next, let’s import the libraries that we are going to use in our library. Either run
this command (make sure you are in the lib/ directory):

cargo add serde ciborium sha256 uint
cargo add uuid --features "v4,serde"

Or add the following to the [dependencies] section of your Cargo.toml:

[dependencies]
ciborium = "0.2.2"

160

serde = "1.0.198"
sha256 = "1.5.0"
uint = "0.9.5"
uuid = { version = "1.8.0", features = ["v4", "serde"] }

NOTE: Depending on when you read this book, these library versions may be long
outdated. Check out the crates.io website for latest versions.

Running either cargo check/build or cargo clippy should download and build
the dependencies. Furthermore, we will need to enable the derive feature of the
serde library. The derive feature adds derive macros for the main traits in serde
- Serialize and Deserialize.

Either run:

cargo add serde --features derive

Or adjust your Cargo.toml:

[dependencies]
ciborium = "0.2.2"
serde = { version = "1.0.198", features = ["derive"] }
sha256 = "1.5.0"
uint = "0.9.5"
uuid = { version = "1.8.0", features = ["v4", "serde"] }

If you prefer, you can use the longer syntax for dependencies that require a lot of
configuration:

161

[dependencies]
ciborium = "0.2.2"
sha256 = "1.5.0"
uint = "0.9.5"
uuid = { version = "1.8.0", features = ["v4", "serde"] }
[dependencies.serde]
version = "1.0.198"
features = ["derive"]

Keep in mind that these blocks need to be under the single-line dependency spe-
cification. Cargo supports many specifiers for dependency versions (all supported
by the standard Semantic Versioning 2), but we will be fine with these specific ones
inserted by Cargo automatically.

We have added three dependencies to our library:

 ● Serde - a library for serialization and deserialization. This library decouples
data types from formats and only contains functionality that makes (de)seriali-
zers understand how your types look. We enabled the derive feature, which ma-
kes derive macros available. These generate the “glue code” for us automatically.

 ● ciborium - contains support for the CBOR format so that we have something
we can serialize into. CBOR is a binary format, similar to MessagePack,
which we could have used as well (I have more experience with CBOR, and
there is no other special reason why we are using it). There is an alternative
library you may encounter called serde-cbor, however, it is unmaintained
and not 100% compatible with CBOR produced by ciborium due to not fo-
llowing the whole specification.

 ● Sha256 - an implementation of the SHA-256 hashing function, which is
critical to bitcoin.

 ● uint - a crate for creating custom large fixed-size integers; we will use this
for another simplification - encoding our difficulty and hashes as big unsig-
ned 256-bit integers directly.

 ● uuid - we will assign unique IDs to transaction outputs, so that we can
ensure they have unique hashes, and we can uniquely identify an unspent
transaction output by its hash. This will be a slight departure from the real
implementation of bitcoin, which identifies them by their pair of transaction
hash and index within the list of outputs.

162

Often, you discover that you need more dependencies as you go. So consider this
merely our starting set.

These are usually all the steps you need to take to add dependencies to your pro-
ject. This process is extremely simple and mostly automatic, giving Rust an edge
over dependency management in other lower-level programming languages such
as C/C++.

Previously, if you added a dependency to your Rust crate, you also needed to declare
these extern crates in your root file (either lib.rs or main.rs) like so:

extern crate sha256;
extern crate serde;
extern crate ciborium;

This is no longer necessary today, but you can still do it if you want. The are two
instances where the extern crate syntax does something substantial in today’s Rust:

extern crate sha256 as sha256_lib;

First is renaming dependencies, as shown above. The second is importing all
macros from older crates:

#[macro_use]
extern crate serde;

You won’t need to do either of these in this project, but it still helps to know what
you are looking at if you encounter these out in the wild.

Anyways, at this point, this is how your lib.rs file should look:

163

// lib.rs
pub mod sha256;
pub mod types;
pub mod util;
pub mod crypto;

Let’s quickly import uint and create our U256 type in lib.rs:

// lib.rs
use uint::construct_uint;
construct_uint! {
 // Construct an unsigned 256-bit integer
 // consisting of 4 x 64-bit words
 pub struct U256(4);
}
pub mod crypto;
pub mod sha256;
pub mod types;
pub mod util;

NOTE: A U256 type is already defined, for example, in the ethereum-types crate,
but I have this thing in my body called self-respect. I also wanted to show you how
to use the uint crate. Also, the uint crate was written by people who developed the
Ethereum project anyway. Tough life, tough life for bitcoin maxis.

We can now start filling up the modules. Let’s start by going into the src/types.rs
file and designing our data structures.

DATA TYPES
Most of the time when writing in Rust, I start by thinking about what data structures
I will need to create and what should each of them do. I create stubs for methods,
and then finish the initial development by implementing them.

164

This mode of development works quite well with Rust, due to its strong typing
and safety guarantees. If your code compiles, it is most likely correct (except for
logic errors, of course). By specifying types first, and then filling out method stubs,
I can do iterative development with a broader perspective over the entire look of
the program. Naturally, all programmers are different, but for me, this helps me
make better decisions about how my programs should look.

Let’s start with a high-level overview of what a blockchain is according to the
whitepaper. We have these basic entities: the blockchain, the block, the block
header, and the transaction.

We can create unit structs for them:

// types.rs
pub struct Blockchain;
pub struct Block;
pub struct BlockHeader;
pub struct Transaction;

In this case, we can consider these as stubs for proper types. Let’s tackle the block-
chain first. What is a blockchain? Well, it is a chain of blocks, so we can start with
a naive implementation that stores all the blocks in a vector:

// types.rs
pub struct Blockchain {
 pub blocks: Vec<Block>,
}

We can immediately add some simple methods to help us:

165

// types.rs
impl Blockchain {
 pub fn new() -> Self {
 Blockchain { blocks: vec![] }
 }
 pub fn add_block(&mut self, block: Block) {
 self.blocks.push(block);
 }
}

In Rust, there are no real constructor methods. They are not needed in Rust, and
they often add a layer of complexity to the languages that have them. They can also
make things confusing and implicit, which goes against Rust’s design philosophy
of making everything explicit.

However, it is a tradition to create a new() method (technically, we could call it an
associated function since it does not refer to self; these are also sometimes refe-
rred to as static methods in other languages), which creates a new instance of the
type. This new() method is very simple: we merely set blocks to an empty vector.

Next, we also create an add_block method, which appends a block to the end
of the vector. Why add a method instead of directly accessing the blocks field in
Blockchain? Two reasons:

 ● Although we have declared it as public at this point, we will want to hide the
actual insides of the blockchain type and only provide access through the
methods so that we can alter the interior implementation to use different
storage than just a plain vector, without breaking any code that already de-
pends on Blockchain.

 ● We can add validation in the add_block() method to ensure that the block we
add is correct and belongs to the blockchain.

Let’s leave it at this for now. Next, we can tackle the Block type:

166

// types.rs
pub struct Block {
 pub header: BlockHeader,
 pub transactions: Vec<Transaction>,
}

A block should be a block header, and a list of transactions included in the block.
Once again, we can add a small impl block:

// types.rs
impl Block {
 pub fn new(
 header: BlockHeader,
 transactions: Vec<Transaction>,
) -> Self {
 Block {
 header: header,
 transactions: transactions,
 }
 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}

In the example above, you can (and should), write just header instead of header:
header. Rust supports a struct initialization shorthand, wherein if you have
a value with the same name and the same type in scope, you can just use the name
of the field.

So far, we have made the hash() function unimplemented by using the macro of
the same name. This will make it compile, but would safely crash at runtime. The
! type indicates that this method will never return because the program diverges.

167

It is pronounced as the never type.

NOTE: Use the unimplemented!() and todo!() macros (your choice), as much as
you can. The code we will be writing in later in this book will not always be runna-
ble, but todo!() can help you make it compilable, even in very intermediate states.
I use them all the time to fill gaps in my programs.

Now, we are left with the block header, and the transaction types, which are the
most complex ones. The block header can look a bit like this:

// types.rs
use crate::U256;
pub struct BlockHeader {
 pub timestamp: u64,
 pub nonce: u64,
 pub prev_block_hash: [u8; 32],
 pub merkle_root: [u8; 32],
 pub target: U256,
}

(Move the U256 import to the top of the file)

We have the following fields:

 ● timestamp - the time when the block was created. This and the nonce are
the two fields that alter when mining blocks in our blockchain.

 ● nonce - number only used once, we increment it to mine the block.
 ● prev_block_hash - the hash of the previous block in the chain.
 ● merkle_root - the hash of the Merkle tree root derived from all of the

transactions in this block. This ensures that all transactions are accounted
for and unalterable without changing the header.

 ● target - A number, which has to be higher than the hash of this block for it to
be considered valid.

168

We can add documentation comments to the structure, if we want:

// types.rs
pub struct BlockHeader {
 /// Timestamp of the block
 pub timestamp: u64,
 /// Nonce used to mine the block
 pub nonce: u64,
 /// Hash of the previous block
 pub prev_block_hash: [u8; 32],
 /// Merkle root of the block's transactions
 pub merkle_root: [u8; 32],
 /// target
 pub target: U256,
}

Once again, we can add some method stubs:

// types.rs
impl BlockHeader {
 pub fn new(
 timestamp: u64,
 nonce: u64,
 prev_block_hash: [u8; 32],
 merkle_root: [u8; 32],
 target: U256,
) -> Self {
 BlockHeader {
 timestamp,
 nonce,
 prev_block_hash,
 merkle_root,
 target,
 }
 }
 pub fn hash(&self) -> ! {

169

 unimplemented!()
 }
}

All that’s left to specify at this point is the transaction type:

// types.rs
pub struct Transaction {
 pub inputs: Vec<TransactionInput>,
 pub outputs: Vec<TransactionOutput>,
}
pub struct TransactionInput;
pub struct TransactionOutput;

Oh no! We have created two more types that we need to take care of. This makes
sense, since as we have read in the whitepapers (and as we probably know from
real life), all transactions have some inputs and some outputs.

This is how the transaction input can look:

// types.rs
pub struct TransactionInput {
 pub prev_transaction_output_hash: [u8; 32],
 pub signature: [u8; 64],
}

170

In our simplified Txin (transaction input), we have three fields:

 ● prev_transaction_output_hash - the hash of the transaction output, which
we are linking into this transaction as input. Real bitcoin uses a slightly dif-
ferent scheme - it stores the previous transaction hash, and the index of the
output in that transaction.

 ● signature - this is how the user proves they can use the output of the pre-
vious transaction.

The outputs are also simple:

// types.rs
use uuid::Uuid;
pub struct TransactionOutput {
 pub value: u64,
 pub unique_id: Uuid,
 pub pubkey: [u8; 33],
}

(Once again, move the use to the top of the file)

The unique_id is a generated identifier that helps us ensure that the hash of each
transaction output is unique, and can be used to identify it.

That should be it. We can now add simple methods again:

// types.rs
impl Transaction {
 pub fn new(
 inputs: Vec<TransactionInput>,
 outputs: Vec<TransactionOutput>)
 -> Self {
 Transaction {
 inputs: inputs,
 outputs: outputs,
 }

171

 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}

We have made yet another simplification in comparison to real bitcoin here by
replacing the script field with a signature field. The main implementation of bit-
coin can do many things in the script fields, but we are fine with a much simpler
solution, where you can only send sats to a recipient and nothing else.

Let’s review all of our type definitions:

// types.rs
pub struct Blockchain {
 pub blocks: Vec<Block>,
}
pub struct Block {
 pub header: BlockHeader,
 pub transactions: Vec<Transaction>,
}
pub struct BlockHeader {
 /// Timestamp of the block
 pub timestamp: u64,
 /// Nonce used to mine the block
 pub nonce: u64,
 /// Hash of the previous block
 pub prev_block_hash: [u8; 32],
 /// Merkle root of the block's transactions
 pub merkle_root: [u8; 32],
 /// target
 pub target: U256,
}
pub struct Transaction {
 pub inputs: Vec<TransactionInput>,
 pub outputs: Vec<TransactionOutput>,

172

}
pub struct TransactionInput {
 pub prev_transaction_output_hash: [u8; 32],
 pub signature: [u8; 64], // dummy types, will be replaced later
}
pub struct TransactionOutput {
 pub value: u64,
 pub unique_id: Uuid,
 pub pubkey: [u8; 33], // dummy types, will be replaced later
}

We can do some small refinements now, so that we have more concrete types. Let’s
create types for public and private keys, signatures, hashes, and the Merkle root,
and let’s use the chrono library for a consistent timestamp. Adding the chrono
dependency is easy enough:

cargo add chrono --features "serde"

Alternatively, edit your Cargo.toml:

[dependencies]
chrono = [version = "0.4.38", features = ["serde"] }
ciborium = "0.2.2"
serde = { version = "1.0.198", features = ["derive"] }
sha256 = "1.5.0"

The chrono library provides us with tools for working with dates and times. Due
to the Rust standard library being intentionally minimalistic, we do not have these
primitives available without a time library. There are other things not available in
the standard library but only via standard crates similar to chrono, for example

173

the rand crate gives us access to randomization tools, and is almost universally
used whenever random numbers are needed.

Now that we have chrono available, let’s import DateTime and Utc:

// types.rs
use chrono::{DateTime, Utc};

Remember how we spoke about zero-sized generic types being used to encode
information? This is one such example, with the Utc type is a zero-sized struct
representing the UTC timezone. There are other similar types for other time zones.

Let’s now change the type of the timestamp field on BlockHeader:

// types.rs
pub struct BlockHeader {
 /// Timestamp of the block
 pub timestamp: DateTime<Utc>,
 /// Nonce used to mine the block
 pub nonce: u64,
 /// Hash of the previous block
 pub prev_block_hash: [u8; 32],
 /// Merkle root of the block's transactions
 pub merkle_root: [u8; 32],
 /// target
 pub target: U256,
}
impl BlockHeader {
 pub fn new(
 timestamp: DateTime<Utc>,
 nonce: u64,
 prev_block_hash: [u8; 32],
 merkle_root: [u8; 32],
 target: U256,
) -> Self {
 BlockHeader {

174

 timestamp,
 nonce,
 prev_block_hash,
 merkle_root,
 target,
 }
 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}

This looks better. Let’s now make types for the following:

 ● Merkle root
 ● Public and private key
 ● Hash
 ● Signature

Insert the following stub into src/sha256.rs:

// src/sha256.rs
pub struct Hash;

The following stub into src/util.rs:

// src/util.rs
pub struct MerkleRoot;

175

Now, we are faced with the question of where to put the pub/priv keys and the
signature.35 This is the time for the crypto module we created earlier.

What algorithm do we use, and what do we name the module? Real bitcoin uses
ECDSA (Elliptic Curve Digital Signature Algorithm), and we can do the same.
ECDSA can use different elliptical curve parameters, and we can use the so-called
secp256k1, just like bitcoin.

We need to import the ecdsa and k256 libraries. There is a mechanism similar to
the one we have seen with serde and ciborium. The ecdsa crate is generic over
the elliptical curve used, and the curve (just like the format in serde), needs to be
supplied via another crate.

At this point, we have added many dependencies:

cargo add ecdsa --features "signing,verifying,serde,pem"
cargo add k256 --features "serde,pem"

Or:

k256 = { version = "0.13.3", features = ["serde", "pem"] }
ecdsa = { version = "0.16.9", features = ["signing", "verifying",
"serde", "pem"] }

We can then open crypto module of our library (the src/crypto.rs file). Make sure
that you have the module declaration in src/lib.rs:

// lib.rs
pub mod sha256;
pub mod types;

35 When any question leaves you doubting, please refer to the answer to life, death, and everything provided in this
book’s ISBN.

176

pub mod util;
pub mod crypto;

Next, navigate to the crypto.rs file in your editor, and add the following stubs:

// crypto.rs
pub struct Signature;
pub struct PublicKey;
pub struct PrivateKey;

We can import the types we need from ecdsa and k256:

// crypto.rs
use ecdsa::{
 signature::Signer,
 Signature as ECDSASignature,
 SigningKey,
 VerifyingKey
};
use k256::Secp256k1;
pub struct Signature(ECDSASignature<Secp256k1>);
pub struct PublicKey(VerifyingKey<Secp256k1>);
pub struct PrivateKey(SigningKey<Secp256k1>);

Let’s now briefly go and take care of the sha256 module. We need to add yet another
dependency, the hex crate, so that we can easily parse SHA-256 hashes from the
sha256 crate, which returns them as Strings:

cargo add hex

177

Or:

hex = "0.4.3"

Using this crate, we can create our Hash type implementation:

// src/sha256.rs
use crate::U256;
use sha256::digest;
use serde::Serialize;
#[derive(Clone, Copy, Serialize)]
pub struct Hash(U256);
impl Hash {
 // hash anything that can be serde Serialized via ciborium
 pub fn hash<T: serde::Serialize>(data: &T) -> Self {
 let mut serialized: Vec<u8> = vec![];
 if let Err(e) = ciborium::into_writer(
 data,
 &mut serialized,
) {
 panic!(
 "Failed to serialize data: {:?}. \
 This should not happen",
 e
);
 }
 let hash = digest(&serialized);
 let hash_bytes = hex::decode(hash).unwrap();
 let hash_array: [u8; 32] = hash_bytes.as_slice()
 .try_into()
 .unwrap();
 Hash(U256::from(hash_array))
 }
 // check if a hash matches a target
 pub fn matches_target(&self, target: U256) -> bool {
 self.0 <= target

178

 }
 // zero hash
 pub fn zero() -> Self {
 Hash(U256::zero())
 }
}

We see three methods here, hash, matches_target and zero. The hash() associa-
ted function will generate a new hash from data that is passed into. We make our
function generic over everything that can be serialized via serde:

 // sha256.rs
 pub fn hash<T: serde::Serialize>(data: &T) -> Self {
 }

We serialize the data into the CBOR binary format via the ciborium crate:

 // sha256.rs
 pub fn hash<T: serde::Serialize>(data: &T) -> Self {
 let mut serialized: Vec<u8> = vec![];
 if let Err(e) = ciborium::into_writer(
 data,
 &mut serialized,
) {
 panic!(
 "Failed to serialize data: {:?}. \
 This should not happen",
 e
);
 }
 // ...
 }

179

As you can see, the ciborium crate requires something that can be written into
(a writer). We can supply a simple vector of bytes, which will work fine. Naturally,
the serialized vector must be declared mutable, and a mutable (exclusive) borrow
must be passed to the into_writer() function, hence &mut serialized. Since it is
very unlikely that serialization will fail, we can just panic with a message in the
unlikely event that it happens.

Finally, we compute a hash and convert it into a U256:

 // sha256.rs
 // hash anything that can be serde Serialized via ciborium
 pub fn hash<T: serde::Serialize>(data: &T) -> Self {
 // ...
 let hash = digest(&serialized);
 let hash_bytes = hex::decode(hash).unwrap();
 let hash_array: [u8; 32] = hash_bytes.as_slice()
 .try_into()
 .unwrap();
 Hash(U256::from(hash_array))
 }

In comparison, the matches_target() method is very short:

 // sha256.rs
 // check if a hash matches a target
 pub fn matches_target(&self, target: U256) -> bool {
 self.0 <= target
 }

In the real bitcoin implementation, the underlying mechanism is the same. The
network difficulty sets a target, and for a hash to be valid for a mined block, the
hash has to be a smaller number than the target. For efficiency reasons, bitcoin
does not store the target directly, but rather gives us tools and clues to figure it out

180

whenever we need the real value. In our case, we can simplify this a bit by always
having the number at hand.

The zero() method is just a useful shorthand to get us a zero hash.

Finally, notice that we have marked the type with the following attribute:

// sha256.rs
#[derive(Clone, Copy, Serialize)]
pub struct Hash(U256);

This will automatically implement the Clone and Copy traits on the Hash type,
letting us freely copy and handle the Hash type, as if it were a number (which it is).
This is to make our lives easier and provide additional flexibility. We will be adding
more derives to our types soon. The third trait we are deriving is Serialize from
the serde crate so that we can convert it to CBOR and other serialization formats.
While we are at it, let’s also implement the std::fmt::Display trait so that Hash
can be printed out via println!(). We are going to leverage the lower hex printing
implementation of U256:

// sha256.rs
use std::fmt;
impl fmt::Display for Hash {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 write!(f, "{:x}", self.0)
 }
}

Now, we can go back to the src/util.rs module and implement the MerkleRoot type:

// util.rs
use crate::sha256::Hash;
use crate::types::Transaction;

181

pub struct MerkleRoot(Hash);
impl MerkleRoot {
 // calculate the merkle root of a block's transactions
 pub fn calculate(
 transactions: &[Transaction],
) -> MerkleRoot {
 let mut layer: Vec<Hash> = vec![];
 for transaction in transactions {
 layer.push(Hash::hash(transaction));
 }
 while layer.len() > 1 {
 let mut new_layer = vec![];
 for pair in layer.chunks(2) {
 let left = pair[0];
 // if there is no right, use the left hash again
 let right = pair.get(1).unwrap_or(&pair[0]);
 new_layer.push(Hash::hash(&[left, *right]));
 }
 layer = new_layer;
 }
 MerkleRoot(layer[0])
 }
}

This will sadly not compile, it will complain with the following error:

error[E0277]: the trait bound `Transaction: Serialize` is not sa-
tisfied
 --> src/util.rs:15:35
 |
15| layer.push(Hash::hash(transaction));
 | ---------- ^^^^^^^^^^^ the trait `Se-
rialize` is not implemented for `Transaction`
 | |
 | required by a bound introduced by this
call
 |

182

And it is correct, the Transaction type, just like every other bitcoin type we just
created, does not implement the Serialize trait from serde. Well, we are going to
need both Serialize and Deserialize on pretty much every type, so let’s quickly
add it now (along with some other useful traits:

// in every file that needs it
use serde::{Deserialize, Serialize};
// sha256.rs
#[derive(Clone, Copy, Serialize, Deserialize, Debug, PartialEq,
Eq)]
pub struct Hash(U256);
// lib.rs
construct_uint! {
 // Construct an unsigned 256-bit integer
 // consisting of 4 x 64-bit words
 #[derive(Serialize, Deserialize)]
 pub struct U256(4);
}
// types.rs
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
…
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Block {
…
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct BlockHeader {
…
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Transaction {
…
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionInput {
…
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionOutput {
// util.rs
#[derive(
 Serialize,

183

 Deserialize,
 Clone,
 Copy,
 Debug,
 PartialEq,
 Eq,
)]
pub struct MerkleRoot(Hash);
// crypto.rs
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct Signature(pub ECDSASignature<Secp256k1>);
…
#[derive(
 Debug, Serialize, Deserialize, Clone, PartialEq, Eq,
)]
pub struct PublicKey(pub VerifyingKey<Secp256k1>);
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PrivateKey(pub SigningKey<Secp256k1>);

The list of traits for the MerkleRoot, PublicKey and Hash types are a little longer,
they also include PartialEq and Eq. These two traits implement the equality and
inequality operators (== and !=, respectively). Finally, the Debug trait lets us print
out values with println!() and similar macros, which is useful for debugging.

This addition we made will still not compile, for three reasons. First, we will find
that the PrivateKey cannot implement Deserialize because SigningKey doesn’t,
and second, we have types that do not implement Serialize and Deserialize in
some of our bitcoin types. Finally, we will get an error like this:

error[E0277]: the trait bound `[u8; 64]: Serialize` is not satis-
fied
 --> lib/src/types.rs:102:10
 |
102 | #[derive(Serialize, Deserialize, Clone, Debug)]
 | ^^^^^^^^^ the trait `Serialize` is not implemented
for `[u8; 64]`

184

105 | pub signature: [u8; 64],
 | --- required by a bound introduced by this call
 |
 = help: the following other types implement trait `Seriali-
ze`:
 [T; 0]
 [T; 1]
 [T; 2]
 [T; 3]
 [T; 4]
 [T; 5]
 [T; 6]
 [T; 7]
 and 26 others

(And a similar one for the pubkey in TransactionOutput. You can fix this one
easily by replacing the arrays in this types with the correct types from crypto.rs):

// types.rs
use crate::crypto::{PublicKey, Signature};
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionInput {
 pub prev_transaction_output_hash: [u8; 32],
 pub signature: Signature,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionOutput {
 pub value: u64,
 pub unique_id: Uuid,
 pub pubkey: PublicKey,
}

The root of the first issue is that there are multiple formats such a key can be se-
rialized into, and we need to choose one explicitly. Luckily, serde allows us to add

185

attributes to fields in types, that tell it how to handle a particular type it does not
natively understand:

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PrivateKey(
 #[serde(with = "signkey_serde")]
 pub SigningKey<Secp256k1>,
);
mod signkey_serde {
 use serde::Deserialize;
 pub fn serialize<S>(
 key: &super::SigningKey<super::Secp256k1>,
 serializer: S,
) -> Result<S::Ok, S::Error>
 where
 S: serde::Serializer,
 {
 serializer.serialize_bytes(&key.to_bytes())
 }
 pub fn deserialize<'de, D>(
 deserializer: D,
) -> Result<super::SigningKey<super::Secp256k1>, D::Error>
 where
 D: serde::Deserializer<'de>,
 {
 let bytes: Vec<u8> =
 Vec::<u8>::deserialize(deserializer)?;
 Ok(super::SigningKey::from_slice(&bytes).unwrap())
 }
}

This snippet of code has the distinct feature of not being very readable, but we
can explain it with no trouble at all. We start by adding the highlighted attribute
to the structure:

186

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PrivateKey(
 #[serde(with = "signkey_serde")]
 pub SigningKey<Secp256k1>,
);

This tells serde to find a module called signkey_serde and use the serialize()
function in it to serialize the type, and the deserialize() function to deserialize. We
can then implement each function in this module. First, serialize:

 pub fn serialize<S>(
 key: &super::SigningKey<super::Secp256k1>,
 serializer: S,
) -> Result<S::Ok, S::Error>
 where
 S: serde::Serializer,
 {
 serializer.serialize_bytes(&key.to_bytes())
 }

Don’t mind the complex signature of the function, all that is important is the hi-
ghlighted line. What we are saying is “convert the key into a slice of bytes, then
serialize bytes”, which serde naturally already knows how to do. We do the inverse
in the deserialize() function:

 pub fn deserialize<'de, D>(
 deserializer: D,
) -> Result<super::SigningKey<super::Secp256k1>, D::Error>
 where
 D: serde::Deserializer<'de>,
 {
 let bytes: Vec<u8> =
 Vec::<u8>::deserialize(deserializer)?;

187

 Ok(super::SigningKey::from_slice(&bytes).unwrap())
 }

We are telling the deserializer to deserialize this bit of data as just a simple vector
of bytes, and then we do the parsing ourselves with the from_slice() method found
on SigningKey (keep in mind that &Vec<T> converts into an &[T] slice automati-
cally, so merely borrowing it is enough).

While we are here, let’s also add two simple methods for generating a new private
key, and the methods from it:

impl PrivateKey {
 pub fn new_key() -> Self {
 PrivateKey(SigningKey::random(
 &mut rand::thread_rng(),
))
 }
 pub fn public_key(&self) -> PublicKey {
 PublicKey(self.0.verifying_key().clone())
 }
}

This will require you to add the rand crate, which provides random number ge-
neration:

cargo add rand

A quick fix for the second issue (a two-for-one special, if you will, since we needed
to do that anyway) is to use the nice specific types we made in crypto.rs and hash.
rs. Amend the file like such:

188

use chrono::{DateTime, Utc};
use serde::{Deserialize, Serialize};
use crate::crypto::{PublicKey, Signature};
use crate::sha256::Hash;
use crate::util::MerkleRoot;
use crate::U256;
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 pub blocks: Vec<Block>,
}
impl Blockchain {
 pub fn new() -> Self {
 Blockchain { blocks: vec![] }
 }
 pub fn add_block(&mut self, block: Block) {
 self.blocks.push(block);
 }
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Block {
 pub header: BlockHeader,
 pub transactions: Vec<Transaction>,
}
impl Block {
 pub fn new(
 header: BlockHeader,
 transactions: Vec<Transaction>,
) -> Self {
 Block {
 header: header,
 transactions: transactions,
 }
 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct BlockHeader {

189

 /// Timestamp of the block
 pub timestamp: DateTime<Utc>,
 /// Nonce used to mine the block
 pub nonce: u64,
 /// Hash of the previous block
 pub prev_block_hash: Hash,
 /// Merkle root of the block's transactions
 pub merkle_root: MerkleRoot,
 /// target
 pub target: U256,
}
impl BlockHeader {
 pub fn new(
 timestamp: DateTime<Utc>,
 nonce: u64,
 prev_block_hash: Hash,
 merkle_root: MerkleRoot,
 target: U256,
) -> Self {
 BlockHeader {
 timestamp,
 nonce,
 prev_block_hash,
 merkle_root,
 target,
 }
 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Transaction {
 pub inputs: Vec<TransactionInput>,
 pub outputs: Vec<TransactionOutput>,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionInput {
 pub prev_transaction_output_hash: Hash,

190

 pub signature: Signature,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionOutput {
 pub value: u64,
 pub unique_id: Uuid,
 pub pubkey: PublicKey,
}
impl TransactionOutput {
 pub fn hash(&self) -> Hash {
 Hash::hash(self)
 }
}
impl Transaction {
 pub fn new(
 inputs: Vec<TransactionInput>,
 outputs: Vec<TransactionOutput>,
) -> Self {
 Transaction {
 inputs: inputs,
 outputs: outputs,
 }
 }
 pub fn hash(&self) -> ! {
 unimplemented!()
 }
}

It’s just a couple of small changes, but it is important for clarity to see the whole file
at once. We also add a hash() method to TransactionOutput, which will be useful
later. Now, if you run a cargo check, you should get no errors at all.

Phew, it‘s been a while since we had the library compilable. We can now take care
of some of the holes we have created earlier. Let’s start with the hash() functions
on various types in src/types.rs:

191

impl Block {
 pub fn new(
 header: BlockHeader,
 transactions: Vec<Transaction>,
) -> Self {
 Block {
 header: header,
 transactions: transactions,
 }
 }
 pub fn hash(&self) -> Hash {
 Hash::hash(self)
 }
}
impl BlockHeader {
 pub fn new(
 timestamp: DateTime<Utc>,
 nonce: u64,
 prev_block_hash: Hash,
 merkle_root: MerkleRoot,
 target: U256,
) -> Self {
 BlockHeader {
 timestamp,
 nonce,
 prev_block_hash,
 merkle_root,
 target,
 }
 }
 pub fn hash(&self) -> Hash {
 Hash::hash(self)
 }
}
impl Transaction {
 pub fn new(
 inputs: Vec<TransactionInput>,
 outputs: Vec<TransactionOutput>,
) -> Self {

192

 Transaction {
 inputs: inputs,
 outputs: outputs,
 }
 }
 pub fn hash(&self) -> Hash {
 Hash::hash(self)
 }
}

Now we have the basics of the data types (and some of the functionality), all done.

ERROR HANDLING IN RUST
A hurdle we have been avoiding until now is that a plethora of operations can fail
for one reason or another. For instance, we may receive a block that is not valid
and should not be inserted into the blockchain.

In Rust, there are no exceptions or errno36 mechanisms. Still, rather, we distinguish
between three types of what we can consider a failure:

 ● Recoverable errors
 ● Irrecoverable errors
 ● Errors coming from the absence of something

Option<T> - Values might be absent
Let’s tackle the last one first. In many programming languages, the absence of a valid
value is indicated by a special value called null, NULL, nullptr, nil, or none. The
concept of a null reference was introduced in 1965 by Sir Charles Antony Richard
Hoare (most commonly known as Tony Hoare), a brilliant computer scientist who
would live the rest of his so far very long life wracked with guilt over how terrible
of an idea this was. Famously, while speaking at a 2009 software conference, he

36 Error-handling mechanism found in C - global/thread-local numerical variable keeping track of last error.

193

would call null his billion-dollar mistake. This makes him one of the wisest, most
humble, and down-to-earth theoretical computer scientists to exist on planet Earth.

Rust listened to this wise old man, and so there is no concept of null to indicate
the absence of value where a value otherwise might have been. Rather, we refer to
Rust’s typical approach of encoding information into types and encode the possi-
bility that a value may be missing in the type.

This type is Option<T>, which is an enum that looks like this:

pub enum Option<T> {
 Some(T),
 None
}

Simple and elegant. This enum has two variants: Some(T), indicating the presence
of a value, and None, indicating its absence. The actual underlying mechanisms of
Option contain some special sauce that makes it the equivalent, in performance
and memory size, to nullable pointers (for the nerds who care about this sort of
stuff) but we do not need to worry about that now.

The nice thing about the uncertainty of presence encoded in the type in a pro-
gramming language with strict strong typing is that we have to acknowledge the
possibility of the value missing since we have to handle the conversion of Option<T>
into T. One choice we can take, which we have already seen several instances of,
is using either the .unwrap() or .expect() methods37:

fn main() {
 let some_value = Some("I am safe to unwrap!");
 let none_value: Option<&str> = None;
 println!("value: {}", some_value.unwrap()); // ok
 println!("value: {}", none_value.unwrap()); // crash
}

37 Because these crash the program, their usage is discouraged in production.

194

The .expect() method will perform the same, but it lets you specify an additional
message to be printed when the panic occurs:

fn main() {
 let some_value = Some("I am safe to unwrap!");
 let none_value: Option<&str> = None;
 // This will print the contained value
 println!(
 "Unwrapped value: {}",
 some_value.expect("This will not panic.")
);
 // This will cause a panic with a custom message and the pro-
gram will crash
 println!(
 "Unwrapped value: {}",
 none_value
 .expect("This will panic because it's None.")
);
}

The .unwrap() method has a couple of siblings, which do not crash the programs,
but rather supply an alternative value if the Option is None:

fn main() {
 let some_value = Some("Hello");
 let none_value: Option<&str> = None;
 // This will print "Hello"
 println!(
 "Value or default: {}",
 some_value.unwrap_or("Default value")
);
 // This will print "Default value"
 println!(
 "Value or default: {}",
 none_value.unwrap_or("Default value")
);
}

195

The .unwrap_or() takes a value to substitute None with. If constructing this repla-
cement value is expensive or may require some dynamic action, which you only
want to happen if it is needed, there is an alternative called .unwrap_or_else()
which takes a closure producing the value instead:

fn main() {
 let some_value = Some("Hello");
 let none_value: Option<&str> = None;
 // This will print "Hello"
 println!(
 "Value or computed: {}",
 some_value.unwrap_or_else(|| "Computed value")
);
 // This will print "Computed value"
 println!(
 "Value or computed: {}",
 none_value.unwrap_or_else(|| { "Computed value" })
);
}

And if the T in Option<T> implements the Default trait (which defines a default
value for a type), then we can use .unwrap_or_default():

fn main() {
 let some_value = Some(10);
 let none_value: Option<i32> = None;
 // This will print "10"
 println!(
 "Value or zero: {}",
 some_value.unwrap_or_default()
);
 // This will print "0"
 println!(
 "Value or zero: {}",
 none_value.unwrap_or_default()
);
}

196

There are more methods on Option than I can count. Many of them resemble ones
found on Iterator, since we can think of an Option as an Iterator over zero or one
values. In fact, Option<T> implements Iterator<Item=T>, so even though it is
ill-advised, you can do terrible things such as the following:

fn main() {
 for i in Some(32) {
 println!("{i}");
 }
}

This snippet will compile and run just as you would expect. However, this usage is
so unnatural that even the Rust compiler will complain about it:

warning: for loop over an `Option`. This is more readably written
as an `if let` statement
--> src/main.rs:2:14
 |
2| for i in Some(32) {
 | ^^^^^^^^
 |
 = note: `#[warn(for_loops_over_fallibles)]` on by default
help: to check pattern in a loop use `while let`
 |
2| while let Some(i) = Some(32) {
 | ~~~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
 |
2| if let Some(i) = Some(32) {
 | ~~~~~~~~~~~~ ~~~

The compiler is even nice enough to provide better ways of doing this. Also note
from the previous examples that for brevity’s sake, the variants of the Option enum

197

are automatically imported into scope, and you do not need to use the Option::
prefix to refer to Some and None.

Result<T, E> - Recoverable errors
The aforementioned methods also exist for the Result type. Once again, Result<T,
E> is an enum. This is its definition:

pub enum Result<T, E> {
 Ok(T),
 Err(E),
}

The two variants indicate that we may either get a valid value (the Ok variant), or
an error (the Err variant). This enumeration is used in places where an operation
may fail with an error we can recover from.

To be practical, the E type needs to implement the Error trait. The Error trait is
implemented by all errors, as the name implies. It provides an error message and,
optionally, additional information about where the error occurred and if it was
caused by any other underlying error.

Consider the following error type we could realistically create for ourselves:

#[derive(Debug)]
enum MyError {
 Io(std::io::Error),
 Parse(std::num::ParseIntError),
 NotFound(String),
}

198

We expect that our application, or at least this part of the application or the lib-
rary, can fail with three possible causes - an Input/Output error, a parsing error,
and a not found error, all of which have some underlying error they wrap around.
First, if we look at the definition of the std::error::Error trait, we will see that it
has std::fmt::Display and Debug as its supertraits:

pub trait Error: Debug + Display {
 // Provided methods
 fn source(&self) -> Option<&(dyn Error + 'static)> { ... }
 fn description(&self) -> &str { ... }
 fn cause(&self) -> Option<&dyn Error> { ... }
 fn provide<'a>(&'a self, request: &mut Request<'a>) { ... }
}

All of its constituent methods are provided, so if we wanted to, we could implement
it as simply as:

impl Error for MyError {}

Assuming MyError implements not just Debug but also Display, which it doesn’t.
We can quickly add a Display implementation:

use std::fmt;
impl fmt::Display for MyError {
 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 match self {
 MyError::Io(e) => write!(f, "I/O error: {}", e),
 MyError::Parse(e) => write!(f, "Parse error: {}", e),
 MyError::NotFound(msg) => write!(f, "Not found: {}",
msg),
 }
 }
}

199

Since we want to do things properly, we can properly report the source errors of
our errors by implementing the source() method in the Error trait:

impl Error for MyError {
 fn source(&self) -> Option<&(dyn Error + 'static)> {
 match self {
 MyError::Io(e) => Some(e),
 MyError::Parse(e) => Some(e),
 MyError::NotFound(_) => None,
 }
 }
}

Finally, we should implement conversions from other error types for the sake of
ergonomics:

// Implement conversion from std::io::Error to MyError
impl From<std::io::Error> for MyError {
 fn from(error: std::io::Error) -> Self {
 MyError::Io(error)
 }
}
// Implement conversion from std::num::ParseIntError to MyError
impl From<std::num::ParseIntError> for MyError {
 fn from(error: std::num::ParseIntError) -> Self {
 MyError::Parse(error)
 }
}

However, if we have big errors, with far too many error states, this can be a lot of
boilerplate to write. So in our bitcoin library, we will use the thiserror crate to
generate all of this for us at no runtime cost.

200

Panics - Errors we cannot recover from
The final kind of failure we can encounter is panic. Panics are errors we cannot
recover from, and should cause a safe shutdown of our program. When we get
down to the bottom of it, we create panics via the panic!() macro:

fn main() {
 panic!("This is a panic attack!");
}

If you run this snippet, you will see the following:

thread 'main' panicked at 'This is a panic attack!', src/main.
rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display
a backtrace

There are many other macros which use panic!() internally:

fn main() {
 // `assert!` will panic if the condition is false
 let a = true;
 assert!(a, "This should not panic because the condition is
true.");
 // `assert_eq!` will panic if the two values are not equal
 let x = 5;
 let y = 5;
 assert_eq!(
 x, y,
 "This should not panic because x == y."
);
 // `assert_ne!` is the opposite of `assert_eq!`
 let u = 3;

201

 let v = 4;
 assert_ne!(
 u, v,
 "This should not panic because u != v."
);
 // `unreachable!` is used for code paths
 //that should never be reached
 if false {
 unreachable!("This code is unreachable, so this panic will
never occur.");
 }
 // `unimplemented!` is used for code paths
 // that are not yet implemented, or are unintentionally
 // unimplemented
 if false {
 unimplemented!("This part of the function is not yet imple-
mented.");
 }
 // `todo!` is an alias for `unimplemented!()``
 if false {
 todo!("Implementation is still pending in this block.");
 }
 println!("No panics occurred because all conditions were cont-
rolled!");
}

Note that panic!() macros like unimplemented!(), todo!(), or panic!() itself returns
the never type (written as !). The never type coerces to every other type, and so
you can use these to plug temporary holes in your program:

fn main() {
 let x: i32 = todo!("provide value later");
 println!("{}", x + 5);
}

202

Some other things can also cause a panic:

 ● Out of bounds indexing with the [index] operator
 ● Out of bounds slicing with the &[from..to] operator
 ● Methods like .unwrap() or .expect() (we can consider these to be promoting

recoverable errors to irrecoverable)
 ● Division by zero
 ● Integer overflow in debug builds

There are some other examples that we can worry about later.

Now that we have the theory out of the way, we can do error handling in our library.

ERROR HANDLING IN BTCLIB
Once again, we are going to start by adding a new dependency, this time, thiserror. Do
We are going to use this crate to create a concrete type for representing the errors
in our application without writing too much boilerplate.

cargo add thiserror

Or append the following to Cargo.toml:

thiserror = "1.0.59"

Now, let’s create an error module in our library (located in src/error.rs), and add
this to src/lib.rs:

pub mod error;

203

And in the file, we can start creating our error:38

// src/error.rs
use thiserror::Error;
#[derive(Error, Debug)]
pub enum BtcError {
 #[error("Invalid transaction")]
 InvalidTransaction,
 #[error("Invalid block")]
 InvalidBlock,
 #[error("Invalid block header")]
 InvalidBlockHeader,
 #[error("Invalid transaction input")]
 InvalidTransactionInput,
 #[error("Invalid transaction output")]
 InvalidTransactionOutput,
 #[error("Invalid Merkle root")]
 InvalidMerkleRoot,
 #[error("Invalid hash")]
 InvalidHash,
 #[error("Invalid signature")]
 InvalidSignature,
 #[error("Invalid public key")]
 InvalidPublicKey,
 #[error("Invalid private key")]
 InvalidPrivateKey,
}

It is also customary to create a Result alias which hides away the error type, so
that we do not have to write it out all over again:

pub type Result<T> = std::result::Result<T, BtcError>;

38 In your own implementation, you can improve these by tagging the variants with additional information to make the
errors more specific. You can say not just that something's wrong, but why is it wrong as well.

204

Hmm, this should be enough for us now. We can always go back and amend and
adjust. Let’s now go back to src/types.rs, and start using this error by adding some
validation to our types. First, let’s verify one thing - is the block we are trying to
add to the blockchain valid?

Add an import:

use crate::crypto::{PublicKey, Signature};
use crate::error::{BtcError, Result};
use crate::sha256::Hash;
use crate::util::MerkleRoot;
use crate::U256;

And then some checks to Blockchain::add_block():

 // try to add a new block to the blockchain,
 // return an error if it is not valid to insert this
 // block to this blockchain
 pub fn add_block(
 &mut self,
 block: Block,
) -> Result<()> {
 // check if the block is valid
 if self.blocks.is_empty() {
 // if this is the first block, check if the
 // block's prev_block_hash is all zeroes
 if block.header.prev_block_hash != Hash::zero()
 {
 println!("zero hash");
 return Err(BtcError::InvalidBlock);
 }
 } else {
 // if this is not the first block, check if the
 // block's prev_block_hash is the hash of the last
block
 let last_block = self.blocks.last().unwrap();

205

 if block.header.prev_block_hash
 != last_block.hash()
 {
 println!("prev hash is wrong");
 return Err(BtcError::InvalidBlock);
 }
 // check if the block's hash is less than the target
 if !block
 .header
 .hash()
 .matches_target(block.header.target)
 {
 println!("does not match target");
 return Err(BtcError::InvalidBlock);
 }
 // check if the block's merkle root is correct
 let calculated_merkle_root =
 MerkleRoot::calculate(&block.transactions);
 if calculated_merkle_root
 != block.header.merkle_root
 {
 println!("invalid merkle root");
 return Err(BtcError::InvalidMerkleRoot);
 }
 // check if the block's timestamp is after the
 // last block's timestamp
 if block.header.timestamp
 <= last_block.header.timestamp
 {
 return Err(BtcError::InvalidBlock);
 }
 // Verify all transactions in the block
 block.verify_transactions(
 self.block_height(),
 &self.utxos,
)?;
 }
 self.blocks.push(block);
 Ok(())
 }

206

Phew, that was plenty of checks, but they were all necessary. But this is not enou-
gh. Let’s add a new method called verify_transactions() to Block, which will get
a reference to all unspent transaction outputs (commonly shortened to UTXOs),
and it will verify that all of the transaction inputs in transactions on the block
haven’t been spent already. We are putting this method onto the block, so that we
can keep track of UTXOs we have seen between different transactions (to prevent
double-spending in the same block).

We need to start keeping track of UTXOs on the blockchain. The best trivial appro-
ach is to use a HashMap, with the Hash of the transaction output being used as
the key type:

use std::collections::HashMap;
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 pub utxos: HashMap<Hash, TransactionOutput>,
 pub blocks: Vec<Block>,
}

Adjust the new() associated function:

 pub fn new() -> Self {
 Blockchain {
 utxos: HashMap::new(),
 blocks: vec![],
 }
 }

Now, we can add a rebuild_utxos() method to the type, which will populate the
HashMap for us:

 // Rebuild UTXO set from the blockchain
 pub fn rebuild_utxos(&mut self) {

207

 for block in &self.blocks {
 for transaction in &block.transactions {
 for input in &transaction.inputs {
 self.utxos.remove(
 &input.prev_transaction_output_hash,
);
 }
 for output in
 transaction.outputs.iter()
 {
 self.utxos.insert(
 transaction.hash(),
 output.clone(),
);
 }
 }
 }
 }

We also need to quickly hop into src/sha256.rs and derive the Hash trait on the
Hash type. The Hash trait, in simple terms, says, “This can be hashed to provide
and is a valid key type for a HashMap.” Second, we need to add an as_bytes() method
to expose the bytes of the underlying U256:

#[derive(
 Clone,
 Copy,
 Serialize,
 Deserialize,
 PartialEq,
 Eq,
 Debug,
 Hash,
)]
pub struct Hash(U256);
impl Hash {

208

 // ...
 // convert to bytes
 pub fn as_bytes(&self) -> [u8; 32] {
 let mut bytes: Vec<u8> = vec![0; 32];
 self.0.to_little_endian(&mut bytes);
 bytes.as_slice().try_into().unwrap()
 }
}

And another short detour to src/crypto.rs to extend the Signature type with
a sign_output() and verify() methods:

use crate::sha256::Hash;
use ecdsa::signature::Verifier;
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct Signature(pub ECDSASignature<Secp256k1>);
impl Signature {
 // sign a crate::types::TransactionOutput from its Sha256 hash
 pub fn sign_output(
 output_hash: &Hash,
 private_key: &PrivateKey,
) -> Self {
 let signing_key = &private_key.0;
 let signature = signing_key.sign(&output_hash.as_bytes());
 Signature(signature)
 }
 // verify a signature
 pub fn verify(
 &self,
 output_hash: &Hash,
 public_key: &PublicKey,
) -> bool {
 public_key.0.verify(&output_hash.as_bytes(), &self.0).is_
ok()
 }
}

209

One small note: You will see on the highlighted lines that we are not just calling
.as_bytes(), but that we are also borrowing this whole expression (notice the &
character). This is because while .as_bytes() returns the actual bytes array, the
verify() and sign() methods expect a byte slice (type: &[u8]). Expecting a slice is
a good practice, as many types can be viewed as slices, not just arrays but also
vectors and other structures (including raw pointers).

If you run cargo check now, you should have not just no errors, but also no warnings :)

Nesting three loops is never nice, but it is, unfortunately, the most readable and
beginner-friendly option in this case. For every block in the blockchain, we go
through every transaction, and for every transaction, we go through every input
and output. We add all outputs we see and remove the outputs if we see an input
that spends it. Now we have the UTXO set populated, and we can create the Bloc-
k::verify_transactions() method:

 // Verify all transactions in the block
 pub fn verify_transactions(
 &self,
 utxos: &HashMap<Hash, TransactionOutput>,
) -> Result<()> {
 let mut inputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 // reject completely empty blocks
 if self.transactions.is_empty() {
 return Err(BtcError::InvalidTransaction);
 }
 for transaction in &self.transactions {
 let mut input_value = 0;
 let mut output_value = 0;
 for input in &transaction.inputs {
 let prev_output = utxos.get(
 &input.prev_transaction_output_hash,
);
 if prev_output.is_none() {
 return Err(
 BtcError::InvalidTransaction,
);
 }

210

 let prev_output = prev_output.unwrap();
 // prevent same-block double-spending
 if inputs.contains_key(
 &input.prev_transaction_output_hash,
) {
 return Err(
 BtcError::InvalidTransaction,
);
 }
 // check if the signature is valid
 if !input.signature.verify(
 &input.prev_transaction_output_hash,
 &prev_output.pubkey,
) {
 return Err(BtcError::InvalidSignature);
 }
 input_value += prev_output.value;
 inputs.insert(
 input.prev_transaction_output_hash,
 prev_output.clone(),
);
 }
 for output in &transaction.outputs {
 output_value += output.value;
 }
 // It is fine for output value to be less than input value
 // as the difference is the fee for the miner
 if input_value < output_value {
 return Err(BtcError::InvalidTransaction);
 }
 }
 Ok(())
 }

If you remember, the first transaction in a block is special. It is called the coinbase
transaction, and in this transaction, new bitcoin is minted. We need to extend our

211

verification function to account for the coinbase transaction. Since the function is
already very long, we will create a new function called verify_coinbase_transac-
tion(), and call it in verify_transactions():

 pub fn verify_transactions(
 &self,
 predicted_block_height: u64,
 utxos: &HashMap<Hash, TransactionOutput>,
) -> Result<()> {
 let mut inputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 // reject completely empty blocks
 if self.transactions.is_empty() {
 return Err(BtcError::InvalidTransaction);
 }
 // verify coinbase transaction
 self.verify_coinbase_transaction(
 predicted_block_height,
 utxos,
)?;
 // Delete the ampersand before &self.transactions ↓
 for transaction in self.transactions.iter().skip(1) {
 // ...
 }
 Ok(())
 }

In the case of our implementation, a block may be empty (meaning no useful
transactions), but has to have the coinbase transaction. Mining empty blocks could
be a way to cause problems for the network, however, the miner fee incentivizes
miners to mine full blocks. We will be mining empty blocks sometimes in our
miner, so we get the happy brain chemicals faster.

Note that we have also added a predicted_block_height parameter, which is what
the block height would be if this block were added to the blockchain. We also ski-
pped the coinbase transaction in further check by explicitly creating an iterator
over transactions and calling skip(1) on it. Since .iter() borrows the elements of

212

the underlying vector, we no longer need to put an ampersand (&) before self.
transactions.

We will need the predicted_block_height parameter to verify the coinbase transac-
tion, whose reward should amount precisely to the newly minted bitcoin plus
miner fees. This is what the verify_coinbase_transaction method may look like:

 // Verify coinbase transaction
 pub fn verify_coinbase_transaction(
 &self,
 predicted_block_height: u64,
 utxos: &HashMap<Hash, TransactionOutput>,
) -> Result<()> {
 // coinbase tx is the first transaction in the block
 let coinbase_transaction = &self.transactions[0];
 if coinbase_transaction.inputs.len() != 0 {
 return Err(BtcError::InvalidTransaction);
 }
 if coinbase_transaction.outputs.len() == 0 {
 return Err(BtcError::InvalidTransaction);
 }
 let miner_fees = self.calculate_miner_fees(utxos)?;
 let block_reward = crate::INITIAL_REWARD
 * 10u64.pow(8)
 / 2u64.pow(
 (predicted_block_height
 / crate::HALVING_INTERVAL)
 as u32,
);
 let total_coinbase_outputs: u64 =
 coinbase_transaction
 .outputs
 .iter()
 .map(|output| output.value)
 .sum();
 if total_coinbase_outputs
 != block_reward + miner_fees
 {
 return Err(BtcError::InvalidTransaction);

213

 }
 Ok(())
 }

I have highlighted in the previous snippet that we have, in the style of ChatGPT
version 3.5, hallucinated a couple of new things that do not exist yet:

 ● calculate_miner_fees() function
 ● crate::INITIAL_REWARD - a constant defining the initial block reward
 ● crate::HALVING_INTERVAL - after how many blocks we should halve the

block reward

We can swiftly take care of the constants. Adjust src/lib.rs, so that it looks like this:

use serde::{Deserialize, Serialize};
use uint::construct_uint;
construct_uint! {
 // Construct an unsigned 256-bit integer
 // consisting of 4 x 64-bit words
 #[derive(Serialize, Deserialize)]
 pub struct U256(4);
}
// initial reward in bitcoin - multiply by 10^8 to get satoshis
pub const INITIAL_REWARD: u64 = 50;
// halving interval in blocks
pub const HALVING_INTERVAL: u64 = 210;
// ideal block time in seconds
pub const IDEAL_BLOCK_TIME: u64 = 10;
// minimum target
pub const MIN_TARGET: U256 = U256([
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0x0000_FFFF_FFFF_FFFF,
]);
// difficulty update interval in blocks

214

pub const DIFFICULTY_UPDATE_INTERVAL: u64 = 50;
pub mod crypto;
pub mod error;
pub mod sha256;
pub mod types;
pub mod util;

While we are already here, we can also add two more constants that we will need
soon, but not just yet. After all, managing difficulty is the next biggest challenge
we haven’t taken care of yet. But let’s not get ahead of ourselves.

The calculate_miner_fees() function can be implemented like this:

 // types.rs
 pub fn calculate_miner_fees(
 &self,
 utxos: &HashMap<Hash, TransactionOutput>,
) -> Result<u64> {
 let mut inputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 let mut outputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 // Check every transaction after coinbase
 for transaction in self.transactions.iter().skip(1)
 {
 for input in &transaction.inputs {
 // inputs do not contain
 // the values of the outputs
 // so we need to match inputs
 // to outputs
 let prev_output = utxos.get(
 &input.prev_transaction_output_hash,
);
 if prev_output.is_none() {
 return Err(
 BtcError::InvalidTransaction,

215

);
 }
 let prev_output = prev_output.unwrap();
 if inputs.contains_key(
 &input.prev_transaction_output_hash,
) {
 return Err(
 BtcError::InvalidTransaction,
);
 }
 inputs.insert(
 input.prev_transaction_output_hash,
 prev_output.clone(),
);
 }
 for output in &transaction.outputs {
 if outputs.contains_key(&output.hash())
 {
 return Err(
 BtcError::InvalidTransaction,
);
 }
 outputs.insert(
 output.hash(),
 output.clone(),
);
 }
 }
 let input_value: u64 = inputs
 .values()
 .map(|output| output.value)
 .sum();
 let output_value: u64 = outputs
 .values()
 .map(|output| output.value)
 .sum();
 Ok(input_value - output_value)
 }

216

Right now, if you once again run cargo check, there should be no warnings or
compile errors. If you get any, check if you have followed all the steps. It can be
a lot to follow at once, I admit!

DIFFICULTY
Now, we can take care of the difficulty39 problem. In the design of our types, we have
made one simplification - instead of encoding and calculating the target the same
way that real bitcoin does, we store the target directly and work with it directly.

A couple of examples ago, we declared the starting difficulty, how often (in how
many blocks) we update it, and what the ideal starting block time should be:

// lib.rs
// ideal block time in seconds
pub const IDEAL_BLOCK_TIME: u64 = 10;
// minimum target
pub const MIN_TARGET: U256 = U256([
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0x0000_FFFF_FFFF_FFFF,
]);
// difficulty update interval in blocks
pub const DIFFICULTY_UPDATE_INTERVAL: u64 = 50;

The values we have set are much faster than the real blockchain. Our block time is
10 seconds, our minimum target only requires the first four hex digits to be zero,
and the difficulty update interval is only 50 blocks as opposed to 2016 as in real bit-
coin. This is so that we do not have to wait a very long time to see if our code works.

If you are curious about why the MIN_TARGET number is encoded in such a weird
way - it is little-endian. The least significant 64 bits are the last.

39 Once again, difficulty is how unlikely it should be to encounter the correct hash while mining.

217

To track difficulty, we need to use these constants in Blockchain:

// types.rs
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 pub utxos: HashMap<Hash, TransactionOutput>,
 pub target: U256,
 pub blocks: Vec<Block>,
}
impl Blockchain {
 pub fn new() -> Self {
 Blockchain {
 utxos: HashMap::new(),
 blocks: vec![],
 target: crate::MIN_TARGET,
 }
 }
 // …
}

Every time we successfully add a block, we need to check if we need to adjust the di-
fficulty, and remove the transactions from the mempool that were added to the block:

 // types.rs
 use std::collections::{HashMap, HashSet};
 // try to add a new block to the blockchain,
 // return an error if it is not valid to insert this
 // block to this blockchain
 pub fn add_block(
 &mut self,
 block: Block,
) -> Result<()> {
 // check if the block is valid
 if self.blocks.is_empty() {
 // ...

218

 } else {
 // ...
 }
 // Remove transactions from mempool that are now in the
block
 let block_transactions: HashSet<_> = block
 .transactions
 .iter()
 .map(|tx| tx.hash())
 .collect();
 self.mempool.retain(|(_, tx)| {
 !block_transactions.contains(&tx.hash())
 });
 self.blocks.push(block);
 self.try_adjust_target();
 Ok(())
 }

Naturally, we need to write the Blockchain::try_adjust_target() method we just
made up. It is going to be a bit long, once again, but we will analyze it together, not
to worry:

 // types.rs
 // try to adjust the target of the blockchain
 pub fn try_adjust_target(&mut self) {
 if self.blocks.is_empty()
 {
 return;
 }
 if self.blocks.len()
 % crate::DIFFICULTY_UPDATE_INTERVAL as usize
 != 0
 {
 return;
 }
 // measure the time it took to mine the last

219

 // crate::DIFFICULTY_UPDATE_INTERVAL blocks
 // with chrono
 let start_time = self.blocks[self.blocks.len()
 - crate::DIFFICULTY_UPDATE_INTERVAL as usize]
 .header
 .timestamp;
 let end_time =
 self.blocks.last().unwrap().header.timestamp;
 let time_diff = end_time - start_time;
 // convert time_diff to seconds
 let time_diff_seconds = time_diff.num_seconds();
 // calculate the ideal number of seconds
 let target_seconds = crate::IDEAL_BLOCK_TIME
 * crate::DIFFICULTY_UPDATE_INTERVAL;
 // multiply the current target by actual time divided by
ideal time
 let new_target = self.target
 * (time_diff_seconds as f64
 / target_seconds as f64)
 as usize;
 // clamp new_target to be within the range of
 // 4 * self.target and self.target / 4
 let new_target = if new_target < self.target / 4 {
 self.target / 4
 } else if new_target > self.target * 4 {
 self.target * 4
 } else {
 new_target
 };
 // if the new target is more than the minimum target,
 // set it to the minimum target
 self.target = new_target.min(crate::MIN_TARGET);
 }

Before we even make any difficulty adjustments, we need to establish that it is
the correct time to do so. The best way to do this is to check if the current block

220

height is divisible by the crate::DIFFICULTY_UPDATE_INTERVAL constant with
no remainder. The modulo operator comes to the rescue:

 // types.rs
 if self.blocks.len()
 % crate::DIFFICULTY_UPDATE_INTERVAL as usize
 != 0
 {
 return;
 }

If the remainder is anything other than zero, we terminate the function early and
do nothing. This pattern is better than nesting the entire rest of the function in
an “if the remainder is zero”, as it lets us not have an extra level of indentation
everywhere. Since Rust does not convert between numerical types implicitly, we
need to convert it ourselves. The correct type is usize, which is the type returned by
the .len() function on Vec<T>. If you are a C/C++ programmer, then the usize type
should remind you of size_t. Both types are unsigned integers, and depending on
your computer architecture, they might even be the same size, so the conversion
is cheap. Other programming languages do the same conversions all the time,
but since Rust only does it explicitly, it makes you aware of these conversions and
invites you to control the order in which they occur.

After establishing that we should in fact be updating the target, we leverage the
chrono library to calculate the time difference between the first and last block in
the block update interval:

 // types.rs
 // measure the time it took to mine the last
 // crate::DIFFICULTY_UPDATE_INTERVAL blocks
 // with chrono
 let start_time = self.blocks[self.blocks.len()
 - crate::DIFFICULTY_UPDATE_INTERVAL as usize]
 .header
 .timestamp;
 let end_time =

221

 self.blocks.last().unwrap().header.timestamp;
 let time_diff = end_time - start_time;

The type of time_diff is TimeDelta, and we can convert it to whichever type is the
best for our purposes. Well, since our definition of ideal block time is in seconds,
let’s convert it with seconds. We also calculate the total ideal amount of seconds
the last block update interval should have taken:

 // types.rs
 // convert time_diff to seconds
 let time_diff_seconds = time_diff.num_seconds();
 // calculate the ideal number of seconds
 let target_seconds = crate::IDEAL_BLOCK_TIME
 * crate::DIFFICULTY_UPDATE_INTERVAL;

The formula to calculate a new target is:

NewTarget = OldTarget * (ActualTime / IdealTime)

Our first attempt might naively look something like this:

 // multiply the current target by actual time divided by
ideal time
 let new_target = self.target
 * (time_diff_seconds as f64
 / target_seconds as f64)
 as usize;

The issue here is that while the types are correct, the steps are quite steep, since
we convert the division of (ActualTime / IdealTime) into a usize, which loses the
decimal part of the number. This means that - considering we want to follow bit-

222

coin in that we do not want to adjust the difficulty by more than a factor of 4x in
either direction - we will always either multiply or divide by 1, 2, 3 or 4, which are
fairly steep steps to adjust by. Instead, we should make the entire calculation in
terms of big floating point numbers, and then convert back to U256, which is the
fastest and most versatile type to store the target in.

Once again, we are going to add a dependency to our project, this time, we will use
the bigdecimal crate to have arbitrary precision numbers:

cargo add bigdecimal

Or in Cargo.toml:

bigdecimal = "0.4.5"

We import the decimal type at the top of src/types.rs:

use chrono::{DateTime, Utc};
use serde::{Deserialize, Serialize};
use uuid::Uuid;
use bigdecimal::BigDecimal; // my street name is Big Decimal

And subsequently, we can go back to the calculation in the Blockchain::try_adj-
ust_target() method and make it use the BigDecimal type until the very end:

 // types.rs
 // multiply the current target by actual time divided by
ideal time
 let new_target = BigDecimal::parse_bytes(
 &self.target.to_string().as_bytes(),

223

 10,
)
 .expect("BUG: impossible")
 * (BigDecimal::from(time_diff_seconds)
 / BigDecimal::from(target_seconds));
 // cut off decimal point and everything after
 // it from string representation of new_target
 let new_target_str = new_target
 .to_string()
 .split('.')
 .next()
 .expect("BUG: Expected a decimal point")
 .to_owned();
 let new_target: U256 =
 U256::from_str_radix(&new_target_str, 10)
 .expect("BUG: impossible");

Unfortunately, since U256 and BigDecimal don’t know about each other, we need
to go through the string representation. There is one small hurdle though:

 // types.rs
 // cut off decimal point and everything after
 // it from string representation of new_target
 let new_target_str = new_target
 .to_string()
 .split('.')
 .next()
 .expect("BUG: Expected a decimal point")
 .to_owned();

U256, being an integer type, expects that there will be no decimal point in the string
representation, so we need to cut it off. It took a bit of work, but now we have a far

224

smoother calculation of difficulty adjustments. All that we need to do is now clamp
it so that we do not increase or decrease the target by more than a factor of 4x:

 // types.rs
 // clamp new_target to be within the range of
 // 4 * self.target and self.target / 4
 let new_target = if new_target < self.target / 4 {
 self.target / 4
 } else if new_target > self.target * 4 {
 self.target * 4
 } else {
 new_target
 };

And finally, we need to ensure that we do not decrease the target below minimum
target:

 // if the new target is more than the minimum target,
 // set it to the minimum target
 self.target = new_target.min(crate::MIN_TARGET);

That’s it for our difficulty adjustment for now. Once again, if you check the program
now, you should be getting no warnings and no compilation errors whatsoever.

MINING
Let’s reorient ourselves back to the BlockHeader structure. Let’s create a simple
function that does mining for us. Since we know the target the block’s hash should
fall under, and we have a function on Hash that can compare it for us (Hash::-
matches_target()), we can make a simple mining method on the BlockHeader
structure called mine(). This function will rotate the nonce and, if it runs out of
the nonce, update the timestamp:

225

 // types.rs
 pub fn mine(&mut self, steps: usize) -> bool {
 // if the block already matches target, return early
 if self.hash().matches_target(self.target) {
 return true;
 }
 for _ in 0..steps {
 if let Some(new_nonce) =
 self.nonce.checked_add(1)
 {
 self.nonce = new_nonce;
 } else {
 self.nonce = 0;
 self.timestamp = Utc::now()
 }
 if self.hash().matches_target(self.target) {
 return true;
 }
 }
 false
 }

In comparison to the previous examples we made, this one is very simple. The
reason why we only do a finite number of steps at a time is because we may want
to interrupt the mining if we receive an update from the network that we should
work on a new block (because a new block has been found in the meantime).

BLOCKCHAIN METHODS
The nature of bitcoin is that we have a network of nodes that share information
between each other in order to maintain a single source of truth - the blockchain
itself. Currently, the methods we have created on our Blockchain type are only
enough if we ever plan to have just one node, which defeats the purpose of a block-
chain. We need to add a couple of methods that will help us share the blockchain.

226

First, let’s improve our design by making our fields private and creating methods
that expose them:

// types.rs
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 utxos: HashMap<Hash, TransactionOutput>,
 target: U256,
 blocks: Vec<Block>,
}

Notice how we removed the pub keyword from every field. The new methods will be:

 // types.rs
 // utxos
 pub fn utxos(&self) -> &HashMap<Hash, TransactionOutput> {
 &self.utxos
 }
 // target
 pub fn target(&self) -> U256 {
 self.target
 }
 // blocks
 pub fn blocks(&self) -> impl Iterator<Item = &Block> {
 self.blocks.iter()
 }

This is considered to be a better design, as it lets you change the underlying
implementation of the storage. It could be quite impractical to store the entire
blockchain in RAM, and using some on-disk storage (or outright hooking up the
project to some database), could be an improvement you may want to make in your
implementation. We should also expose block height as a method:

227

 // types.rs
 // block height
 pub fn block_height(&self) -> u64 {
 self.blocks.len() as u64
 }

It is left as an exercise to the reader to go, and use this method in places where we
previously needed block height.

Another critical aspect that is missing in our Blockchain is the mempool. The
mempool is a list of transactions that have been sent to the network and haven’t
been processed yet. These are the ones that are put into new blocks and mined by
miners. Miners are incentivized to assemble blocks from transactions that have the
highest fees first, so we can make our mempool helpful by pre-sorting it by fee size.

We can make our mempool very simple, by using another vector:

// types.rs
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 utxos: HashMap<Hash, TransactionOutput>,
 target: U256,
 blocks: Vec<Block>,
 #[serde(default, skip_serializing)]
 mempool: Vec<Transaction>,
}
impl Blockchain {
 pub fn new() -> Self {
 Blockchain {
 utxos: HashMap::new(),
 blocks: vec![],
 target: crate::MIN_TARGET,
 mempool: vec![],

228

 }
 }
 // mempool
 pub fn mempool(
 &self,
) -> &[Transaction] { // later, we will also need to keep track
of time
 &self.mempool
 }
 // ...
}

Now we need to teach the blockchain to receive and add transactions to the mem-
pool, consider this Blockchain::add_to_mempool() method:

 // types.rs
 // add a transaction to mempool
 pub fn add_to_mempool(&mut self, transaction: Transaction) {
 self.mempool.push(transaction);
 // sort by miner fee
 self.mempool.sort_by_key(|transaction| {
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(&input.prev_transaction_output_hash)
 .expect("BUG: impossible")
 .value
 })
 .sum::<u64>();
 let all_outputs: u64 = transaction
 .outputs
 .iter()
 .map(|output| output.value)
 .sum();

229

 let miner_fee = all_inputs - all_outputs;
 miner_fee
 });
 }

We should also do some verification of the transaction, as we just accept it now
as it is, but it may, in fact, be malformed. This would make that BUG: impossible
actually possible (The seemingly impossible bugs are the worst kind of bugs!). This
means we also need to do some error handling in case the transaction is not valid:

 ● Outputs should be less or equal to inputs (the difference between the two is
the miner fee)

 ● All inputs must have a known UTXO
 ● All inputs must be unique (no double-spending within a single transaction)

We can modify the method in the following way:

 // types.rs
 use std::collections::HashSet; // move this to the top
 // add a transaction to mempool
 pub fn add_to_mempool(
 &mut self,
 transaction: Transaction,
) -> Result<()> {
 // validate transaction before insertion
 // all inputs must match known UTXOs, and must be unique
 let mut known_inputs = HashSet::new();
 for input in &transaction.inputs {
 if !self.utxos.contains_key(
 &input.prev_transaction_output_hash,
) {
 return Err(BtcError::InvalidTransaction);
 }
 if known_inputs.contains(
 &input.prev_transaction_output_hash,
) {

230

 return Err(BtcError::InvalidTransaction);
 }
 known_inputs
 .insert(input.prev_transaction_output_hash);
 }
 // all inputs must be lower than all outputs
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(
 &input.prev_transaction_output_hash,
)
 .expect("BUG: impossible")
 .value
 })
 .sum::<u64>();
 let all_outputs = transaction
 .outputs
 .iter()
 .map(|output| output.value)
 .sum();
 if all_inputs < all_outputs {
 return Err(BtcError::InvalidTransaction);
 }
 self.mempool.push(transaction);
 // sort by miner fee
 self.mempool.sort_by_key(|transaction| {
 // ...
 });
 Ok(())
 }

Don’t forget that little Ok(()) at the end of the function. We need this because we
changed the return type of the function. At this stage, the library should compile
correctly.

231

There is yet another security issue we must take care of: So far, it is still possible
to add multiple transactions to the mempool that reference the same unspent
transaction outputs. Furthermore, transactions in the mempool will stay stuck
there until the node is restarted (at which point, other nodes would share the same
transactions with the node again).

Therefore we need a mechanism to detect this type of double-spending, to discard
old unprocessed transactions, and to replace transactions with newer transactions
that reference the same inputs (which will prevent a potential double-spending
problem). To do this, we will need to make two adjustments:

 ● Track the time when a particular transaction was inserted into the mem-
pool, and dump it if it has been there for too long.

 ● Mark UTXOs that are being referenced by a transaction in mempool, and
find and remove the old transaction that marks those UTXOs.

For the second task, we just need to add a mark to each UTXO:

// types.rs
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 utxos: HashMap<Hash, (bool, TransactionOutput)>,
 target: U256,
 blocks: Vec<Block>,
 #[serde(default, skip_serializing)]
 mempool: Vec<Transaction>,
}

This will break a couple of places, so we need to make some adjustments. First, in
add_to_mempool():

 // types.rs
 // add a transaction to mempool
 pub fn add_to_mempool(
 &mut self,
 transaction: Transaction,

232

) -> Result<()> {
 // ...
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(
 &input.prev_transaction_output_hash,
)
 .expect("BUG: impossible")
 .1 // < - - - Look here
 .value
 })
 .sum::<u64>();
 // ...
 // sort by miner fee
 self.mempool.sort_by_key(|transaction| {
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(&input.prev_transaction_output_hash)
 .expect("BUG: impossible")
 .1 // < - - - Look here
 .value
 })
 .sum::<u64>();
 // ...
 });
 }

Note that this is just adding .1 to get the second field of the tuple. The next place
we need to fix is the utxos() method:

233

 // types.rs

 // utxos
 pub fn utxos(
 &self,
) -> &HashMap<Hash, (bool, TransactionOutput)>
 {
 &self.utxos
 }

Here, we are just fixing the return type to account for the boolean value we use
to mark the UTXOs as “primed for spending by a transaction in mempool”. Then,
we must hop over to Block and update the functions that verify transactions with
a list of UTXOs:

 // types.rs
 // Verify all transactions in the block
 pub fn verify_transactions(
 &self,
 predicted_block_height: u64,
 utxos: &HashMap<Hash, (bool, TransactionOutput)>,
) -> Result<()> {
 let mut inputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 // reject completely empty blocks
 if self.transactions.is_empty() {
 return Err(BtcError::InvalidTransaction);
 }
 // verify coinbase transaction
 self.verify_coinbase_transaction(
 predicted_block_height,
 utxos,
)?;
 for transaction in self.transactions.iter().skip(1)
 {
 let mut input_value = 0;

234

 let mut output_value = 0;
 for input in &transaction.inputs {
 let prev_output = utxos
 .get(
 &input.prev_transaction_output_hash,
)
 .map(|(_, output)| output);
 // …
 }
 // …
 }
 }

The beginning of calculate_miner_fees():

 // types.rs
 pub fn calculate_miner_fees(
 &self,
 utxos: &HashMap<Hash, (bool, TransactionOutput)>,
) -> Result<u64> {
 let mut inputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 let mut outputs: HashMap<Hash, TransactionOutput> =
 HashMap::new();
 // Check every transaction after coinbase
 for transaction in self.transactions.iter().skip(1)
 {
 for input in &transaction.inputs {
 let prev_output = utxos
 .get(
 &input.prev_transaction_output_hash,
)
 .map(|(_, output)| output);

235

And the signature of verify_coinbase_transaction():

 // types.rs

 // Verify coinbase transaction
 pub fn verify_coinbase_transaction(
 &self,
 predicted_block_height: u64,
 utxos: &HashMap<Hash, (bool, TransactionOutput)>,
) -> Result<()> {

Finally, we need to jump back to Blockchain and fix rebuild_utxos() to insert new
transactions with the mark included:

 // types.rs
 // Rebuild UTXO set from the blockchain
 pub fn rebuild_utxos(&mut self) {
 for block in &self.blocks {
 for transaction in &block.transactions {
 for input in &transaction.inputs {
 self.utxos.remove(
 &input.prev_transaction_output_hash,
);
 }
 for output in transaction.outputs.iter() {
 self.utxos.insert(
 output.hash(),
 (false, output.clone()),
);
 }
 }
 }
 }

236

Check if the library compiles now. It should, and it should be without warnings.

We insert the mark set to false, since new UTXOs cannot already be reserved by
a transaction in the mempool. Now, we can change add_to_mempool() to detect
and remove overlapping transactions:

 // types.rs
 // add a transaction to mempool
 pub fn add_to_mempool(
 &mut self,
 transaction: Transaction,
) -> Result<()> {
 // validate transaction before insertion
 // all inputs must match known UTXOs, and must be unique
 let mut known_inputs = HashSet::new();
 for input in &transaction.inputs {
 // ...
 }
 // check if any of the utxos have the bool mark set to true
 // and if so, find the transaction that references them
 // in mempool, remove it, and set all the utxos it references
 // to false
 for input in &transaction.inputs {
 if let Some((true, _)) = self
 .utxos
 .get(&input.prev_transaction_output_hash)
 {
 // find the transaction that references the UTXO
 // we are trying to reference
 let referencing_transaction = self.mempool
 .iter()
 .enumerate()
 .find(
 |(_, transaction)| {
 transaction
 .outputs
 .iter()
 .any(|output| {

237

 output.hash()
 == input.prev_transaction_out-
put_hash
 })
 },
);
 // If we have found one, unmark all of its UTXOs
 if let Some((
 idx,
 referencing_transaction,
)) = referencing_transaction
 {
 for input in
 &referencing_transaction.inputs
 {
 // set all utxos from this transaction to
false
 self.utxos
 .entry(input.prev_transaction_output_
hash)
 .and_modify(|(marked, _)| {
 *marked = false;
 });
 }
 // remove the transaction from the mempool
 self.mempool.remove(idx);
 } else {
 // if, somehow, there is no matching transaction,
 // set this utxo to false
 self.utxos
 .entry(input.prev_transaction_output_hash)
 .and_modify(|(marked, _)| {
 *marked = false;
 });
 }
 }
 }
 // ...
 }

238

Note that we are making a bit of a simplification. In two conflicting transactions,
real Bitcoin would remove the one with the smaller fee (which is great for ergono-
mics - you can’t get your transaction through fast enough -> you increase the fee).
You should be able to implement this pretty easily if you’d like to :)

Let’s analyze the snippet we have inserted into the function. First, we are iterating
through all of the transaction inputs, and trying to find their matching UTXO:

 for input in &transaction.inputs {
 if let Some((true, _)) = self
 .utxos
 .get(&input.prev_transaction_output_hash)
 {
 // ...
 }
 }

Here, we are using pattern matching with the if-let control structure. This if’s body
will only be executed if the tuple we find in utxos has true in the first field, meaning
this UTXO has already been marked by another transaction. Next, we need to find
the transaction that references the UTXO:

 // find the transaction that references the UTXO
 // we are trying to reference
 let referencing_transaction = self.mempool
 .iter()
 .enumerate()
 .find(
 |(_, transaction)| {
 transaction
 .outputs
 .iter()
 .any(|output| {
 output.hash()
 == input.prev_transaction_output_hash

239

 })
 },
);

The type of this variable is Option<(usize, &Transaction)> due to the fact that we
have inserted .enumerate() into this iterator chain. This method() includes the
index of each element with it, and we need it, so that we can remove the offending
transaction from the mempool without having to go through it again. We now
need to handle the possibility, that we may not find the correct transaction (this
shouldn’t happen, but let’s be safe):

 // If we have found one, unmark all of its UTXOs
 if let Some((
 idx,
 referencing_transaction,
)) = referencing_transaction
 {
 // ...
 } else {
 // ...
 }

If the if-let matches, we go through every UTXO and unmark it, then finally remove
the transaction from the mempool (this is in the if block):

 for input in
 &referencing_transaction.inputs
 {
 // set all utxos from this transaction to
false
 self.utxos
 .entry(input.prev_transaction_output_
hash)

240

 .and_modify(|(marked, _)| {
 *marked = false;
 });
 }
 // remove the transaction from the mempool
 self.mempool.remove(idx);

In the other case, where there is no transaction found, we will simply unmark the
UTXO whose matching mempool transaction we were trying to find (this is in the
else block):

 // if, somehow, there is no matching transaction,
 // set this utxo to false
 self.utxos
 .entry(input.prev_transaction_output_hash)
 .and_modify(|(marked, _)| {
 *marked = false;
 });

Notice how, while pattern-matching in the closure on the highlighted lines, we
are replacing the second parameter with an _ (underscore), this is Rust’s syntax
for ignoring a particular value. We only care about the marked status, and do not
need to modify the actual UTXO at all.

Now, we can implement the second half of the puzzle, the automatic removal of old
transactions in mempool. To do this, we need to start tracking the time that these
were inserted into the mempool. But first, we need to decide how long transactions
should last. In the real bitcoin implementation and its nodes, the time-based evic-
tion policy is typically 72 hours. That is too long for us, so we can shorten it to 600
seconds. To provide additional context - real bitcoin also evicts lowest-fee transac-
tions if the mempool gets too big. Not setting a limit on the size of the mempool is a
security risk, as a malicious agent could crash our application by adding thousands
upon thousands of fraudulent transactions into the mempool until we run out of RAM.

241

Tracking submission time is easy enough, we just stick a DateTime<Utc> to every
transaction in the mempool, similar to how we did it with the bool mark on the
UTXOs. First, we adjust the Blockchain struct like this:

#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 utxos: HashMap<Hash, (bool, TransactionOutput)>,
 target: U256,
 blocks: Vec<Block>,
 #[serde(default, skip_serializing)]
 mempool: Vec<(DateTime<Utc>, Transaction)>,
}

Once again, if you try to run cargo check, the Rust compiler will get very angry
with you. This is good, in more dynamic languages such as JavaScript, you could
possibly go without having any idea of all the places you need to fix until you run
your application and it crashes in your hands in every possible spot. And some-
times, it might be very rare to encounter those spots. But this is not a critique of
JavaScript, and there are tools even for JS and other dynamic languages that help
lessen the severity of this issue.

All of the compilation errors we are getting now are still in the src/types.rs file, so
we can fix them one by one and fix all of them. First, in add_to_mempool():

 // types.rs
 // find the transaction that references the UTXO
 // we are trying to reference
 let referencing_transaction = self.mempool
 .iter()
 .enumerate()
 .find(
 |(_, (_, transaction))| {
 transaction
 .outputs
 .iter()
 .any(|output| {

242

 output.hash()
 == input.prev_transaction_output_hash
 })
 },
);

Here, we destructure the tuple at the spot I marked. We do not care about
the timestamp in add_to_mempool() so we can safely ignore it with the
underscore character. Seeing, finding and fixing these issues really highlights
how useful a tool rust-analyzer is. Rust-analyzer’s inlay hints show us the
resolved types of the variables, and we could see that before this change we had
|(_: usize, transact on: &(DateTime<Utc>, Transaction))|, and we were able to
change it to |(_: usize, (_: &DateTime<Utc>, transaction: &Transaction))|.

Note that there is a bit of magic going on in that Rust is perfectly willing to transpose
a reference to a tuple to a tuple of references. This makes it far more ergonomic.
Subtly transposing references and reducing multiple references into one (it is
called auto-deref) is pretty much the only implicit magic that Rust is willing to do.
Considering that none of these change the semantics of your program at all, these
are pretty safe things to do automatically to provide an extra degree of ergonomics.

Next spot we need to fix is only a couple of lines below, and it is very similar:

 // types.rs
 // If we have found one, unmark all of its UTXOs
 if let Some((
 idx,
 (_, referencing_transaction),
)) = referencing_transaction
 {
 // …
 }

243

It is precisely the same situation as above. The next complaint is still in add_to_
mempool(). To preserve some space, I will only include the context that’s around it:

 // types.rs
 if all_inputs < all_outputs {
 return Err(BtcError::InvalidTransaction);
 }
 self.mempool.push((Utc::now(), transaction));
 // sort by miner fee
 self.mempool.sort_by_key(|transaction| {
 // ...
 });
 Ok(())

This is just adding the timestamp when inserting the transaction into the mempool.
The final two issues are very similar to the first two issues, and they are found in
the sort by miner fee statement that we have snipped out of the previous example
for the sake of brevity. Here they are with the fixes highlighted:

 // types.rs

 // sort by miner fee
 self.mempool.sort_by_key(|(_, transaction)| {
 // ...
 });

Lastly for add_to_mempool(), we need to make sure that we mark the UTXOs we
have used in the transaction we have just created. This is the whole function with
the added portion highlighted:

244

 // types.rs

 // add a transaction to mempool
 pub fn add_to_mempool(
 &mut self,
 transaction: Transaction,
) -> Result<()> {
 // validate transaction before insertion
 // all inputs must match known UTXOs, and must be unique
 let mut known_inputs = HashSet::new();
 for input in &transaction.inputs {
 if !self.utxos.contains_key(
 &input.prev_transaction_output_hash,
) {
 println!("UTXO not found");
 dbg!(&self.utxos);
 return Err(BtcError::InvalidTransaction);
 }
 if known_inputs
 .contains(&input.prev_transaction_output_hash)
 {
 println!("duplicate input");
 return Err(BtcError::InvalidTransaction);
 }
 known_inputs
 .insert(input.prev_transaction_output_hash);
 }
 // check if any of the utxos have the bool mark set to true
 // and if so, find the transaction that references them
 // in mempool, remove it, and set all the utxos it references
 // to false
 for input in &transaction.inputs {
 if let Some((true, _)) = self
 .utxos
 .get(&input.prev_transaction_output_hash)
 {
 // find the transaction that references the UTXO
 // we are trying to reference

245

 let referencing_transaction = self.mempool
 .iter()
 .enumerate()
 .find(
 |(_, (_, transaction))| {
 transaction
 .outputs
 .iter()
 .any(|output| {
 output.hash()
 == input.prev_transaction_output_hash
 })
 },
);
 // If we have found one, unmark all of its UTXOs
 if let Some((
 idx,
 (_, referencing_transaction),
)) = referencing_transaction
 {
 for input in &referencing_transaction.inputs
 {
 // set all utxos from this transaction to false
 self.utxos
 .entry(input.prev_transaction_output_hash)
 .and_modify(|(marked, _)| {
 *marked = false;
 });
 }
 // remove the transaction from the mempool
 self.mempool.remove(idx);
 } else {
 // if, somehow, there is no matching transaction,
 // set this utxo to false
 self.utxos
 .entry(

246

 input.prev_transaction_output_hash,
)
 .and_modify(|(marked, _)| {
 *marked = false;
 });
 }
 }
 }
 // all inputs must be lower than all outputs
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(&input.prev_transaction_output_hash)
 .expect("BUG: impossible")
 .1
 .value
 })
 .sum::<u64>();
 let all_outputs = transaction
 .outputs
 .iter()
 .map(|output| output.value)
 .sum();
 if all_inputs < all_outputs {
 print!("inputs are lower than outputs");
 return Err(BtcError::InvalidTransaction);
 }
 // Mark the UTXOs as used
 for input in &transaction.inputs {
 self.utxos
 .entry(input.prev_transaction_output_hash)
 .and_modify(|(marked, _)| {
 *marked = true;
 });
 }
 // push the transaction to the mempool
 self.mempool.push((Utc::now(), transaction));

247

 // sort by miner fee
 self.mempool.sort_by_key(|(_, transaction)| {
 let all_inputs = transaction
 .inputs
 .iter()
 .map(|input| {
 self.utxos
 .get(&input.prev_transaction_output_hash)
 .expect("BUG: impossible")
 .1
 .value
 })
 .sum::<u64>();
 let all_outputs: u64 = transaction
 .outputs
 .iter()
 .map(|output| output.value)
 .sum();
 let miner_fee = all_inputs - all_outputs;
 miner_fee
 });
 Ok(())
 }

Finally, we need to adjust the mempool() function itself:

 // types.rs

 // mempool
 pub fn mempool(&self) -> &[(DateTime<Utc>, Transaction)] {
 &self.mempool
 }

248

That should be it. If you run cargo check now, the command should succeed and
you should get no errors at all. The final piece of this puzzle is adding the method
to Blockchain which cleans up the mempool. First, let’s add another constant to
src/lib.rs:

// lib.rs
// initial reward in bitcoin - multiply by 10^8 to get satoshis
pub const INITIAL_REWARD: u64 = 50;
// halving interval in blocks
pub const HALVING_INTERVAL: u64 = 210;
// ideal block time in seconds
pub const IDEAL_BLOCK_TIME: u64 = 10;
// minimum target
pub const MIN_TARGET: U256 = U256([
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0x0000_FFFF_FFFF_FFFF,
]);
// difficulty update interval in blocks
pub const DIFFICULTY_UPDATE_INTERVAL: u64 = 50;
// maximum mempool transaction age in seconds
pub const MAX_MEMPOOL_TRANSACTION_AGE: u64 = 600;

Now, let’s add a cleanup_mempool() function to Blockchain:

 // types.rs
 // Cleanup mempool - remove transactions older than
 // MAX_MEMPOOL_TRANSACTION_AGE
 pub fn cleanup_mempool(&mut self) {
 let now = Utc::now();
 let mut utxo_hashes_to_unmark: Vec<Hash> = vec![];
 self.mempool.retain(|(timestamp, transaction)| {
 if now - *timestamp
 > chrono::Duration::seconds(
 crate::MAX_MEMPOOL_TRANSACTION_AGE

249

 as i64,
)
 {
 // push all utxos to unmark to the vector
 // so we can unmark them later
 utxo_hashes_to_unmark
 .extend(transaction.inputs.iter().map(
 |input| {
 input.prev_transaction_output_hash
 },
));
 false
 } else {
 true
 }
 });
 // unmark all of the UTXOs
 for hash in utxo_hashes_to_unmark {
 self.utxos.entry(hash).and_modify(
 |(marked, _)| {
 *marked = false;
 },
);
 }
 }

Once again, let’s break it down into individual steps. First, we get the current time,
and create an empty vector where we will store the hashes of the UTXOs we want
to unmark because their transaction will be removed:

 // types.rs
 let now = Utc::now();
 let mut utxo_hashes_to_unmark: Vec<Hash> = vec![];

250

Then we use the .retain() method on Vec. This method will retain all of the ele-
ments that match the predicate (meaning that the closure must return true if we
want to keep that element):

 // types.rs
 self.mempool.retain(|(timestamp, transaction)| {
 if now - *timestamp
 > chrono::Duration::seconds(
 crate::MAX_MEMPOOL_TRANSACTION_AGE
 as i64,
)
 {
 // ...
 false
 } else {
 true
 }
 });

Inside the if block, we will be doing a little hack, which typically is not done in the
.retain() method’s predicate, and that is copying the hashes of the UTXOs referen-
ced by this transaction into the vector we have prepared earlier:

 // types.rs
 if now - *timestamp
 > chrono::Duration::seconds(
 crate::MAX_MEMPOOL_TRANSACTION_AGE
 as i64,
)
 {
 // push all utxos to unmark to the vector
 // so we can unmark them later
 utxo_hashes_to_unmark
 .extend(transaction.inputs.iter().map(
 |input| {
 input.prev_transaction_output_hash

251

 },
));
 false
 } else {
 true
 }

The extend() method drains an iterator, adding all of the elements it produces into
the vector. This is a really handy method, just make sure you never put an infinite
iterator there, as that might take a while for it to successfully crash the program,
or your computer. Finally, we unmark all of the UTXOs we have collected from the
removed transactions:

 // types.rs
 // unmark all of the UTXOs
 for hash in utxo_hashes_to_unmark {
 self.utxos.entry(hash).and_modify(
 |(marked, _)| {
 *marked = false;
 },
);
 }

That’s it for the mempool cleanup.

SPLITTING UP THE BIG FILE
If your situation is the same as mine, your src/types.rs will have about 650-ish lines,
give or take a couple depending on your formatting preferences. While this is still
maintainable and there are many projects with much longer source files, we can
practice breaking down this big file into submodules and re-exporting their items.

252

In Rust, there two modes of creating submodules:

 ● A folder with a mod.rs file and files or folders for its submodules in it
 ● A file named module_name.rs with module_name/ folder and files or folde-

rs for its submodules in the folder

The second option was added to Rust more recently, and since we already have
a src/types.rs file, we can practice this one now.

Do the following steps:

1. Create a types/ folder

2. In it, create the following files:

 ● blockchain.rs
 ● block.rs
 ● transaction.rs

3. Declare these modules privately (without the pub keyword) in the src/types.rs file

If you have performed these steps correctly, your file structure in this folder should
look a bit like this:

.
|-- Cargo.lock
|-- Cargo.toml
|-- rustfmt.toml
`-- src
 |-- crypto.rs
 |-- error.rs
 |-- lib.rs
 |-- sha256.rs
 |-- types
 | |-- block.rs
 | |-- blockchain.rs
 | `-- transaction.rs
 |-- types.rs
 `-- util.rs

253

You will also have a large target/ folder with many files in it, of course, but that is
not important now. If you want to reduce the size of your target/ folder, run cargo
clean. Note that this will require a full rebuild next time you run any cargo check/
build/run command.

And if you did the third step correctly, you should have the following new lines in
your src/types.rs:

// types.rs
mod block;
mod blockchain;
mod transaction;

Now, let’s do some cutting. Place everything related to the Block and BlockHea-
der structures into src/types/block.rs. You will also need to include the imports
needed by this part of the program. If you have done it correctly, your src/types/
block.rs file should look like this:

// types/block.rs
use chrono::{DateTime, Utc};
use serde::{Deserialize, Serialize};
use super::{Transaction, TransactionOutput};
use crate::error::{BtcError, Result};
use crate::sha256::Hash;
use crate::util::MerkleRoot;
use crate::U256;
use std::collections::HashMap;
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Block {
 // ...
}
impl Block {
 // ...
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct BlockHeader {

254

 // ...
}
impl BlockHeader {
 // ...
}

You will get some unused warnings, but it should be fine. Notice the highlighted
import statement, this is how you import items from the parent module of your
own. Next, let’s split off transaction items into src/types/transaction.rs:

// types/transaction.rs
use serde::{Deserialize, Serialize};
use uuid::Uuid;
use crate::crypto::{PublicKey, Signature};
use crate::sha256::Hash;
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Transaction {
 // ...
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionInput {
 // ...
}
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TransactionOutput {
 // ...
}
impl TransactionOutput {
 // ...
}
impl Transaction {
 // ...
}

255

There we go. Finally, let’s move Blockchain and its methods to src/types/block-
chain.rs:

// types/blockchain.rs
use bigdecimal::BigDecimal;
use chrono::{DateTime, Utc};
use serde::{Deserialize, Serialize};
use super::{Block, Transaction, TransactionOutput};
use crate::error::{BtcError, Result};
use crate::sha256::Hash;
use crate::util::MerkleRoot;
use crate::U256;
use std::collections::{HashMap, HashSet};
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct Blockchain {
 // ...
}
impl Blockchain {
 // ...
}

Once again, take notice of the highlighted import statement. Now that we have split
off all of the pieces into separate modules, the src/types.rs file will be very short.
After removing the unused imports, this will be all that is left:

// types.rs
mod block;
mod blockchain;
mod transaction;

To make the library compile again, we need to add a couple of pub use statements.
This statement works as both an import and a re-export. From the outside (and

256

from the submodules’ perspective, too) it will look as if all of the types from the
submodules were defined in src/types.rs instead:

// types.rs
mod block;
mod blockchain;
mod transaction;
pub use block::{Block, BlockHeader};
pub use blockchain::Blockchain;
pub use transaction::{
 Transaction, TransactionInput, TransactionOutput,
};

If there are any leftover unused imports, remove them now :)

That’s it for the cleanup. Congratulations on keeping up with the difficult work
so far. Once this library is complete, we will have the majority of the work done. :)

SERIALIZATION INTO AND DESERIALIZATION OUT OF FILES
Now that we cleaned up this crate a little, let’s add functionality to export and import
some of these structures to and from files. We are going to leverage the power of Rust
traits by creating a Saveable trait, which will have a save() and load() function that
serializes the structure into a generic writer or deserializes out of a generic reader, and
that will let us create a unified interface for sending bytes into files or over network.

This functionality is a bit of a utility, so we can put it in the src/util.rs module. To
begin with, we can define the Saveable trait:

// util.rs
use std::io::{Read, Write, Result as IoResult};
pub trait Saveable {
 fn load<I: Read>(&self, reader: I);
 fn save<O: Write>(&self, writer: O);
}

257

Move the newly added use statement to the top of the file, as it belongs with the other
ones. We can now extend the trait with save_to_file() and load_from_file() trait methods:

// util.rs
use std::fs::File;
use std::io::{Read, Result as IoResult, Write};
use std::path::Path;
pub trait Saveable
where
 Self: Sized,
{
 fn load<I: Read>(reader: I) -> IoResult<Self>;
 fn save<O: Write>(&self, writer: O) -> IoResult<()>;
 fn save_to_file<P: AsRef<Path>>(
 &self,
 path: P,
) -> IoResult<()> {
 let file = File::create(&path)?;
 self.save(file)
 }
 fn load_from_file<P: AsRef<Path>>(
 path: P,
) -> IoResult<Self> {
 let file = File::open(&path)?;
 Self::load(file)
 }
}

A couple of notes:
 ● We added the Self: Sized where clause. This trait bound is required because not

all types have a size known at compile time (for example, &str has a known size,
it is the size of a fat pointer40, but the underlying str does not have a size known
at compile-time, since it refers to the real bytes of the string). Here, we needed it
because of the requirement of Result<T, E> that both T and E are Sized.

40 A pointer that includes additional data alongside the memory address, typically size information or bounds for the
underlying data. Trait objects have their virtual methods table pointer as this metadata. Since you can imagine a fat pointer
as a well defined struct - e.g. pointer and usize, or pointer and pointer, it is sized.

258

 ● Because we only need the self.save() and self.load() methods to be able to
implement save_to_file(), we can give them default implementations in the
traits, and none of our implementors will need to implement these again.

 ● The two new methods take P: AsRef<Path> as a generic parameter for the
path variable instead of taking the Path type directly, and that tells us that we
can use anything convertible into a path, which includes a &str string slice.

The last point lets us do the following:

// util.rs
something_saveable.save_to_file("some_file.cbor")

Which is short, sweet and readable as opposed to:

// util.rs
something_saveable.save_to_file(Path::new("some_file.cbor"))

The final piece for this section is implementing this trait on Blockchain, Block
and Transaction. By random choice, let’s start with the transaction one in src/
types/transaction.rs:

// types/transaction.rs
// add this to the imports at the top of the file
use crate::util::Saveable;
use std::io::{
 Error as IoError, ErrorKind as IoErrorKind, Read,
 Result as IoResult, Write,
};
// save and load expecting CBOR from ciborium as format
impl Saveable for Transaction {

259

 fn load<I: Read>(reader: I) -> IoResult<Self> {
 ciborium::de::from_reader(reader).map_err(|_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to deserialize Transaction",
)
 })
 }
 fn save<O: Write>(&self, writer: O) -> IoResult<()> {
 ciborium::ser::into_writer(self, writer).map_err(
 |_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to serialize Transaction",
)
 },
)
 }
}

The ones for Blockchain and Block will be almost identical, just slightly different
errors, and the type name replaced with the appropriate one. For Blockchain in
src/types/blockchain.rs:

// types/blockchain.rs
// add this to the imports at the top of the file
use crate::util::Saveable;
use std::io::{
 Error as IoError, ErrorKind as IoErrorKind, Read,
 Result as IoResult, Write,
};
// save and load expecting CBOR from ciborium as format
impl Saveable for Blockchain {
 fn load<I: Read>(reader: I) -> IoResult<Self> {
 ciborium::de::from_reader(reader).map_err(|_| {
 IoError::new(

260

 IoErrorKind::InvalidData,
 "Failed to deserialize Blockchain",
)
 })
 }
 fn save<O: Write>(&self, writer: O) -> IoResult<()> {
 ciborium::ser::into_writer(self, writer).map_err(
 |_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to serialize Blockchain",
)
 },
)
 }
}

And for Block in src/types/block.rs:

// types/block.rs
// add this to the imports at the top of the file
use crate::util::Saveable;
use std::io::{
 Error as IoError, ErrorKind as IoErrorKind, Read,
 Result as IoResult, Write,
};
// save and load expecting CBOR from ciborium as format
impl Saveable for Block {
 fn load<I: Read>(reader: I) -> IoResult<Self> {
 ciborium::de::from_reader(reader).map_err(|_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to deserialize Block",
)
 })
 }

261

 fn save<O: Write>(&self, writer: O) -> IoResult<()> {
 ciborium::ser::into_writer(self, writer).map_err(
 |_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to serialize Block",
)
 },
)
 }
}

That’s it, all that awaits us now in this chapter is developing the utility binaries
that will help us with the Miner and other parts of the program.

UTILITY BINARIES
Before we say goodbye to library development, we need to create what we promised
in the introductory chapters - utility binaries to help us with development. Let’s
create the following ones to help us test the next part of our project, the simple
CPU miner:

 ● Block generator
 ● Transaction generator
 ● Block printer
 ● Transaction printer

We only need a bit of testing data, so we can make them very simple. While we
have already mentioned that the entry point for Rust binaries in a crate is the src/
main.rs file, there is another option - the src/bin/{name}.rs files. These are useful
for when your project has either multiple binaries on the same level, or one main
binary and several other smaller binaries. Our case is the first case, since this is
still a library.

262

Start by creating the following files (still in the lib/ folder):

 ● src/bin/block_gen.rs
 ● src/bin/tx_gen.rs
 ● src/bin/block_print.rs
 ● src/bin/tx_print.rs

Now, our project technically has binaries, but the Rust compiler will still complain
because these files lack a main() function. Let’s make two dummy ones, just so
that we can try running them with Cargo:

// bin/tx_gen.rs
fn main() {
 println!("Hello from transaction generator!");
}
// bin/block_gen.rs
fn main() {
 println!("Hello from block generator!");
}

It is left as an exercise for the reader to make identical main() functions for the
other two programs.

If you run cargo run now, it will complain with the following message:

error: `cargo run` could not determine which binary to run. Use
the `--bin` option to specify a binary, or the `default-run` mani-
fest key.
available binaries: block_gen, tx_gen

Well, we can do what Cargo wants, and try running the transaction generator, for
example:

263

$ cargo run --bin tx_gen
 Finished dev [unoptimized + debuginfo] target(s) in 0.04s
 Running `target/debug/tx_gen`
Hello from transaction generator!

There we go. We will make our testing programs as simple as possible, so all of
them will only take a single argument, the name of the file to either read or write
to. Let’s start with the printing programs, as they are going to be very simple, and
almost identical to one another.

First, the block printer. We will start by reading the second argument (since the
first one is the name of the program):

// bin/block_print.rs
use btclib::types::Block;
use btclib::util::Saveable;
use std::env;
use std::process::exit;
fn main() {
 let path = if let Some(arg) = env::args().nth(1) {
 arg
 } else {
 eprintln!("Usage: block_print <block_file>");
 exit(1);
 };
}

Depending on how you called the lib part of the project, you may get the following
error:

264

error[E0433]: failed to resolve: use of undeclared crate or module
`btclib`
--> lib/src/bin/block_print.rs:1:5
 |
1 | use btclib::types::Block;
 | ^^^^^^ use of undeclared crate or module `btclib`
error[E0433]: failed to resolve: use of undeclared crate or module
`btclib`
--> lib/src/bin/block_print.rs:2:5
 |
2 | use btclib::util::Saveable;
 | ^^^^^^ use of undeclared crate or module `btclib`
warning: unused variable: `path`
--> lib/src/bin/block_print.rs:8:9
 |
8 | let path = if let Some(arg) = env::args().nth(1) {
 | ^^^^ help: if this is intentional, prefix it with an
underscore: `_path`
 |
 = note: `#[warn(unused_variables)]` on by default
For more information about this error, try `rustc --explain
E0433`.
warning: `lib` (bin "block_print") generated 1 warning
error: could not compile `lib` (bin "block_print") due to 2 pre-
vious errors; 1 warning emitted

You can fix this by either changing the use statements to refer to lib::, or rename
the lib in Cargo.toml:

[package]
name = "btclib"
version = "0.1.0"
edition = "2021"

265

We are already going to add the Block type and the Saveable trait, as they are
everything we need from our btclib. The next step is to open the file and load the
Block from it:

// bin/block_print.rs
use btclib::types::Block;
use btclib::util::Saveable;
use std::env;
use std::fs::File;
use std::process::exit;
fn main() {
 let path = if let Some(arg) = env::args().nth(1) {
 arg
 } else {
 eprintln!("Usage: block_print <block_file>");
 exit(1);
 };
 if let Ok(file) = File::open(path) {
 let block = Block::load(file)
 .expect("Failed to load block");
 println!("{:#?}", block);
 }
}

That’s it. That‘s the entire program. One done, three more to go. The tx_print
program is almost the same:

// bin/tx_print.rs
use btclib::types::Transaction;
use btclib::util::Saveable;
use std::env;
use std::fs::File;
use std::process::exit;
fn main() {
 let path = if let Some(arg) = env::args().nth(1) {
 arg

266

 } else {
 eprintln!("Usage: tx_print <tx_file>");
 exit(1);
 };
 if let Ok(file) = File::open(path) {
 let tx = Transaction::load(file)
 .expect("Failed to load transaction");
 println!("{:#?}", tx);
 }
}

The lines that are different between these two programs are highlighted. Having
a robust library really makes our programs quite simple, doesn’t it? The program
for generating blocks is also simple, but it will require a lot of imports:

// bin/block_gen.rs
use btclib::crypto::PrivateKey;
use btclib::sha256::Hash;
use btclib::types::{
 Block, BlockHeader, Transaction, TransactionOutput,
};
use btclib::util::{MerkleRoot, Saveable};
use chrono::Utc;
use uuid::Uuid;
use std::env;
use std::process::exit;

And the implementation of the main() function for this program can be this:

// bin/block_gen.rs
fn main() {
 let path = if let Some(arg) = env::args().nth(1) {
 arg

267

 } else {
 eprintln!("Usage: block_gen <block_file>");
 exit(1);
 };
 let private_key = PrivateKey::new_key();
 let transactions = vec![Transaction::new(
 vec![],
 vec![TransactionOutput {
 unique_id: Uuid::new_v4(),
 value: btclib::INITIAL_REWARD * 10u64.pow(8),
 pubkey: private_key.public_key(),
 }],
)];
 let merkle_root = MerkleRoot::calculate(&transactions);
 let block = Block::new(
 BlockHeader::new(
 Utc::now(),
 0,
 Hash::zero(),
 merkle_root,
 btclib::MIN_TARGET,
),
 transactions,
);
 block.save_to_file(path).expect("Failed to save block");
}

First, we once again retrieve the path from the first argument:

 // bin/block_gen.rs
 let path = if let Some(arg) = env::args().nth(1) {
 arg
 } else {
 eprintln!("Usage: block_gen <block_file>");
 exit(1);
 };

268

Then, we generate a new private key. We will need this key to generate a public key
from the private key which will serve as the owner of the newly minted bitcoin in
the coinbase transaction:

 // bin/block_gen.rs
 let private_key = PrivateKey::new_key();
 let transactions = vec![Transaction::new(
 vec![],
 vec![TransactionOutput {
 unique_id: Uuid::new_v4(),
 value: btclib::INITIAL_REWARD * 10u64.pow(8),
 pubkey: private_key.public_key(),
 }],
)];

In this utility, we are essentially creating a genesis block - only a coinbase transaction,
no previous block, initial reward and minimum target. This is how that block looks:

 // bin/block_gen.rs
 let merkle_root = MerkleRoot::calculate(&transactions);
 let block = Block::new(
 BlockHeader::new(
 Utc::now(),
 0,
 Hash::zero(),
 merkle_root,
 btclib::MIN_TARGET,
),
 transactions,
);

269

And all that is left is to save it to the correct location:

 // bin/block_gen.rs
 block.save_to_file(path).expect("Failed to save block");

At this point, we have three out of the four utilities we planned to implement. The
final library, the transaction generator located in src/bin/tx_gen.rs. Here it goes:

// bin/tx_gen.rs
use btclib::crypto::PrivateKey;
use btclib::types::{Transaction, TransactionOutput};
use btclib::util::Saveable;
use uuid::Uuid;
use std::env;
use std::process::exit;
fn main() {
 let path = if let Some(arg) = env::args().nth(1) {
 arg
 } else {
 eprintln!("Usage: tx_gen <tx_file>");
 exit(1);
 };
 let private_key = PrivateKey::new_key();
 let transaction = Transaction::new(
 vec![],
 vec![TransactionOutput {
 unique_id: Uuid::new_v4(),
 value: btclib::INITIAL_REWARD * 10u64.pow(8),
 pubkey: private_key.public_key(),
 }],
);
 transaction
 .save_to_file(path)
 .expect("Failed to save transaction");
}

270

Congratulations on getting this far. Writing this library was the hardest part of this
project. Now, we have gotten over the biggest hill, and can enjoy writing the rest
of the blockchain implementation. As a small reward for your hard work, please
enjoy this doodle of a frog I made:

Also consider having a nice cup of good coffee, tea, gin, or whatever your beverage of
choice41 is, before getting to the next part of the project - writing a simple CPU miner.
Finally, make sure you try running the programs you just created. For example:

cargo run --bin tx_gen tx.cbor
cargo run --bin tx_print tx.cbor

41 The existence of Javascript makes me drink. I can demolish Gin and tonics like you wouldn’t believe.

271

Prints out the following on my computer:

Transaction {
 inputs: [],
 outputs: [
 TransactionOutput {
 value: 5000000000,
 unique_id: 42dc7889-20fa-4fc7-ba13-a1db8c8ffd86,
 pubkey: PublicKey(
 VerifyingKey {
 inner: PublicKey {
 point: AffinePoint {
 x: FieldElement(
 FieldElementImpl {
 value: FieldElement5x52(
 [
 1580850141496799,
 542666622657044,
 3723734510971934,
 3207064064113201,
 142606895145726,
],
),
 magnitude: 1,
 normalized: true,
 },
),
 y: FieldElement(
 FieldElementImpl {
 value: FieldElement5x52(
 [
 1870844964934659,
 442470295413054,
 980791626273540,
 3755959221253978,
 25491951452455,
],
),

272

 magnitude: 1,
 normalized: true,
 },
),
 infinity: 0,
 },
 },
 },
),
 },
],
}

Unfortunately, the representation of the public key here is not the nice string one
you may be used to, but rather how the library internally represents it. But you win
some, you lose some, that’s just how life is. After you have some rest (or immedia-
tely, if you are fired up), let’s implement our miner.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

7CREATINGA CPU MINER

274

This is going to be a fairly short chapter. We have already implemented some of
the mining functionality before as a method on the BlockHeader type. Now, all
we have to do is create a program which accepts a block template, mines it and
prints out the header it successfully found (along with the original header, so that
we have something to compare to).

At this point, we have no node to test networking against, so our miner will not do
networking at all. At this stage, we will come back to it when we have the node up
and running. This is a real chicken-and-egg problem, but I think we have been
able to sidestep it nicely.

First, we will need to completely switch gears and navigate to our miner crate.
Open the miner/ folder in your editor, and navigate to its Cargo.toml file. First, we
will add a dependency on btclib:

[dependencies]
btclib = { path = "../lib" }

The library is now available in the miner crate. Let’s summarize what the miner
needs to do:

 ● Read CLI arguments
 ● Read block template file from the path specified by the first CLI argument
 ● Mine the block (in increments specified by the second CLI parameter, so that

you can choose smaller increments if your computer is slow)
 ● Print out the original block and its hash
 ● Print out the mined block and its hash
 ● Exit

275

That sounds simple enough. Let’s start working on it.

We have already seen how to read command-line arguments a couple of times
already. In the future, we will use a library that does CLI parsing for us, and is
much smarter and more flexible than we could ever make our own small solution
here, but still, our requirements are fairly minimal for now. This old-fashioned
way will suffice:

// main.rs
use std::env;
use std::process::exit;
fn main() {
 // parse block path and steps count from the
 // first and second argument respectively
 let (path, steps) = if let (Some(arg), Some(arg2)) =
 (env::args().nth(1), env::args().nth(2))
 {
 (arg, arg2)
 } else {
 eprintln!("Usage: miner <block_file> <steps>");
 exit(1);
 };
 // parse steps count
 let steps: usize = if let Ok(s @ 1..=usize::MAX) =
 steps.parse()
 {
 s
 } else {
 eprintln!("<steps> should be a positive integer");
 exit(1);
 };
}

Now, let’s load the block and make a copy of it, so that we can compare the original
and the mined one (insert this after the steps variable):

276

// main.rs
use btclib::types::Block; // <-
use btclib::util::Saveable; // add to the top of the file
 // load block from file
 let og_block = Block::load_from_file(path)
 .expect("Failed to load block");
 let mut block = og_block.clone();

Then we mine the block:

 // main.rs
 while !block.header.mine(steps) {
 println!("mining...");
 }

And print its information:

 // main.rs

 // print original block and its hash
 println!("original: {:#?}", og_block);
 println!("hash: {}", og_block.header.hash());
 // print mined block and its hash
 println!("final: {:#?}", block);
 println!("hash: {}", block.header.hash());

If you generate a block with block_gen and mine it with miner (which will most
likely find the correct nonce very quickly, considering how high we set our MIN_
TARGET), you should see the following two lines in the output (for you, both the
number and the hash will be different):

277

// ...
nonce: 25032354,
// ...
hash: 000000462237a74ea853d3a3d81c112e215c8029bced286cc6485ed0fa-
9ee022

This is from an experiment where I lowered the MIN_TARGET. As you can see,
it took a little over 25 million tries to find the correct hash. While that took about
a minute on my crappy one million year old Lenovo ThinkPad42, ASICs would find
it several orders of magnitude faster. You can try that too by generating a new
testing block. How to do that is left as an exercise to the reader, however, I will
hint that you have two options - either change or extend block_gen to not use the
MIN_TARGET constant, or change the constant in src/lib.rs of btclib. However
make sure you don’t leave the MIN_TARGET set too low for when we will be testing
target adjustment.

NETWORKING
We are now unfortunately reaching a very painful part of network software deve-
lopment. The fact that it needs to do some networking. And we need to design the
protocol for it. Given how simple our blockchain is meant to be, we can largely
depend on what we already have, and what we already know.

Our situation is significantly simplified to the current real bitcoin in that we do
not have pools. We want to have miners talking to nodes directly, and so we only
need to handle the following three cases:

 ● Miner talks to Node
 ● Node talks to another Node
 ● Wallet talks to Node

In the first case, this is what is going to happen:

42 I love this machine. It was going to be either a ThinkPad obsession or wearing programmer socks, and I, trust me, DO
NOT look good in thigh-highs.

278

 ● Miner talks to node so that it can assemble a block template (the node provi-
des information such as the current difficulty)

 ● Node talks to miner to confirm the validity of its requests and provide the data
 ● Miner talks to the node so it can submit a mined block
 ● Node talks to miner the confirm the validity of the block

In the second case:

 ● Node talks to another node to share transactions newly added to mempool
 ● Node talks to another node to share newly added blocks
 ● Node talks to another node to share which nodes it knows about

When a node starts running, it has no mempool. We can add functionality to request
another node’s all the lack of a mempool. Note that since we don’t trust, (but rather)
verify, we still need to verify the validity of transactions incoming from other no-
des (because what if these other nodes were malicious actors? I am a malicious
actor. You should have seen me on Minecraft servers in 2012). Furthermore, we
may run into a situation where we receive a block with some transactions that we
did not have in the mempool. This is not an issue and we should not reject such
a block, but we should still verify that these are in fact valid transactions and no
double-spending is occurring.

And finally, the wallet <-> node communication goes like this:

 ● Wallet queries the node for the UTXOs that belong to it
 ● The node sends over the information
 ● The wallet assembles transactions and sends them to the node
 ● The node verifies them and adds them to the mempool, sending confirmati-

on back to the wallet

The simplest way we can implement networking is to use TCP (so we do not have
to worry about data integrity), and use length-prefixed encoding. This means that
we will serialize each message into a binary format (in our case CBOR since we
are already using it), then measure its size in bytes, and for each message, we will
first send the size of the message, then the message itself. The other side will then
know how many bytes exactly it should expect to receive, and we can optionally
complain if that is not the case. One issue that we need to keep in mind is that our
protocol will not necessarily be backward and forward-compatible. We would have
to make the protocol smarter in order to do that, and introduce some versioning
and version-negotiation mechanisms. A good tool for such functionality would be

279

gRPC with Protocol Buffers, but that is an additional complexity that we will not
be introducing in this book. However, if you want, this is a great improvement you
can make to the project.

But first, what messages? We can think of a number of messages from the com-
munication we have described above. And to represent the messages, we can use
a Rust enum.

This Message type will be shared between all of our components, and so the correct
place is in the btclib library. Therefore, after taking a very short detour from the
library, we came back to it again.

In its src/lib.rs, create a network module:

// lib.rs
pub mod crypto;
pub mod error;
pub mod network;
pub mod sha256;
pub mod types;
pub mod util;

(also create the src/network.rs file)

In this module, we define a Message enum which covers all of the possible mess-
ages we have discussed until now. It can look like this:

// network.rs
use serde::{Deserialize, Serialize};
use crate::crypto::PublicKey;
use crate::types::{Block, Transaction, TransactionOutput};
#[derive(Debug, Clone, Deserialize, Serialize)]
pub enum Message {

280

 /// Fetch all UTXOs belonging to a public key
 FetchUTXOs(PublicKey),
 /// UTXOs belonging to a public key. Bool determines if marked
 UTXOs(Vec<(TransactionOutput, bool)>),
 /// Send a transaction to the network
 SubmitTransaction(Transaction),
 /// Broadcast a new transaction to other nodes
 NewTransaction(Transaction),
 /// Ask the node to prepare the optimal block template
 /// with the coinbase transaction paying the specified
 /// public key
 FetchTemplate(PublicKey),
 /// The template
 Template(Block),
 /// Ask the node to validate a block template.
 /// This is to prevent the node from mining an invalid
 /// block (e.g. if one has been found in the meantime,
 /// or if transactions have been removed from the mempool)
 ValidateTemplate(Block),
 /// If template is valid
 TemplateValidity(bool),
 /// Submit a mined block to a node
 SubmitTemplate(Block),
 /// Ask a node to report all the other nodes it knows
 /// about
 DiscoverNodes,
 /// This is the response to DiscoverNodes
 NodeList(Vec<String>),
 /// Ask a node whats the highest block it knows about
 /// in comparison to the local blockchain
 AskDifference(u32),
 /// This is the response to AskDifference
 Difference(i32),
 /// Ask a node to send a block with the specified height
 FetchBlock(usize),
 /// Broadcast a new block to other nodes
 NewBlock(Block),
}

281

Now, we need to create a small implementation that will do the conversions between
bytes and deserialized data. Start by adding the following imports:

// network.rs
use std::io::{Error as IoError, Read, Write};

And then we can create the following implementation:

// network.rs
// We are going to use length-prefixed encoding for message
// And we are going to use ciborium (CBOR) for serialization
impl Message {
 pub fn encode(
 &self,
) -> Result<Vec<u8>, ciborium::ser::Error<IoError>>
 {
 let mut bytes = Vec::new();
 ciborium::into_writer(self, &mut bytes)?;
 Ok(bytes)
 }
 pub fn decode(
 data: &[u8],
) -> Result<Self, ciborium::de::Error<IoError>> {
 ciborium::from_reader(data)
 }
 pub fn send(
 &self,
 stream: &mut impl Write,
) -> Result<(), ciborium::ser::Error<IoError>> {
 let bytes = self.encode()?;
 let len = bytes.len() as u64;
 stream.write_all(&len.to_be_bytes())?;
 stream.write_all(&bytes)?;
 Ok(())
 }
 pub fn receive(

282

 stream: &mut impl Read,
) -> Result<Self, ciborium::de::Error<IoError>> {
 let mut len_bytes = [0u8; 8];
 stream.read_exact(&mut len_bytes)?;
 let len = u64::from_be_bytes(len_bytes) as usize;
 let mut data = vec![0u8; len];
 stream.read_exact(&mut data)?;
 Self::decode(&data)
 }
}

We can leverage generics to allow sending and receiving messages over anything
we want that implements Read and Write (the two traits that govern whether we
can write or read bytes to something).

Now that we have this type available, we can go back to the miner, and implement
networking in it.

Miner that can talk to a node - Asynchronous Rust
Since it will take a while before we have a node ready that can appropriately respond
to a miner, it may be a good idea to backup the offline miner that you have now, so
you still have something you can run and test things with (if you need to). You can
either copy and rename it and make it a new member of the Rust workspace, or
move it to a sub-binary (under src/bin/{name}.rs) in the current crate.

This is the part where we encounter the wonders of asynchronous programming
in Rust. If you have done parallel programming before, you may already know that
system threads are expensive. Threads are expensive, it‘s not a good idea to spin
up many threads, since it takes up resources and context-switching takes time.
Writing multi-threaded sync code is best suited to a small number of expensive
computational tasks, or alternatively, writing low-level OS code allows you to
schedule tasks precisely and gives you a great amount of control. Using threads
directly might also be preferred in real-time computing.

283

For many applications, we need a practical way to avoid spawning many threads.
A thread-pool alleviates the issue partially, but you still spin-up threads, and it‘s
not easy to manage a multi-threaded application. Furthermore, what if you only
have one thread available?

This is where concurrent programming comes in. Concurrent programming
is a general term for an approach which allows having more than one task in
progress at once. The difference between concurrent, parallel and distributed
programming is that in concurrent programming, all tasks can run on one thread
(and a mechanism exists for switching between them) in parallel programming,
tasks run simultaneously, whereas distributed programming uses multiple proce-
sses, often each running on a separate machine.

There are a number of mechanisms that facilitate concurrent programming (apart
from using threads), for example event-driven programming, coroutines, or actor
architecture. It is possible to utilize all of these in Rust by way of specialized lib-
raries, however, Rust has native support for only one approach -> asynchronous
programming.

If you‘ve been involved with other Rust materials, you might have seen the keywords
async/await mentioned, these are the ones we use for asynchronous programming.

Futures and promises
The Rust async model revolves around the abstract concept of a Future, also called
a promise. You might have heard about the Promise type from Javascript, which is
very similar to Rust’s Future.

A Future is the promise that at some point in the future, a value of a given type will
be available.

In Rust, Future is a trait, there is nothing stopping you from implementing it on
your own custom type, although you are unlikely to want to do that unless you
are writing low-level async libraries. Most of the time, you will use the trait as a
handy-dandy way to abstract from the anonymous type Rust generates for each
future, similar to how the Fn traits, which we have mentioned earlier, abstract
away anonymous types of closures. Here is how you can create a future in Rust:

284

async fn give_me_a_number() -> usize {
 20090103
}
fn main() {
 let x = give_me_a_number();
}

The async keyword serves to provide a tiny bit of syntactic sugar. Under the hood,
the function definition is transformed to this:

use std::future::Future;
fn give_me_a_number() -> impl Future<Output=usize> {
 async {
 20090103
 }
}

Rust futures and async code exhibit some behavior that you might not be used to
when coming from other languages.

Rust Futures are inert (lazy)

Creating a future will not run its code, it is lazy-evaluated and the future won‘t start
until it‘s first polled, or, in other words, .awaited.43

Consider the following example:

43 This is the difference between Rust’s Futures and Javascript’s Promises.

285

async fn foobar() {
 println!("Back to the future");
}
fn main() {
 println!("Hello");
 let x = foobar();
 println!("What's your favorite movie?");
}

If you try running this example (for example in Rust playground), you can see that
we will never get the answer we so desire. This future was never polled or awaited,
so the code never got executed. We can fix this easily by using the futures crate:

async fn foobar() {
 println!("Back to the future B-)");
}
fn main() {
 println!("Hello");
 let x = foobar();
 println!("What's your favorite movie?");
 futures::executor::block_on(x);
}

Now you should see the message. As you can tell by the two Back to The Future
mentions, my favorite movie is, in fact, American Psycho.44

The futures crate provides the most basic tools for working with asynchronous
code, and it is highly recommended you check it out. It is an official crate, but it
is not built in.

In the previous example, we used something called an executor. An executor is
a tool for running asynchronous code. We can‘t just declare main() as async,

44 Now let’s see Paul Allen’s trait bound.

286

since that posits the problem of what would execute the Future it would become
Rust does not have a built-in or default executor, and users are encouraged to use
different implementations depending on their particular use case, whether it be
single-threaded or multi-threaded. This allows for a great degree of flexibility.

Some crates, such as tokio also provide macros in the form of attributes for decla-
ring an async main(). This also results in syntactic sugar, and an executor is spun
up behind the scenes, but the specifics of that are beyond the scope of this text.

The term executor is also sometimes confused with the terms reactor and runti-
me. A reactor is a means of providing subscription mechanisms for events like IO,
inter-process communication and timers. Executors only handle scheduling and
execution of tasks. The term runtime describes reactors bundled with executors.
You will find reactors in places where the program is supposed to interact with the
outside world or interact with things which may not be ready yet. In most async
libraries, the common reactors are types for files and file manipulation, and all sorts
of sockets. A future to sleep in the task (in the case of tokio, that would be tokio::ti-
me::sleep) may also be considered a reactor (it reacts to a time duration elapsing).

No built-in runtime
As just mentioned, Rust does not come with any built-in runtime. The most com-
monly used are:

 ● tokio
 ● futures (very primitive)
 ● async_std
 ● smol
 ● bastion (facilitates distributed programming)

At the time of this writing, tokio has the largest market share and is the most
common async framework.45

I also have the most experience with it, followed by smol, which is very similar to tokio,
but much smaller and simpler (with some costs to performance and features available).

45 You like tokio? Its early work was a little too new wave for my taste. But when async/await support came out in Rust
1.39, I think it really came into its own, functionally and ergonomically. The whole runtime has a clear, crisp approach, and
a new sheen of open source professionalism that really gives the library a big boost. It’s been compared to goroutines, but
I think tokio has a far more bitter, cynical sense of humor.

287

Bastion is also a very interesting project, as it transforms your single-process appli-
cation into a distributed, multi-process one. However, playing around with bastion
is sadly beyond the scope of this book. But check it out, if you have the time for it!

Note that mixing executors and async frameworks is generally a very bad
idea. Compatibility between the major worlds of Rust async (tokio-based and
async_std-based) is often accidental, and cannot be depended on. It may also
lead to panics at runtime.

TOKIO IN MINER
Let’s start by introducing tokio to the miner crate:

cargo add tokio --features full

Or alternatively in Cargo.toml:

tokio = { version = "1.37.0", features = ["full"] }

The full feature set enables everything we need from Tokio to be able to develop
a full-fledged application. For the sake of convenience, Tokio contains types that
are very similar to the ones found in the standard library. As mentioned before,
before we can do meaningful async stuff, we need to instantiate an asynchronous
executor. Luckily, Tokio comes with a macro that makes it easy for us. Let’s adjust
the src/main.rs of the miner to the following:

// main.rs
use btclib::crypto::PublicKey;
use btclib::network::Message;
use btclib::util::Saveable;
use std::env;
use std::process::exit;

288

use tokio::net::TcpStream;
fn usage() -> ! {
 eprintln!(
 "Usage: {} <address> <public_key_file>",
 env::args().next().unwrap()
);
 exit(1);
}
#[tokio::main]
async fn main() {
 let address = match env::args().nth(1) {
 Some(address) => address,
 None => usage(),
 };
 let public_key_file = match env::args().nth(2) {
 Some(public_key_file) => public_key_file,
 None => usage(),
 };
 let Ok(public_key) =
 PublicKey::load_from_file(&public_key_file)
 else {
 eprintln!(
 "Error reading public key from file {}",
 public_key_file
);
 exit(1);
 };
 println!(
 "Connecting to {address} to mine with {public_key:?}",
);
}

Note: The way we are printing the public_key here is not very nice. We are relying
on the Debug trait, which just spits out what the Rust struct looks like. Can you
implement a better way to print the key?

289

This example will not work because we have not implemented Saveable for public
and private keys. We can do that quickly, and we can also create a key_gen util in
btclib. First, in the src/crypto.rs file, we start by adding this:

// crypto.rs (in lib/)
// add imports to the top of the file
use spki::EncodePublicKey;
use std::io::{
 Error as IoError, ErrorKind as IoErrorKind, Read,
 Result as IoResult, Write,
};
use crate::util::Saveable;
impl Saveable for PrivateKey {
 fn load<I: Read>(reader: I) -> IoResult<Self> {
 ciborium::de::from_reader(reader).map_err(|_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to deserialize PrivateKey",
)
 })
 }
 fn save<O: Write>(&self, writer: O) -> IoResult<()> {
 ciborium::ser::into_writer(self, writer).map_err(
 |_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to serialize PrivateKey",
)
 },
)?;
 Ok(())
 }
}
// save and load as PEM
impl Saveable for PublicKey {
 fn load<I: Read>(mut reader: I) -> IoResult<Self> {
 // read PEM-encoded public key into string
 let mut buf = String::new();
 reader.read_to_string(&mut buf)?;

290

 // decode the public key from PEM
 let public_key = buf.parse().map_err(|_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to parse PublicKey",
)
 })?;
 Ok(PublicKey(public_key))
 }
 fn save<O: Write>(
 &self,
 mut writer: O,
) -> IoResult<()> {
 let s = self
 .0
 .to_public_key_pem(Default::default())
 .map_err(|_| {
 IoError::new(
 IoErrorKind::InvalidData,
 "Failed to serialize PublicKey",
)
 })?;
 writer.write_all(s.as_bytes())?;
 Ok(())
 }
}

You will need to add spki with the feature pem to your dependencies. And in src/
bin/key_gen.rs:

// bin/key_gen.rs (in lib/)
use std::env;
use btclib::crypto::PrivateKey;
use btclib::util::Saveable;
fn main() {
 let name =

291

 env::args().nth(1).expect("Please provide a name");
 let private_key = PrivateKey::new_key();
 let public_key = private_key.public_key();
 let public_key_file = name.clone() + ".pub.pem";
 let private_key_file = name + ".priv.cbor";
 private_key.save_to_file(&private_key_file).unwrap();
 public_key.save_to_file(&public_key_file).unwrap();
}

You can use this to generate a pair of keys to place in the miner folder for testing:

cargo run --bin key_gen ../miner/alice

And when testing in the miner/ folder, you should now be able to run:

cargo run localhost:9000 alice.pub.pem

And get the following output:

Connecting to localhost:9000 to mine with PublicKey(Verifying-
Key { inner: PublicKey { point: AffinePoint { x: FieldElement(-
FieldElementImpl { value: FieldElement5x52([3993487666568872,
3933745244468088, 3856475409397746, 1877239772270698,
151220799024004]), magnitude: 1, normalized: true }), y: FieldEle-
ment(FieldElementImpl { value: FieldElement5x52([2756904875665325,
1679013187998920, 3132537210701700, 1384962182096143,
206174890851037]), magnitude: 1, normalized: true }), infinity: 0
} } })

292

We can now try connecting to the node:

 // main.rs
 let mut stream = match TcpStream::connect(&address).await {
 Ok(stream) => stream,
 Err(e) => {
 eprintln!("Failed to connect to server: {}", e);
 exit(1);
 }
 };

First, we must ask the node for work:

 // main.rs
 // Ask the node for work
 println!("requesting work from {address}");
 let message = Message::FetchTemplate(public_key);
 message.send(&mut stream);

This will not work because we need our send method to accept AsyncWrite and not
just Write. The AsyncWrite and AsyncRead traits are counterparts to std::io’s Read
and Write. The easiest way to solve this is to add send_async and receive_async
methods to btclib’s src/network.rs:

// network.rs (in lib/)
// after running `cargo add tokio --features net` or adding it ma-
nually
use tokio::io::{
 AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt,
};
impl Message {
 //...
 pub async fn send_async(

293

 &self,
 stream: &mut (impl AsyncWrite + Unpin),
) -> Result<(), ciborium::ser::Error<IoError>> {
 let bytes = self.encode()?;
 let len = bytes.len() as u64;
 stream.write_all(&len.to_be_bytes()).await?;
 stream.write_all(&bytes).await?;
 Ok(())
 }
 pub async fn receive_async(
 stream: &mut (impl AsyncRead + Unpin),
) -> Result<Self, ciborium::de::Error<IoError>> {
 let mut len_bytes = [0u8; 8];
 stream.read_exact(&mut len_bytes).await?;
 let len = u64::from_be_bytes(len_bytes) as usize;
 let mut data = vec![0u8; len];
 stream.read_exact(&mut data).await?;
 Self::decode(&data)
 }
}

You will also need to add tokio to the dependencies of btclib. We can now use the
newly created methods to talk to the mining node. First, let’s create stubs for our
upcoming networking miner program:

// main.rs
use anyhow::{anyhow, Result};
use btclib::crypto::PublicKey;
use btclib::network::Message;
use btclib::types::Block;
use btclib::util::Saveable;
use clap::Parser;
use std::sync::{
 atomic::{AtomicBool, Ordering},
 Arc,
};

294

use std::thread;
use tokio::net::TcpStream;
use tokio::sync::Mutex;
use tokio::time::{interval, Duration};
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
 #[arg(short, long)]
 address: String,
 #[arg(short, long)]
 public_key_file: String,
}
struct Miner;
impl Miner {
 async fn new(
 address: String,
 public_key: PublicKey,
) -> Result<Self> {
 // ...
 }
 async fn run(&self) -> Result<()> {
 // ...
 }
 fn spawn_mining_thread(&self) -> thread::JoinHandle<()> {
 // ...
 }
 async fn fetch_and_validate_template(&self) -> Result<()> {
 // ...
 }
 async fn fetch_template(&self) -> Result<()> {
 // ...
 }
 async fn validate_template(&self) -> Result<()> {
 // ...
 }
 async fn submit_block(&self, block: Block) -> Result<()> {
 // ...
 }
}

295

#[tokio::main]
async fn main() -> Result<()> {
 let cli = Cli::parse();
 let public_key =
 PublicKey::load_from_file(&cli.public_key_file)
 .map_err(|e| {
 anyhow!("Error reading public key: {}", e)
 })?;
 let miner = Miner::new(cli.address, public_key).await?;
 miner.run().await
}

We have added a couple more dependencies, this is how the Cargo.toml file looks
on my end:

[package]
name = "miner"
version = "0.1.0"
edition = "2021"
[dependencies]
anyhow = "1.0.86"
btclib = { path = "../lib" }
clap = { version = "4.5.8", features = ["derive"] }
flume = "0.11.0"
tokio = { version = "1.38.0", features = ["full"] }

Now, we need to fill out the implementation. In this approach to development,
we are creating a central Miner structure, which manages the entire state of the
application. In order to be effective, we will need to mine on a different thread, so
that we do not block the tokio runtime. In order to be able to communicate with
the hardware thread effectively, we need to use so-called channels.

296

Channels are a staple of multi-threaded programming in Rust. The standard library
offers its own mpsc (Multiple Producer Single Consumer) channel in the std::sync::mpsc
module, however, we will not be using it, as it has a couple of shortcomings:

 ● It cannot receive or send messages asynchronously
 ● It is not multiple consumer (mpmc)

Finally, while correct and very portable, the channels in the standard library are not
that fast in comparison to other offerings we can find on crates.io. This is where
flume import comes into play. The flume library provides fast, async/sync hybrid
mpmc channels. We will be storing two ends of this channel in the Miner struct.
This is how it’s going to look:

// main.rs
struct Miner {
 public_key: PublicKey,
 stream: Mutex<TcpStream>,
 current_template: Arc<std::sync::Mutex<Option<Block>>>,
 mining: Arc<AtomicBool>,
 mined_block_sender: flume::Sender<Block>,
 mined_block_receiver: flume::Receiver<Block>,
}
impl Miner {
 async fn new(
 address: String,
 public_key: PublicKey,
) -> Result<Self> {
 let stream = TcpStream::connect(&address).await?;
 let (mined_block_sender, mined_block_receiver) =
 flume::unbounded();
 Ok(Self {
 public_key,
 stream: Mutex::new(stream),
 current_template: Arc::new(std::sync::Mutex::new(
 None,
)),
 mining: Arc::new(AtomicBool::new(false)),
 mined_block_sender,

297

 mined_block_receiver,
 })
 }

We need to wrap the stream and the current_template in a Mutex because we want
Miner to be safely accessible from multiple threads / tokio tasks. Notice that there
are two Mutex types at play. While current_template is wrapped in a standard lib-
rary mutex, stream is wrapped in a tokio Mutex (see the import statement above).

The reason for this is that we cannot carry a standard library mutex lock across
an .await point without preventing the Future from being Send/Sync. This is
possible with the Tokio one. However, the Tokio one is slower, and naturally only
accessible in async contexts.

We are also using at AtomicBool, instead of a regular bool, so that we do not have
to make the Miner mutable. Let’s tackle the run() method next:

 // main.rs
 async fn run(&self) -> Result<()> {
 self.spawn_mining_thread();
 let mut template_interval =
 interval(Duration::from_secs(5));
 loop {
 let receiver_clone =
 self.mined_block_receiver.clone();
 tokio::select! {
 _ = template_interval.tick() => {
 self.fetch_and_validate_template().await?;
 }
 Ok(mined_block) = receiver_clone.recv_async() => {
 self.submit_block(mined_block).await?;
 }
 }
 }
 }

298

We start by spawning the mining thread, and then we loop over a tokio select!()
macro. Tokio‘s select!() macro allows concurrent waiting on multiple asynchro-
nous operations, executing the branch of the first operation that completes. It‘s
useful for handling multiple events or timeouts efficiently in asynchronous Rust
programs. If one of these futures completes, the other one is dropped.

Note that select is an established tool/pattern in asynchronous programming,
and will be found in pretty much every asynchronous runtime, regardless of the
programming language.

In the select, we are waiting on two futures:

 ● The first one is the ticking of a tokio Interval, every 5 seconds to be precise,
which will fetch and/or validate the template.

 ● The second one is waiting to receive mined blocks from the hardware thre-
ads, so that they can be submitted to the network.

Let’s take a look at how we can implement the mining thread, by filling out its appro-
priate method in the Miner structure. A simple way how we can do it is like this:

 // main.rs
 fn spawn_mining_thread(&self) -> thread::JoinHandle<()> {
 let template = self.current_template.clone();
 let mining = self.mining.clone();
 let sender = self.mined_block_sender.clone();
 thread::spawn(move || loop {
 if mining.load(Ordering::Relaxed) {
 if let Some(mut block) =
 template.lock().unwrap().clone()
 {
 println!(
 "Mining block with target: {}",
 block.header.target
);
 if block.header.mine(2_000_000) {
 println!(
 "Block mined: {}",
 block.hash()

299

);
 sender.send(block).expect(
 "Failed to send mined block",
);
 mining.store(false, Ordering::Relaxed);
 }
 }
 }
 thread::yield_now();
 })
 }

Thanks to our usage of the Arc type, and that the Sender is clonable, we can create
copies, which are not actually copies, but rather second handles into the same
piece of memory. Rust forces us to use these types through the liberal amount of
compile errors it provides if you try to do multi-threading without them.

I am a bit of a cautious person, so we have also added a thread::yield_now(); sta-
tement, to decrease its priority, just so we can make sure that other things get ago
(assuming, e.g. a bizarre operating system that confines each process to a single
core, never letting the process to actually run in parallel).

Let’s take care of fetch_and_validate_template() now:

 // main.rs
 async fn fetch_and_validate_template(&self) -> Result<()> {
 if !self.mining.load(Ordering::Relaxed) {
 self.fetch_template().await?;
 } else {
 self.validate_template().await?;
 }
 Ok(())
 }

300

A very simple function. If we are not mining, we fetch a template, if we are, we
validate it. Note the highlighted line. When working with atomics, we need to
specify the ordering of atomic operations we would like to use. This ranges from
Ordering::Relaxed (which roughly translates to “please just be atomic bro”), to
Ordering::SeqCst (which roughly translates to Gandalf - not the bitcoin one -
screaming “YOU SHALL NOT PASS!!!!” - all atomic operations before this one stay
before it, all after it stay after it). There are a couple more variants in the Ordering
enum, but those are beyond the scope of this book.

Fetching a template is rather simple:

 // main.rs
 async fn fetch_template(&self) -> Result<()> {
 println!("Fetching new template");
 let message =
 Message::FetchTemplate(self.public_key.clone());
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 drop(stream_lock);
 let mut stream_lock = self.stream.lock().await;
 match Message::receive_async(&mut *stream_lock).await? {
 Message::Template(template) => {
 drop(stream_lock);
 println!("Received new template with target: {}",
template.header.target);
 *self.current_template.lock().unwrap() = Some(tem-
plate);
 self.mining.store(true, Ordering::Relaxed);
 Ok(())
 }
 _ => Err(anyhow!("Unexpected message received when fet-
ching template")),
 }
 }

301

On the highlighted lines, you will see that I am quite paranoid about dropping the
lock as soon as possible. This is a personal choice, I like to not have to worry about
deadlocking my process, but it is likely that you can survive with just one lock for
the entire function. Regardless, it is a good practice to not lock shared resources
longer than absolutely necessary - you are preventing others from working.

Template validation looks very, very similar, however, it sends a different message,
naturally:

 // main.rs
 async fn validate_template(&self) -> Result<()> {
 if let Some(template) =
 self.current_template.lock().unwrap().clone()
 {
 let message = Message::ValidateTemplate(template);
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 drop(stream_lock);
 let mut stream_lock = self.stream.lock().await;
 match Message::receive_async(&mut *stream_lock).await?
{
 Message::TemplateValidity(valid) => {
 drop(stream_lock);
 if !valid {
 println!("Current template is no longer valid");
 self.mining.store(false, Ordering::Relaxed);
 } else {
 println!("Current template is still valid");
 }
 Ok(())
 }
 _ => Err(anyhow!("Unexpected message received when
validating template")),
 }
 } else {
 Ok(())
 }
 }

302

This leaves us with just one thing to take care of, the submit_block() method, the
one that sends the block to the node we are connecting to:

 // main.rs
 async fn submit_block(&self, block: Block) -> Result<()> {
 println!("Submitting mined block");
 let message = Message::SubmitTemplate(block);
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 self.mining.store(false, Ordering::Relaxed);
 Ok(())
 }

Welp, and that’s it, we have successfully created a miner :)
This is how the entire miner looks at this stage on my machine:

// main.rs
use anyhow::{anyhow, Result};
use btclib::crypto::PublicKey;
use btclib::network::Message;
use btclib::types::Block;
use btclib::util::Saveable;
use clap::Parser;
use std::sync::{
 atomic::{AtomicBool, Ordering},
 Arc,
};
use std::thread;
use tokio::net::TcpStream;
use tokio::sync::Mutex;
use tokio::time::{interval, Duration};
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
 #[arg(short, long)]

303

 address: String,
 #[arg(short, long)]
 public_key_file: String,
}
struct Miner {
 public_key: PublicKey,
 stream: Mutex<TcpStream>,
 current_template: Arc<std::sync::Mutex<Option<Block>>>,
 mining: Arc<AtomicBool>,
 mined_block_sender: flume::Sender<Block>,
 mined_block_receiver: flume::Receiver<Block>,
}
impl Miner {
 async fn new(
 address: String,
 public_key: PublicKey,
) -> Result<Self> {
 let stream = TcpStream::connect(&address).await?;
 let (mined_block_sender, mined_block_receiver) =
 flume::unbounded();
 Ok(Self {
 public_key,
 stream: Mutex::new(stream),
 current_template: Arc::new(std::sync::Mutex::new(
 None,
)),
 mining: Arc::new(AtomicBool::new(false)),
 mined_block_sender,
 mined_block_receiver,
 })
 }
 async fn run(&self) -> Result<()> {
 self.spawn_mining_thread();
 let mut template_interval =
 interval(Duration::from_secs(5));
 loop {
 let receiver_clone =
 self.mined_block_receiver.clone();
 tokio::select! {

304

 _ = template_interval.tick() => {
 self.fetch_and_validate_template().await?;
 }
 Ok(mined_block) = receiver_clone.recv_async() => {
 self.submit_block(mined_block).await?;
 }
 }
 }
 }
 fn spawn_mining_thread(&self) -> thread::JoinHandle<()> {
 let template = self.current_template.clone();
 let mining = self.mining.clone();
 let sender = self.mined_block_sender.clone();
 thread::spawn(move || loop {
 if mining.load(Ordering::Relaxed) {
 if let Some(mut block) =
 template.lock().unwrap().clone()
 {
 println!(
 "Mining block with target: {}",
 block.header.target
);
 if block.header.mine(2_000_000) {
 println!(
 "Block mined: {}",
 block.hash()
);
 sender.send(block).expect(
 "Failed to send mined block",
);
 mining.store(false, Ordering::Relaxed);
 }
 }
 }
 thread::yield_now();
 })
 }
 async fn fetch_and_validate_template(&self) -> Result<()> {
 if !self.mining.load(Ordering::Relaxed) {

305

 self.fetch_template().await?;
 } else {
 self.validate_template().await?;
 }
 Ok(())
 }
 async fn fetch_template(&self) -> Result<()> {
 println!("Fetching new template");
 let message =
 Message::FetchTemplate(self.public_key.clone());
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 drop(stream_lock);
 let mut stream_lock = self.stream.lock().await;
 match Message::receive_async(&mut *stream_lock).await? {
 Message::Template(template) => {
 drop(stream_lock);
 println!("Received new template with target: {}",
template.header.target);
 *self.current_template.lock().unwrap() = Some(template);
 self.mining.store(true, Ordering::Relaxed);
 Ok(())
 }
 _ => Err(anyhow!("Unexpected message received when fet-
ching template")),
 }
 }
 async fn validate_template(&self) -> Result<()> {
 if let Some(template) =
 self.current_template.lock().unwrap().clone()
 {
 let message = Message::ValidateTemplate(template);
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 drop(stream_lock);
 let mut stream_lock = self.stream.lock().await;
 match Message::receive_async(&mut *stream_lock).await?
{

306

 Message::TemplateValidity(valid) => {
 drop(stream_lock);
 if !valid {
 println!("Current template is no longer valid");
 self.mining.store(false, Ordering::Relaxed);
 } else {
 println!("Current template is still valid");
 }
 Ok(())
 }
 _ => Err(anyhow!("Unexpected message received when
validating template")),
 }
 } else {
 Ok(())
 }
 }
 async fn submit_block(&self, block: Block) -> Result<()> {
 println!("Submitting mined block");
 let message = Message::SubmitTemplate(block);
 let mut stream_lock = self.stream.lock().await;
 message.send_async(&mut *stream_lock).await?;
 self.mining.store(false, Ordering::Relaxed);
 Ok(())
 }
}
#[tokio::main]
async fn main() -> Result<()> {
 let cli = Cli::parse();
 let public_key =
 PublicKey::load_from_file(&cli.public_key_file)
 .map_err(|e| {
 anyhow!("Error reading public key: {}", e)
 })?;
 let miner = Miner::new(cli.address, public_key).await?;
 miner.run().await
}

307

There are many improvements you could make (for example, multithreaded
mining can be implemented, as we are only mining with a single CPU core at the
moment). It would also be a good idea to be able to submit your block to multiple
nodes. But congratulations! You are one step closer to your very own blockchain.
Here’s a doodle of a cat:

Whenever you are ready, proceed to the next chapter, where we will be building
the bitcoin node.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

8BUILDINGA BITCOIN
NODE

309

In the previous chapters, we have already established what the node is supposed
to be doing. Now, we can finally make it. But first, let’s introduce a new additional
restraint - the maximum amount of transactions allowed in a block. We can add
this constant to btclib’s crate root, the src/lib.rs file:

// lib.rs (in lib/)
// initial reward in bitcoin - multiply by 10^8 to get satoshis
pub const INITIAL_REWARD: u64 = 50;
// halving interval in blocks
pub const HALVING_INTERVAL: u64 = 210;
// ideal block time in seconds
pub const IDEAL_BLOCK_TIME: u64 = 10;
// minimum target
pub const MIN_TARGET: U256 = U256([
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0xFFFF_FFFF_FFFF_FFFF,
 0x0000_00FF_FFFF_FFFF,
]);
// difficulty update interval in blocks
pub const DIFFICULTY_UPDATE_INTERVAL: u64 = 50;
// maximum mempool transaction age in seconds
pub const MAX_MEMPOOL_TRANSACTION_AGE: u64 = 600;
// maximum amount of transactions allowed in a block
pub const BLOCK_TRANSACTION_CAP: usize = 20;

These are the constants we have so far. Now, navigate to the node/ crate, and start
adding dependencies. Once again, we will need tokio, and we will also make use

310

of several other libraries. It would be quite long to add them one by one, so here is
the [dependencies] section of my Cargo.toml:

[dependencies]
anyhow = "1.0.82"
argh = "0.1.12"
btclib = { version = "0.1.0", path = "../lib" }
chrono = "0.4.38"
dashmap = "5.5.3"
static_init = "1.0.3"
tokio = { version = "1.37.0", features = ["full"] }
uuid = { version = "1.8.0", features = ["v4"] }

Here are a couple of libraries you haven’t seen yet:

 ● Anyhow - This library is often used together with thiserror. While thiserror
provides a macro to create a concrete type covering all sorts of errors, any-
how provides a dynamic type (and a Result<T> alias that is using this type),
which can be converted into from any Error-implementing type. Often,
anyhow is used in applications (in places where you care merely about the
presence and reporting of an error), and thiserror in libraries (where you want
to let your users make decisions based on the content of the errors).

 ● argh - This is a small library for handling command-line arguments. It
works by deserializing command-line arguments into a structure based on
attributes that you stick onto its definition. It is a more lightweight alternati-
ve to clap, which is the CLI app framework for Rust.

 ● dashmap - Provides a fast HashMap that is thread-safe and has interior
mutability. Interior mutability is a functionality provided by some types
that mutate data through a &self (shared) reference. This makes them very
handy in read-only context. Types with interior mutability must handle
correctness and data integrity internally, and their implementations often
contain unsafe code, or they internally depend on other types providing inte-
rior mutability.

 ● static_init - One of the many Rust libraries for creating global variables for
types that require allocations.

311

ORGANIZATION
We can start by declaring all of the imports we are going to use in the main.rs file
of node:

// main.rs (in node/)
use argh::FromArgs;
use dashmap::DashMap;
use static_init::dynamic;
use anyhow::Result;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::RwLock;
use btclib::types::Blockchain;
use std::path::Path;

We will be moving some of our functionality to two submodules, poorly named
util and handler, which will provide utility functions and handling for all possible
Message variants respectively:

// main.rs (in node/)
mod handler;
mod util;

Node will use the argh library to define a CLI interface matching this structure:

// main.rs (in node/)
#[derive(FromArgs)]
/// A toy blockchain node
struct Args {
 #[argh(option, default = "9000")]
 /// port number
 port: u16,
 #[argh(

312

 option,
 default = "String::from(\"./blockchain.cbor\")"
)]
 /// blockchain file location
 blockchain_file: String,
 #[argh(positional)]
 /// addresses of initial nodes
 nodes: Vec<String>,
}

If we create a minimalistic main function (we are going to use Tokio, so let’s use it
already), which looks like this:

// main.rs
#[tokio::main]
async fn main() -> Result<()> {
 // Parse command line arguments
 let args: Args = argh::from_env();
 Ok(())
}

And run cargo run -- --help, you will see that the argh library has generated a very
handy help text. Here:

Usage: node [<nodes...>] [--port <port>] [--blockchain-file
<blockchain-file>]
A toy blockchain node
Positional Arguments:
 nodes addresses of initial nodes
Options:
 --port port number
 --blockchain-file blockchain file location
 --help display usage information

313

We define three inputs our application expects:

 ● A port to listen to
 ● Path to store/load the blockchain from
 ● A list of other nodes to connect to and communicate with

Let’s extract the three parameters from the CLI struct:

// main.rs
async fn main() -> Result<()> {
 // Parse command line arguments
 let args: Args = argh::from_env();
 // Access the parsed arguments
 let port = args.port;
 let blockchain_file = args.blockchain_file;
 let nodes = args.nodes;
}

NODE DISCOVERY
Now, before we do anything, we need to check if the blockchain exists. If not, we will
see if we have any other nodes to connect to. If we have no other nodes to connect
to, we will assume we are a seed node and start a new blockchain.

This is how you can verify that a file exists:

// main.rs
#[tokio::main]
async fn main() -> Result<()> {
 // Parse command line arguments
 let args: Args = argh::from_env();
 // Access the parsed arguments
 let port = args.port;
 let blockchain_file = args.blockchain_file;
 let nodes = args.nodes;

314

 // Check if the blockchain_file exists
 if Path::new(&blockchain_file).exists() {
 // ...
 } else {
 // ...
 }
 Ok(())
}

If the blockchain does indeed exist, we can simply load it. To make sure that the
main() function is not absolutely massive, we will extract this bit of behavior into
a discrete function in the util module:

// main.rs
#[tokio::main]
async fn main() -> Result<()> {
 // Parse command line arguments
 let args: Args = argh::from_env();
 // Access the parsed arguments
 let port = args.port;
 let blockchain_file = args.blockchain_file;
 let nodes = args.nodes;
 // Check if the blockchain_file exists
 if Path::new(&blockchain_file).exists() {
 util::load_blockchain(&blockchain_file).await?;
 } else {
 }
 Ok(())
}

This is how we can implement the util::load_blockchain() function. The list of
imports here includes more than we need for this function, but we will need eve-
rything in the future, so don’t mind the unused warnings for now:

315

// util.rs
use anyhow::{Context, Result};
use tokio::net::TcpStream;
use tokio::time;
use btclib::network::Message;
use btclib::types::Blockchain;
use btclib::util::Saveable;
pub async fn load_blockchain(
 blockchain_file: &str,
) -> Result<()> {
 println!("blockchain file exists, loading...");
 let new_blockchain =
 Blockchain::load_from_file(blockchain_file)?;
 println!("blockchain loaded");
 let mut blockchain = crate::BLOCKCHAIN.write().await;
 *blockchain = new_blockchain;
 println!("rebuilding utxos...");
 blockchain.rebuild_utxos();
 println!("utxos rebuilt");
 println!("checking if target needs to be adjusted...");
 println!("current target: {}", blockchain.target());
 blockchain.try_adjust_target();
 println!("new target: {}", blockchain.target());
 println!("initialization complete");
 Ok(())
}

As you can see, we need to do some additional initialization, just to be safe. We
rebuild the utxos and we check if the target is set correctly. This will not compile
because we are referencing a global variable at crate::BLOCKCHAIN. We can create
it now back in main.rs with the static_init crate, along with the second one we are
going need, a hashmap of known nodes and connections to them:

// main.rs
#[dynamic]
pub static BLOCKCHAIN: RwLock<Blockchain> =

316

 RwLock::new(Blockchain::new());
// Node pool
#[dynamic]
pub static NODES: DashMap<String, TcpStream> =
 DashMap::new();

The DashMap types works very similarly to the HashMap type, for almost everything
we can consider the two to be interchangeable (except that even .get_mut() on
DashMap uses &self). We need this because truly mutable statics (that is, global
variables), are very unsafe, and can lead to memory corruption. Therefore, they
cannot be used in safe Rust. RwLock and Mutex are types which also provide interior
mutability and are suitable as wrappers for types that do not provide it. They provide
synchronization mechanisms and ensure that if there is a read-write access, it is
the only one. RwLock differentiates between read-only and read-write access,
allowing many .read() handles, but only a solitary .write() handle (which cannot
co-exist with any .read() handle). Mutex only provides mutable handles. Someti-
mes, a Mutex is faster, but we can expect many accesses which can be read-only.

FETCHING THE BLOCKCHAIN FROM OTHER NODES
In the event that the blockchain does not exist, the node should complain about
it, and check if it knows any other nodes:

// main.rs
#[tokio::main]
async fn main() -> Result<()> {
 // Parse command line arguments
 let args: Args = argh::from_env();
 // Access the parsed arguments
 let port = args.port;
 let blockchain_file = args.blockchain_file;
 let nodes = args.nodes;
 // Check if the blockchain_file exists
 if Path::new(&blockchain_file).exists() {

317

 util::load_blockchain(&blockchain_file).await?;
 } else {
 println!("blockchain file does not exist!");
 if nodes.is_empty() {
 println!("no initial nodes provided, starting as a seed
node");
 } else {
 }
 }
 Ok(())
}

Since we already have an empty blockchain ready, we do not need to do any addi-
tional initialization. But there are a lot of things we need to do if there are nodes
that we can download a copy of the blockchain from:

 // main.rs
 util::populate_connections(&nodes).await?;
 println!(
 "total amount of known nodes: {}",
 NODES.len()
);
 if nodes.is_empty() {
 println!("no initial nodes provided, starting as a seed
node");
 } else {
 let (longest_name, longest_count) =
 util::find_longest_chain_node().await?;
 // request the blockchain from the node with the lon-
gest blockchain
 util::download_blockchain(
 &longest_name,
 longest_count,
)
 .await?;
 println!(

318

 "blockchain downloaded from {}",
 longest_name
);
 // recalculate utxos
 {
 let mut blockchain =
 BLOCKCHAIN.write().await;
 blockchain.rebuild_utxos();
 }
 // try to adjust difficulty
 {
 let mut blockchain =
 BLOCKCHAIN.write().await;
 blockchain.try_adjust_target();
 }
 }

There are plenty of additional util functions in this snippet. Let’s create them now.
First, we need to populate the NODES DashMap with names and connections. It is
not the perfect solution, but we can probe one level deeper, and ask every node we
know for the node it knows. Since we are storing the node names in a hash map,
we do not need to worry about deduplication at all. This is my implementation:

// main.rs
pub async fn populate_connections(
 nodes: &[String],
) -> Result<()> {
 println!("trying to connect to other nodes...");
 for node in nodes {
 println!("connecting to {}", node);
 let mut stream = TcpStream::connect(&node).await?;
 let message = Message::DiscoverNodes;
 message.send_async(&mut stream).await?;
 println!("sent DiscoverNodes to {}", node);
 let message =
 Message::receive_async(&mut stream).await?;

319

 match message {
 Message::NodeList(child_nodes) => {
 println!("received NodeList from {}", node);
 for child_node in child_nodes {
 println!("adding node {}", child_node);
 let new_stream =
 TcpStream::connect(&child_node)
 .await?;
 crate::NODES
 .insert(child_node, new_stream);
 }
 }
 _ => {
 println!(
 "unexpected message from {}",
 node
);
 }
 }
 crate::NODES.insert(node.clone(), stream);
 }
 Ok(())
}

We open a new TcpStream connection to every node, send it a DiscoverNodes
message, which will make it return a list of nodes in the NodeList message, and
then we open a connection through every child node. All of these nodes are added
one by one to the NODES dashmap. That’s all we need from this function. The
next one on the list is util::find_longest_chain_node(). This function asks all the
other nodes to report how long their blockchain is, then downloads from the one
that is the longest:

// main.rs
pub async fn find_longest_chain_node(
) -> Result<(String, u32)> {
 println!("finding nodes with the highest blockchain

320

length...");
 let mut longest_name = String::new();
 let mut longest_count = 0;
 let all_nodes = crate::NODES
 .iter()
 .map(|x| x.key().clone())
 .collect::<Vec<_>>();
 for node in all_nodes {
 println!("asking {} for blockchain length", node);
 let mut stream = crate::NODES
 .get_mut(&node)
 .context("no node")?;
 let message = Message::AskDifference(0);
 message.send_async(&mut *stream).await.unwrap();
 println!("sent AskDifference to {}", node);
 let message =
 Message::receive_async(&mut *stream).await?;
 match message {
 Message::Difference(count) => {
 println!(
 "received Difference from {}",
 node
);
 if count > longest_count {
 println!(
 "new longest blockchain: \
 {} blocks from {node}",
 count
);
 longest_count = count;
 longest_name = node;
 }
 }
 e => {
 println!(
 "unexpected message from {}: {:?}",
 node, e
);
 }

321

 }
 }
 Ok((longest_name, longest_count as u32))
}

Here, we have made another simplification. In practice, this could be a potential
security problem, as an attack might create a bogus node with a very long block-
chain and it would propagate from there. But this is a toy blockchain and creating
a consensus mechanism would make this book longer than necessary (but it is
one of the things you can try implementing!). The AskDifference message could
be used to do that. We are not using it to its full power here, as we are only sending
it with a “my height” of zero to get the nodes to report a total block height of their
blockchains.

Once the longest blockchain among our friends is found, downloading it is a simple
matter:

// main.rs
pub async fn download_blockchain(
 node: &str,
 count: u32,
) -> Result<()> {
 let mut stream = crate::NODES.get_mut(node).unwrap();
 for i in 0..count as usize {
 let message = Message::FetchBlock(i);
 message.send_async(&mut *stream).await?;
 let message =
 Message::receive_async(&mut *stream).await?;
 match message {
 Message::NewBlock(block) => {
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 blockchain.add_block(block)?;
 }
 _ => {
 println!(

322

 "unexpected message from {}",
 node
);
 }
 }
 }
 Ok(())
}

This is another spot where an improvement could be made. Instead of making
many small requests, we could add another message type that would return an
entire chain of blocks. That’s it for the helper functions in utils.rs for this bit. Let’s
go back to main().

HANDLING REQUESTS
Now that we have established the entire blockchain, we can start listening for
requests and messages from other nodes, miners and wallets:

 // main.rs
 // Start the TCP listener on 0.0.0.0:port
 let addr = format!("0.0.0.0:{}", port);
 let listener = TcpListener::bind(&addr).await?;
 println!("Listening on {}", addr);
 loop {
 let (socket, _) = listener.accept().await?;
 tokio::spawn(handler::handle_connection(socket));
 }

The handler::handle_connection() function is the heart of our application, it‘s
where we will handle every possible message type. But before we implement it
message type by message type, there are some automatic tasks we must take care of:

323

 // main.rs
 // start a task to periodically cleanup the mempool
 // normally, you would want to keep and join the handle
 tokio::spawn(util::cleanup());
 // and a task to periodically save the blockchain
 tokio::spawn(util::save(blockchain_file.clone()));

Place these above the loop {} above (seeing as the loop is infinite unless broken,
these statements would otherwise not ever be executed). Their implementation
is very simple, we use the Interval type from tokio’s time module, which lets us
do things every once in a while:

// util.rs
pub async fn cleanup() {
 let mut interval =
 time::interval(time::Duration::from_secs(30));
 loop {
 interval.tick().await;
 println!(
 "cleaning the mempool from old transactions"
);
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 blockchain.cleanup_mempool();
 }
}
pub async fn save(name: String) {
 let mut interval =
 time::interval(time::Duration::from_secs(15));
 loop {
 interval.tick().await;
 println!("saving blockchain to drive...");
 let blockchain = crate::BLOCKCHAIN.read().await;
 blockchain.save_to_file(name.clone()).unwrap();
 }
}

324

The interval futures yield every time tokio polls them until the given duration of
time has elapsed. Now, we can finally make the handler:

// handler.rs
use btclib::sha256::Hash;
use chrono::Utc;
use uuid::Uuid;
use tokio::net::TcpStream;
use btclib::network::Message;
use btclib::types::{
 Block, BlockHeader, Transaction, TransactionOutput,
};
use btclib::util::MerkleRoot;
pub async fn handle_connection(mut socket: TcpStream) {
 loop {
 // read a message from the socket
 let message = match Message::receive_async(&mut socket)
 .await
 {
 Ok(message) => message,
 Err(e) => {
 println!(
 "invalid message from peer: {e}, closing that
connection"
);
 return;
 }
 };

 use btclib::network::Message::*;
 match message {
 // ...
 }
 }
}

325

I’ll be honest with ya, chief. In my setup, the match message statement has 250
lines. It’s big, we need to handle every possible message. First, let’s get rid of the
ones we do not want to handle as a node:

 // handler.rs
 UTXOs(_) | Template(_) | Difference(_)
 | TemplateValidity(_) | NodeList(_) => {
 println!(
 "I am neither a miner nor a \
 wallet! Goodbye"
);
 return;
 }

These are messages that the node sends as a response to either a miner or the wallet.
We should never receive them as the node, so we can just safely ignore them and
terminate the connection by returning from the function. Next, we have a couple
of simple messages that merely return some data without doing any modifications
to it or filtering it excessively. First FetchBlock:

 // handler.rs
 FetchBlock(height) => {
 let blockchain =
 crate::BLOCKCHAIN.read().await;
 let Some(block) = blockchain
 .blocks()
 .nth(height as usize)
 .cloned()
 else {
 return;
 };
 let message = NewBlock(block);
 message
 .send_async(&mut socket)
 .await
 .unwrap();
 }

326

DiscoverNodes (no filtering going on - we just send all the nodes we know):

 // handler.rs
 DiscoverNodes => {
 let nodes = crate::NODES
 .iter()
 .map(|x| x.key().clone())
 .collect::<Vec<_>>();
 let message = NodeList(nodes);
 message
 .send_async(&mut socket)
 .await
 .unwrap();
 }

AskDifference (read and subtract):

 AskDifference(height) => {
 let blockchain =
 crate::BLOCKCHAIN.read().await;
 let count = blockchain.block_height()
 as i32
 - height as i32;
 let message = Difference(count);
 message
 .send_async(&mut socket)
 .await
 .unwrap();
 }

Returning UTXOs for a particular public key is a bit more involved process, as we
need to filter them out, and separate them from the tags marking them:

327

 // handler.rs
 FetchUTXOs(key) => {
 println!("received request to fetch UTXOs");
 let blockchain =
 crate::BLOCKCHAIN.read().await;
 let utxos = blockchain
 .utxos()
 .iter()
 .filter(|(_, (_, txout))| {
 txout.pubkey == key
 })
 .map(|(_, (marked, txout))| {
 (txout.clone(), *marked)
 })
 .collect::<Vec<_>>();
 let message = UTXOs(utxos);
 message
 .send_async(&mut socket)
 .await
 .unwrap();
 }

The .cloned() method on an iterator (or Option, or Result), clones the type inside,
transforming an Iterator<Item=&T> into an Iterator<Item=T> assuming that T
implements Clone. Receiving a new block is easy also, as we have implemented
validation into the Blockchain type:

 // handler.rs
 NewBlock(block) => {
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 println!("received new block");
 if blockchain.add_block(block).is_err() {
 println!("block rejected");
 }
 }

328

Same goes for when we receive a new transaction from another node:

 // handler.rs
 NewTransaction(tx) => {
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 println!("received transaction from friend");
 if blockchain.add_to_mempool(tx).is_err() {
 println!("transaction rejected, closing connec-
tion");
 return;
 }
 }

We are making a simplification here in that we just add it to the mempool. It would
be a nice idea to send it back to other nodes that may not have it. However, we would
have to add a mechanism for preventing the network from creating notification
loops. You can try implementing one, if you want.

Validating the template is fairly easy, we can say it is invalid if it is no longer po-
inting to the top of the blockchain with the previous block hash contained in it:

 // handler.rs
 ValidateTemplate(block_template) => {
 let blockchain =
 crate::BLOCKCHAIN.read().await;
 let status = block_template
 .header
 .prev_block_hash
 == blockchain
 .blocks()
 .last()
 .map(|last_block| last_block.hash())
 .unwrap_or(Hash::zero());
 let message = TemplateValidity(status);
 message

329

 .send_async(&mut socket)
 .await
 .unwrap();
 }

If a miner sends us a correctly mined block, we want to broadcast it to other nodes:

 // handler.rs
 SubmitTemplate(block) => {
 println!("received allegedly mined template");
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 if let Err(e) =
 blockchain.add_block(block.clone())
 {
 println!(
 "block rejected: {e}, closing connection"
);
 return;
 }
 blockchain.rebuild_utxos();
 println!("block looks good, broadcasting");
 // send block to all friend nodes
 let nodes = crate::NODES
 .iter()
 .map(|x| x.key().clone())
 .collect::<Vec<_>>();
 for node in nodes {
 if let Some(mut stream) =
 crate::NODES.get_mut(&node)
 {
 let message = Message::NewBlock(
 block.clone(),
);
 if message
 .send_async(&mut *stream)

330

 .await
 .is_err()
 {
 println!("failed to send block to {}", node);
 }
 }
 }
 }

Same goes for newly submitted transactions, we want to pass them on also:

 // handler.rs
 SubmitTransaction(tx) => {
 println!("submit tx");
 let mut blockchain =
 crate::BLOCKCHAIN.write().await;
 if let Err(e) =
 blockchain.add_to_mempool(tx.clone())
 {
 println!("transaction rejected, closing connection: {e}");
 return;
 }
 println!("added transaction to mempool");
 // send transaction to all friend nodes
 let nodes = crate::NODES
 .iter()
 .map(|x| x.key().clone())
 .collect::<Vec<_>>();
 for node in nodes {
 println!("sending to friend: {node}");
 if let Some(mut stream) =
 crate::NODES.get_mut(&node)
 {
 let message =

331

 Message::NewTransaction(
 tx.clone(),
);
 if message
 .send_async(&mut *stream)
 .await
 .is_err()
 {
 println!("failed to send transaction to {}", node);
 }
 }
 }
 println!("transaction sent to friends");
 }

The final and most difficult message to implement is the FetchTemplate one:

 // handler.rs
 FetchTemplate(pubkey) => {
 let blockchain =
 crate::BLOCKCHAIN.read().await;
 let mut transactions = vec![];
 // insert transactions from mempool
 transactions.extend(
 blockchain
 .mempool()
 .iter()
 .take(btclib::BLOCK_TRANSACTION_CAP)
 .map(|(_, tx)| tx)
 .cloned()
 .collect::<Vec<_>>(),
);
 // insert coinbase tx with pubkey
 transactions.insert(
 0,

332

 Transaction {
 inputs: vec![],
 outputs: vec![TransactionOutput {
 pubkey,
 unique_id: Uuid::new_v4(),
 value: 0,
 }],
 },
);
 let merkle_root =
 MerkleRoot::calculate(&transactions);
 let mut block = Block::new(
 BlockHeader {
 timestamp: Utc::now(),
 prev_block_hash: blockchain
 .blocks()
 .last()
 .map(|last_block| {
 last_block.hash()
 })
 .unwrap_or(Hash::zero()),
 nonce: 0,
 target: blockchain.target(),
 merkle_root,
 },
 transactions,
);
 let miner_fees = match block
 .calculate_miner_fees(blockchain.utxos())
 {
 Ok(fees) => fees,
 Err(e) => {
 eprintln!("{e}");
 return;
 }
 };
 let reward =

333

 blockchain.calculate_block_reward();
 // update coinbase tx with reward
 block.transactions[0].outputs[0].value =
 reward + miner_fees;
 // recalculate merkle root
 block.header.merkle_root =
 MerkleRoot::calculate(
 &block.transactions,
);
 let message = Template(block);
 message
 .send_async(&mut socket)
 .await
 .unwrap();
 }

We need to quickly go back to the lib/src/types/blockchain.rs file in btclib, and
implement the calculate_block_reward() function:

 // types/blockchain.rs (in lib/)
 pub fn calculate_block_reward(&self) -> u64 {
 let block_height = self.block_height();
 let halvings = block_height / crate::HALVING_INTERVAL;
 (crate::INITIAL_REWARD * 10u64.pow(8)) >> halvings
 }

As an exercise, try calculating how many halvings (and how long time) will it take
to reach a block reward smaller than 1 satoshi. You might be surprised at how fast
it will be with our current settings in lib/src/lib.rs.

334

WRAPPING UP
Looking back at the handler(), you can see that we need to collect UTXOs and
transactions to put into the block. Luckily, we have already established that the
transactions we are taking are the most valuable ones (with the highest fee for the
miner). One cumbersome part is how we need to calculate the merkle root twice
(before and after the correct coinbase transaction). I have intentionally left that
here as a very obvious pain point that is not so difficult to fix. Can you figure out
how to fix this issue by making a couple of small changes in btclib?

Also, you might have one warning left in main.rs. Given how the loop runs infini-
tely, and we have no break statements there, the Ok(()) statement is unreachable.
This is how the warning looks on my machine:

warning: unreachable expression
 --> node/src/main.rs:114:5
 |
109 | / loop {
110 | | let (socket, _) = listener.accept().await?;
111 | | tokio::spawn(handler::handle_connection(socket));
112 | | }
 | |_____- any code following this expression is unreachable
113 |
114 | Ok(())
 | ^^^^^^ unreachable expression
 |
 = note: `#[warn(unreachable_code)]` on by default
warning: `node` (bin "node") generated 1 warning
 Finished `dev` profile [unoptimized + debuginfo] target(s) in
0.16s

Just delete it, and you should have no warnings. :)

The loop {} statement will coerce to any type, including a Result<()> so long as
the loop actually diverges. To diverge, in Rust parlance, roughly translates to “this
either runs forever unconditionally, or stops the whole thread/process”.

335

Now, we should have all the messages handled, and if you run the node without
any arguments, you should get the following output in the terminal:

blockchain file does not exist!
no initial nodes provided, starting as a seed node
Listening on 0.0.0.0:9000
saving blockchain to drive...
cleaning the mempool from old transactions

And if you run it again, the situation will be slightly different because we already
have a blockchain available:

blockchain file exists, loading...
blockchain loaded
rebuilding utxos...
utxos rebuilt
checking if target needs to be adjusted...
current target: 69017463467905637874347558622770254524511089721703
86555162524223799295
new target: 690174634679056378743475586227702545245110897217038655
5162524223799295
initialization complete
Listening on 0.0.0.0:9000
saving blockchain to drive...
cleaning the mempool from old transactions

336

Perfect, that concludes our work on the node for now. Congratulations, you made
it past the node. Now, all we have left is the CLI wallet, which is nowhere near as
difficult. Here is a picture for you:

The mighty crab is the mascot of Rust. The Rust crab is called Ferris, and is, in
fact, very cute.

···············
···············
···············
 ·····
 ·····
 ·····
 ·····
 ·····
···············
···············
···············

9MAKINGA CLI/TUI
WALLET

338

You know which GUI (Graphical User Interface) is the most beautiful? If you are
anything like me, a terminal rat born in the rough streets of the command-line,
raised on a diet of bash, mksh and fish, you will say: “Why! No GUI at all, my eyes
were made for reading text on a terminal! The light of the modern MacOSX and
Windows 11 light theme blinds my eyes. If my Linux distribution has more than
6 graphical applications, I become deathly ill!”46

Naturally, the answer is TUI - terminal UI. All the benefits of a UI without the
actual UI. In recent years, TUI apps have had a renaissance of sorts, as the Linux
equivalent of fashion designers, mostly centered around r/unixporn (the name is
suspicious, but there is nothing NSFW going on in that community, at least until
they start putting on programmer socks), found them visually appealing and highly
configurable (via recoloring your terminal application).

In Rust, there is a number of libraries that support creating terminal UI applications,
including the rising star of GUI development - dioxus. The dioxus framework is
a web-centric UI framework, which is starting to gain ground in frontend development.
Unfortunately, I only learned about it recently, and I don’t have prior experience
developing with it. It is extremely portable and flexible, though - you can make web
apps, desktop apps, mobile apps, and even terminal UI applications. The ones that
are more likely to come to play in most TUI Rust software are ratatui and cursive.

Ratatui has filled the niche left behind by the tui crate, which for years held the
position as the best crate for elaborate terminal user interfaces. These two libraries
differ in approach to driving the application. Ratatui is an immediate-mode, while
cursive uses a declarative approach with events. Immediate mode UI libraries
redraw the entire interface every frame based on the current application state, and
they themselves do not maintain any state at all. This can make them very simple,
and direct, but the cost of some readability, and potentially some performance.

46 After a recent data loss I suffered, I am down to three GUI applications - my terminal emulator, Firefox, and Telegram.
I am using a 500 line window manager I wrote myself.

339

With cursive, you specify a UI, state, events, and off you go. When preparing this
wallet, I tried both approaches, and decided that cursive is more readable in the
constrained environment of a book, so here it goes :)

MAKING A CLI WALLET
In this part of the project, I would like to introduce approaches that are geared
slightly more towards how things are done in production. We will split our wallet
into two discrete parts:

 ● A core that handles functionality, and knows nothing about the UI of the
application

 ● The interface of the application itself

We want the core to run pretty much independently from the UI (with the UI making
requests from the core of the application, and fetching info). In many languages,
you would be tempted to instantiate such a core as a global variable, but in Rust,
we do not need to, and it would be potentially quite cumbersome.

We will design our Core as a structure that uses interior mutability, so that it can be
easily shareable via Arc<Core>. Just as a reminder, an Arc<T> (Atomic Reference
Counting) is a thread-safe smart pointer in Rust that allows multiple ownership of
the same data across threads. It provides shared, immutable access to its contents,
using atomic operations for reference counting to ensure safe concurrent access
and automatic memory management. Cloning an Arc only gives you a new handle
to the same underlying data without actually creating a new copy. Data contained
in an Arc is only deleted when the last Arc pointing to the same data is destroyed.
There is a non-atomic version called Rc, but it cannot be shared across threads,
as the counters are not thread-safe.

Before we use cursive to make a nice TUI, let’s make a simpler CLI version, so we
know that our Core is working correctly. Start by making sure that your Cargo.toml
looks roughly like this (you can add the dependencies via cargo add to ensure you
have the latest versions of the libraries used):

[package]
name = "good-wallet"
version = "0.1.0"

340

edition = "2021"
[dependencies]
anyhow = "1.0.86"
clap = { version = "4.5.8", features = ["derive"] }
crossbeam-skiplist = "0.1.3"
cursive = "0.20.0"
futures = "0.3.30"
kanal = "0.1.0-pre8"
serde = { version = "1.0.204", features = ["derive"] }
text-to-ascii-art = "0.1.9"
tokio = { version = "1.38.0", features = ["full"] }
toml = "0.8.14"
tracing = "0.1.40"
tracing-appender = "0.2.3"
tracing-subscriber = { version = "0.3.18", features = ["env-fil-
ter", "fmt"] }
uuid = { version = "1.9.1", features = ["v4", "serde"] }
ours
btclib = { version = "0.1.0", path = "../lib" }

There are a couple of libraries we haven’t used yet:

 ● clap: A robust command-line argument parser for Rust. It provides an intu-
itive API for defining and parsing command-line interfaces, supporting sub-
commands, flags, and options. We used argh, and very briefly clap for the
miner. This time, I am selecting clap so that you can see that it is almost the
same thing, and have an opportunity to use clap in a slightly more advanced
manner in the TUI version of the wallet. Note that while we are only using
the derive functionality of clap, there are many ways in which you can use it
to drive an application.

 ● crossbeam-skiplist: A concurrent skip list implementation from the
Crossbeam project. It offers a thread-safe, ordered map or set data structure
with efficient search, insertion, and deletion operations. We will be using the
SkipMap to store the UTXOs the wallet keeps track of. The main reason why
I selected this crate this time is that I would like to mention the crossbeam
project to you. It provides many tools for performant and safe concurrent
programming, and this is just one small part of its toolkit.

341

 ● kanal: An asynchronous messaging library for Rust. It provides a channel-
-based communication mechanism optimized for use in async contexts,
facilitating message passing between tasks or threads. It is an alternative to
flume, just so we get some variety.47

 ● text-to-ascii-art: A library that converts text into ASCII art. It transforms
input strings into large, stylized representations using ASCII characters, sui-
table for creating text banners or decorative outputs. We will be making the
balance text in our TUI very BIG with this crate.

 ● toml: A parser and serializer for the TOML (Tom‘s Obvious, Minimal Langu-
age) format. It allows reading from and writing to TOML configuration files,
which are popular for their human-readable syntax. TOML is perhaps the
most popular configuration format in Rust, partially due to it being used by
the toolchain, and partially due to the fact that as of the time of this writing,
the serde-yaml crate is unmaintained.

 ● tracing: A framework for instrumenting Rust programs to collect structured,
event-based diagnostic information. It‘s more powerful than simple logging,
offering contextual data and hierarchical spans. We will be using it as a
simple logging library though. Tracing also works very well in asynchronous
contexts, and it can be set up with non-blocking log writes.

 ● tracing-appender: A companion crate for tracing that provides writers for lo-
gging to files. It‘s useful for efficiently writing trace data to a disk without bloc-
king the main program execution. We will be trying the log rotation feature.

 ● tracing-subscriber: A key component of the tracing ecosystem, providing
ways to collect, filter, and format trace data. It allows customizable pro-
cessing of tracing events before they‘re recorded or displayed.

Okay, now that we have got that out of the way, start by creating the following two
files in the wallet/ folder:

 ● src/main.rs
 ● src/core.rs

Make sure that you declare the core module in main.rs:

// main.rs
mod core;

47 Kanal is not as mainstream as flume, but at the time of this writing, it is by far the fastest library for channels.

342

Let’s import the things that we will need:

// main.rs
use anyhow::Result;
use clap::{Parser, Subcommand};
use kanal::bounded;
use tokio::time::{self, Duration};
use std::io::{self, Write};
use std::path::PathBuf;
use btclib::types::Transaction;

We will be defining the CLI similarly to how we have done it with argh:

// main.rs
use btclib::types::Transaction;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
 #[command(subcommand)]
 command: Option<Commands>,
 #[arg(short, long, value_name = "FILE")]
 config: Option<PathBuf>,
 #[arg(short, long, value_name = "ADDRESS")]
 node: Option<String>,
}
#[derive(Subcommand)]
enum Commands {
 GenerateConfig {
 #[arg(short, long, value_name = "FILE")]
 output: PathBuf,
 },
}

343

This tells us a little about how the wallet should function. It should read a config
that contains the following information:

 ● What are my private and public keys?48

 ● My contacts - pairs of names and public keys
 ● The default node we want to connect to
 ● Fee configuration - we will not be complex about fees at all, we will offer

settings for either a flat value, or a percentage of the sent amount.

It should be possible to override the location of the configuration file and the ad-
dress of the node to connect to. Finally, a subcommand should exist to let us create
a dummy configuration that the user can modify with their information.

We can define these configuration types right now:

// core.rs
use anyhow::Result;
use crossbeam_skiplist::SkipMap;
use serde::{Deserialize, Serialize};
use tokio::net::TcpStream;
use std::fs;
use std::path::PathBuf;
use std::sync::Arc;
use btclib::crypto::{PrivateKey, PublicKey};
use btclib::network::Message;
use btclib::types::{Transaction, TransactionOutput};
use btclib::util::Saveable;
#[derive(Serialize, Deserialize, Clone)]
pub struct Key {
 public: PathBuf,
 private: PathBuf,
}
#[derive(Clone)]
struct LoadedKey {

48 In theory, the private keys are enough - you can calculate the public ones from them, however, let’s keep it simple for
ourselves.

344

 public: PublicKey,
 private: PrivateKey,
}
#[derive(Serialize, Deserialize, Clone)]
pub struct Recipient {
 pub name: String,
 pub key: PathBuf,
}
#[derive(Clone)]
pub struct LoadedRecipient {
 pub name: String,
 pub key: PublicKey,
}
impl Recipient {
 pub fn load(&self) -> Result<LoadedRecipient> {
 let key = PublicKey::load_from_file(&self.key)?;
 Ok(LoadedRecipient {
 name: self.name.clone(),
 key,
 })
 }
}
#[derive(Serialize, Deserialize, Clone)]
pub enum FeeType {
 Fixed,
 Percent,
}
#[derive(Serialize, Deserialize, Clone)]
pub struct FeeConfig {
 pub fee_type: FeeType,
 pub value: f64,
}
#[derive(Serialize, Deserialize, Clone)]
pub struct Config {
 pub my_keys: Vec<Key>,
 pub contacts: Vec<Recipient>,
 pub default_node: String,
 pub fee_config: FeeConfig,
}

345

In the highlighted part, we are already implementing a load function for each
recipient. You could also create the same method by implementing the Saveable
trait we created earlier, however, we do not want the wallet to be modifying the
configuration, or the user’s keys.

Let’s go back to the main.rs file. This is how the rough structure of our application
may look:

async fn update_utxos(core: Arc<Core>) {
 // ...
}
async fn handle_transactions(
 rx: kanal::AsyncReceiver<Transaction>,
 core: Arc<Core>,
) {
 // ...
}
async fn run_cli(core: Arc<Core>) -> Result<()> {
 // ...
 Ok(())
}
fn generate_dummy_config(path: &PathBuf) -> Result<()> {
 // ...
 Ok(())
}
#[tokio::main]
async fn main() -> Result<()> {
 // ...
 Ok(())
}

We want the wallet to perform the following tasks:

 ● Keep track of the user’s balance by checking it with the node
 ● Handle transactions - we will just be sending them via a channel into the

core
 ● Respond to the CLI commands

346

Here, we are also adding a utility function for generating a dummy configuration
file, as mentioned earlier. We can implement that one first to get it out of the way:

// main.rs - move imports at the top of the file
use core::{Config, Core, FeeConfig, FeeType, Recipient};
fn generate_dummy_config(path: &PathBuf) -> Result<()> {
 let dummy_config = Config {
 my_keys: vec![],
 contacts: vec![
 Recipient {
 name: "Alice".to_string(),
 key: PathBuf::from("alice.pub.pem"),
 },
 Recipient {
 name: "Bob".to_string(),
 key: PathBuf::from("bob.pub.pem"),
 },
],
 default_node: "127.0.0.1:9000".to_string(),
 fee_config: FeeConfig {
 fee_type: FeeType::Percent,
 value: 0.1,
 },
 };
 let config_str = toml::to_string_pretty(&dummy_config)?;
 std::fs::write(path, config_str)?;
 println!("Dummy config generated at: {}", path.display());
 Ok(())
}

We create a sample config, and we save it to the path specified by the argument.
Finally, we print a message confirming that we have created the config successfully.
Let’s take care of the two long-running tasks now:

347

// main.rs
async fn update_utxos(core: Arc<Core>) {
 let mut interval = time::interval(Duration::from_secs(20));
 loop {
 interval.tick().await;
 if let Err(e) = core.fetch_utxos().await {
 eprintln!("Failed to update UTXOs: {}", e);
 }
 }
}
async fn handle_transactions(
 rx: kanal::AsyncReceiver<Transaction>,
 core: Arc<Core>,
) {
 while let Ok(transaction) = rx.recv().await {
 if let Err(e) = core.send_transaction(transaction).await
 {
 eprintln!("Failed to send transaction: {}", e);
 }
 }
}

We use the tokio::time::interval to make the update_utxos() task check for the
UTXOs tied to the user’s private keys every 20 seconds. You can lengthen and shor-
ten this interval as you see fit. In handle_transactions, we are waiting to receive
fully formed transactions (they will be coming from the UI). This solution will be
a bit odd, as we will be taking a trip in and out of the core with the transactions (as
the sender for this receiver is located in the Core). Can you come back later and
refactor it so that this does not happen?

This leaves us with the final piece for this simplified CLI wallet in main.rs:

// main.rs
async fn run_cli(core: Arc<Core>) -> Result<()> {
 loop {
 print!("> ");

348

 io::stdout().flush()?;
 let mut input = String::new();
 io::stdin().read_line(&mut input)?;
 let parts: Vec<&str> =
 input.trim().split_whitespace().collect();
 if parts.is_empty() {
 continue;
 }
 match parts[0] {
 "balance" => { // process balance
 }
 "send" => { // process send
 }
 "exit" => break,
 _ => println!("Unknown command"),
 }
 }
 Ok(())
}

We print the prompt, and then we start reading commands. Notice how we need
to flush the standard output after using the print!() macro. While the println!()
macro flushes by default, print!() doesn’t.

To process the balance command, we simply request it from the Core

 // main.rs
 "balance" => {
 println!(
 "Current balance: {} satoshis",
 core.get_balance()
);
 }

349

Sending is slightly more involved, we need to find the recipient, and then request
that the Core creates a transaction with a particular amount:

 "send" => {
 if parts.len() != 3 {
 println!("Usage: send <recipient> <amount>");
 continue;
 }
 let recipient = parts[1];
 let amount: u64 = parts[2].parse()?;
 let recipient_key = core
 .config
 .contacts
 .iter()
 .find(|r| r.name == recipient)
 .ok_or_else(|| {
 anyhow::anyhow!("Recipient not found")
 })?
 .load()?
 .key;
 if let Err(e) = core.fetch_utxos().await {
 println!("failed to fetch utxos: {e}");
 };
 let transaction = core
 .create_transaction(&recipient_key, amount)
 .await?;
 core.tx_sender.send(transaction).await?;
 println!("Transaction sent successfully");
 core.fetch_utxos().await?;
 }

350

That’s it for the main.rs file. Just to recapitulate, at this stage, it should look like this:

// main.rs
mod core;
use core::{Config, Core, FeeConfig, FeeType, Recipient};
use std::sync::Arc;
use anyhow::Result;
use clap::{Parser, Subcommand};
use kanal;
use std::io::{self, Write};
use std::path::PathBuf;
use tokio::time::{self, Duration};
use btclib::types::Transaction;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
 #[command(subcommand)]
 command: Option<Commands>,
 #[arg(short, long, value_name = "FILE")]
 config: Option<PathBuf>,
 #[arg(short, long, value_name = "ADDRESS")]
 node: Option<String>,
}
#[derive(Subcommand)]
enum Commands {
 GenerateConfig {
 #[arg(short, long, value_name = "FILE")]
 output: PathBuf,
 },
}
async fn update_utxos(core: Arc<Core>) {
 let mut interval = time::interval(Duration::from_secs(20));
 loop {
 interval.tick().await;
 if let Err(e) = core.fetch_utxos().await {
 eprintln!("Failed to update UTXOs: {}", e);
 }
 }
}

351

async fn handle_transactions(
 rx: kanal::AsyncReceiver<Transaction>,
 core: Arc<Core>,
) {
 while let Ok(transaction) = rx.recv().await {
 if let Err(e) = core.send_transaction(transaction).await
 {
 eprintln!("Failed to send transaction: {}", e);
 }
 }
}
async fn run_cli(core: Arc<Core>) -> Result<()> {
 loop {
 print!("> ");
 io::stdout().flush()?;
 let mut input = String::new();
 io::stdin().read_line(&mut input)?;
 let parts: Vec<&str> =
 input.trim().split_whitespace().collect();
 if parts.is_empty() {
 continue;
 }
 match parts[0] {
 "balance" => {
 println!(
 "Current balance: {} satoshis",
 core.get_balance()
);
 }
 "send" => {
 if parts.len() != 3 {
 println!("Usage: send <recipient> <amount>");
 continue;
 }
 let recipient = parts[1];
 let amount: u64 = parts[2].parse()?;
 let recipient_key = core
 .config
 .contacts

352

 .iter()
 .find(|r| r.name == recipient)
 .ok_or_else(|| {
 anyhow::anyhow!("Recipient not found")
 })?
 .load()?
 .key;
 if let Err(e) = core.fetch_utxos().await {
 println!("failed to fetch utxos: {e}");
 };
 let transaction = core
 .create_transaction(&recipient_key, amount)
 .await?;
 core.tx_sender.send(transaction).await?;
 println!("Transaction sent successfully");
 core.fetch_utxos().await?;
 }
 "exit" => break,
 _ => println!("Unknown command"),
 }
 }
 Ok(())
}
fn generate_dummy_config(path: &PathBuf) -> Result<()> {
 let dummy_config = Config {
 my_keys: vec![],
 contacts: vec![
 Recipient {
 name: "Alice".to_string(),
 key: PathBuf::from("alice.pub.pem"),
 },
 Recipient {
 name: "Bob".to_string(),
 key: PathBuf::from("bob.pub.pem"),
 },
],
 default_node: "127.0.0.1:9000".to_string(),
 fee_config: FeeConfig {
 fee_type: FeeType::Percent,

353

 value: 0.1,
 },
 };
 let config_str = toml::to_string_pretty(&dummy_config)?;
 std::fs::write(path, config_str)?;
 println!("Dummy config generated at: {}", path.display());
 Ok(())
}
#[tokio::main]
async fn main() -> Result<()> {
 // ...
 let cli = Cli::parse();
 match &cli.command {
 Some(Commands::GenerateConfig { output }) => {
 return generate_dummy_config(output);
 }
 None => {}
 }
 let config_path = cli
 .config
 .unwrap_or_else(|| PathBuf::from("wallet_config.toml"));
 let mut core = Core::load(config_path.clone())?;
 if let Some(node) = cli.node {
 core.config.default_node = node;
 }
 let (tx_sender, tx_receiver) = kanal::bounded(10);
 core.tx_sender = tx_sender.clone_async();
 let core = Arc::new(core);
 tokio::spawn(update_utxos(core.clone()));
 tokio::spawn(handle_transactions(
 tx_receiver.clone_async(),
 core.clone(),
));
 run_cli(core).await?;
 Ok(())
}

354

The core of the wallet
Throughout the previous file, we have gotten some hints as to how the wallet Core
should look. We can define its broad structure as such:

// core.rs
use anyhow::Result;
use crossbeam_skiplist::SkipMap;
use kanal::AsyncSender;
use serde::{Deserialize, Serialize};
use tokio::net::TcpStream;
use std::fs;
use std::path::PathBuf;
use std::sync::Arc;
use btclib::crypto::{PrivateKey, PublicKey};
use btclib::network::Message;
use btclib::types::{Transaction, TransactionOutput};
use btclib::util::Saveable;
// The config types from earlier should be inserted here...
#[derive(Clone)]
struct UtxoStore {
 my_keys: Vec<LoadedKey>,
 utxos:
 Arc<SkipMap<PublicKey, Vec<(bool, TransactionOutput)>>>,
}
impl UtxoStore {
 fn new() -> Self {
 // ...
 }
 fn add_key(&mut self, key: LoadedKey) {
 // ...
 }
}
#[derive(Clone)]
pub struct Core {
 pub config: Config,
 utxos: UtxoStore,
 pub tx_sender: AsyncSender<Transaction>,
}

355

impl Core {
 fn new(config: Config, utxos: UtxoStore) -> Self {
 // ...
 }
 pub fn load(config_path: PathBuf) -> Result<Self> {
 // ...
 }
 pub async fn fetch_utxos(&self) -> Result<()> {
 // ...
 }
 pub async fn send_transaction(
 &self,
 transaction: Transaction,
) -> Result<()> {
 // ...
 }
 pub fn get_balance(&self) -> u64 {
 // ...
 }
 pub async fn create_transaction(
 &self,
 recipient: &PublicKey,
 amount: u64,
) -> Result<Transaction> {
 // ...
 }
 fn calculate_fee(&self, amount: u64) -> u64 {
 // ...
 }
}

Let’s first consider the UTXO store:

// core.rs
#[derive(Clone)]
struct UtxoStore {

356

 my_keys: Vec<LoadedKey>,
 utxos:
 Arc<SkipMap<PublicKey, Vec<(bool, TransactionOutput)>>>,
}
impl UtxoStore {
 fn new() -> Self {
 UtxoStore {
 my_keys: Vec::new(),
 utxos: Arc::new(SkipMap::new()),
 }
 }
 fn add_key(&mut self, key: LoadedKey) {
 self.my_keys.push(key);
 }
}

Here, we are storing our keys in a vector, which requires mutable access. This is fine,
and it forces us to initialize it before we hand it over to the core. The SkipMap will let
us concurrently store vectors of UTXOs for each of our keys. Its API is very similar to
that of DashMap, which we have encountered earlier in this book. While DashMap
is a concurrent alternative to a HashMap, the SkipMap is a concurrent alternative to
a BTreeMap. This has the added benefit of not requiring the key type to implement Hash.

With it, we can start chipping away at the Core. Let’s start with the new() function:

 // core.rs
 fn new(config: Config, utxos: UtxoStore) -> Self {
 let (tx_sender, _) = kanal::bounded(10);
 Core {
 config,
 utxos,
 tx_sender: tx_sender.clone_async(),
 }
 }

357

It is private, since we want the user to create the core using the Config::load()
associated function. There is one messy feature of this function - it forces us to
create a useless channel that we then immediately replace (which will destroy it,
given Rust’s semantics) with a new channel that is properly wired up to the rest of
the application. Let’s examine the load() function next:

 // core.rs
 pub fn load(config_path: PathBuf) -> Result<Self> {
 let config: Config =
 toml::from_str(&fs::read_to_string(&config_path)?)?;
 let mut utxos = UtxoStore::new();
 // Load keys from config
 for key in &config.my_keys {
 let public = PublicKey::load_from_file(&key.public)?;
 let private =
 PrivateKey::load_from_file(&key.private)?;
 utxos.add_key(LoadedKey { public, private });
 }
 Ok(Core::new(config, utxos))
 }

As you can see, we are reading the Config from a TOML file, creating a new Utxo-
Store, and initializing it with the keys specified in the config. Finally, we call Co-
re::new() to construct the correctly initialized core of the application. That’s it for
the initialization part. Now, to the two tasks we need to be taking care of - sending
transactions and updating the UTXO set related to our keys. We will create the
following two methods for it:

 // core.rs
 pub async fn fetch_utxos(&self) -> Result<()> {
 let mut stream =
 TcpStream::connect(&self.config.default_node)
 .await?;
 for key in &self.utxos.my_keys {

358

 let message =
 Message::FetchUTXOs(key.public.clone());
 message.send_async(&mut stream).await?;
 if let Message::UTXOs(utxos) =
 Message::receive_async(&mut stream).await?
 {
 // Replace the entire UTXO set for this key
 self.utxos.utxos.insert(
 key.public.clone(),
 utxos
 .into_iter()
 .map(|(output, marked)| (marked, output))
 .collect(),
);
 } else {
 return Err(anyhow::anyhow!(
 "Unexpected response from node"
));
 }
 }
 Ok(())
 }
 pub async fn send_transaction(
 &self,
 transaction: Transaction,
) -> Result<()> {
 let mut stream =
 TcpStream::connect(&self.config.default_node)
 .await?;
 let message = Message::SubmitTransaction(transaction);
 message.send_async(&mut stream).await?;
 Ok(())
 }

359

Sending messages, and receiving messages. Simple stuff. This implementation
could be significantly improved by not opening connections over and over again,
but rather, storing one connection in Core, and reusing it in both tasks (keep in
mind you will have to lock it in a Mutex properly, to ensure one task doesn’t start
sending messages while the other is waiting for a reply). The last major function we
need to implement is the create_transaction() function, which we have previously
referenced in main.rs():

 // core.rs
 pub async fn create_transaction(
 &self,
 recipient: &PublicKey,
 amount: u64,
) -> Result<Transaction> {
 let fee = self.calculate_fee(amount);
 let total_amount = amount + fee;
 let mut inputs = Vec::new();
 let mut input_sum = 0;
 for entry in self.utxos.utxos.iter() {
 let pubkey = entry.key();
 let utxos = entry.value();
 for (marked, utxo) in utxos.iter() {
 if *marked {
 continue; // Skip marked UTXOs
 }
 if input_sum >= total_amount {
 break;
 }
 inputs.push(btclib::types::TransactionInput {
 prev_transaction_output_hash: utxo.hash(),
 signature:
 btclib::crypto::Signature::sign_output(
 &utxo.hash(),
 &self
 .utxos
 .my_keys
 .iter()
 .find(|k| k.public == *pubkey)
 .unwrap()

360

 .private,
),
 });
 input_sum += utxo.value;
 }
 if input_sum >= total_amount {
 break;
 }
 }
 if input_sum < total_amount {
 return Err(anyhow::anyhow!("Insufficient funds"));
 }
 let mut outputs = vec![TransactionOutput {
 value: amount,
 unique_id: uuid::Uuid::new_v4(),
 pubkey: recipient.clone(),
 }];
 if input_sum > total_amount {
 outputs.push(TransactionOutput {
 value: input_sum - total_amount,
 unique_id: uuid::Uuid::new_v4(),
 pubkey: self.utxos.my_keys[0].public.clone(),
 });
 }
 Ok(Transaction::new(inputs, outputs))
 }

We are following the recipe we described earlier when implementing the btclib
and the node - we use up as many inputs as we have to create the transaction with
the amount and mining fee, and we make outputs for just the amount. Finally, we
sent the change back to us in one final transaction output. This correctly constructs
the transaction, so that we can send it to the node. All that is left to implement in
the core at this stage is two helper functions:

361

 // core.rs
 pub fn get_balance(&self) -> u64 {
 self.utxos
 .utxos
 .iter()
 .map(|entry| {
 entry
 .value()
 .iter()
 .map(|utxo| utxo.1.value)
 .sum::<u64>()
 })
 .sum()
 }
 fn calculate_fee(&self, amount: u64) -> u64 {
 match self.config.fee_config.fee_type {
 FeeType::Fixed => {
 self.config.fee_config.value as u64
 }
 FeeType::Percent => {
 (amount as f64 * self.config.fee_config.value
 / 100.0) as u64
 }
 }
 }

These are very simple, both only doing a bit of calculation :)

The main() function
We have made our tools, now we need to initialize everything, and stitch it up to-
gether into a functional app. This is how it is going to look in our case:

362

// main.rs
#[tokio::main]
async fn main() -> Result<()> {
 let cli = Cli::parse();
 match &cli.command {
 Some(Commands::GenerateConfig { output }) => {
 return generate_dummy_config(output);
 }
 None => {}
 }
 let config_path = cli
 .config
 .unwrap_or_else(|| PathBuf::from("wallet_config.toml"));
 let mut core = Core::load(config_path.clone())?;
 if let Some(node) = cli.node {
 core.config.default_node = node;
 }
 let (tx_sender, tx_receiver) = kanal::bounded(10);
 core.tx_sender = tx_sender.clone_async();
 let core = Arc::new(core);
 tokio::spawn(update_utxos(core.clone()));
 tokio::spawn(handle_transactions(
 tx_receiver.clone_async(),
 core.clone(),
));
 run_cli(core).await?;
 Ok(())
}

Let’s break it down, step-by-step. First, we parse the command line arguments
into the Cli structure we defined earlier:

 // main.rs
 let cli = Cli::parse();

363

This handles the parsing, and also the --help option that lists the help text of the
application. Next, we check if we are asked to generate a dummy configuration:

 // main.rs
 match &cli.command {
 Some(Commands::GenerateConfig { output }) => {
 return generate_dummy_config(output);
 }
 None => {}
 }

This could also be written as an if-let, it is up to you :) In some cases, I like to use
a match if the pattern is very long, but there is no functional difference here. Next,
we either take the config path from the CLI, or replace it with a default value, and
instantiate Core:

 // main.rs
 let config_path = cli
 .config
 .unwrap_or_else(|| PathBuf::from("wallet_config.toml"));
 let mut core = Core::load(config_path.clone())?;

Note that we can avoid this completely - clap supports default values for flags,
which will do this exact thing. It is left as an exercise for the reader to open up
the documentation and figure out how to shorten our program by three lines. The
shorter the program, the better. At this stage, the core variable is mutable, and that
is because we need to set up the communication channel the UI will use to talk
with the Core, and optionally change the node we want to connect to:

 // main.rs
 if let Some(node) = cli.node {
 core.config.default_node = node;
 }

364

 let (tx_sender, tx_receiver) = kanal::bounded(10);
 core.tx_sender = tx_sender.clone_async();

Now we can wrap the Core in an Arc, which will let us safely share it between tasks:

 // main.rs
 let core = Arc::new(core);

With that in hand, we can start cloning the core (creating new handles), and spa-
wning our tasks:

 // main.rs
 tokio::spawn(update_utxos(core.clone()));
 tokio::spawn(handle_transactions(
 tx_receiver.clone_async(),
 core.clone(),
));

Finally, we run the CLI in the main task, and wrap up:

 // main.rs
 run_cli(core).await?;
 Ok(())

At this stage, the project should be able to compile, and run. If you generate a key
with key_gen, start a node, and start mining with that key, and open a wallet with
the same key, you can view the amount of bitcoins you have increasing. If you make
another set of keys, and configure a contact properly, then you should be also able

365

to send bitcoins to the recipient. Keep in mind that this is bitcoin-like, and if there
are no miners currently mining, no transactions can be processed.

TUI WALLET VERSION
Alright, let’s make the TUI version now. If you are tracking the project in Git or
another version control system (which is a very good idea), then consider commi-
tting this version of the wallet to your repository. You can make both the CLI and
the TUI interfaces available as an extra exercise.

Logging and the util module
Since the TUI version cannot log messages into the standard output, we will be
using tracing to report what’s going on in the application outside of the UI. Insert
the following line into every file:

use tracing::*;

This will make the tracing macros available for use:

error!("For critical issues that need immediate attention");
warn!("For potential problems or unusual situations that aren't
immediately threatening");
info!("For general operational messages about the app's state and
major operations");
debug!("For detailed information useful during development and
troubleshooting");
trace!("For very fine-grained information, even more detailed than
debug");

We will be using them at various places to make it clearer what is going on. Note
that this is not enough to make the application print anything anywhere - we will
need to set up a subscriber for that. We can take care of it right away.

366

Create a new util.rs module, and add the following import statements:

// util.rs
use anyhow::Result;
use std::panic;
use std::path::PathBuf;
use tracing::*;
use tracing_appender::rolling::{RollingFileAppender, Rotation};
use tracing_subscriber::{fmt, prelude::*, EnvFilter};
use crate::core::{Config, Core, FeeConfig, FeeType, Recipient};

Next, we will create two functions - one to set up tracing itself, and another to set
up a panic hook that will make tracing log panics that occur in our application:

// util.rs
/// Initialize tracing to save logs into the logs/ folder
pub fn setup_tracing() -> Result<()> {
 let file_appender = RollingFileAppender::new(
 Rotation::DAILY,
 "logs",
 "wallet.log",
);
 tracing_subscriber::registry()
 .with(fmt::layer().with_writer(file_appender))
 .with(
 EnvFilter::from_default_env()
 .add_directive(tracing::Level::TRACE.into()),
)
 .init();
 Ok(())
}
/// Make sure tracing is able to log panics occurring in the

367

wallet
pub fn setup_panic_hook() {
 panic::set_hook(Box::new(|panic_info| {
 let backtrace =
 std::backtrace::Backtrace::force_capture();
 error!("Application panicked!");
 error!("Panic info: {:?}", panic_info);
 error!("Backtrace: {:?}", backtrace);
 }));
}

Setting up a panic hook is a fairly common practice in much bigger applications, as
you can use it to save crash information to the disk, or even send it over a network
as a crash reporting mechanism.

While we are at it, let’s also move the generate_dummy_config() function here:

// util.rs
/// Generate a dummy config
pub fn generate_dummy_config(path: &PathBuf) -> Result<()> {
 let dummy_config = Config {
 my_keys: vec![],
 contacts: vec![
 Recipient {
 name: "Alice".to_string(),
 key: PathBuf::from("alice.pub.pem"),
 },
 Recipient {
 name: "Bob".to_string(),
 key: PathBuf::from("bob.pub.pem"),
 },
],
 default_node: "127.0.0.1:9000".to_string(),
 fee_config: FeeConfig {
 fee_type: FeeType::Percent,
 value: 0.1,

368

 },
 };
 let config_str = toml::to_string_pretty(&dummy_config)?;
 std::fs::write(path, config_str)?;
 info!("Dummy config generated at: {}", path.display());
 Ok(())
}

Note that if you did not make it public before, you will have to now. Finally, let’s
also add two functions that will be useful in the future:

// util.rs
/// Convert satoshis to a BTC string
pub fn sats_to_btc(sats: u64) -> String {
 let btc = sats as f64 / 100_000_000.0;
 format!("{} BTC", btc)
}
// util.rs
/// Make it big lmao
pub fn big_mode_btc(core: &Core) -> String {
 text_to_ascii_art::convert(sats_to_btc(core.get_balance()))
 .unwrap()
}

I have left the sats_to_btc() function public, but in my implementation, it is only
used inside big_mode_btc(). Therefore, its entire existence is at your discretion.
It may come in handy later, or it might not.

The text_to_ascii_art crate will print our text in a manner similar to how the figlet
UNIX tool works - essentially a big font made from block characters. You can play
around with the formatting in sats_to_btc() or big_mode_btc() to make it look like
you want it to look.

369

Finally, don’t forget to declare the module in main.rs:

mod util;

Core updates

Let’s start by making a couple of changes to the core. Unfortunately, we will have
to grapple with the fact that by default, cursive is not async. We can manage with
the following two measures taken - using the synchronous Sender with an asyn-
chronous AsyncReceiver, and using tokio’s task::spawn_blocking(), which lets
Tokio manage a non-async task from an asynchronous context. The latter will,
however, be a problem for the main.rs file.

So, let’s replace the AsyncSender:

// core.rs
use kanal::Sender;

We will also replace it in Core struct, and while we are at it, we will also start having
a single shared stream:

// core.rs
pub struct Core {
 pub config: Config,
 utxos: UtxoStore,
 pub tx_sender: Sender<Transaction>,
 pub stream: Mutex<TcpStream>,
}

370

Making this change will immediately force us to modify all methods related to the
tx_sender and the stream. For the stream:

 // core.rs
 use tokio::net::TcpStream;
 use tokio::sync::Mutex;
 /// Create a new Core instance.
 fn new(
 config: Config,
 utxos: UtxoStore,
 stream: TcpStream,
) -> Self {
 let (tx_sender, _) = kanal::bounded(10);
 Core {
 config,
 utxos,
 tx_sender,
 stream: Mutex::new(stream),
 }
 }
 /// Load the Core from a configuration file.
 pub async fn load(config_path: PathBuf) -> Result<Self> {
 info!("Loading core from config: {:?}", config_path);
 let config: Config =
 toml::from_str(&fs::read_to_string(&config_path)?)?;
 let mut utxos = UtxoStore::new();
 let stream =
 TcpStream::connect(&config.default_node).await?;
 // Load keys from config
 for key in &config.my_keys {
 debug!("Loading key pair: {:?}", key.public);
 let public = PublicKey::load_from_file(&key.public)?;
 let private =
 PrivateKey::load_from_file(&key.private)?;
 utxos.add_key(LoadedKey { public, private });
 }
 Ok(Core::new(config, utxos, stream))
 }

371

I have also taken the liberty of starting to add documentation comments to the
items in the module. Apart from the initialization functions, we also need to update
the methods that perform the tasks:

 /// Fetch UTXOs from the node for all loaded keys.
 pub async fn fetch_utxos(&self) -> Result<()> {
 debug!(
 "Fetching UTXOs from node: {}",
 self.config.default_node
);
 for key in &self.utxos.my_keys {
 let message =
 Message::FetchUTXOs(key.public.clone());
 message
 .send_async(&mut *self.stream.lock().await)
 .await?;
 if let Message::UTXOs(utxos) =
 Message::receive_async(
 &mut *self.stream.lock().await,
)
 .await?
 {
 debug!(
 "Received {} UTXOs for key: {:?}",
 utxos.len(),
 key.public
);
 // Replace the entire UTXO set for this key
 self.utxos.utxos.insert(
 key.public.clone(),
 utxos
 .into_iter()
 .map(|(output, marked)| (marked, output))
 .collect(),
);
 } else {
 error!("Unexpected response from node");
 return Err(anyhow::anyhow!(
 "Unexpected response from node"

372

));
 }
 }
 info!("UTXOs fetched successfully");
 Ok(())
 }
 /// Send a transaction to the node.
 pub async fn send_transaction(
 &self,
 transaction: Transaction,
) -> Result<()> {
 debug!(
 "Sending transaction to node: {}",
 self.config.default_node
);
 let message = Message::SubmitTransaction(transaction);
 message
 .send_async(&mut *self.stream.lock().await)
 .await?;
 info!("Transaction sent successfully");
 Ok(())
 }

Finally, we will also need to be able to send a transaction asynchronously:

 /// Prepare and send a transaction asynchronously.
 pub fn send_transaction_async(
 &self,
 recipient: &str,
 amount: u64,
) -> Result<()> {
 info!(
 "Preparing to send {} satoshis to {}",
 amount, recipient
);
 let recipient_key = self

373

 .config
 .contacts
 .iter()
 .find(|r| r.name == recipient)
 .ok_or_else(|| {
 anyhow::anyhow!("Recipient not found")
 })?
 .load()?
 .key;
 let transaction =
 self.create_transaction(&recipient_key, amount)?;
 debug!("Sending transaction asynchronously");
 self.tx_sender.send(transaction)?;
 Ok(())
 }

Although this name may be a bit of a misnomer. We are not actually sending
a transaction via Rust’s async here, but rather, we are sending it into the asynchro-
nous part of the application. If you can think of a better way to name this method,
go for it :) Now, these changes may be a bit harder to keep track of, so here is the
entire file at this stage. I have added a couple more log messages and documen-
tation comments, which you may elect to include in your implementation as well.

// core.rs
use anyhow::Result;
use crossbeam_skiplist::SkipMap;
use kanal::Sender;
use serde::{Deserialize, Serialize};
use tokio::net::TcpStream;
use tokio::sync::Mutex;
use tracing::{debug, error, info};
use std::fs;
use std::path::PathBuf;
use std::sync::Arc;
use btclib::crypto::{PrivateKey, PublicKey};
use btclib::network::Message;

374

use btclib::types::{Transaction, TransactionOutput};
use btclib::util::Saveable;
/// Represent a key pair with paths to public and private keys.
#[derive(Serialize, Deserialize, Clone)]
pub struct Key {
 pub public: PathBuf,
 pub private: PathBuf,
}
/// Represent a loaded key pair with actual public and private
keys.
#[derive(Clone)]
struct LoadedKey {
 public: PublicKey,
 private: PrivateKey,
}
/// Represent a recipient with a name and a path to their public
key.
#[derive(Serialize, Deserialize, Clone)]
pub struct Recipient {
 pub name: String,
 pub key: PathBuf,
}
/// Represent a loaded recipient with their actual public key.
#[derive(Clone)]
pub struct LoadedRecipient {
 pub key: PublicKey,
}
impl Recipient {
 /// Load the recipient's public key from file.
 pub fn load(&self) -> Result<LoadedRecipient> {
 debug!("Loading recipient key from: {:?}", self.key);
 let key = PublicKey::load_from_file(&self.key)?;
 Ok(LoadedRecipient { key })
 }
}
/// Define the type of fee calculation.
#[derive(Serialize, Deserialize, Clone)]
pub enum FeeType {
 Fixed,

375

 Percent,
}
/// Configure the fee calculation.
#[derive(Serialize, Deserialize, Clone)]
pub struct FeeConfig {
 pub fee_type: FeeType,
 pub value: f64,
}
/// Store the configuration for the Core.
#[derive(Serialize, Deserialize, Clone)]
pub struct Config {
 pub my_keys: Vec<Key>,
 pub contacts: Vec<Recipient>,
 pub default_node: String,
 pub fee_config: FeeConfig,
}
/// Store and manage Unspent Transaction Outputs (UTXOs).
#[derive(Clone)]
struct UtxoStore {
 my_keys: Vec<LoadedKey>,
 utxos:
 Arc<SkipMap<PublicKey, Vec<(bool, TransactionOutput)>>>,
}
impl UtxoStore {
 /// Create a new UtxoStore.
 fn new() -> Self {
 UtxoStore {
 my_keys: Vec::new(),
 utxos: Arc::new(SkipMap::new()),
 }
 }
 /// Add a new key to the UtxoStore.
 fn add_key(&mut self, key: LoadedKey) {
 debug!("Adding key to UtxoStore: {:?}", key.public);
 self.my_keys.push(key);
 }
}
/// Represent the core functionality of the wallet.
pub struct Core {

376

 pub config: Config,
 utxos: UtxoStore,
 pub tx_sender: Sender<Transaction>,
 pub stream: Mutex<TcpStream>,
}
impl Core {
 /// Create a new Core instance.
 fn new(
 config: Config,
 utxos: UtxoStore,
 stream: TcpStream,
) -> Self {
 let (tx_sender, _) = kanal::bounded(10);
 Core {
 config,
 utxos,
 tx_sender,
 stream: Mutex::new(stream),
 }
 }
 /// Load the Core from a configuration file.
 pub async fn load(config_path: PathBuf) -> Result<Self> {
 info!("Loading core from config: {:?}", config_path);
 let config: Config =
 toml::from_str(&fs::read_to_string(&config_path)?)?;
 let mut utxos = UtxoStore::new();
 let stream =
 TcpStream::connect(&config.default_node).await?;
 // Load keys from config
 for key in &config.my_keys {
 debug!("Loading key pair: {:?}", key.public);
 let public = PublicKey::load_from_file(&key.public)?;
 let private =
 PrivateKey::load_from_file(&key.private)?;
 utxos.add_key(LoadedKey { public, private });
 }
 Ok(Core::new(config, utxos, stream))
 }
 /// Fetch UTXOs from the node for all loaded keys.

377

 pub async fn fetch_utxos(&self) -> Result<()> {
 debug!(
 "Fetching UTXOs from node: {}",
 self.config.default_node
);
 for key in &self.utxos.my_keys {
 let message =
 Message::FetchUTXOs(key.public.clone());
 message
 .send_async(&mut *self.stream.lock().await)
 .await?;
 if let Message::UTXOs(utxos) =
 Message::receive_async(
 &mut *self.stream.lock().await,
)
 .await?
 {
 debug!(
 "Received {} UTXOs for key: {:?}",
 utxos.len(),
 key.public
);
 // Replace the entire UTXO set for this key
 self.utxos.utxos.insert(
 key.public.clone(),
 utxos
 .into_iter()
 .map(|(output, marked)| (marked, output))
 .collect(),
);
 } else {
 error!("Unexpected response from node");
 return Err(anyhow::anyhow!(
 "Unexpected response from node"
));
 }
 }
 info!("UTXOs fetched successfully");
 Ok(())

378

 }
 /// Send a transaction to the node.
 pub async fn send_transaction(
 &self,
 transaction: Transaction,
) -> Result<()> {
 debug!(
 "Sending transaction to node: {}",
 self.config.default_node
);
 let message = Message::SubmitTransaction(transaction);
 message
 .send_async(&mut *self.stream.lock().await)
 .await?;
 info!("Transaction sent successfully");
 Ok(())
 }
 /// Prepare and send a transaction asynchronously.
 pub fn send_transaction_async(
 &self,
 recipient: &str,
 amount: u64,
) -> Result<()> {
 info!(
 "Preparing to send {} satoshis to {}",
 amount, recipient
);
 let recipient_key = self
 .config
 .contacts
 .iter()
 .find(|r| r.name == recipient)
 .ok_or_else(|| {
 anyhow::anyhow!("Recipient not found")
 })?
 .load()?
 .key;
 let transaction =
 self.create_transaction(&recipient_key, amount)?;

379

 debug!("Sending transaction asynchronously");
 self.tx_sender.send(transaction)?;
 Ok(())
 }
 /// Get the current balance of all UTXOs.
 pub fn get_balance(&self) -> u64 {
 let balance = self
 .utxos
 .utxos
 .iter()
 .map(|entry| {
 entry
 .value()
 .iter()
 .map(|utxo| utxo.1.value)
 .sum::<u64>()
 })
 .sum();
 debug!("Current balance: {} satoshis", balance);
 balance
 }
 /// Create a new transaction.
 pub fn create_transaction(
 &self,
 recipient: &PublicKey,
 amount: u64,
) -> Result<Transaction> {
 debug!(
 "Creating transaction for {} satoshis to {:?}",
 amount, recipient
);
 let fee = self.calculate_fee(amount);
 let total_amount = amount + fee;
 let mut inputs = Vec::new();
 let mut input_sum = 0;
 for entry in self.utxos.utxos.iter() {
 let pubkey = entry.key();
 let utxos = entry.value();
 for (marked, utxo) in utxos.iter() {

380

 if *marked {
 continue;
 } // Skip marked UTXOs
 if input_sum >= total_amount {
 break;
 }
 inputs.push(btclib::types::TransactionInput {
 prev_transaction_output_hash: utxo.hash(),
 signature:
 btclib::crypto::Signature::sign_output(
 &utxo.hash(),
 &self
 .utxos
 .my_keys
 .iter()
 .find(|k| k.public == *pubkey)
 .unwrap()
 .private,
),
 });
 input_sum += utxo.value;
 }
 if input_sum >= total_amount {
 break;
 }
 }
 if input_sum < total_amount {
 error!("Insufficient funds: have {} satoshis, need {}
satoshis", input_sum, total_amount);
 return Err(anyhow::anyhow!("Insufficient funds"));
 }
 let mut outputs = vec![TransactionOutput {
 value: amount,
 unique_id: uuid::Uuid::new_v4(),
 pubkey: recipient.clone(),
 }];
 if input_sum > total_amount {
 outputs.push(TransactionOutput {
 value: input_sum - total_amount,

381

 unique_id: uuid::Uuid::new_v4(),
 pubkey: self.utxos.my_keys[0].public.clone(),
 });
 }
 info!("Transaction created successfully");
 Ok(Transaction::new(inputs, outputs))
 }
 /// Calculate the fee for a transaction.
 fn calculate_fee(&self, amount: u64) -> u64 {
 let fee = match self.config.fee_config.fee_type {
 FeeType::Fixed => {
 self.config.fee_config.value as u64
 }
 FeeType::Percent => {
 (amount as f64 * self.config.fee_config.value
 / 100.0) as u64
 }
 };
 debug!("Calculated fee: {} satoshis", fee);
 fee
 }
}

I have highlighted one small final change - making the Key fields public, we are
going to need that in a different part of the program.

Setting up tasks
We have the core extracted, we have a utils module, let’s also evict and expand the
long-running tasks. We are going to have four tasks to maintain:

 ● The one for updating UTXOs
 ● Handling transactions
 ● The spawn_blocking task running the UI
 ● And a final task that will update the balance display in the UI dynamically

382

Let’s move all the imports we need:

// tasks.rs
use cursive::views::TextContent;
use tokio::task::JoinHandle;
use tokio::time::{self, Duration};
use tracing::*;
use std::sync::Arc;
use btclib::types::Transaction;
use crate::core::Core;
use crate::ui::run_ui;
use crate::util::big_mode_btc;

As you can see, we are hallucinating a ui::run_ui function in the style of ChatGPT
3.5. We will implement it later, of course. First, let’s define the task for updating
utxos. This one is very simple, we will take what we had previously in the CLI ver-
sion of the wallet, and wrap it in a tokio::spawn():

// tasks.rs
pub async fn update_utxos(core: Arc<Core>) -> JoinHandle<()> {
 tokio::spawn(async move {
 let mut interval =
 time::interval(Duration::from_secs(20));
 loop {
 interval.tick().await;
 if let Err(e) = core.fetch_utxos().await {
 error!("Failed to update UTXOs: {}", e);
 }
 }
 })
}

383

We can do the same thing with handle_transactions():

// tasks.rs
pub async fn handle_transactions(
 rx: kanal::AsyncReceiver<Transaction>,
 core: Arc<Core>,
) -> JoinHandle<()> {
 tokio::spawn(async move {
 while let Ok(transaction) = rx.recv().await {
 if let Err(e) =
 core.send_transaction(transaction).await
 {
 error!("Failed to send transaction: {}", e);
 }
 }
 })
}

Notice that on the highlighted line, we are using the async function send_transac-
tion(). We can do that here, and you can rely on this task also if you reintroduce
the CLI interface from the first version of the wallet. We can tackle the final two
tasks at the same time:

// tasks.rs
pub async fn ui_task(
 core: Arc<Core>,
 balance_content: TextContent,
) -> JoinHandle<()> {
 tokio::task::spawn_blocking(move || {
 info!("Running UI");
 if let Err(e) = run_ui(core, balance_content) {
 eprintln!("UI ended with error: {e}");
 };
 })
}
pub async fn update_balance(

384

 core: Arc<Core>,
 balance_content: TextContent,
) -> JoinHandle<()> {
 tokio::spawn(async move {
 loop {
 tokio::time::sleep(Duration::from_millis(500)).await;
 info!("updating balance string");
 balance_content.set_content(big_mode_btc(&core));
 }
 })
}

The balance_content is of type TextContent. This type is very similar to Arc, but is
a specialized string-like type for the cursive library. It lets us update text displayed
in the UI from a completely different part of the application, which in our case is
the update_balance task.

At this point, this is what the file should look like:

// tasks.rs
use cursive::views::TextContent;
use tokio::task::JoinHandle;
use tokio::time::{self, Duration};
use tracing::*;
use std::sync::Arc;
use btclib::types::Transaction;
use crate::core::Core;
use crate::ui::run_ui;
use crate::util::big_mode_btc;
pub async fn update_utxos(core: Arc<Core>) -> JoinHandle<()> {
 tokio::spawn(async move {
 let mut interval =
 time::interval(Duration::from_secs(20));
 loop {
 interval.tick().await;
 if let Err(e) = core.fetch_utxos().await {

385

 error!("Failed to update UTXOs: {}", e);
 }
 }
 })
}
pub async fn handle_transactions(
 rx: kanal::AsyncReceiver<Transaction>,
 core: Arc<Core>,
) -> JoinHandle<()> {
 tokio::spawn(async move {
 while let Ok(transaction) = rx.recv().await {
 if let Err(e) =
 core.send_transaction(transaction).await
 {
 error!("Failed to send transaction: {}", e);
 }
 }
 })
}
pub async fn ui_task(
 core: Arc<Core>,
 balance_content: TextContent,
) -> JoinHandle<()> {
 tokio::task::spawn_blocking(move || {
 info!("Running UI");
 if let Err(e) = run_ui(core, balance_content) {
 eprintln!("UI ended with error: {e}");
 };
 })
}
pub async fn update_balance(
 core: Arc<Core>,
 balance_content: TextContent,
) -> JoinHandle<()> {
 tokio::spawn(async move {
 loop {
 tokio::time::sleep(Duration::from_millis(500)).await;
 info!("updating balance string");

386

 balance_content.set_content(big_mode_btc(&core));
 }
 })
}

Remember, that just like with the previous modules, you have to declare mod tasks
in the main.rs file of the wallet. With that out of the way, we need to tackle the UI now.

Cursive user interface
Since we have already added cursive to the dependencies, we can just go ahead
and create the ui module with the following imports:

// ui.rs
use crate::core::Core;
use anyhow::Result;
use cursive::event::{Event, Key};
use cursive::traits::*;
use cursive::views::{
 Button, Dialog, EditView, LinearLayout, Panel, ResizedView,
 TextContent, TextView,
};
use cursive::Cursive;
use std::sync::{Arc, Mutex};
use tracing::*;

This is how I imagined the UI when conceiving the wallet:

 ● We have two buttons, one to create a transaction and the other to exit the
wallet

 ● In the dialog window for creating a transaction, I can choose whether
I will be specifying the amount in sats, or in BTC. I will enter the name
of the recipient into an input field.

387

 ● This means that I should also have a button that lets me switch
between the two different units.

 ● The main screen of the wallet displays my balance in big text in BTC (in to-
day’s wallets for real BTC, it is almost more practical to display your balan-
ce in sats, rather than a tiny fraction of a BTC, but hey, we can all dream of
having a full coin).

 ● Below the main screen, there are two views:
 ● Left view lists the paths to my keys.
 ● Right view lists contacts added to the wallet.

First, let’s tackle the units by making an enum that tracks the setting, and a fun-
ction that lets me convert between different units:

// ui.rs
#[derive(Clone, Copy)]
enum Unit {
 Btc,
 Sats,
}
/// Convert an amount between BTC and Satoshi units.
fn convert_amount(amount: f64, from: Unit, to: Unit) -> f64 {
 match (from, to) {
 (Unit::Btc, Unit::Sats) => amount * 100_000_000.0,
 (Unit::Sats, Unit::Btc) => amount / 100_000_000.0,
 _ => amount,
 }
}

Note that because we go through floats, we are losing some precision. If you want
to, you can refactor this function to use our old friend bigdecimal we previously
utilized in the target calculations in btclib.

388

Now, let’s create stubs for the functions that we are going to use to compose our
cursive view:

// ui.rs
/// Initialize and run the user interface.
pub fn run_ui(
 core: Arc<Core>,
 balance_content: TextContent,
) -> Result<()> {
 // ...
}
/// Set up the Cursive interface with all necessary components and
callbacks.
fn setup_siv(
 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {
 // ...
}
/// Set up the menu bar with "Send" and "Quit" options.
fn setup_menubar(siv: &mut Cursive, core: Arc<Core>) {
 // ...
}
/// Set up the main layout of the application.
fn setup_layout(
 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {
 // ...
}
/// Create the information layout containing keys and contacts.
fn create_info_layout(core: &Arc<Core>) -> LinearLayout {
 // ...
}
/// Display the send transaction dialog.
fn show_send_transaction(s: &mut Cursive, core: Arc<Core>) {
 // ...

389

}
/// Create the layout for the transaction dialog.
fn create_transaction_layout(
 unit: Arc<Mutex<Unit>>,
) -> LinearLayout {
 // ...
}
/// Create the layout for selecting the transaction unit (BTC or
Sats).
fn create_unit_layout(unit: Arc<Mutex<Unit>>) -> LinearLayout {
 // ...
}
/// Switch the transaction unit between BTC and Sats.
fn switch_unit(s: &mut Cursive, unit: Arc<Mutex<Unit>>) {
 // ...
}
/// Process the send transaction request.
fn send_transaction(
 s: &mut Cursive,
 core: Arc<Core>,
 unit: Unit,
) {
 // ...
}
/// Display a success dialog after a successful transaction.
fn show_success_dialog(s: &mut Cursive) {
 // ...
}
/// Display an error dialog when a transaction fails.
fn show_error_dialog(
 s: &mut Cursive,
 error: impl std::fmt::Display,
) {
 // ...
}

390

You can see that the instance of Cursive is traditionally bound to the siv variable.
We have made a function for every part of the UI, and finally, we made a function
run_ui() that kickstarts the user interface. We can take care of it first:

// ui.rs
/// Initialize and run the user interface.
pub fn run_ui(
 core: Arc<Core>,
 balance_content: TextContent,
) -> Result<()> {
 info!("Initializing UI");
 let mut siv = cursive::default();
 setup_siv(&mut siv, core.clone(), balance_content);
 info!("Starting UI event loop");
 siv.run();
 info!("UI event loop ended");
 Ok(())
}

On the first two highlighted lines, we are instantiating a default configuration of
Cursive, and handing it off to the setup_siv() function that will compose the UI.
The last highlighted line starts the event loop. This is the major difference between
cursive and ratatui/tui. In the latter, it is your responsibility to build an event loop
for yourself, if that’s something you want to do.

Since we have already mentioned it, we can take a look at the setup_siv() function next:

// ui.rs
/// Set up the Cursive interface with all necessary components and
callbacks.
fn setup_siv(
 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {

391

 siv.set_autorefresh(true);
 siv.set_window_title("BTC wallet".to_string());
 siv.add_global_callback('q', |s| {
 info!("Quit command received");
 s.quit()
 });
 setup_menubar(siv, core.clone());
 setup_layout(siv, core, balance_content);
 siv.add_global_callback(Event::Key(Key::Esc), |siv| {
 siv.select_menubar()
 });
 siv.select_menubar();
}

I want the application to be as responsive as possible, so I enabled autorefresh
which sets the FPS to 30. If the terminal supports it, we are setting the name to
BTC wallet:

 // ui.rs
 siv.set_window_title("BTC wallet".to_string());

Just to make quitting easier, we can also bind a global callback to the Q key that
will kill the application:

 // ui.rs
 siv.add_global_callback('q', |s| {
 info!("Quit command received");
 s.quit()
 });

392

We then hand off the Cursive instance to the setup_menubar() and setup_layout()
functions respectively:

 // ui.rs
 setup_menubar(siv, core.clone());
 setup_layout(siv, core, balance_content);

Finally, we add an Escape key callback that will select the menu bar, and finalize
the setup function by selecting it. We can tackle the menu bar layout now, as it is
very simple:

// ui.rs
/// Set up the menu bar with "Send" and "Quit" options.
fn setup_menubar(siv: &mut Cursive, core: Arc<Core>) {
 siv.menubar()
 .add_leaf("Send", move |s| {
 show_send_transaction(s, core.clone())
 })
 .add_leaf("Quit", |s| s.quit());
 siv.set_autohide_menu(false);
}

If you are older than me, you may be familiar with DOS programs that had tree
menus spanning from a top menu bar. These were later reincarnated into the
standard Windows menus to the note of File…, Edit…, View…, Tools…, Help that
have become a staple in many user-facing applications written over the last two
decades or so. Cursive lets us make the same types of menus, but in this case, we
are only inserting two buttons, rather than creating any submenu. This is why we
are using the .add_leaf() method on the MenuBar rather than adding a subtree,
which has a method of a similar name.

The Send button will display the dialogue for creating and sending a transaction,
whereas the Quit button will just terminate the Cursive event loop, which we can wire
up to lead to the termination of the whole program later on in the main() function.

393

We also disable the auto hide feature of the menu, so that the user always knows
it is available. Let’s take a look at the show_send_transaction() function now:

// ui.rs
/// Display the send transaction dialog.
fn show_send_transaction(s: &mut Cursive, core: Arc<Core>) {
 info!("Showing send transaction dialog");
 let unit = Arc::new(Mutex::new(Unit::Btc));
 s.add_layer(
 Dialog::around(create_transaction_layout(unit.clone()))
 .title("Send Transaction")
 .button("Send", move |siv| {
 send_transaction(
 siv,
 core.clone(),
 *unit.lock().unwrap(),
)
 })
 .button("Cancel", |siv| {
 debug!("Transaction cancelled");
 siv.pop_layer();
 }),
);
}

This one is a bit more involved. In Cursive, different views can be reused, and
one view can wrap over another. That’s what we are doing on the highlighted line.
Dialog can have buttons on the bottom, and I believe that it looks better than if we
were to place those buttons inside the dialog. However, you can experiment with
either option.

Cursive works on the basis of layers, so if we want to render one window over
another, such as a dialog, we add a layer. If we want to quickly destroy it, we just
pop the layer - the model resembles a stack data structure. Notice how we are
using an Arc<Mutex<Unit>> to safely share the unit settings between the UI and
the transaction sender.

394

Let’s take a look at the transaction sender, which pulls the information from the
UI, converts the units, and uses the Core::send_transaction_async() method to
submit a transaction to the core:

// ui.rs
/// Process the send transaction request.
fn send_transaction(
 s: &mut Cursive,
 core: Arc<Core>,
 unit: Unit,
) {
 debug!("Send button pressed");
 let recipient = s
 .call_on_name("recipient", |view: &mut EditView| {
 view.get_content()
 })
 .unwrap();
 let amount: f64 = s
 .call_on_name("amount", |view: &mut EditView| {
 view.get_content()
 })
 .unwrap()
 .parse()
 .unwrap_or(0.0);
 let amount_sats =
 convert_amount(amount, unit, Unit::Sats) as u64;
 info!(
 "Attempting to send transaction to {} for {} satoshis",
 recipient, amount_sats
);
 match core
 .send_transaction_async(recipient.as_str(), amount_sats)
 {
 Ok(_) => show_success_dialog(s),
 Err(e) => show_error_dialog(s, e),
 }
}

395

Notice the highlighted lines. Cursive lets you name particular views, and then pull
information out of them elsewhere by using the call_on_name() function that lets
you mutably access the view in question. If we are successful in pulling out the
information, we send the transaction, and react to the result:

 // ui.rs
 match core
 .send_transaction_async(recipient.as_str(), amount_sats)
 {
 Ok(_) => show_success_dialog(s),
 Err(e) => show_error_dialog(s, e),
 }

This is how the two dialogues are constructed:

// ui.rs
/// Display a success dialog after a successful transaction.
fn show_success_dialog(s: &mut Cursive) {
 info!("Transaction sent successfully");
 s.add_layer(
 Dialog::text("Transaction sent successfully")
 .title("Success")
 .button("OK", |s| {
 debug!("Closing success dialog");
 s.pop_layer();
 s.pop_layer();
 }),
);
}
/// Display an error dialog when a transaction fails.
fn show_error_dialog(
 s: &mut Cursive,
 error: impl std::fmt::Display,
) {
 error!("Failed to send transaction: {}", error);
 s.add_layer(

396

 Dialog::text(format!(
 "Failed to send transaction: {}",
 error
))
 .title("Error")
 .button("OK", |s| {
 debug!("Closing error dialog");
 s.pop_layer();
 }),
);
}

This concludes this path in the tree, let’s return to show_send_transaction(), and
see how we can implement create_transaction_layout(). It will essentially be the
two input fields, and a unit switcher:

// ui.rs
/// Create the layout for the transaction dialog.
fn create_transaction_layout(
 unit: Arc<Mutex<Unit>>,
) -> LinearLayout {
 LinearLayout::vertical()
 .child(TextView::new("Recipient:"))
 .child(EditView::new().with_name("recipient"))
 .child(TextView::new("Amount:"))
 .child(EditView::new().with_name("amount"))
 .child(create_unit_layout(unit))
}

As you can see, we are naming the two EditViews so that we can refer to them from
the send_transaction() function we implemented earlier. The missing piece here
is the unit layout, where we want to do show the name of the unit, and add a button
that switches between one unit and another:

397

// ui.rs
/// Create the layout for selecting the transaction unit (BTC or
Sats).
fn create_unit_layout(unit: Arc<Mutex<Unit>>) -> LinearLayout {
 LinearLayout::horizontal()
 .child(TextView::new("Unit: "))
 .child(
 TextView::new_with_content(TextContent::new("BTC"))
 .with_name("unit_display"),
)
 .child(Button::new("Switch", move |s| {
 switch_unit(s, unit.clone())
 }))
}
/// Switch the transaction unit between BTC and Sats.
fn switch_unit(s: &mut Cursive, unit: Arc<Mutex<Unit>>) {
 let mut unit = unit.lock().unwrap();
 *unit = match *unit {
 Unit::Btc => Unit::Sats,
 Unit::Sats => Unit::Btc,
 };
 s.call_on_name("unit_display", |view: &mut TextView| {
 view.set_content(match *unit {
 Unit::Btc => "BTC",
 Unit::Sats => "Sats",
 });
 });
}

Now we have to go all the way back, almost to the very beginning and implement
setup_layout():

// ui.rs
/// Set up the main layout of the application.
fn setup_layout(

398

 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {
 let instruction =
 TextView::new("Press Escape to select the top menu");
 let balance_panel =
 Panel::new(TextView::new_with_content(balance_content))
 .title("Balance");
 let info_layout = create_info_layout(&core);
 let layout = LinearLayout::vertical()
 .child(instruction)
 .child(balance_panel)
 .child(info_layout);
 siv.add_layer(layout);
}

We start off by making a TextView that lets the user know that we can use Escape
to select the top menu bar, then we show the balance, and then the other info. Fi-
nally, we combine these into a vertical layout. The info layout is very simple, but
a little long, since we need to pull information out of the core:

// ui.rs
/// Create the information layout containing keys and contacts.
fn create_info_layout(core: &Arc<Core>) -> LinearLayout {
 let mut info_layout = LinearLayout::horizontal();
 let keys_content = core
 .config
 .my_keys
 .iter()
 .map(|key| format!("{}", key.private.display()))
 .collect::<Vec<String>>()
 .join("\n");
 info_layout.add_child(ResizedView::with_full_width(
 Panel::new(TextView::new(keys_content))
 .title("Your keys"),

399

));
 let contacts_content = core
 .config
 .contacts
 .iter()
 .map(|contact| contact.name.clone())
 .collect::<Vec<String>>()
 .join("\n");
 info_layout.add_child(ResizedView::with_full_width(
 Panel::new(TextView::new(contacts_content))
 .title("Contacts"),
));
 info_layout
}

To ensure that the two boxes are not tiny, we are using ResizedView. This will
motivate the Panel-wrapped TextViews to take up as much space as they can,
which will make them split the available space between the two of them. Note that
ResizedView is very configurable. We are composing these two into a horizontal
layout so that we have one big balance panel and two smaller panels under it, side
to side. That’s it for the UI.

At this stage, it should look like this:

// ui.rs
use crate::core::Core;
use anyhow::Result;
use cursive::event::{Event, Key};
use cursive::traits::*;
use cursive::views::{
 Button, Dialog, EditView, LinearLayout, Panel, ResizedView,
 TextContent, TextView,
};
use cursive::Cursive;
use std::sync::{Arc, Mutex};

400

use tracing::*;
#[derive(Clone, Copy)]
enum Unit {
 Btc,
 Sats,
}
/// Convert an amount between BTC and Satoshi units.
fn convert_amount(amount: f64, from: Unit, to: Unit) -> f64 {
 match (from, to) {
 (Unit::Btc, Unit::Sats) => amount * 100_000_000.0,
 (Unit::Sats, Unit::Btc) => amount / 100_000_000.0,
 _ => amount,
 }
}
/// Initialize and run the user interface.
pub fn run_ui(
 core: Arc<Core>,
 balance_content: TextContent,
) -> Result<()> {
 info!("Initializing UI");
 let mut siv = cursive::default();
 setup_siv(&mut siv, core.clone(), balance_content);
 info!("Starting UI event loop");
 siv.run();
 info!("UI event loop ended");
 Ok(())
}
/// Set up the Cursive interface with all necessary components and
callbacks.
fn setup_siv(
 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {
 siv.set_autorefresh(true);
 siv.set_fps(30);
 siv.set_window_title("BTC wallet".to_string());

401

 siv.add_global_callback('q', |s| {
 info!("Quit command received");
 s.quit()
 });
 setup_menubar(siv, core.clone());
 setup_layout(siv, core, balance_content);
 siv.add_global_callback(Event::Key(Key::Esc), |siv| {
 siv.select_menubar()
 });
 siv.select_menubar();
}
/// Set up the menu bar with "Send" and "Quit" options.
fn setup_menubar(siv: &mut Cursive, core: Arc<Core>) {
 siv.menubar()
 .add_leaf("Send", move |s| {
 show_send_transaction(s, core.clone())
 })
 .add_leaf("Quit", |s| s.quit());
 siv.set_autohide_menu(false);
}
/// Set up the main layout of the application.
fn setup_layout(
 siv: &mut Cursive,
 core: Arc<Core>,
 balance_content: TextContent,
) {
 let instruction =
 TextView::new("Press Escape to select the top menu");
 let balance_panel =
 Panel::new(TextView::new_with_content(balance_content))
 .title("Balance");
 let info_layout = create_info_layout(&core);
 let layout = LinearLayout::vertical()
 .child(instruction)
 .child(balance_panel)
 .child(info_layout);

402

 siv.add_layer(layout);
}
/// Create the information layout containing keys and contacts.
fn create_info_layout(core: &Arc<Core>) -> LinearLayout {
 let mut info_layout = LinearLayout::horizontal();
 let keys_content = core
 .config
 .my_keys
 .iter()
 .map(|key| format!("{}", key.private.display()))
 .collect::<Vec<String>>()
 .join("\n");
 info_layout.add_child(ResizedView::with_full_width(
 Panel::new(TextView::new(keys_content))
 .title("Your keys"),
));
 let contacts_content = core
 .config
 .contacts
 .iter()
 .map(|contact| contact.name.clone())
 .collect::<Vec<String>>()
 .join("\n");
 info_layout.add_child(ResizedView::with_full_width(
 Panel::new(TextView::new(contacts_content))
 .title("Contacts"),
));
 info_layout
}
/// Display the send transaction dialog.
fn show_send_transaction(s: &mut Cursive, core: Arc<Core>) {
 info!("Showing send transaction dialog");
 let unit = Arc::new(Mutex::new(Unit::Btc));
 s.add_layer(
 Dialog::around(create_transaction_layout(unit.clone()))
 .title("Send Transaction")

403

 .button("Send", move |s| {
 send_transaction(
 s,
 core.clone(),
 *unit.lock().unwrap(),
)
 })
 .button("Cancel", |s| {
 debug!("Transaction cancelled");
 s.pop_layer();
 }),
);
}
/// Create the layout for the transaction dialog.
fn create_transaction_layout(
 unit: Arc<Mutex<Unit>>,
) -> LinearLayout {
 LinearLayout::vertical()
 .child(TextView::new("Recipient:"))
 .child(EditView::new().with_name("recipient"))
 .child(TextView::new("Amount:"))
 .child(EditView::new().with_name("amount"))
 .child(create_unit_layout(unit))
}
/// Create the layout for selecting the transaction unit (BTC or
Sats).
fn create_unit_layout(unit: Arc<Mutex<Unit>>) -> LinearLayout {
 LinearLayout::horizontal()
 .child(TextView::new("Unit: "))
 .child(
 TextView::new_with_content(TextContent::new("BTC"))
 .with_name("unit_display"),
)
 .child(Button::new("Switch", move |s| {
 switch_unit(s, unit.clone())
 }))
}
/// Switch the transaction unit between BTC and Sats.

404

fn switch_unit(s: &mut Cursive, unit: Arc<Mutex<Unit>>) {
 let mut unit = unit.lock().unwrap();
 *unit = match *unit {
 Unit::Btc => Unit::Sats,
 Unit::Sats => Unit::Btc,
 };
 s.call_on_name("unit_display", |view: &mut TextView| {
 view.set_content(match *unit {
 Unit::Btc => "BTC",
 Unit::Sats => "Sats",
 });
 });
}
/// Process the send transaction request.
fn send_transaction(
 s: &mut Cursive,
 core: Arc<Core>,
 unit: Unit,
) {
 debug!("Send button pressed");
 let recipient = s
 .call_on_name("recipient", |view: &mut EditView| {
 view.get_content()
 })
 .unwrap();
 let amount: f64 = s
 .call_on_name("amount", |view: &mut EditView| {
 view.get_content()
 })
 .unwrap()
 .parse()
 .unwrap_or(0.0);
 let amount_sats =
 convert_amount(amount, unit, Unit::Sats) as u64;
 info!(
 "Attempting to send transaction to {} for {} satoshis",
 recipient, amount_sats
);

405

 match core
 .send_transaction_async(recipient.as_str(), amount_sats)
 {
 Ok(_) => show_success_dialog(s),
 Err(e) => show_error_dialog(s, e),
 }
}
/// Display a success dialog after a successful transaction.
fn show_success_dialog(s: &mut Cursive) {
 info!("Transaction sent successfully");
 s.add_layer(
 Dialog::text("Transaction sent successfully")
 .title("Success")
 .button("OK", |s| {
 debug!("Closing success dialog");
 s.pop_layer();
 s.pop_layer();
 }),
);
}
/// Display an error dialog when a transaction fails.
fn show_error_dialog(
 s: &mut Cursive,
 error: impl std::fmt::Display,
) {
 error!("Failed to send transaction: {}", error);
 s.add_layer(
 Dialog::text(format!(
 "Failed to send transaction: {}",
 error
))
 .title("Error")
 .button("OK", |s| {
 debug!("Closing error dialog");
 s.pop_layer();
 }),
);
}

406

Remember to have the UI modular declared in your main.rs file, if you haven’t done
so already. Now that we have the Core, the UI, and the tasks completed, all that is
left is updating the main file to start the new UI and the other tasks.

The main file
First, let’s make sure we are importing all the new stuff from the modules we
created in the last couple sections:

// main.rs
use anyhow::Result;
use clap::{Parser, Subcommand};
use cursive::views::TextContent;
use tracing::{debug, info};
use std::path::PathBuf;
use std::sync::Arc;
mod core;
mod tasks;
mod ui;
mod util;
use core::Core;
use tasks::{
 handle_transactions, ui_task, update_balance, update_utxos,
};
use util::{
 big_mode_btc, generate_dummy_config, setup_panic_hook,
 setup_tracing,
};

The CLI configuration stays almost the same as it was before. However, this time,
we can be smarter about it, and use the Clap frame work's functionality to provide
default values where applicable:

407

#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
 #[command(subcommand)]
 command: Option<Commands>,
 #[arg(short, long, value_name = "FILE", default_value_os_t =
PathBuf::from("wallet_config.toml"))]
 config: PathBuf,
 #[arg(short, long, value_name = "ADDRESS")]
 node: Option<String>,
}
#[derive(Subcommand)]
enum Commands {
 GenerateConfig {
 #[arg(short, long, value_name = "FILE", default_value_os_t
= PathBuf::from("wallet_config.toml"))]
 output: PathBuf,
 },
}

And all that is left now is the main function. First, let’s take a look at it as a whole:

#[tokio::main]
async fn main() -> Result<()> {
 setup_tracing()?;
 setup_panic_hook();
 info!("Starting wallet application");
 let cli = Cli::parse();
 match &cli.command {
 Some(Commands::GenerateConfig { output }) => {
 debug!("Generating dummy config at: {:?}", output);
 return generate_dummy_config(output);
 }
 None => (),
 }

408

 info!("Loading config from: {:?}", cli.config);
 let mut core = Core::load(cli.config.clone()).await?;
 if let Some(node) = cli.node {
 info!("Overriding default node with: {}", node);
 core.config.default_node = node;
 }
 let (tx_sender, tx_receiver) = kanal::bounded(10);
 core.tx_sender = tx_sender;
 let core = Arc::new(core);
 info!("Starting background tasks");
 let balance_content = TextContent::new(big_mode_btc(&core));
 tokio::select! {
 _ = ui_task(core.clone(), balance_content.clone()).await =>
(),
 _ = update_utxos(core.clone()).await => (),
 _ = handle_transactions(tx_receiver.clone_async(), core.
clone()).await => (),
 _ = update_balance(core.clone(), balance_content).await =>
(),
 }
 info!("Application shutting down");
 Ok(())
}

There we go. First, we start by setting up our logging tools - the tracing subscriber
(a subscriber is what collects the logging events from across the app and saves
them somewhere, in simple terms), and the panic hook, which responds to and
extracts information from panics happening across the application, so that we
can log them as well:

 setup_tracing()?;
 setup_panic_hook();

409

Then we parse and process the command line arguments:

 info!("Starting wallet application");
 let cli = Cli::parse();
 match &cli.command {
 Some(Commands::GenerateConfig { output }) => {
 debug!("Generating dummy config at: {:?}", output);
 return generate_dummy_config(output);
 }
 None => (),
 }

We load the core with the config, and complete its setup:

 info!("Loading config from: {:?}", cli.config);
 let mut core = Core::load(cli.config.clone()).await?;
 if let Some(node) = cli.node {
 info!("Overriding default node with: {}", node);
 core.config.default_node = node;
 }
 let (tx_sender, tx_receiver) = kanal::bounded(10);
 core.tx_sender = tx_sender;

From this point onwards, we no longer need Core to be mutable, so we wrap it in
an Arc, so that we can clone it into every task:

 let core = Arc::new(core);

410

Then, we can finally instantiate all tasks and run the application:

 info!("Starting background tasks");
 let balance_content = TextContent::new(big_mode_btc(&core));
 tokio::select! {
 _ = ui_task(core.clone(), balance_content.clone()).await =>
(),
 _ = update_utxos(core.clone()).await => (),
 _ = handle_transactions(tx_receiver.clone_async(), core.
clone()).await => (),
 _ = update_balance(core.clone(), balance_content).await =>
(),
 }
 info!("Application shutting down");
 Ok(())

We create the balance_content, and we put all our tasks into a select!. A select! will
poll all futures until one of them completes. If a future is completed, all the other
ones will be dropped. The way we are using the select! is to ensure that when one
task exits (due to an error or due to natural causes such as quitting the UI), all of
them do. This pattern is very common in Tokio programs.

You should now be able to compile the wallet without error, and if you configure it
to connect to a running node and have a miner running with one of the private keys
you have added to the config, you should see your BTC balance slowly increase.

411

That’s it. We have successfully created a pretty nice BTC wallet. However, there is
a lot of space for improvement in terms of functionality and ergonomics.

This is the last part of the project, and we are now successfully at its end. Therefore,
here is a picture of an echidna49

49 Knuckles is my favorite, although I am quite partial to Shadow The Hedgehog as well. Introducing guns and edgy humor
into a children’s game was the best idea SEGA ever had!

413

Well, we have finished the project, what now?

EVALUATING OUR PROJECT
It is clear that while we have laid down a basic framework to get our hands dirty
with building a bitcoin-like system in Rust, there is a lot we have kept simple on
purpose. This was all about making things clear and easy to grasp, rather than
packing it with complex features or optimizing for speed.

In our journey, we‘ve prioritized learning and understanding over perfecting every
line of code. That said, our code could definitely be slicker and more efficient. Right
now, it‘s more of a solid starting point than a finished product. We have got a lot of
room to beef up our code, especially when it comes to Rust specifics.

Looking ahead, there are heaps of ways to kick things up a notch. We could dive
deeper into Rust‘s powerful features - for example, advanced memory manage-
ment (you can write the node such that it does not need any global variables) or
concurrency models (as we mentioned earlier, the miner could be multi-threaded,
and you could make a better mine function that lets you split the nonce space) - to
really tailor our system for better performance and security. Rust is always evolving,
and so can our project. By leveraging more of Rust‘s capabilities, we can make our
simulated bitcoin network faster, safer, and more robust.

And it‘s not just about beefing up what we have. We could expand on the basics,
like enhancing network functionalities or introducing more refined validation
processes. All these improvements are not just upgrades - they are new opportu-
nities to learn and experiment.

414

To sum it up, we have made a solid start, but there is a whole lot more we can do.
This project is a great launchpad for anyone curious about bitcoin or Rust, and
there‘s plenty of space to tweak, tinker, and expand. You can make many impro-
vements, but first and foremost, have fun doing them.

RECOMMENDED READING FROM BRAIINS

This is not the first book released under the Braiins umbrella. We have been acti-
ve in creating and publishing books for several years at this point, and if you are
interested, you can check out other books from Braiins Publishing. Our books
mostly focus on bitcoin, and the Austrian school of economics and mining. Both
the technical and economic aspects of bitcoin are covered. To date, we have pub-
lished the following books:

 ● Bitcoin Mining Handbook
 ● Bitcoin Mining Economics
 ● Bitcoin: Separation of Money and State

The latest offering of Braiins books can be found at the following website:
https://braiins.com/books

We have also published the mining handbook in Spanish, and we have published other
books in Czech. If you are curious about the Czech language books, you can visit Bitperia:
https://www.bitperia.cz/

Bitperia is also an excellent Czech-language source for everything bitcoin. Stay
tuned for more releases from Braiins Publishing!

OTHER RESOURCES FOR RUST AND BTC
This book may be over now, but your journey is not.50 There is more to learn about
Rust, and more to learn about bitcoin. In our bitcoin implementation, we have made
a number of simplifications, small changes and less-than-ideal solutions to the
issues of implementing a blockchain. It is up to you, if you want to take this project
anywhere further. After all, it is a toy project, and toys are meant to be played with,

50 I’m still thinking about Rome.

https://braiins.com/books
https://www.bitperia.cz/

415

and often are facsimiles of concepts and objects from the real world. There is no
financial profit to be made from our toy blockchain, but you can make it your own.
You know the codebase well, and you can certainly think of places where you could
make improvements or implement new features.

If you now look at the real, big, monumental project that is the main bitcoin im-
plementation, you already have some idea of how it works internally, and how
the different components talk to one another. Of course, there are things we have
not covered in this book, and that can be interesting for you to learn about from
a technical perspective. For example, mining pools. It may be kind of ironic to
consider that a bitcoin-implementing book from Braiins, the operators of the
first bitcoin mining pool, does not mention pools at all. But that would have only
added complexity with little benefit for the purposes of teaching Rust and the major,
overarching technical aspects of bitcoin.

That can be one thing you can try to implement. Read up on how the concept of
pools work, implement a pool that talks to your toy blockchain, and edit your toy
miner program so that it talks to your pool instead of to the node directly. Then there
are always things like nicer logging, smarter storage solutions, and so on. Before
I leave you to your own devices, let me recommend you a couple of resources about
Rust, and bitcoin, so that you can further your own education in these two subjects.

Rust
For a more in-depth look at Rust, and if you have more time on your hands, you can
follow up by checking out the official The Rust Programming Language book51,
otherwise known in the community as TRPL. It covers Rust from top to bottom,
and is a very hefty read of about 500 pages in its paper version.

Again, a more practical counterpart could be Rust By Example, which contains
many runnable code excerpts that show you how to solve the most common pro-
blems in Rust.

It might also be a good idea at this stage to flip through Rust Design Patterns if
you want to get familiar with ways we solve certain categories of problems in Rust.

51 Freely available at https://doc.rust-lang.org/book/, or bundled locally with your toolchain - do rustup doc --book.

https://doc.rust-lang.org/book/

416

An interesting take on learning Rust in a very practical way is the Learning Rust
with Entirely Too Many Linked Lists book. Lists are a great tool for demonstrating
key Rust concepts, and Too Many Linked Lists leans heavily into it.

Advanced resources

Rust has a complex underbelly of interesting concepts and under-the-hood oddities that
are documented in the Nomicon, a book of Rust dark arts. It is not necessary to know
most of these things for day-to-day usage of Rust, but it can help you make pragmatic
decisions in a couple of situations, especially regarding performance and interactions
with C/C++ code. It is an indispensable resource for writing unsafe Rust correctly.

If you are willing to invest in a paper book, a great advanced Rust resource is the
Rust for Rustaceans book by Jon Gjengset. He also creates a great YouTube series
called Crust of Rust, where he goes into the nitty gritty implementation details of
parts of the standard library and considerations that must be taken into account
when implementing them. The videos are a similar level of resources as the No-
micon - not necessary for most work, but a nice-to-have.

Finally, it is time to go domain-specific:

 ● For macros, see The Little Book of Rust Macros
 ● Embedded development is best described in the Rust Embedded Book
 ● For performance, see The Rust Performance Book
 ● and there are many others, which are usually not that difficult to find…

Bitcoin
For those who wish to delve deeply into the technical aspects of bitcoin, beginning
with Mastering Bitcoin by Andreas M. Antonopoulos is highly recommended. Often re-
ferred to as the definitive guide, it explores Bitcoin‘s technical foundation extensively,
covering everything from blockchain basics to sophisticated details of its protocol.

For a more hands-on approach, Programming Bitcoin by Jimmy Song provides
practical code examples that teach the bitcoin software from the ground up. This
book is perfect for developers looking to build their understanding through pro-
gramming exercises that tackle real-world scenarios.

https://www.youtube.com/watch?v=b4mS5UPHh20
https://nnethercote.github.io/perf-book/

417

If you’re interested in the patterns and principles underlying bitcoin, Bitcoin and
Cryptocurrency Technologies by Arvind Narayanan et al. offers a comprehensive look
at the design and technology of bitcoin and other cryptocurrencies. This academic
approach helps clarify not only how but why bitcoin functions as it does.

An intriguing resource for those who want to engage with bitcoin through a blend of
theory and practical challenges is Grokking Bitcoin by Kalle Rosenbaum. This book
breaks down complex concepts into understandable parts using clear visuals and
explanations, focusing heavily on the mechanics of bitcoin transactions.

Advanced Resources

Bitcoin’s more intricate workings are laid out in The Book of Satoshi by Phil Cham-
pagne, which compiles the writings of Satoshi Nakamoto. While not a technical
guide per se, it provides essential context and foundational philosophies directly
from bitcoin’s creator, alongside technical commentary.

For developers looking to delve into advanced bitcoin programming and integrati-
on, Advanced Bitcoin Scripting by Glenn Willen is invaluable. It covers sophisticated
aspects of bitcoin’s scripting language, enabling the creation of more complex
smart contracts and innovations on the bitcoin blockchain.

Specialized Topics

 ● For those interested in security aspects, Bitcoin Security Fundamentals is crucial.
 ● In terms of economic implications and digital currency policy, The Economics

of Bitcoin offers a detailed analysis.
 ● For mining-specific insights, Bitcoin Mining and Blockchain Dynamics provides a

technical exploration of the mining process and its impact on blockchain stability.

Final words and opinions of Lukáš Hozda, Gentleman (not wri-
tten by Laurence Stern)
Ending books is difficult because there is always more to say. For a book like this
one, this is especially the case, as there is always more to learn, more to discover
and the space of possible improvements and changes one can make to a project
is infinite. I hope you liked the journey presented in this book. I tried to keep it
largely organic, similar to how one would develop a project in real life. An iterative

418

process, where you account for some things ahead, but others pop up as you go,
and sometimes you need to go back and change what you previously had, or extend
older pieces of the programs or libraries with new functionality.

Anyways, that’s it. Before you go, enjoy this drawing of a honey badger.52 I hear
it is an important animal in bitcoin. Like a Rust-powered honey badger, bitcoin
doesn‘t care and keeps on running. :) You can also reach out to me (or Braiins) on
our social media pages. I would love to hear how you liked my book, so that I can
flex in front of everyone.

52 Listen, some time ago, I splurged my hard-earned Braiins money on a drawing tablet, and by god, I am gonna use it.

SHOP NOW

For those who appreciate the touch and smell of a high-qua-
lity, freshly printed book, our e-shop offers all of our titles in
physical format.

Get yours today at shop.braiins.com

CHECK OUT OTHER BRAIINS INSIGHTS TITLES

DOWNLOAD FOR FREE

We’re committed to making the information in our books ac-
cessible to all, which is why we offer our entire collection in
multiple languages for free digital download.

Download yours today at braiins.com/books

	Acknowledgments
	Prelude
	Who is this book for?
	Who is this book not for?
	Online resources
	Requirements
	Goals and structure

	Foreword
	Introduction
	Why Rust and bitcoin are handsome together

	Analyzing the Whitepaper
	Brief history and overview of bitcoin
	The whitepaper pulled apart
	Introduction
	Transactions
	Timestamp Server
	Proof-of-Work
	Network
	Incentive
	Reclaiming Disk Space
	Simplified Payment Verification
	Combining and Splitting Value
	Privacy
	Calculations
	Conclusion

	Final evaluation and next steps

	Setting up
	Installing Rust
	Rustup vs native packages

	Installing VS Code and/or Rust Analyzer
	Installing Rust Analyzer
	Installing and setting up VS Code

	Creating a workspace and starting with Rust
	Crates
	Dependency management
	A tiny Cargo command reference
	Workspace setup

	Rust: The first contact
	Hello world
	Extended example
	Referring to Rust documentation

	Taming Rust’s learning curve
	Memory model
	Strings in Rust
	Lifetimes of owned vs unowned values
	Pattern matching
	Global “variables” in Rust

	Object-Oriented Programming in Rust
	Visibility and privacy
	User-defined types (structs and enums)
	Static dispatch
	Generic param bounds
	Dynamic dispatch

	Functional Programming in Rust
	Immutability
	The type system
	Functions and closures
	Iterators

	Keeping Rust cultured
	Rustfmt
	Clippy

	implementing a bitcoin library
	Data types
	Error handling in Rust
	Option<T> - Values might be absent
	Result<T, E> - Recoverable errors
	Panics - Errors we cannot recover from

	Error handling in btclib
	Difficulty
	Mining
	Blockchain methods
	Splitting up the big file
	Serialization into and deserialization out of files
	Utility binaries

	Creating a CPU miner
	Networking
	Miner that can talk to a node - Asynchronous Rust
	Futures and promises

	Tokio in miner

	Building a bitcoin node
	Organization
	Node discovery
	Fetching the blockchain from other nodes
	Handling requests
	Wrapping up

	Making a CLI/TUI wallet
	Making a CLI wallet
	The core of the wallet
	The main() function

	TUI wallet version
	Logging and the util module
	Core updates
	Setting up tasks
	Cursive user interface
	The main file

	Conclusion and next steps
	Evaluating our project
	Recommended reading from Braiins
	Other resources for Rust and BTC
	Rust
	Bitcoin
	Final words and opinions of Lukáš Hozda, Gentleman (not written by Laurence Stern)

