
A Practical Introduction to Echo State Networks

using Python

Ryan Hill∗

January 2021

1 Formalism

The characteristic task of supervised learning with RNNs, and with all ANNs
for that matter, is to learn a functional relation between a given input u(n) ∈
IRNu and a desired output ȳ(n) ∈ IRNy , where n = 1,...,T, and T is the number
of data points in the training dataset (u(n), ȳ(n)). For a non-temporal task
(i.e. data points are independent of each other) the goal is to learn a function
y(n) = y(u(n)) such that the loss function E(y, ȳ) is minimized. In the context
of RNNs, a common loss function is the normalized root-mean-square error
(NRMSE):

E(y, ȳ) =

√√√√ 〈
∥∥y(n)− ȳ(n)

∥∥2〉
〈
∥∥y(n)− 〈ȳ(n)〉

∥∥2〉 (1)

A temporal task is where u and ȳ are signals in a discrete time domain
(n = 1,...,T), and the goal is to learn a function y(n) = y(...,u(n − 1),u(n))
such that E(y, ȳ) is minimized. Thus, the difference between the temporal and
non-temporal task is that the function y(n) we are trying to learn has memory
in the first case and is memory-less in the second.

Many tasks cannot be accurately solved by a simple linear relation between
u and ȳ. In this case, we resort to a nonlinear model, which can be achieved
by taking a nonlinear expansion of the input u. In RC, the function of the
reservoir is to act both as this nonlinear expansion and as a memory input. To
perform a nonlinear high-dimensional expansion x(n) ∈ IRNx of the input signal
u(n) ∈ IRNu , we require Nx >> Nu. Input data which is not linearly separable
in the original space IRNu often becomes separable in the expanded space IRNx .
We are therefore searching for solutions of the form

y(n) = Woutx(n) = Woutx(u(n)) (2)

∗rjh324@cornell.edu

1

mailto:rjh324@cornell.edu

where Wout ∈ IRNy×Nx are the trained output weights and y(n) is the the
learned function. Expansion x(n) is often referred to as the ”state vector” of
the system at time step n. The network is usually initialized in state

x(0) = 0 (3)

The reservoir also serves as memory, providing temporal context. This is a cru-
cial reason for using RNNs in the first place. In a temporal task the function to
be learned depends also on the history of the input. Thus, the expansion func-
tion has memory: x(n) = x(...,u(n−1),u(n)). This function has an unbounded
number of parameters, so we can express it recursively:

x(n) = x(x(n− 1),u(n)) (4)

With the recursive (temporal) definition of the state vector, the output y(n)
is (typically) still calculated in the same way as for non-temporal methods (2).
For non-temporal tasks, this recursive definition can act as a type of a spatial
embedding of temporal information. This enables learning of high-dimensional
dynamical tendencies (or ”attractors” [1]) of the system from low-dimensional
observations. This is shown possible by Takens’s theorem [2].

Combining the state vector non-linear expansion and memory components
leads to the following general RNN state update equation,

x(n) = f(Winu(n) + Wx(n− 1)) (5)

where f is the neuron activation function, usually symmetric tanh, applied
element-wise, Win ∈ IRNx×Nu is the input weight matrix, and W ∈ IRNx×Nx is
the internal (hidden) weight matrix of network connections.

The ESN is a recurrent neural network with a sparsely connected hidden
layer (the reservoir), driven by a (one- or multi-dimensional) time signal, and ap-
plied to supervised temporal ML tasks. The connectivity and weights of hidden
neurons are fixed and randomly assigned. The weights connecting the hidden
neurons to the output neurons are the only trainable parameters in the network.
Although ESNs are dynamic, with non-linear behavior, their ”single-layer train-
ing” attribute makes their loss function quadratic in ”parameter-space,” so it
can be differentiated to a linear system. Quadratic loss functions are desirable
because they are easily manipulated (property of variances), symmetric, and
allow easy application of linear regression.

ESNs are an attractive RC implementation method because they are concep-
tually simple and computationally inexpensive. However, creating an effective
ESN is not, in and of itself, straightforward. The following sections will overview
ESN implementation, training, and application. We will approach ESN imple-
mentation in the practical context of a simple Python3 program using the Py-
Torch open-source ML library. To do so, we will work through each of the ”To
Dos” in example code outline class Reservoir() and class ESN(.).

In the code outlines (Figure 1, Figure 2), a question mark, ”?”, indicates
a numerical value selected by the user. ”TODO”, abbreviated TD# from here
on, indicates a section of code yet to be implemented, where # in [1, 6] is the
order of implementation followed in this paper.

2

Figure 1: esn.py

3

Figure 2: reservoir.py

4

2 Reservoir Generation

The reservoir is defined by tuple (Win,W, α). Win and W are generated
randomly according to a number of hyperparameters (in analogy to other ANN
approaches, ”hyperparameters” refer to parameters governing the distribution
of connection weights, as opposed to the connection weights themselves). α is
the leaking rate. Reservoir hyperparameters must be subtly chosen, as each
significantly impacts the behavior of the network, and therefore its overall per-
formance. Characteristic reservoir hyperparameters include the reservoir size,
sparsity, and distribution of nonzero elements, the spectral radius of W, the
scaling of Win, and, of course, the leaking rate α. These values are initial-
ized in the Reservoir class constructor. In this implementation, the input size
and desired reservoir size are set inside of the ESN class upon instantiation of a
Reservoir object.

gen w(.)

To begin, we wish to define a function gen w() (TD1), which generates the
random, internal weight matrix W of size Nx × Nx (5). The bigger the space
of reservoir signals x(n), the easier it is to find a linear combination of the
signals to approximate ȳ(n). Therefore, the bigger the reservoir, the better
the obtainable performance. However, reservoir size is bounded by its memory
capacity (number of values it must remember from the input to accomplish the
task, lower bound) and by the over-fitting threshold (upper bound):

Ny ≤ Nx ≤ T −Nu (6)

where T is the number of training data points.
Weight matrix W is typically sparse. Compared to dense representations,

this enables faster state vector updates while also giving slightly better perfor-
mance [3]. Nonzero elements can take any distribution, though common choices
include uniform, discrete bi-valued, and normal [4]. There does not exist built-in
Python functionality to construct, simultaneously, a matrix according to a given
density (or sparsity) and a given nonzero element distribution. Therefore, these
tasks must be performed in sequence. For example, using torch.randn, we can
easily generate a random matrix of size Nx with values (weights) normally dis-
tributed around zero. The initial width of the distribution does not matter, as
it is eventually reset according to the reservoir’s spectral radius. We can then
iterate over this generated matrix, drawing a random number p ∈ [0.0, 1.0) at
each entry Wi,j using Numpy library function random.random(). For desired
sparsity s ∈ (0.5, 1.0), if pi,j ≤ s, we set Wi,j = 0. Else, Wi,j is unchanged.
This is merely one of many possible approaches.

Spectral radius is one of the ESN’s most central hyperparameters; it specifies
the largest absolute eigenvalue of weight matrix W. After a random sparse W
(now named W0) is generated, we can compute its spectral radius

ρ0(W0) = λmax(W0) (7)

5

using PyTorch’s torch.eig and torch.max, or equivalent functions. Next, we
rescale W0 according to user-specified spectral radius, ρ (28):

W =
ρ

|ρ0|
W0 (8)

Finally, return the rescaled weight matrix W, now with largest absolute eigen-
value ρ, and gen w() is complete.

For the ESN model to work, the reservoir must satisfy the echo-state prop-
erty (ESP): the effect of previous state x(n) and previous input u(n) on a future
state x(n + k) should vanish gradually as time passes (k → ∞) [5]. In other
words, the reservoir must asymptotically ”wash out” any information from ini-
tial conditions. For reservoirs with tanh activation and input u(n) = 0, the
ESP is violated if W is scaled such that

ρ(W) > 1 (9)

Contrary to many simplistic descriptions, ρ < 1 does not guarantee the ESP.
The ESP can be obtained for u(n) 6= 0 even if ρ > 1, and can be violated even if
ρ < 1 [5] (although the latter is unlikely). Through a process of trial and error,
ρ should be selected to maximize performance. Generally, ρ should be close to 1
for tasks that require long term memory, and smaller for tasks where too much
memory may be harmful.

We have now constructed internal weight matrix W according to user-
specified hyperparameters reservoir size, sparsity, distribution of nonzero ele-
ments, and spectral radius.

gen w in(.)

Following a similar procedure, we will now define a function gen w in() (TD2),
which generates the random, input weight matrix Win of size Nx×Nu (5). Nx

is the reservoir size, and was specified while generating W. Nu is the dimen-
sionality of the input data, so is also predetermined. Win is usually generated
according to the same distribution as W. Therefore, a normal distribution of
weights around 0 may, once again, be carried out using the torch.randn func-
tion. This time, however, the width of the distribution does does matter: for
normal distributed input weights we can take the standard deviation as a scaling
measure [4]. This scaling measure, known as the input scaling, a, is a vital ESN
optimization parameter. It dictates how ”nonlinear” reservoir responses are.

For small input scaling values, the units of Win will collapse towards 0,
where their tanh activation is essentially linear (Figure 2). So for linear tasks,
a should be small. For large input scaling values, the units of Win will quickly
saturate towards 1 and −1, exhibiting nonlinear, binary ”switching” behavior.
So for nonlinear tasks, reservoir response might be optimized for larger a. The
”amount” of nonlinearity a task requires is not always easy to assess. This
hyperparameter is another best tuned through trail and error.

Referring back to the general state update equation (5), it is clear, for sig-
moid activation, that the scaling a of Win, and the scaling ρ(W) of W, together

6

dictate the amount of nonlinearity and memory of previous states present in the
current state representation.

To implement gen w in(), sequentially construct Win by first creating an
Nx × Nu dimensional matrix with the same element distribution as W. But
this time, form the distribution according to the input scaling, a: For uniform
distributions, sample values from the interval [−a, a]. For normal distributions,
set σ = a. Then, iterate through the resulting matrix, drawing random number
p ∈ [0.0, 1.0) at each entry, and setting Wini,j = 0 where pi,j ≤ s. Win is
typically dense, so s ∈ [0.0, 0.5). return Win and gen w in() is complete.

We have now constructed input weight matrix Win according to the input
data dimension, reservoir size, nonzero element distribution of W, and user-
specified input scaling parameter. In the next section, we will further specify
our reservoir model by covering neuron activation now in the context of RNNs.

3 Activation States

This section will overview the leaky integrator neuron model, and then de-
scribe the computation and collection of reservoir activation states x(n) for a
training input u(n).

forward(.) Pt. 1

In ANN training, the ”forward pass” refers to the computation performed dur-
ing each training iteration. In a single forward pass, the network is provided
one training data sample whose information is propagated through the hidden
units of the network to eventually produce an output y, at which point a lin-
ear readout is performed. In the first component of the class ESN ”forward”
method (TD3) we manipulate the input, u, to match the user-specified reservoir
input dimension. You can read-in data any way you like, as along as all of the
input information is inside the reservoir simultaneously. Take, for example, an
input of dimension 1 × N × N . A natural way to perform this read-in would
be to generate a reservoir W of N × N neurons, and to flatten and transpose
each input into a N2 × 1 column vector. This could be achieved through the
torch.flatten() and torch.t() methods. However, you may alternatively
rely on the fact that the reservoir has a memory, and read-in each single column
of the input as a N × 1 vector at each time point, ultimately taking N time
points to get the entire input into the reservoir.

init state(.)

Before we can use activation to perform a state update, we need an initial state
(TD4). The reservoir state vector must be of dimension Nx × 1 (5). If we have
chosen a spectral radius such that our reservoir satisfies the ESP ((9) not true),
then the final state of the network does not depend on its initial conditions.
Therefore, the initial state can be any vector of the above dimension. A com-

7

mon choice is the zero vector (3), which can be created using the torch.zeros

function.

forward(.) Pt. 2

As previously stated, standard ESNs use sigmoid neurons, i.e., reservoir states
are computed using (5), where the nonlinear function f is a sigmoid, usually
the tanh function:

x(n) = tanh(Winu(n) + Wx(n− 1)) (10)

Leaky integrator neuron models represent another frequent option for ESNs.
These type of neurons perform a ”leaky” integration of their activation from
previous time steps. Generally, a leaky integrator is analogous to a first-order
filter with feedback.

For arbitrary input u(n) and output y(n), a leaky integrator can be described
by nonhomogeneous first-order linear ODE

ẏ(n) + αy(n) = u(n) (11)

where α is the leaking rate. Using (9), let us redefine

u(n) = tanh(Winu(n) + Wx(n− 1)) (12a)

αy(n) = x(n) (12b)

Plugging our substitutions (11) into (10) and rearranging,

ẋ(n) + x(n) = tanh(Winu(n) + Wx(n− 1)) (13)

ẋ = −x + tanh(Winu + Wx) (14)

where (13) describes the continuous time reservoir update dynamics. Performing
an Euler’s discretization in time on (13),

ẋ ≈ ∆x

∆t
=

x(n+ 1)− x(n)

∆t
(15)

For brevity, we will redefine the right hand side of (12):

x̃(n+ 1) = tanh(Winu(n) + Wx(n− 1)) (16)

Setting (20) equal to (19), and using simple algebra:

x(n+ 1)− x(n)

∆t
= −x(n) + x̃(n+ 1) (17)

x(n+ 1)− x(n) = ∆t(−x(n) + x̃(n+ 1)) (18)

x(n+ 1) = (1−∆t)x(n) + ∆tx̃(n+ 1)) (19)

The leaking rate α ∈ (0, 1] of the reservoir nodes denotes the speed of the
reservoir update dynamics discretized in time. Therefore, we can substitute

8

α for the sampling interval ∆t. And finally, by performing time-translation
n→ n−1, we arrive at the leaky-integrated discrete-time continuous-value unit
ESN state update equations:

x̃(n) = tanh(Winu(n) + Wx(n− 1)) (20a)

x(n) = (1− α)x(n− 1) + αx̃(n) (20b)

where x(n) is the current state vector and x̃(n) is its update, each at time step
n. To apply a bias b (as in y = mx+ b), simply use

u(n)→ [b;u(n)] (21)

where [·;·] stands for a vertical vector (or matrix) concatenation [4]. Notice, to
use the model without leaky integration, simply set α = 1 and thus x̃(n) ≡ x(n).

We are now equipped to implement the second component of the class ESN(.)

”forward” method, i.e. the ”forward” method of class Reservoir(), (TD5):
forward() updates and returns the state representation x(n) for given input
u(n). The single leading underscore is a convention used to indicate that this
method is meant only for internal use. Here, it also used to differentiate between
forward() of class ESN(.), which is where the readout, and remainder of the
”forward pass” will be performed (Section 4). Abstracting the code in this way,
organizing methods acting in and on the reservoir into a separate Reservoir

class, will prove exceptionally useful in debugging, parameter selection, and
extending to multi-reservoir networks (DeepESNs).

Notice the global variable state x inside of the Reservoir constructor
method. This variable stores the state update of the previous training itera-
tion (or pass), x(n−1) so it can be applied to perform a new update during the
current pass. To implement TD5, use the built-in torch.tanh and torch.mm

(matrix multiply) methods to evaluate (20). Store the result in a temporary
variable, and evaluate (21) to produce updated x. Finally, we update global
variable state x for the next pass, and return the updated state.

We have now created methods to generate an initial state x(0) = 0, and to
perform a leaky-integrated state update for given input u(n) using our previ-
ously generated W and Win, and globally stored x(n− 1).

4 Compute a Probability Distribution

Restating (2) for convenience, our main objective is to find an output weight
matrix Wout in IRNx such that

Woutx(n) = y(n) ≈ ȳ(n) (22)

For tasks where feedback or temporal sequential processing is important, it often
helps significantly to include the original input u(n) and a bias, b. In this case,
the linear readout becomes

Wout[b;u(n);x(n)] = y(n) (23)

9

where y(n) ∈ IRNy , Wout(n) ∈ IRNy×(1+Nu+Nx), and [·;·;·] again stands for a
vertical vector (or matrix) concatenation [4].

Since the readouts from an ESN are typically linear and feedforward [4],
learning the output weights (23) can be viewed as solving a system of linear
equations

WoutX = Ȳ (24)

where X ∈ IRN×T are all x(n) produced by presenting the reservoir with u(n),
and Ȳ ∈ IRNy×T are all ȳ(n), both collected intro respective matrices over
the training period n = 1, ..., T . Note: for linear readout using (23) and (24)
respectively,

X ∈ IRN×T → X ∈ IRNx×T (25a)

X ∈ IRN×T → [B; U; X] ∈ IR(1+Nu+Nx)×T (25b)

The goal is to minimize the (quadratic) error-rate E(Ȳ,WoutX) as in (1).
This problem seems familiar from our previous discussion of supervised learning
(Section (??)), so let’s first approach it as we know how, using gradient descent
(GD).

forward(.) Pt. 3

The third and final component of the class ESN(.) ”forward” method (TD6)
aims to use the state update(s) (20) computed in forward(.) (TD5) to gen-
erate output predictions, y(n). In accordance with GD, we can then compare
these predictions against true values ȳ(n) to iteratively update the weights of
Wout in direction opposite to the gradient of the error function (1). Due to the
auto-feedback nature of ESNs (i.e. their ”echo” property), the reservoir state
x(n) holds traces of past activations x(n − 1), x(n − 2), ..., etc. 1 It is there-
fore often sufficient to take x(n) alone as a representative encoding of the input
history, and compute y(n) according to (22). We can do so using the PyTorch
nn.Linear class, which applies a linear transformation to incoming data

y = xAᵀ + b (26)

Note: for some tasks (e.g. classification) performance is improved using time-
averaged activations,

∑
x [4]. But for now, we will proceed with just x(n) for

clarity. In the ESN class definition (Figure 1) we instantiated nn.Linear such
that (26) takes x ∈ IRNx → y ∈ IRNy , as required. Setting bias=False ensures
b = 0 so that the only learnable parameters are the weights of Wout (i.e. ele-
ments of Aᵀ). In TD6, transpose just-computed state update x(n) as necessary

1The extent of this dynamical short-term memory can be calculated explicitly, and is called
the ESN’s memory capacity, MC. It has been shown [6] that MC ≤ N for networks with
linear output units and independent and identically distributed (iid) input, where N is the
reservoir size.

10

and pass it through the linear layer. Finally, apply the nn.Softmax function,
normalizing the linear layer resultant vector into a probability distribution, i.e.
rescaling its elements such that they fall in the range [0, 1] and sum to 1:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(27)

Many prefer Softmax over other normalization functions (e.g. argmax, stan-
dard normalization) because it is differentiable (useful for backprop, but not
applicable in our case) and is exponential, emphasizing the extremes of the dis-
tribution. After returning the result of Softmax normalization forward(.) is
fully implemented.

Our PyTorch ESN model (Figure 2) is now complete. We started by imple-
menting methods to generate a reservoir (Win,W, α) according to user-specified
hyperparameters reservoir size, sparsity, distribution of nonzero elements, spec-
tral radius, input scaling, and leaking rate. We then initialized the reservoir
state vector, and finally, implemented a complete forward pass: we specified
the read-in of input data, used that data to perform a tanh leaky-integrated
state update, linearly transformed the resultant state according to weight ma-
trix Wout, and ultimately, produced a prediction in the form of a normalized
probability distribution.

Remember, this is only one of many possible implementations. Each com-
ponent of the network can (and should be) adapted to fit the demands of each
unique learning task. However, the class structure, method specification, and
general abstraction used in this paper should be intuitive and naturally exten-
sible for anyone just starting out.

5 Iterative Optimization

In Section 4 we formulated a goal to solve the linear system of equations
given by (24) or, equivalently, minimize the error-rate E(Ȳ,WoutX). First,
we took the gradient descent approach. Now, for a given input u(n), our ESN
generates a prediction y(n) in the form of an Ny × T dimensional probability
distribution.

Next, we need to define an error (or loss) function. Two common, predefined
choices in PyTorch are nn.MSELoss() and nn.CrossEntropyLoss(). Both loss
functions have explicit probabilistic interpretations: MSE corresponds to esti-
mating the mean of a distribution; cross-entropy corresponds to minimizing the
negative log likelihood of a distribution (i.e. maximizing the log likelihood).
MSE is thus better suited for regression (narrower, smoother decision boundary
where the goal is to be close), while cross-entropy is preferred for classifica-
tion (larger, more abrupt decision boundary where the penalty for being wrong
increases exponentially as you get closer to predicting the wrong output.)

For a PyTorch optimizer, a good choice is Adam (optim.Adam(.)). First
published in 2014, Adam is an algorithm for first-order gradient-based optimiza-
tion of stochastic objective functions (randomness present), based on adaptive

11

estimates of lower-order moments (measures of the ”shape” of a function) [7].
Adam can be viewed as a combination of RMSprop and Stochastic Gradient
Descent (SGD) with momentum. Like RMSprop, it uses the squared gradients
to scale the learning rate, and like SGD with momentum, it uses the moving
average of the gradient instead of gradient itself.

Before training, we can quickly verify that the network is generating the
correct number of learnable parameters. Assuming all the hyperparameters of
class Reservoir() are set, specify a hidden size R ∈ Z for class ESN(.).
Now we create an instance

esn = ESN(N, M) (28)

where N, M ∈ Z are the input and output size, respectively. Finally, executing

params = list(esn.parameters())

print(len(params))

print(params[0].size())

should result in output

1

torch.Size([M, R])

As some back-of-the-envelope linear algebra, or a glance at (2) will prove, M× R

is the correct dimension for trained weight matrix Wout.
With our ESN model complete, error and optimizer functions selected and

defined, and learned parameters correctly reflecting the dimension of Wout,
we are ready to perform gradient descent. This process is relatively straight
forward and well documented on the PyTorch website, so will be omitted for
the purposes of this paper.

6 Closed-Form Solutions

Using an alternative approach, we can evaluate (24) for Wout algebraically
to find an exact, or closed-form solution. Typically T � N , so (24) presents an
overdetermined system of linear equations:

...

x1(n)

...
xN (n)

 =

y1(n)

...

yNy
(n)

(29)

12

Table 1: ESN & Training Parameters

Parameter Value

Reservoir size (Nx) 1000
Spectral radius (ρ) 0.99
Input scaling (a) 0.6

Reservoir density (dw) 0.1
Input density (dwin

) 1.0
Leak rate (α) 1.0

Bias (b) 1
Training length (T) 8000

To be clear, the dimensionality of this equation follows (Ny × N) · (N × T) =
(Ny×T) where N is given by choice of linear readout using state vectors with or
without vertical concatenation of input and bias (25) (or just one or the other;
not given but easily deduced). The method for finding least square solutions of
overdetermined systems of linear equations is also known as linear regression.
Solutions following this method are outside the scope of this paper, but could
be a subject of future work.

7 Application

The first application of our ESN was towards traditional MNIST classifi-
cation. Each MNIST image is delivered as a 3-dimensional tensor (2 spacial
dimensions, 1 RGB dimension). By transposing each image into a 282 × 1 col-
umn vector, we could deliver all of the information contained in an image to
the reservoir at once (TD3). Figure 3 is a depiction of the performance of our
network over 15 training iterations, or epochs.

The data shows us that for careful choice of parameters, we can apply an
echo-state system (typically suited for temporal tasks) to a classification problem
with very respectable results.

The reservoir did not respond well to leaky integration, because the MNIST
images bear no temporal connection, so we set α to 1. The most impactful
parameter on performance was the reservoir size. Over all of the training, there
seemed no upper to limit to where a larger reservoir would not improve perfor-
mance, besides what the computer could computationally handle. Though, the
marginal benefit of continuing to increase reservoir size slowed to a near plateau
for sizes roughly equivalent to that of the training data set. There may have
been an over-fitting threshold (6), though the reservoir was still improving at
larger sizes, just quadratically more slowly. A complete list of ESN and training
parameters used during this readout are given in Table 1.

13

Figure 3: Accuracy of ESN of dimension Nx = 1000 on MNIST

14

References

[1] Miller, P. Dynamical systems, attractors, and neural circuits.
F1000Research, 5:992, 2016.

[2] Floris Takens. Comparative analysis of recurrent and finite impulse response
neural networks in time series prediction. Lecture Notes in Mathematics
Dynamical Systems and Turbulence, Warwick 1980, pages 366–381, 1981.

[3] Erich Narang, Sharan an Elsen, Gregory Diamos, and Shubho Sengupta.
Exploring sparsity in recurrent neural networks, 2017.

[4] M. Lukoševičius. A Practical Guide to Applying Echo State Networks. Lec-
ture Notes in Computer Science Neural Networks: Tricks of the Trade, pages
659–686, 2012.

[5] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3:127–149, 2009.

[6] H. Jaeger. Short term memory in echo state networks. Technical report,
German National Research Center for Information Technology, 2002.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

15

	Formalism
	Reservoir Generation
	Activation States
	Compute a Probability Distribution
	Iterative Optimization
	Closed-Form Solutions
	Application

